
[image: image]

Software Design
Patterns for
Java Developers

[image:]

Expert-led Approaches to Build Re-usable
Software and Enterprise Applications

[image:]

Lalit Mehra

[image:]

www.bpbonline.com

FIRST EDITION 2022

Copyright © BPB Publications, India

ISBN: 978-93-91392-475

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

[image:]

www.bpbonline.com

Dedicated to

My beloved Parents

Shri Bhushan Mehra, Smt. Rekha Mehra

&

My Beautiful Wife

About the Author

Lalit Mehra is a software engineer with a wide range of interests, covering topics such as microservices, distributed systems, scalability and asynchronous architecture. He has worked in multiple domains, including CRM, payments and finance. He earned his Master's Degree in Computer Science from Indraprastha University, Delhi, and has 10 years of experience working with some of the most prestigious organizations (such as Salesforce and Paytm).

His LinkedIn Profile: https://www.linkedin.com/in/mehralalit

About the Reviewers

Gaurav Aroraa is a Tech enthusiast and Technical consultant with more than 23 years of experience in the industry. He has a Doctorate in Computer Science. Gaurav is a Microsoft MVP award recipient. He is a lifetime member of the Computer Society of India (CSI), an advisory member and senior mentor at IndiaMentor, certified as a Scrum trainer and coach, ITIL-F certified, PRINCE-F and PRINCE-P certified. Gaurav is an open-source developer and contributor to the Microsoft TechNet community. He has authored ten books, including Microservices by Examples Using .NET Core (BPB Publications).

Your Blog links: http://gaurav-arora.com/blog/

Your LinkedIn Profile: https://www.linkedin.com/in/aroragaurav/

Amandeep has been working as an Engineering Manager in the field of software development at an Indian AI-based online travel company at the time of reviewing this book. He has worked for more than 9 years in multiple roles in different domains with some of the best organizations including top MNC’s (such as RBS and Orange). He owns a wide horizon of interests in coding in Java and Python with an inclination towards solving business problems via software engineering. He has worked in numerous data science fields, especially Natural Language Processing. He has earned his Master's Degree with specialization in Data Analytics from the Birla Institute of Technology and Science, Pilani and has reviewed a few research papers under “IEEE Transactions on Neural Networks and Learning Systems”. He has earned certifications from multiple MOOCs on data science, machine learning, deep learning, image processing, natural language processing, artificial intelligence, algorithms, statistics, mathematics and related courses apart from his open-source contribution in Spark-NLP, Doccano and has hosted a library aiops on pypi.org.

Acknowledgement

There are a few people whom I want to thank for the continued and ongoing support they have given me during the writing of this book. First and foremost, I would like to thank my parents and my wife for continually encouraging me for writing the book — I could have never completed this book without their support. My wife has been a continuous source of inspiration throughout the time I was involved with the book. She made sure I got enough time to work on the book after the office and took care of almost everything that needed my presence.

My gratitude also goes to the team at BPB Publications for being supportive and providing me enough time to complete the book. There are so many object-oriented design patterns that it becomes almost impossible to write about all of them in a single book. The team at BPB Publications trusted me to choose a selected few of them to write about in this book and I am very grateful for the confidence they have shown in me.

Preface

This book covers the three types of object-oriented design patterns, i.e., creational, structural and behavioral design patterns. The book has five sections, the first section has a single chapter dedicated to the whats and whys of the design patterns and their types. The other three sections have four chapters each and focus on these design patterns in a one chapter one pattern formation. The last section focuses on the design principles and anti-patterns.

In this book, we will discuss the basics of software design and some of the standard design patterns that are used across the globe in many different software applications. Almost every software application that is functional today uses one or more of these design patterns to accomplish variety of tasks they are built for.

This book focuses on some of the most used object-oriented design patterns and their implementation using Java. Each chapter in this book is dedicated to only one of the design patterns to ensure better readability and understanding. The individual chapters take the problem-oriented approach and discuss the design problem that could be solved by utilizing the design pattern discussed in that chapter. The chapters emphasize on understanding the core of these design patterns and provide close to real life examples to directly connect the reader with the scenarios where these design patterns can be utilized.

This book will benefit those who have a fair understanding of software development and are familiar working with medium to large scale systems. The concepts mentioned in the book will add to the knowledge of those who work with multiple module systems and is also a go to guide for those who want to improve their software design understanding.

Downloading the code bundle
and coloured images:

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/4b37ea

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit www.bpbonline.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at https://github.com/bpbpublications/Software-Design-Patterns-for-Java-Developers. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/bpbpublications. Check them out!

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit www.bpbonline.com.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Table of Contents

1. Enlighten Yourself

Structure

Objective

Introduction

Design patterns

Classification of design patterns

Creational design patterns

Familiar use cases

Structural design patterns

Familiar use cases

Behavioral design patterns

Familiar use cases

Why bother about software design?

Benefits of a good design

Think beyond method and classes

Conclusion

Questions

Pick the odd one out

Find the odd one out

Perfect match

Select the correct option

Answers

Pick the odd one out

Find the odd one out

Perfect match

Select the correct option

2. One of a Kind

Structure

Objective

Introduction

Logger

Singletons

Singleton design pattern

Variations

Lazy initialization

Multiple instances of a singleton

Eager initialization

Thread safe singleton

Reflection meets singleton

Enum as singleton

Singleton and serialization

Conclusion

Questions

Pick the odd one out

Find the odd one out

Complete the code

Select two correct options

Answers

Pick the odd one out

Find the odd one out

Select two correct options

3. Object Factory

Structure

Objective

Introduction

Interacting with interfaces

Building factories

Response factory

Response factory’s first run

The Simple factory

Multiple factories

Factory that speaks French

Response updated!

Response factory’s second run

The factory method pattern

Family of objects

Dependency injection

Response factory’s third run

Abstract factory

Conclusion

Questions

Pick the odd one out

Find the odd one out

Complete the code

Select two correct answers

Answers

Pick the odd one out

Find the odd one out

Select two correct answers

4. Delegate Object Construction

Structure

Objective

Introduction

Delegating object construction

Representational state

Implementing builders

The interface

Concrete builders

Deployment manager

Testing the builders

Builder design pattern – defined

Advantages and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Odd one out

Complete the code

Select two correct answers

Answers

Find the odd one out

Pick the odd one out

Select two correct answers

5. Recycle and Reuse

Structure

Objective

Introduction

Object reusability

Object pool design pattern

When to use an object pool?

Implementing an object pool

Pool initialization

Pool destruction

Acquiring objects

Releasing objects

Varying implementations

Partial initialization

Releasing objects – Who is the owner?

Advantages and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Find the odd one out

Complete the code

Select two correct answers

Answers

Pick the odd one out

Find the odd one out

Select two correct answers

6. Adapter

Structure

Objective

Introduction

Incompatible interfaces

Adapter design pattern

Building an adapter

Interfaces

Concrete implementations

The adapter

Testing the adapter

Adapter design pattern - defined

Benefits and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Find the odd one out

Select two correct answers

Answers

Pick the odd one out

Find the odd one out

Select two correct answers

7. Decorating Objects

Structure

Objective

Introduction

Wrappers

Decorator design pattern

Building a decorator

The interface

The subject

Base decorator

Concrete decorators

Testing the decorators

Decorator design pattern - Defined

Benefits and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Find the odd one out

Select two correct answers

Answers

Pick the odd one out

Find the odd one out

Select two correct answers

8. The Guardian

Structure

Objective

Introduction

Proxies

Proxy design pattern

Types of proxies

Remote proxy

Virtual proxy

Protection proxy

Building a proxy

The interface

The subject

The proxy

Testing the proxy

Proxy design pattern - defined

Benefits and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Find the odd one out

Select two correct answers

Answers

Pick the odd one out

Find the odd one out

Select two correct answers

9. Simplifying the Complexity

Structure

Objective

Introduction

Facade

The Facade design pattern

Building a facade

All for one

One for all

Facade design pattern - defined

Benefits and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Find the odd one out

Select two correct answers

Answers

Pick the odd one out

Find the odd one out

Select two correct answers

10. Template

Structure

Objective

Introduction

Template

Template method design pattern

Building a template method

The template method

Varying implementations

Testing the template method pattern

Template method design pattern - defined

Benefits and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Find the odd one out

Select two correct answers

Answers

Pick the odd one out

Find the odd one out

Select two correct answers

11. Keep a Close Eye

Structure

Objective

Introduction

Observer design pattern

Building observer design pattern

The interfaces

The subject

The observers

Testing the observer design pattern

Variations

Push mechanism

Pull mechanism

Observer design pattern - defined

Benefits and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Find the odd one out

Select two correct answers

Answers

Pick the odd one out

Find the odd one out

Select two correct answers

12. State and Behaviors

Structure

Objective

Introduction

State design pattern

Implementing state pattern

The interface

The concrete implementations

The stateful object

Testing the state design pattern

State design pattern - defined

Benefits and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Find the odd one out

Select two correct answers

Answers

Pick the odd one out

Find the odd one out

Select two correct answers

13. Executing Commands

Structure

Objective

Introduction

Command design pattern

Implementing command pattern

The receiver

The command

The invoker

The client

Command design pattern - defined

Benefits and drawbacks

Usage

Conclusion

Questions

Pick the odd one out

Find the odd one out

Select two correct options

Answers

Pick the odd one out

Find the odd one out

Select two correct options

14. Beyond Design Patterns

Structure

Objective

Introduction

Quick recap

Patterns - a summary

Classification - class versus object patterns

Design principles

Don’t repeat yourself

Single responsibility

Dependency inversion

Encapsulate what varies

Open closed

Favor interface over implementation

Interface segregation

Least knowledge

Anti-patterns

An interface for constants

The god object

Caching irregularities

Hard code

Boat anchor

Copy and paste

No silver bullets

Conclusion

Questions

Find the odd one out

Answers

Find the odd one out

Index

CHAPTER 1

Enlighten Yourself

Structure

Topics that will make this journey worthwhile:

	Introduction

	Design patterns

	Classification of design patterns

	Creational design patterns

	Structural design patterns

	Behavioral design patterns

	Why bother about software design?

	Benefits of good design

	Think beyond methods and classes

Objective

Our objective is to learn about software design patterns and their role in software development. We will explore the different categories of the design patterns along with their importance and benefits.

Introduction

Software development is not only about solving problems but about doing so in an efficient manner. Problem solving is a process that involves multiple steps. It starts with problem identification, advances towards developing an algorithm for it and ends with an implementation. A software can be implemented in many different ways; right from devising an algorithm to using a correct set of data objects and the integration among them; all of this is part of implementing a software. However, without a good design, even the best of implementations could fall apart.

Designing a software is not an easy task to accomplish; it requires a lot of effort and knowledge to come up with a design solution that is easy to implement, is feasible, adheres to the programming principles and is scalable in nature. Nowadays the amount of data a software process is not only greater in terms of storage, but is also much more complex. With so much information being kept in the software systems, it becomes important to inspect the current design of the system and to transit to a better one that will adapt to increase usage and fast processing requirements. Software design is not only about putting things in place in a defined manner, but it is also about establishing interconnected pathways that help to transfer data among multiple controllable structures to form a flow that when executed performs a task in an efficient way.

To put it in an interesting manner, the design of the software gives it life. It not only supports the underlying framework, but also makes it easy for the developers to scale the system and be ready for all the future changes, even when, at times, they are unaware of them. A good design ensures that the software is robust and can adapt to the new features easily and with lesser time that is possibly required when there is no proper design.

If you are reading this book today, it means that you have had your fair bit of experience with programming and now wish to explore further and learn about the various design techniques that will not only help you in writing better software but also help you in managing it with much ease. In this book, we will discuss the basics of software design and some of the standard design patterns that are used across the globe in many different software applications. Almost every software application that is functional today uses one or more of these design patterns to accomplish the variety of tasks they are built for. We will also discuss the pros and cons of using one design pattern over another and when to use which design pattern.

Design patterns

Design patterns, in software engineering, are the blueprints or templates that emerge out of well-designed exercises to solve typical problems that are usually recurring in nature. Design patterns can also be considered as the best practices employed to effectively overcome software design problems:

Figure 1.1 exhibits some of the core attributes of design patterns.

[image:]

Figure 1.1: Design patterns

Design patterns follow a systematic approach and can be reused in a variety of situations as they provide us with an idea of how to solve a particular problem. They themselves are not the actual code solutions, but instead blueprints or general solutions that help us to solve the problem in an effective way.

A design pattern can have one or more standard objects or interfaces that are necessary for its successful implementation. These interfaces or objects are the very soul of the pattern itself and require the programmer to follow the exact practice as described in the pattern for effective utilization.

Classification of design patterns

The design patterns help solve a variety of design problems ranging from object creation and interface development to managing the behavioral aspects of the object. They help us with various use cases centric to the application and provide solutions that are architecturally rich and easy to implement and manage.

Figure 1.2 exhibits the classification of design patterns into three categories, that is, creational, behavioral, and structural:

[image:]

Figure 1.2: Design patterns classification

An important aspect of software design is the knowledge and understanding of the person who designs it. It is therefore not just recommended but necessary to understand how the system should behave and what is the overall design expectation before somebody chooses a design pattern. White choosing a good design is important, it is much more important to not to choose a bad design. The implication of that could be far more troublesome than expected.

Design patterns could be broadly categorized into three categories, namely, creational, structural and behavioral.

While the creational patterns are more involved with creation of objects and the interfaces that connect with those objects, the structural patterns help with designing large structures by assembling two or more systems together to provide new functionalities and the behavioral patterns are inclined towards communication between objects.

Creational design patterns

Design patterns that relate to the idea of object creation in an efficient and controlled manner are referred to as creational design patterns.

Their working could be understood based on two defining principles:

	Hiding the object and its composition from the outside world

	Controlling object usage

Both the principles are followed by providing an abstraction layer that ensures the only connection to these objects from the outside world is through this layer only.

Creating objects and using them without a controlled environment scatters those objects all over the place and it becomes increasingly difficult to manage and refactor the application in the future. The creational design patterns decouple the process of object creation from other parts of the application thus ensuring that the objects are created and used as per application best practices. This also helps with performance and security guidelines when the objects are created and composed in a controlled environment.

Figure 1.3 explains the objective of creational design patterns and lists some of these patterns we will learn about in this book:

[image:]

Figure 1.3: Creational design pattern

Creational design patterns make effective use of abstraction and access control mechanisms provided by the object-oriented languages. Interfaces are used to reduce the dependency of objects on each other as we see in the factory pattern and dependency injection pattern. Similarly, access control mechanisms help to control access to an object and its state, directly, by any other object. The only way the object could be accessed is via public methods.

Things to Remember:

	Segregates object creation from other business logic

	Promotes reusability of instances

	Controls object access

	Hides object composition

In this book, we will discuss some of the widely used and accepted creational design patterns, namely:

	Singleton design pattern: This pattern ensures that only one instance of the class, which is made singleton, is exposed for access per JVM

	Builder design pattern: The builder pattern aims to simplify the construction process of complex objects by providing a stepwise approach to instance creation. It also exhibits the capability to construct the same object with different representations

	Object pool design pattern: This pattern creates a pool or group of objects that can be reused to process some information. This pattern is used in scenarios where the object creation cost is high and object reuse is advisable than its creation.

	Factory design pattern: Factory design pattern provides an abstraction and delegates the control to the subclasses for the type of object to be constructed. It is the responsibility of the implementation classes to decide upon the type of object based on the supplied inputs.

Familiar use cases

	Imagine an object that converts a JSON string to some other format and requires a lot of CPU and memory resources during initialization. Whenever there is a need to perform the conversion, one way to accomplish it is to instantiate an object. The other way is to use the singleton design pattern for object creation and use that object whenever required. By using the singleton pattern, a lot of resources could be saved and hence a lot of processing time. An example of singleton in JDK is the class runtime, which has only one instance in a JVM.

	Imagine a scenario where multiple objects with high cost of creation are required to perform parallel or concurrent operations. This scenario is an excellent use case for the object pool design pattern. An object pool instantiates and stores multiple objects that can be used again and again in an application that has to process multiple requests at a time. An object pool lends its resources for processing and computation and usually has a bounded queue to keep track of the unprocessed requests that wait for their turn until one of the pool objects is free. An example of an object pool in the JDK is the Executor framework.

	Another prominent use case is of a scenario that involves multiple implementations of the same interface and the selection of the right implementation for a particular request is governed by the implementation themselves. Imagine that you have to calculate tax for a user and the tax calculation algorithm involves multiple factors, using the factory design pattern the calculation process could be simplified and streamlined by introducing these factors into the selection process to select the right implementation.

Structural design patterns

The basic idea behind structural design patterns is the formation of large structures by assembling various objects or their classes together and to provide new functionalities.

Figure 1.4 explains the objective of structural design patterns and lists some of these patterns we will learn about in this book:

[image:]

Figure 1.4: Structural design pattern

Structural design patterns do not modify existing classes or objects, but instead add new features on top of them. This way, in general terms, multiple business use cases can be solved effectively with minor or no architectural changes.

In other words, structural design patterns aim for the realization of relationship among objects and provide new functionalities in return. They make use of the two important pillars of object-oriented programming, that is, inheritance and composition to form the new structures. The emphasis is on the use of interfaces rather than concrete implementations so that the participating classes remain loosely coupled to each other. This brings us to the important design principles, that is, interact with interfaces rather than with concrete implementations.

Though the larger structure acts as one unified unit, the participating classes and or objects can still be improved and maintained and even replaced in isolation. This is possible because of loose coupling among the classes. Structural design patterns make use of existing classes and objects, wrap them or use them in previously unrelated or newly formed classes to create new functionalities.

Things to Remember:

	Assembles classes and objects to form large structures

	Expresses relationship between objects

	Promotes inheritance and composition

	Requires no or minimum change in participating classes

	Realizes new functionality

In this book, we will discuss some of the widely used and accepted structural design patterns, namely:

	Adapter design pattern: The adapter design pattern converts one interface into another and provides a way for classes to interact with each other without changing their source code.

	Decorator design pattern: The decorator design pattern expands the functionality of an existing class or interface without modifying their source code. It creates wrappers that inherit the same interface and use composition to add the new functionality.

	Proxy design pattern: Proxy, as the name suggests, acts as a placeholder for another class. The proxy pattern is used as a gateway to control access to other classes. The proxy class could be used for security, validation, data retrieval and other requirements that need controlled access to an object.

	Facade design pattern: Facade pattern simplifies the interaction between two systems by providing an interface that hides the complex processing and data manipulation.

Familiar use cases

	Imagine a scenario where a ticket booking module confirms the booking only after receiving a response from the payment processing module.

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Reviewers

		Acknowledgement

		Preface

		Errata

		Table of Contents

		1. Enlighten Yourself

		Structure

		Objective

		Introduction

		Design patterns

		Classification of design patterns

		Creational design patterns

		Familiar use cases

		Structural design patterns

		Familiar use cases

		Behavioral design patterns

		Familiar use cases

		Why bother about software design?

		Benefits of a good design

		Think beyond method and classes

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Perfect match

		Select the correct option

		Answers

		Pick the odd one out

		Find the odd one out

		Perfect match

		Select the correct option

		2. One of a Kind

		Structure

		Objective

		Introduction

		Logger

		Singletons

		Singleton design pattern

		Variations

		Lazy initialization

		Multiple instances of a singleton

		Eager initialization

		Thread safe singleton

		Reflection meets singleton

		Enum as singleton

		Singleton and serialization

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Complete the code

		Select two correct options

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct options

		3. Object Factory

		Structure

		Objective

		Introduction

		Interacting with interfaces

		Building factories

		Response factory

		Response factory’s first run

		The Simple factory

		Multiple factories

		Factory that speaks French

		Response updated!

		Response factory’s second run

		The factory method pattern

		Family of objects

		Dependency injection

		Response factory’s third run

		Abstract factory

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Complete the code

		Select two correct answers

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		4. Delegate Object Construction

		Structure

		Objective

		Introduction

		Delegating object construction

		Representational state

		Implementing builders

		The interface

		Concrete builders

		Deployment manager

		Testing the builders

		Builder design pattern – defined

		Advantages and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Odd one out

		Complete the code

		Select two correct answers

		Answers

		Find the odd one out

		Pick the odd one out

		Select two correct answers

		5. Recycle and Reuse

		Structure

		Objective

		Introduction

		Object reusability

		Object pool design pattern

		When to use an object pool?

		Implementing an object pool

		Pool initialization

		Pool destruction

		Acquiring objects

		Releasing objects

		Varying implementations

		Partial initialization

		Releasing objects – Who is the owner?

		Advantages and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Complete the code

		Select two correct answers

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		6. Adapter

		Structure

		Objective

		Introduction

		Incompatible interfaces

		Adapter design pattern

		Building an adapter

		Interfaces

		Concrete implementations

		The adapter

		Testing the adapter

		Adapter design pattern - defined

		Benefits and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		7. Decorating Objects

		Structure

		Objective

		Introduction

		Wrappers

		Decorator design pattern

		Building a decorator

		The interface

		The subject

		Base decorator

		Concrete decorators

		Testing the decorators

		Decorator design pattern - Defined

		Benefits and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		8. The Guardian

		Structure

		Objective

		Introduction

		Proxies

		Proxy design pattern

		Types of proxies

		Remote proxy

		Virtual proxy

		Protection proxy

		Building a proxy

		The interface

		The subject

		The proxy

		Testing the proxy

		Proxy design pattern - defined

		Benefits and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		9. Simplifying the Complexity

		Structure

		Objective

		Introduction

		Facade

		The Facade design pattern

		Building a facade

		All for one

		One for all

		Facade design pattern - defined

		Benefits and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		10. Template

		Structure

		Objective

		Introduction

		Template

		Template method design pattern

		Building a template method

		The template method

		Varying implementations

		Testing the template method pattern

		Template method design pattern - defined

		Benefits and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		11. Keep a Close Eye

		Structure

		Objective

		Introduction

		Observer design pattern

		Building observer design pattern

		The interfaces

		The subject

		The observers

		Testing the observer design pattern

		Variations

		Push mechanism

		Pull mechanism

		Observer design pattern - defined

		Benefits and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		12. State and Behaviors

		Structure

		Objective

		Introduction

		State design pattern

		Implementing state pattern

		The interface

		The concrete implementations

		The stateful object

		Testing the state design pattern

		State design pattern - defined

		Benefits and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct answers

		13. Executing Commands

		Structure

		Objective

		Introduction

		Command design pattern

		Implementing command pattern

		The receiver

		The command

		The invoker

		The client

		Command design pattern - defined

		Benefits and drawbacks

		Usage

		Conclusion

		Questions

		Pick the odd one out

		Find the odd one out

		Select two correct options

		Answers

		Pick the odd one out

		Find the odd one out

		Select two correct options

		14. Beyond Design Patterns

		Structure

		Objective

		Introduction

		Quick recap

		Patterns - a summary

		Classification - class versus object patterns

		Design principles

		Don’t repeat yourself

		Single responsibility

		Dependency inversion

		Encapsulate what varies

		Open closed

		Favor interface over implementation

		Interface segregation

		Least knowledge

		Anti-patterns

		An interface for constants

		The god object

		Caching irregularities

		Hard code

		Boat anchor

		Copy and paste

		No silver bullets

		Conclusion

		Questions

		Find the odd one out

		Answers

		Find the odd one out

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Enlighten Yourself

OEBPS/images/Figure-1.1.jpg
Follow
Systematic
Approach

Wide
Acceptance

DESIGN
PATTERNS

Generic

Best
Concepts es!

Practices

Reusable Blueprints
or
Templates

OEBPS/images/Figure-1.2.jpg
assification Design Patterns

sign Patterns are broadly
ssified into three categories
mely Creational, Structural
i Behavioural.

Behavioral Structural

OEBPS/images/Figure-1.3.jpg
Creational Design Pattern

| EEEEE— Object Pool
| mmmmm— Abstract Factory

Creational Design Patterns.

Creational patterns emphasize on the idea of decouping o
creation mechanicsfrom other pars of the system.

They promote reuse as you see in Singleton and Object
pattors, delegae contol to concret implomentatons fo o
creaton with Faciory patterms and encourago use of the
construcion code to derive muliple representations n B
patter.

OEBPS/images/Figure-1.4.jpg
Structural Design Pattern

Adapter
T
|

Structural Design Patterns

Structural ptterns emphasize on the dea of assembing mu
objects together o form larger funcional unit.

They aim to realize relationship between diferent objects
classes and provide new functonalties. The adapler ps
fesolves the communication gap betveen two_systems
otherwise could not communicate, the facade patter s
the complex archiecture for the end user and the decs
pattor adds behaviour o an object dynamicaly.

OEBPS/images/cover.jpg
Software

Design Patterns

for

Java Developers

Expert-led Approaches to Build Re-usable Software and Enterprise Applications

LALIT MEHRA

OEBPS/images/logo1.jpg
To View Complete
898 Publcations Catslogue

Scan the QR Code:

OEBPS/images/logo.jpg

OEBPS/images/line.jpg

