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Preface


This book covers the three types of object-oriented design patterns, i.e., creational, structural and behavioral design patterns. The book has five sections, the first section has a single chapter dedicated to the whats and whys of the design patterns and their types. The other three sections have four chapters each and focus on these design patterns in a one chapter one pattern formation. The last section focuses on the design principles and anti-patterns.

In this book, we will discuss the basics of software design and some of the standard design patterns that are used across the globe in many different software applications. Almost every software application that is functional today uses one or more of these design patterns to accomplish variety of tasks they are built for.

This book focuses on some of the most used object-oriented design patterns and their implementation using Java. Each chapter in this book is dedicated to only one of the design patterns to ensure better readability and understanding. The individual chapters take the problem-oriented approach and discuss the design problem that could be solved by utilizing the design pattern discussed in that chapter. The chapters emphasize on understanding the core of these design patterns and provide close to real life examples to directly connect the reader with the scenarios where these design patterns can be utilized.

This book will benefit those who have a fair understanding of software development and are familiar working with medium to large scale systems. The concepts mentioned in the book will add to the knowledge of those who work with multiple module systems and is also a go to guide for those who want to improve their software design understanding.
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CHAPTER 1

Enlighten Yourself


Structure

Topics that will make this journey worthwhile:


	Introduction

	Design patterns

	Classification of design patterns

	Creational design patterns

	Structural design patterns

	Behavioral design patterns

	Why bother about software design?

	Benefits of good design

	Think beyond methods and classes



Objective

Our objective is to learn about software design patterns and their role in software development. We will explore the different categories of the design patterns along with their importance and benefits.

Introduction

Software development is not only about solving problems but about doing so in an efficient manner. Problem solving is a process that involves multiple steps. It starts with problem identification, advances towards developing an algorithm for it and ends with an implementation. A software can be implemented in many different ways; right from devising an algorithm to using a correct set of data objects and the integration among them; all of this is part of implementing a software. However, without a good design, even the best of implementations could fall apart.

Designing a software is not an easy task to accomplish; it requires a lot of effort and knowledge to come up with a design solution that is easy to implement, is feasible, adheres to the programming principles and is scalable in nature. Nowadays the amount of data a software process is not only greater in terms of storage, but is also much more complex. With so much information being kept in the software systems, it becomes important to inspect the current design of the system and to transit to a better one that will adapt to increase usage and fast processing requirements. Software design is not only about putting things in place in a defined manner, but it is also about establishing interconnected pathways that help to transfer data among multiple controllable structures to form a flow that when executed performs a task in an efficient way.

To put it in an interesting manner, the design of the software gives it life. It not only supports the underlying framework, but also makes it easy for the developers to scale the system and be ready for all the future changes, even when, at times, they are unaware of them. A good design ensures that the software is robust and can adapt to the new features easily and with lesser time that is possibly required when there is no proper design.

If you are reading this book today, it means that you have had your fair bit of experience with programming and now wish to explore further and learn about the various design techniques that will not only help you in writing better software but also help you in managing it with much ease. In this book, we will discuss the basics of software design and some of the standard design patterns that are used across the globe in many different software applications. Almost every software application that is functional today uses one or more of these design patterns to accomplish the variety of tasks they are built for. We will also discuss the pros and cons of using one design pattern over another and when to use which design pattern.

Design patterns

Design patterns, in software engineering, are the blueprints or templates that emerge out of well-designed exercises to solve typical problems that are usually recurring in nature. Design patterns can also be considered as the best practices employed to effectively overcome software design problems:

Figure 1.1 exhibits some of the core attributes of design patterns.


[image: ]

Figure 1.1: Design patterns

Design patterns follow a systematic approach and can be reused in a variety of situations as they provide us with an idea of how to solve a particular problem. They themselves are not the actual code solutions, but instead blueprints or general solutions that help us to solve the problem in an effective way.

A design pattern can have one or more standard objects or interfaces that are necessary for its successful implementation. These interfaces or objects are the very soul of the pattern itself and require the programmer to follow the exact practice as described in the pattern for effective utilization.

Classification of design patterns

The design patterns help solve a variety of design problems ranging from object creation and interface development to managing the behavioral aspects of the object. They help us with various use cases centric to the application and provide solutions that are architecturally rich and easy to implement and manage.

Figure 1.2 exhibits the classification of design patterns into three categories, that is, creational, behavioral, and structural:
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Figure 1.2: Design patterns classification

An important aspect of software design is the knowledge and understanding of the person who designs it. It is therefore not just recommended but necessary to understand how the system should behave and what is the overall design expectation before somebody chooses a design pattern. White choosing a good design is important, it is much more important to not to choose a bad design. The implication of that could be far more troublesome than expected.

Design patterns could be broadly categorized into three categories, namely, creational, structural and behavioral.

While the creational patterns are more involved with creation of objects and the interfaces that connect with those objects, the structural patterns help with designing large structures by assembling two or more systems together to provide new functionalities and the behavioral patterns are inclined towards communication between objects.

Creational design patterns

Design patterns that relate to the idea of object creation in an efficient and controlled manner are referred to as creational design patterns.

Their working could be understood based on two defining principles:


	Hiding the object and its composition from the outside world

	Controlling object usage



Both the principles are followed by providing an abstraction layer that ensures the only connection to these objects from the outside world is through this layer only.

Creating objects and using them without a controlled environment scatters those objects all over the place and it becomes increasingly difficult to manage and refactor the application in the future. The creational design patterns decouple the process of object creation from other parts of the application thus ensuring that the objects are created and used as per application best practices. This also helps with performance and security guidelines when the objects are created and composed in a controlled environment.

Figure 1.3 explains the objective of creational design patterns and lists some of these patterns we will learn about in this book:
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Figure 1.3: Creational design pattern

Creational design patterns make effective use of abstraction and access control mechanisms provided by the object-oriented languages. Interfaces are used to reduce the dependency of objects on each other as we see in the factory pattern and dependency injection pattern. Similarly, access control mechanisms help to control access to an object and its state, directly, by any other object. The only way the object could be accessed is via public methods.

Things to Remember:


	Segregates object creation from other business logic

	Promotes reusability of instances

	Controls object access

	Hides object composition



In this book, we will discuss some of the widely used and accepted creational design patterns, namely:


	Singleton design pattern: This pattern ensures that only one instance of the class, which is made singleton, is exposed for access per JVM

	Builder design pattern: The builder pattern aims to simplify the construction process of complex objects by providing a stepwise approach to instance creation. It also exhibits the capability to construct the same object with different representations

	Object pool design pattern: This pattern creates a pool or group of objects that can be reused to process some information. This pattern is used in scenarios where the object creation cost is high and object reuse is advisable than its creation.

	Factory design pattern: Factory design pattern provides an abstraction and delegates the control to the subclasses for the type of object to be constructed. It is the responsibility of the implementation classes to decide upon the type of object based on the supplied inputs.



Familiar use cases


	Imagine an object that converts a JSON string to some other format and requires a lot of CPU and memory resources during initialization. Whenever there is a need to perform the conversion, one way to accomplish it is to instantiate an object. The other way is to use the singleton design pattern for object creation and use that object whenever required. By using the singleton pattern, a lot of resources could be saved and hence a lot of processing time. An example of singleton in JDK is the class runtime, which has only one instance in a JVM.

	Imagine a scenario where multiple objects with high cost of creation are required to perform parallel or concurrent operations. This scenario is an excellent use case for the object pool design pattern. An object pool instantiates and stores multiple objects that can be used again and again in an application that has to process multiple requests at a time. An object pool lends its resources for processing and computation and usually has a bounded queue to keep track of the unprocessed requests that wait for their turn until one of the pool objects is free. An example of an object pool in the JDK is the Executor framework.

	Another prominent use case is of a scenario that involves multiple implementations of the same interface and the selection of the right implementation for a particular request is governed by the implementation themselves. Imagine that you have to calculate tax for a user and the tax calculation algorithm involves multiple factors, using the factory design pattern the calculation process could be simplified and streamlined by introducing these factors into the selection process to select the right implementation.



Structural design patterns

The basic idea behind structural design patterns is the formation of large structures by assembling various objects or their classes together and to provide new functionalities.

Figure 1.4 explains the objective of structural design patterns and lists some of these patterns we will learn about in this book:
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Figure 1.4: Structural design pattern

Structural design patterns do not modify existing classes or objects, but instead add new features on top of them. This way, in general terms, multiple business use cases can be solved effectively with minor or no architectural changes.

In other words, structural design patterns aim for the realization of relationship among objects and provide new functionalities in return. They make use of the two important pillars of object-oriented programming, that is, inheritance and composition to form the new structures. The emphasis is on the use of interfaces rather than concrete implementations so that the participating classes remain loosely coupled to each other. This brings us to the important design principles, that is, interact with interfaces rather than with concrete implementations.

Though the larger structure acts as one unified unit, the participating classes and or objects can still be improved and maintained and even replaced in isolation. This is possible because of loose coupling among the classes. Structural design patterns make use of existing classes and objects, wrap them or use them in previously unrelated or newly formed classes to create new functionalities.

Things to Remember:


	Assembles classes and objects to form large structures

	Expresses relationship between objects

	Promotes inheritance and composition

	Requires no or minimum change in participating classes

	Realizes new functionality



In this book, we will discuss some of the widely used and accepted structural design patterns, namely:


	Adapter design pattern: The adapter design pattern converts one interface into another and provides a way for classes to interact with each other without changing their source code.

	Decorator design pattern: The decorator design pattern expands the functionality of an existing class or interface without modifying their source code. It creates wrappers that inherit the same interface and use composition to add the new functionality.

	Proxy design pattern: Proxy, as the name suggests, acts as a placeholder for another class. The proxy pattern is used as a gateway to control access to other classes. The proxy class could be used for security, validation, data retrieval and other requirements that need controlled access to an object.

	Facade design pattern: Facade pattern simplifies the interaction between two systems by providing an interface that hides the complex processing and data manipulation.



Familiar use cases


	Imagine a scenario where a ticket booking module confirms the booking only after receiving a response from the payment processing module.
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