
[image: image]



Decoding
JavaScript

[image: ]

A Simple Guide for the not-so-simple JavaScript
Concepts, Libraries, Tools, and Frameworks

[image: ]

Rushabh Mulraj Shah


[image: ]

www.bpbonline.com




FIRST EDITION 2021

Copyright © BPB Publications, India

ISBN: 978-93-90684-816

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

Distributors:

BPB PUBLICATIONS

20, Ansari Road, Darya Ganj

New Delhi-110002

Ph: 23254990/23254991

MICRO MEDIA

Shop No. 5, Mahendra Chambers,

150 DN Rd. Next to Capital Cinema,

V.T. (C.S.T.) Station, MUMBAI-400 001

Ph: 22078296/22078297

DECCAN AGENCIES

4-3-329, Bank Street,

Hyderabad-500195

Ph: 24756967/24756400

BPB BOOK CENTRE

376 Old Lajpat Rai Market,

Delhi-110006

Ph: 23861747


[image: ]

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj, New Delhi-110002 and Printed by him at Repro India Ltd, Mumbai

www.bpbonline.com





Dedicated to

Mulraj D. Shah & Harsha M. Shah
My parents, for not giving in to social norms and pushing me to fly.

Unnati Vora
From being friends to being my wife, you have been
the perfect pillar of support.

John Thomas
When I wanted a friend, I ended up getting
an elder brother and a mentor.

Dr. Soudip Roy Chowdhury
The gaffer, who always believed in me and never gave up on me.







About the Author


Rushabh Mulraj Shah is a published technical author, technical mentor, content-creator, and a Senior UI Developer. He is also one of the founding members of an exciting AI startup that goes by the name of eugenie.ai. In his 5+ years of experience, while working for companies like Capgemini International, Fractal, and eugenie.ai, he has interacted with several prominent clients, including the Indian Navy, Mondelez India, Colgate Palmolive, EY, RB, and many others.

Apart from his usual stint, Rushabh has also been an influential blogger and a content writer. His articles on SportsKeeda, Little Black Book (LBB), NearFox, Zomato, and other such platforms have garnered more than 600K views. His private blog (http://thevegfoodgasms.blogspot.com/) has been nominated for four consecutive years on the national level.





About the Reviewer


Vinay Joshi has 9 years of experience with Applications development in web, mobile and platforms using tools like .Net, Java, Node, Azure, GCP, Openshfit, with programming languages like C#, Javascript, Java, Typescript, Python, etc. He pursued Masters in Computer Applications from Dehradun Institute of Technology Dehradun, Uttarakhand. He has worked with companies like Publicis.Sapient, Next Gen Invent Corporation. He is currently working as Full Stack Developer in Role of Technology lead in Optum Global Solutions which is part of United Health Group in Gurgaon location.





Acknowledgement


When I started writing this book, an unthinkable event happened. As the first chapter went into drafts, the entire world slowly ceased to a standstill. The novel Coronavirus (COVID-19) forced the world to lock itself down. The lonely streets were accompanied by silent offices and quiet parks. In these tough times, I wouldn't have been able to complete this book if it was not for the constant support from my family. I would like to thank my parents - Mulraj D. Shah, Harsha M. Shah, and my wife, Unnati, for putting up with my late-night writing shenanigans.

The next acknowledgment goes to the entire team at BPB Publications for giving me this wonderful opportunity to write this book and share my experiences with everyone.

My final thanks goes to Mr. John Thomas, a genuine friend with a golden heart, for teaching me the best practices, and Mrs. Shweta Doshi and her team of GreyAtom to bring forth my love for teaching.





Preface


It's fair to say that the year 2020 will be imprinted boldly in the books of history. 2020 is the year when our fast-paced world took a pause, locked itself inside, and embarked on a journey to save the world, albeit strikingly different from the way the silver screen and its larger-than-life heroes portray it. It has also been the year when the Internet came to the fore. From rescue operations, data analysis, information service to locked-in entertainment, the Web and its insane variety of applications helped humanity wherever possible. It can only make you wonder the importance of the Web and its helpful associates.

This book is about web development. It is about unleashing the magic of JavaScript, a pretty straight-forward scripting language, that can help you create incredible next-generation applications on the Internet.

In simple words, web development is the process of creating and maintaining websites and web applications. The entire idea of web development revolves around the following three simple questions:


	What can a user see on the screen?

	How does it look?

	What happens when a user interacts with what he/she sees on the screen?



While the answer to the first two questions creates a web page that the users can only see but not interact with, it is the answer to the third question that brings alive a web page. The three technologies, which help solve the three stated problems are HTML, CSS, and JavaScript. In this book, we will not only explore, but master advanced JavaScript. This will help you set up a base to build next-generation web applications.

Over the 16 chapters in this book, you will learn the following:

Chapter 1 will introduce you to the world of JavaScript. In this chapter, we will revise the fundamental concepts of JavaScript. We will go through topics like the syntax of JavaScript, data types, operators, conditionals, looping, and hoisting in JavaScript. We will also see certain flavors of advanced JavaScript concepts.

Chapter 2 will help you explore the handy Chrome Developer Tools of Google Chrome. Typically, every code you write for your web application should be browser-agnostic, i.e., it should be generalized and not specific for any browser. However, based on popularity and for the sake of simplicity, we will be working with the Google Chrome browser.

Chapter 3 will teach you everything about functions. We will look at topics like when and why to use functions, types of functions, scopes, and closures.

Chapter 4 will help you revise the concept of arrays. At the same time, we will also glance at several important in-built methods of arrays that you will be using daily.

Chapter 5 will help you learn you everything about objects. We will look at topics like objects properties and methods, constructors, prototypes, and when to use objects.

Chapter 6 will introduce you to ECMAScript 2015, popularly known as ES6. ES6 rejuvenated JavaScript and cemented its position as the top standard language for developing web applications. In this chapter, we will explore and learn multiple concepts introduced by ES6, including, but not limited to let and const, arrow functions, new array methods, modules, destructuring, and so on.

Chapter 7 explores a concept introduced by ES6 – classes. Here, we will learn the need for classes, how to write classes, and how to handle inheritance.

Chapter 8 will kickstart the section 'Reaching out to the Servers'. In this chapter, we will first understand the concept of Asynchronous JavaScript. It will teach us how to resume execution of JavaScript while servers respond to requests sent from the browsers. After that, we will learn about callbacks and promises – the two methods for implementing asynchronous JavaScript.

Chapter 9 will take us on the journey of connecting with a live server using the principles of AJAX. We will also read about JSON, the universally accepted format for transmitting data across the Web.

Chapter 10 will give you the first taste of creating a live application using the concepts we have learned so far. We will create a JavaScript web application that can be hosted on any server for the world to see. We will follow traditional SDLC methods to create this application.

Chapter 11 will explain the concept of storing data on the browsers.

Chapter 12 will teach you how to debug applications that have crashed or applications that are performing erroneously. We will also learn how to handle errors in this chapter.

Chapter 13 will help you realise the importance of testing JavaScript code often. We will look at several testing frameworks and write a sample code using one of them.

Chapter 14 will teach you an important concept called Regular Expressions. It is primarily used for searching strings and patterns. However, it has a far more significance, not only in JavaScript, but in several programming languages.

Chapter 15 explores life after ES6. ES6 revolutionised JavaScript to be the most popular language for web development. However, several versions post ES6, have taken the language to another level. We will look at all the versions from ES6 to ES11.

Chapter 16 is the final chapter of this book. Here, we will simply look at some of the best practices followed by leading product companies like Google, Facebook, Twitter, and so on. We will also look at several tips and tricks to make life easier for developers.





How to use this book?


This book comprises seven sections.

The first three sections - Foundations, Functions and Objects, and ES6, will update your knowledge base with fundamental concepts of basic and advanced JavaScript. It's a given that every resilient building needs a strong foundation. The first three sections will help you cement that foundation for advanced topics.

The next two sections – Reaching out to the Servers and Web Storage, will take you on the journey you will tread often. Here, you will learn how to interact with the servers to create next-gen web applications. In the midst of learning these cool concepts, we will together create a live web application. It will give you a taste of what real-life web development feels like.

Section six – Debugging and Testing, will exclusively explain you the importance of testing your code. It will also teach you how to handle errors in your code.

The final section includes bonus topics like Regular Expressions, Versions of ECMAScript (the scripting standard adopted by JavaScript), and Tips & Tricks. This section will improve your coding skills to adapt to the ever-changing world.

As we mentioned earlier, during the course of this book, we will be creating a live project with an actual server. It will help you incorporate all your learnings in one real-life application. The end result can be used on your personal profile, and resume. We will also help you publish your code on a public platform for the world to see. At the end of every chapter, there will be questions to test your knowledge of the chapter. Text written in monospaced font represent code. It is highly recommended for you to practice this code on your local machines.





Downloading the code
bundle and coloured images:


Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/da750a

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ Family.


Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.







BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit www.bpbonline.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at https://github.com/bpbpublications/Decoding-JavaScript. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/bpbpublications. Check them out!

PIRACY

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit www.bpbonline.com.

REVIEWS

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.







Table of Contents


1. Introduction to JavaScript

Structure

Objective

Getting started with JavaScript

The Inception of JavaScript

What exactly is JavaScript?

Setting up the system

How to add JavaScript to your web page?

Comments in JavaScript

Datatypes and operators in JavaScript

Datatypes and variables in JavaScript

Create a variable (declaration)

Give a value to the variable (initialization)

Data types in JavaScript

Operators in JavaScript

Conditionals and looping in JavaScript

Conditional coding in JavaScript

If…else conditional statement

Switch conditional statement

Looping in JavaScript

The Journey of the Web Page

JavaScript and the DOM

Conclusion

Points to remember

Multiple choice questions

Answers

2. The Developer’s Tools

Structure

Objective

Event Listeners in JavaScript

Introduction to the Developer Tools

Opening the DevTools

Panels of DevTools

JavaScript and the DevTools

Console Panel

Console Area

Filter Area

Header of the console

Sources Panel

Conclusion

Points to remember

Multiple choice questions

Answers

3. Functions

Structure

Objective

Exploring Functions

Syntax

Functions returning values

Types of functions

JavaScript Scope

JavaScript Closure

Conclusion

Points to remember

Multiple choice questions

Answers

4. Arrays

Structure

Objective

Introducing Arrays

Using Arrays

Creating an array

Declaring an array

Initializing an array

Access the elements of an array

Change the elements of an array

Array Properties and Methods

length

Accessing first and last elements of an array

Looping through an array

push and pop

delete

shift and unshift

splice and slice

Splicing an array

Slicing an array

concat

toString

join

Conclusion

Points to remember

Multiple choice questions

Answers

5. Objects

Structure

Objective

Introducing Objects

Using objects

Object definition

An object literal

JavaScript keyword new

Constructor

Object properties and methods

Object properties

Accessing Object Properties

Dot notation

Square bracket notation

Changing object properties

Displaying object properties

Display object properties by name

Using Object.values()

Object methods

The 'this' keyword

Objects versus Primitive values

Copy by value

Copy by reference

Object Constructors

Object Prototypes

Conclusion

Points to remember

Multiple choice questions

Answers

6. ES6

Structure

Objective

Introduction to ES6

JavaScript hoisting

New ES6 Syntax

Let and const

let

const

Bind, call, and apply

bind

call

apply

Advanced operators

Ternary operator

Rest Parameters

Spread operators

Template literals

Arrow functions

Shorter syntax

The this keyword in ES6 functions

New array methods – map, filter, and reduce

map()

filter()

reduce()

Array and object destructuring

ES6 Modules

Conclusion

Points to remember

Multiple choice questions

Answers

7. Classes

Structure

Objective

Understanding classes

When to use functions and when to use classes?

Are classes hoisted?

Classes and methods

Inheritance

Getters and Setters

Conclusion

Points to remember

Multiple choice questions

Answers

8. Callbacks and Promises

Structure

Objective

Asynchronous JavaScript

When to use asynchronous JavaScript

Callback Functions

How can callback functions help in asynchronous JavaScript

Callback Hell

Promises

Chaining Promises

async and await

async

await

Conclusion

Points to remember

Multiple choice questions

Answers

9. AJAX and Interacting with Servers

Structure

Objective

JSON – The Web’s favorite file format

Structure of JSON

Working with JSON

JSON.stringify()

JSON.parse()

Exchanging data

AJAX

HTTP

HTTP Methods

GET

POST

PUT

PATCH

DELETE

HEAD

OPTIONS

HTTP status messages

1xx: Information

2xx: Successful

3xx: Redirection

4xx: Client Error

5xx: Client Error

The Process of AJAX

HTTP Headers

setRequestHeader()

Conclusion

Points to remember

Multiple choice questions

Answers

10. Developing a Live Application!

Structure

Objective

The live application – Nom Nom!

Software development lifecycle

The Idea

The Flow

The Design

Laying the foundations

The folder structures

Creating the HTML files

Index.html

Recipe-detail.html

The Initial Styling

Connecting to the server

Updating the Home page with the server response

Moving to the Recipe Detail page

Updating the Recipe Details page

Fetching the detailed recipe

Fetching the id passed from the home page

Sending a request to the server with the id

Create the HTML elements inside the Recipe Details page

Adding the link back to the home page

System testing

Adding a text for loading

Error Handling

Conclusion

Points to remember

Multiple choice questions

Answers

11. Storing Data in Browsers

Structure

Objective

Introduction to Web Storage

Cookies

Usage

Disadvantage

Structure

Creating cookie with JavaScript

Reading cookies with JavaScript

Deleting cookies with JavaScript

Security

Third-party cookies

Web storage APIs

Session Storage

Setting the value inside session storage

Fetching the value from session storage

 Removing a value from session storage

Local Storage

Setting the value inside local storage

Fetching the value from local storage

Removing a value from local storage

IndexedDB API

Features of IndexedDB API

IndexedDB terms

IndexedDB process

Check if IndexedDB is supported

Open the database

Add data

View data

Service workers

Caches

Testing on Console

Conclusion

Points to remember

Multiple choice questions

Answers

12. Debugging and Error Handling

Structure

Objective

Errors

Types of Errors

EvalError

RangeError

ReferenceError

SyntaxError

TypeError

URIError

Introduction to Debugging

The console.log() method

Debugging with breakpoints

The debugger keyword

Try, catch, and finally

Conclusion

Points to remember

Multiple choice questions

Answers

13. Testing and Test Frameworks

Structure

Objective

Introduction to testing

Test-Driven Development

Behavior-Driven Development

Types of testing

Unit tests

Integration tests

End-to-end tests

Ideal testing structure

Testing Frameworks

jsdom

Karma

Chai

Cucumber

Jest

Jasmine

Mocha

Selenium

Jest

Install package managers

Initialize a new project

Install Jest using npm or yarn

Create a function for testing

Create the test file

Add/Modify package.json

Running the test

Conclusion

Points to remember

Multiple choice questions

Answers

14. Regular Expressions

Structure

Objective

Introduction to Regular Expressions

Creating a Regular Expression

Regular Expression Literal

JavaScript RegExp Object

Writing Regular Expressions pattern

Using simple patterns

Using groups and ranges

x|y

[xyz] or [x-z]

[^xyz] or [^x-z]

Using special characters

Assertions

^

$

\b

x(?=y)

(?<=y)x

Character Classes

Quantifiers

Advanced searching with flags

g

i

m

JavaScript methods for Regular Expressions

exec()

test()

matchAll()

replace()

replaceAll()

Practical example of Regular Expressions

Conclusion

Points to remember

Multiple choice questions

Answers

15. Life After ES6

Structure

Objective

Introduction to ECMAScript

The Origin

The Browser War

The Standardization

So, is JavaScript the same as ECMAScript?

The Versions

ES6 – The new future!

ES7

Array.prototype.includes()

Exponentiation Operator

ES8

Object.values()

Object.entries()

String padding

Async functions (async and await)

Trailing commas in functions

Object.getOwnPropertyDescriptors()

ES9

Rest/Spread properties

Regular Expression – Lookahead and Lookbehind

Asynchronous Iterations

Finally in promises

ES10

Array.flat()

Array.flatMap()

Object.fromEntries()

String.trimStart() and String.trimEnd()

Function.toString()

Optional catch binding

ES11

Optional chaining operator

Private fields

Dynamic Imports

Import meta

New datatype - bigint

globalThis

matchAll

Promise.allSettled()

ES.Next

Conclusion

Points to remember

Multiple choice questions

Answers

16. Tips and Tricks

Structure

Objective

Best practices

Naming

Naming conventions

White Spaces

Rule of 80

Declarations at the top of the scope

Consistency with quotes

Comment your code often

Tips and Tricks

Filter unique values in an array

Object destructuring

Get last items of an array

Set dynamic keys of an object

Truncate an array

Improving conditionals

Setting default values

Every and some

Conclusion

Points to remember

Index





CHAPTER 1

Introduction to JavaScript



You can't build a great building on a weak foundation. You must have a solid foundation if you are going to have a super-strong structure.

— Gordon B. Hinkley



On a slightly less serious note, to create next-generation kick-ass web applications, we need to write excellent JavaScript code. And to write a great JavaScript code, we need to have a substantial idea of the basic JavaScript concepts. In short, good command of the basic concepts of JavaScript will help you become the next best web developer in the industry. With that in view, let's kickstart our journey by refreshing our knowledge of the basic concepts of JavaScript.

One quick note here though, is that since this book caters towards advanced JavaScript concepts, we will not go through an extensive and detailed study of the basic concepts.

Structure

In this chapter, we will cover the following topics:


	Getting started with JavaScript

	Datatypes and operators in JavaScript

	Conditions and looping in JavaScript

	The journey of the web page

	JavaScript and the DOM



Objective

After studying this chapter, you should be able to learn the basics of JavaScript. You will be able to write a basic code in JavaScript and understand the process of web development.

Getting started with JavaScript

Every great story starts on a beautiful, if not, an enthralling beginning. Similarly, to understand a concept or a topic better, more often than not, it's essential to realize why it became necessary to birth the idea. What was it like before the concept came into existence?

In this section, we will start by exploring the conditions that turned JavaScript as the de facto coding language of web development. By the end of this section, we will have learned what JavaScript is, how does it contribute to the process of web development, and, finally, how to set up JavaScript in our HTML files.

The Inception of JavaScript

In the early years of the World Wide Web (WWW), the most popular web browser was a particular Netscape Navigator by the computer services company, Netscape. The web pages, in those times, were capable of only showing static content. Once a web page was loaded, there was no capability for any dynamic behavior, like clicking or hovering.

To remove this limitation, in 1995, Netscape proposed and introduced a scripting language that can work on client machines (read: browsers) called JavaScript. Sources claim that the company decided to ride on the then-success wave of the Java language, and used the name JavaScript as a clever marketing ploy, even though there is no connection between the two programming languages.

Although JavaScript was an instant success, the introduction of a few competing browsers, and their scripting languages made it difficult for web developers to write code that can work on all the browsers. All this chaos finally led to the standardization of client-side (browser) scripting language. A company by the name European Computer Manufacturers Association (ECMA) International achieved this standardization, which was to be followed by all the browsers. Hence, JavaScript is often confused with ECMAScript. However, they are two different concepts. ECMAScript is the standard from which JavaScript is derived. Imagine JavaScript as a subset of ECMAScript.

There have been several versions of ECMAScript. However, the most popular and accepted standard by all major browsers is version 3, which was released in 1999. Since then, the most significant update has been version 6, coined as ES6, in 2015. In this book, we will be working majorly on ES6. As time passes, newer versions will also be released. At the end of this book, we will look at versions till ES11, which are confirmed but not widely implemented.

What exactly is JavaScript?

In the last section, we understood why browsers introduced JavaScript. Now, let's explore where does JavaScript fit in the web development paradigm.

To give an analogy, let's understand web development with the help of an example of a construction of a building.

Building construction takes place in the following three phases:


[image: ]

Figure 1.1: Stages of development

Let’s understand each of these stages in the construction of a building and ultimately, derive an analogy with web development:


	Stage 1: When the building construction begins, workers lay down the iron rods at the designated space, and fill in the cement. The result is a grey-colored construction (often inhabitable), a foundation, with spaces allotted for rooms.

	Stage 2: This is the stage where the workers style the construction. The workers add designs and colors to the formerly grey building to make it look presentable.

	Stage 3: While the building at the end of stage two can suffice for living in, this stage truly completes the construction. In this stage, workers add the essentials like elevators, parking spaces, electricity, and so on.



The third stage might not be mandatory, but it's notably significant. Similarly, in web development, HTML and CSS complete the first two stages of development of web pages – foundation and style. However, the result will solely be a website with zero interaction. JavaScript is the stage three that takes the website/web application a notch higher.

JavaScript, commonly known as JS, not only adds interaction to your web pages, but comes preloaded with a bunch of features:


	Running code in response to particular events like clicking on an item on the webpage, pressing a key on the keyboard, scrolling down a web page, and many more.

	It is built-in on all major browsers like Google Chrome, Mozilla Firefox, Safari, Microsoft Internet Explorer, Microsoft Edge, Opera, and many more, and it is free to use.

	It is a structured and object-oriented programming language.

	It is an interpreted language, that is, it works in a run-time environment, which means that there is no need to compile the code beforehand!

	It can fetch data from the servers using a concept called AJAX, and utilize it to render elements on a web page.

	It can get HTML elements shown on a web page, and it can also manipulate them.

	Databases like MongoDB and platforms for server-side programming, for instance Nodejs, use JavaScript as their query language and application, respectively.



Setting up the system

In this section, we will set up our system to write exceptional code in JavaScript:


	Since JavaScript (JS) is built-in in the majority of web browsers, you can use one of Google Chrome, Mozilla Firefox, Safari, Internet Explorer, Microsoft Edge, or Opera browsers for viewing your web pages. However, using Google Chrome is highly preferable because of its security and a superior developers' console.

	Although you can use a simple text editor like Notepad on Windows machines for writing HTML, CSS, and JS code, it would be highly preferable if you install an Integrated Development Environment (IDE) software like Visual Studio Code or Atom.



In this book, we will be using Google Chrome and Visual Studio Code for development.

And that's it! You are ready to begin your journey of JavaScript!

How to add JavaScript to your web page?

You can apply JavaScript (JS) to the web page in the same way you add CSS to the web page. Like CSS, there are two distinct ways of adding JS to your code:


	Internal JavaScript: In this method, you can add JS to your HTML code by inserting a <script> tag in the <head> or the <body> of your HTML. Since you are adding JS inside your HTML code or in other words, internally, this method is known as Internal JavaScript.
To add JS code internally, open the Visual Studio Code application on your machine, and follow the steps, mentioned as follows:


	Create an empty folder at a preferred location on your computer. Give the folder a suitable name.
Tip: Naming conventions are very significant in web development. Although we will discuss this in greater lengths in the Bonus Chapters, a useful tip at this junction is that a good name should be short (less than 60 characters) and one look at the name should notify the reader about the content of that folder or file.


	Create an HTML file, as shown, by the name index.html, and save it inside the folder you just created.

	<!DOCTYPE html>

	<html>

	      <head>

	         <meta charset="utf-8">

	         <title>Adding JavaScript to the webpage</title>

	     </head>

	     <body>

	         <p>Hello World!</p>

	     </body>

	</html>
Code 1.1: index.html




	Next, create a <script> tag inside the head tag of your HTML code, and add the following lines:

	<script>

	    alert("Hello World!");

	</script>
Code 1.2: Adding the script tag to the HTML



Note: You can add the <script> tag inside the <body> of your HTML code, as well. The difference between adding <script> in the <head> and the <body> is a marked difference in the performance of your website. We will have a look at this in the topic, The journey from typing a URL to the rendering of a web page.

And that's it! Now, when you open index.html on your web browser, you will see a pop-up/dialog box with the words "Hello World" written inside it.


[image: ]

Figure 1.2: Screen showing an alert “Hello World”




	External JavaScript: Going by the name of the term itself, External JavaScript (JS) refers to JS code added externally. It means that you do not write the JS code inside your HTML file. Instead, you write it on a separate file and inject (you will come across this term quite often) the JavaScript in your HTML file. To add external JS, follow the following steps:

	Inside the same folder where you have created your HTML file, create another folder called scripts.

	Inside the scripts folder, create a JS file by the name index.js. Remember, it's crucial to end the JS file with the extension .js. At this point, your folder structure should look like this:

[image: ]

Figure 1.3: Folder structure for External JS


	Copy the JS code you had written for internal JS, without the <script> tag, and paste that in the file index.js. Your index.js file will now look like the following:

	alert("Hello World!");
Code 1.3: Adding alert to the index.js file




	Now remove the <script> tag from your index.html and replace it with the following:

	<script src="./scripts/index.js"></script>
Code 1.4: Adding the external script tag



Your HTML file will now look like the following:


	<!DOCTYPE html>

	 <html lang="en">

	  <head>

	          <meta charset="UTF-8">

	             <meta name="viewport" content="width=device-width, initial-scale=1.0">

	             <title>Adding JavaScript to the webpage</title>

	             <script src="./scripts/index.js"></script>

	        </head>

	        <body>

	            <p>Hello World</p>

	        </body>

	 </html>
Code 1.5: HTML file after adding the external JS





The src attribute refers to the path where your JS file is stored. The string "./" in src refers to the current folder. So, we are moving to the scripts folder, and using /, we move inside the scripts folder and select the index.js file.





Now, when we open index.html in the browser, you will see a pop-up/dialog box with the words "Hello World" written inside it, as shown in figure 1.2.

Comments in JavaScript

As with every significant programming language, JavaScript also provides a way to add comments that the browser will ignore. These comments are extremely useful in providing instructions to the developers who are working on the code on how the code functions.

JavaScript provides the following two styles of comments:







	
// This is a single line comment


	
/*

This is a

multi-line

comment

*/






Table 1.1: Single-line comment vs multi-line comment

Datatypes and operators in JavaScript

Almost every programming language works on values and the operations between the values. For instance, when you try to sign into your email account, you enter your email address and a password. The email address and the password are nothing but values. Similarly, if you use Facebook or Instagram as a social media application, and you like a photo/post, then you will notice the count of the likes (again, values) increase by 1. Here, the web application performs the operation of adding 1 to the existing number of likes. In this section, we will learn about the different types of data (for instance, a text or a password in the first example and a number in the second) used in JavaScript, and the operators you can use on these data types.

Datatypes and variables in JavaScript

In every programming language, there is a container for storing values. This container is useful for storing numbers that you might require during a mathematical operation, or some text, or even an entire dictionary of information about some object like cars. This container is known as a variable.

In JavaScript (JS), variables can store just about anything. JS variables can store text strings, numbers, complex data, and entire functions.

To use a variable, we need to do the following things:


	Create a variable. (declaration)

	Give value to the variable. (initialization)



Create a variable (declaration)

To create a variable, we need to use the JS keyword var. (In section 3 ES6, we will look at a few more keywords to create variables.)

The syntax for creating a variable is:


	var name;

	var age;
Code 1.6: Syntax of variables




When you type the preceding command, JavaScript reserves a space in the memory for this variable. Think about this as an empty box (since we do not have any value assigned to it) placed in the system memory, which has the label of the name you attach to the variable.

Note: A variable that exists with no value assigned is NOT THE SAME as a variable that does not exist. Think about this as an empty box versus a box that does not exist. The former can place values inside it, while the latter cannot. A variable that has no value is called undefined.

Give a value to the variable (initialization)

Once a variable has been created (declared), you can give it a value. This process is known as initializing a variable. To initialize a variable, you type the name of the variable, followed by an equals sign (=), and complete it with the value you want to give to the variable.


	name = 'John Doe';

	age = 24;
Code 1.7: Initializing variables




In the preceding examples, we assign the values 'John Doe' and '24' to the variables we created in the previous section.

You can also declare and initialize variables in one line.


	var name = 'John Doe';
Code 1.8: Declaring and initializing a variable in one line




You can also update the value of a variable, which already has a value by typing the variable name followed by an equals sign, and the new value. For instance:


	name = 'Cristiano Ronaldo';
Code 1.9: Changing the value of a variable




If you try to print the value of the name variable now, it will no longer be John Doe. The value of the name variable now will be Cristiano Ronaldo.

Data types in JavaScript

The data or the value that you store inside a variable can be of different types. For instance, in the preceding examples, we have seen numbers and text types. Unlike other programming languages, you don't require different keywords for different types of data in JavaScript. The different types of data in JavaScript are as follows:


	Numbers: It comprises of whole numbers; for example, 30, or decimal numbers like 245.67. You don't need to put these values in quotes.

	var num1 = 45;
Code 1.10: Number datatype





	Strings: Strings are nothing but text. When you assign a string value to a variable, you need to wrap it with single-quotes or double-quotes.

	var name = 'John Doe';
Code 1.11: String datatype





	Booleans: Booleans have two values - true or false. You don't need to wrap the value in quotes. Booleans are mostly used for testing conditions. For instance, if the value of the boolean variable is true, then you can execute certain code, or else you can set some other code for execution. It can also contain an expression like 10>5 as the value. In this case, as numeric10 is greater than numeric 5, the value of the variable containing this expression will be true.

	var isNumber = true;
Code 1.12: Boolean datatype




	Arrays: Arrays are a complex data type that can store multiple values. Multiple values are stored inside square brackets and separated by commas. We will study arrays in more detail in Chapter 4: Arrays. 

	var cars = ['BMW', 'Audi', 'Rolls Royce'];
Code 1.13: Array datatype




	Objects: Objects are also a complex data type which can store multiple values. However, unlike arrays, in objects, you can name the data that you are storing. Objects are used for modelling a real-life object. The multiple values are named and stored inside curly brackets.

	var employee = {name: 'John Doe', age: 24, city: 'London'}
Code 1.14: Objects datatype






JavaScript automatically detects the type of the value of a variable. Hence, JS is also called as a 'dynamically typed language'.

Operators in JavaScript

JavaScript (JS) operators allow you to do mathematical operations, combine two strings, compare values, determine logic between variables or values, and also find the data type of a variable. Since this book caters specifically towards advanced JavaScript, we expect the readers to have a basic idea of JavaScript operators. While we will go through the theory of the basic JS concepts, and also look at one or two examples, we encourage the readers to practices different patterns on their own to refresh their knowledge of these basic concepts.

There are the following six major types of operators in JavaScript:


	Arithmetic Operators: They are used to perform arithmetic operations on numbers. Arithmetic operators include + (addition), - (subtraction), * (multiplication), / (division), % (modulus, the remainder of a division), ++ (increment), and – (decrement).

	var sum = 4 + 3;      //Output will be 7
Code 1.15: Example of arithmetic operators




	Assignment Operators: These operators are used for assigning values to the JavaScript variables.







	
Operator


	
Example


	
Meaning





	
=


	
a = 5


	
a = 5





	
+=


	
a += 5


	
a = a + 5





	
-=


	
a -= 5


	
a = a - 5





	
*=


	
a *= 5


	
a = a * 5





	
/=


	
a /= 5


	
a = a / 5





	
%=


	
a %= 5


	
a = a % 5





	
**=


	
a **= 5


	
a = a ** 5






Table 1.2: Assignment Operators


	String operators: When the + operator is used on strings; it concatenates two strings.

	var txt1 = 'Hello';

	var txt2 = 'World';

	var greeting = txt1 + txt2; //HelloWorld
Code 1.16: Example of string operators



Note: When you use the + operator on a number and a numeric string, the answer will be a string. For example, 5 + '5' will be '55'. However, if use any other arithmetic operator on a combination of strings and numeric strings, the arithmetic operation will succeed, and the answer will be numeric. For instance, '25'/5 will give 5.


	Comparison operators: These operators are used for comparing two or more variables and/or values. The answer to the operations using comparison operators are boolean values. The various comparison operators are as follows:







	
Operator

	
Example

	
Result




	
== (check equality)

	
5 == '5'

	
true




	
=== (check for equal value AND type)

	
5 === '5'

	
false




	
!= (check for non-equality)

	
5 != '5'

	
false




	
!== (check for non-equal value AND type)

	
5 !== '5'

	
true




	
> (greater than)

	
5 > 2

	
true




	
>= (greater than or equal to)

	
5 >= 5

	
true




	
< (less than)

	
5 < 2

	
false




	
< (less than or equal to)

	
2 <= 2

	
true





Table 1.3: Comparison Operators


	Logical operators: The logical operators determine the logic between variables and values. There are two major logical operators - && (logical and) and || (logical or). These operators will be extremely useful when you want to check multiple statements in conditional logic.

	(10 > 5) && (2 > 3)      //false
Code 1.17: Example of logical operators




	Type operators: The typeof operator returns the data type of a variable or a value.

	typeof 'John Doe'   //string

	typeof 24   //number
Code 1.18: Example of type operators






Conditionals and looping in JavaScript

Let's assume that we are creating an e-commerce application like Amazon or eBay. It's safe to expect that we will need to build hundreds, if not thousands, of rectangle cards to show items that are up for sale. Would you spend hours manually creating every individual card?

Given that it's an e-commerce application, there is every possibility that our user might search for a particular group of items. So, essentially, we will have to check whether the displayed items match the text typed by the user.

It's for cases like the ones mentioned here that we need concepts like looping and conditionals in JavaScript.

Conditional coding in JavaScript

Think about the following scenario:

You have an application that greets the user on the loading page. If it is morning or afternoon, the web application welcomes the user with the message "Good Day". If it is past 4 PM, the web application greets the user with "Good Evening ".

The very essence of our preceding problem statement relies on the if…else condition. JavaScript achieves this conditional coding using two types of conditionals – if…else and switch.

If…else conditional statement

The if…else conditionals are reasonably simple to use.

You type the keyword if followed by parentheses.

Inside the parentheses, you write a conditional test. If the value of the test is true, statement 1 will be executed. If the value of the test is false, then statement 2 will be executed.


[image: ]

Figure 1.4: Syntax of if…else statement

For our problem statement, the code could look something like the following:


	var hours = new Date().getHours();

	if(hours < 16) {

	    alert("Good Morning");

	} else {

	    alert("Good evening");

	}
Code 1.19: Example of if…else conditional statement




It's alright if you don't understand the first line of the code. You will read it in the future chapters. It gets the current date and fetches the hours as per the 24-hour format. The next two lines are basic conditional statements. To add multiple conditions, you can replace the else with an else if(condition).


	var hours = new Date().getHours();

	if(hours < 16) {

	    alert("Good Morning");

	} else if(hours > 16 && hours < 23) {

	    alert("Good evening");

	} else {

	    alert("Good night");

	}
Code 1.20: Example of if…else…if conditional statement.




Switch conditional statement

Let’s consider another scenario. In this use-case, a variable receives the grade of a student from the server. Based on the grade, our web application should print a message. If the grade is 'A', it should print 'Excellent'. If the grade is 'B', it should print 'Good'. 'C' should print 'Average', and 'D' should print 'Failed'.

In such a case, we can use the if…else…if conditionals, but the resultant code will be long and not so elegant. An elegant solution will be the switch statement.

In a switch statement, an expression or a variable is fed to the keyword switch. The answer to the expression or the value of the variable are one of the cases inside the curly braces following the switch keyword. If the case value matches the expression answer or the value of the variable, the statement inside the case is executed. If no value is matched, then the default case is executed.



[image: ]

Figure 1.5: Syntax of switch statement

So, our example can be resolved using the following code:

1. var grade = 'A';

2.

3. switch(grade) {

4.     case 'A':

5.         alert('Excellent');

6.         break;

7.     case 'B':

8.         alert('Good');

9.         break;

10.     case 'C':

11.         alert('Average');

12.         break;

13.     case 'D':

14.         alert('Failed');

15.         break;

16.     default: alert('Not present for exams');

17.}


Note: Having a break statement is extremely important in switch statements. If you remove the break statements and execute this code, you will observe that all the cases get executed.

Think of a switch statement as a waterfall. It will go through everything unless you apply an obstruction (break) in between.



Looping in JavaScript

Let's assume you have a task to display numbers from 1 to 100. What will you do? You would possibly go about creating 100 <p> elements having numbers from 1 to 100, correct? What if I increase the difficulty and make that 100 to 100,000?

In such cases, we make use of a JavaScript concept called loops. Looping functions basically begin with an initial value and keep incrementing or decrementing the value, until you resolve a condition.


[image: ]

Figure 1.6: Flowchart of looping

There are two types of looping functions in JavaScript – for loop and while loop (with an alternate version called do…while loop). As shown in figure 1.5, all the logics follow the same following pattern:


	Initialize a variable with a value.

	Test that value.

	Execute if true, quit if false.



In the following table 1.4, we will understand and compare the different looping methods in JavaScript:








	
for(var i=0; i<100; i++) {

console.log(i);

}


	
 var i=0;

while(i<100) {

console.log(i);

i++;

}


	
 var i=0;

do {

console.log(i);

i++

}

while(i<100);





	
In a for loop, the keyword for is followed by three expressions inside parentheses, separated by semicolon (;).

The first expression initializes the value, the second expression sets the condition, and the third expression updates the value.

After the statements inside the curly braces are updated, the value is updated by the third expression.

As long as the result of the condition expression is true, the statements inside the curly braces will be executed. If the result of the condition becomes false, the code will break out of the for loop.


	
In a while loop, the variable is initialized outside the actual looping statement.

The keyword while is followed by a condition expression. As long as the result of the condition expression is true, the statements inside the curly braces will be executed.

The value is updated inside the curly braces. After the statements inside the curly braces are executed and the subsequent value is updated, the condition at the top is checked again.

If the condition is true, the process is repeated, else the code will break out of the loop.


	
The do…while loop is similar to the while loop. The only difference here is that the condition is checked only after the statements inside the curly braces are executed at least once.

If the condition is true, the statements will be executed again or else the code will break out of the loop.






Table 1.4: The different looping methods in JavaScript

The Journey of the Web Page

The process we know is that we type a URL in the browser. A few seconds later, a web page magically appears on the browser.

The process we don't know is that the webpage goes through an entire adventure from the moment a user enters the URL to the point the browser shows the webpage. It begins its journey, as a URL, from the user's browser to a remote server, sends a request to the server, and receives the server's response to the request. Finally, it travels back from the server, and loads itself on the user browser as a webpage.


[image: ]

Figure 1.7: The journey of the webpage from a URL to a rendered page

Let's try to understand this process with an example of https://www.google.com:


[image: ]

Figure 1.8: Opening www.google.com on the browser


	Fetching the domain name: When a user types the URL 'https://www.google.com' in the browser, the browser takes the host-name (sometimes also called the domain-name) of the URL and calls the service of the DNS server. In a URL, the host-name is the part after the https (which is known as the protocol). In our case, the domain name, as a whole, will be www.google.com.

	Resolving the IP address: The Domain Name System (DNS) server is nothing but a public directory of domain names. The DNS server contains a list of hostnames and their IP addresses (a numeric label assigned to a device connected to a computer network). The DNS server looks up the IP address for www.google.com and returns that IP address to the browser.

	Creating the HTTP request: The browser creates an HTTP request for the server hosting the previously mentioned IP address and requests the server to send the HTML page for www.google.com.

	Returning the response: If the request is successful, the server sends back an HTTP response to the server with the HTML page attached to the response.

OEBPS/images/logo1.jpg
To View Complete
898 Publcations Catslogue

Scan the QR Code:






OEBPS/images/logo.jpg





OEBPS/images/Figure-1.6.jpg
Testa
condition

Increment/Decrement
value






OEBPS/images/line.jpg





OEBPS/images/Figure-1.8.jpg





OEBPS/images/Figure-1.7.jpg
/%/%

\(ﬂ )
"\






OEBPS/images/Figure-1.1.jpg
Stage3:

Adding extra features

like parking, elevators,
gyms, etc.

Stage2:
Coloring the
construction

Stage 1:

Laying down the foundations






OEBPS/images/Figure-1.2.jpg





OEBPS/images/Figure-1.3.jpg
@ Arorop

i Data files
Rocents

A Appications
veskon

W Documents.
© bowniosds
@ Pictures.
@ rushabhan
1 wusic
i Creative Clo..
Hovies

ictoud

Oso Moditd
Today at 150 PM
Todayat 150 PM
Today at 1185 PM
Today at 55 PM

Zerobytes

Zerobytes

Koa
Folder
HIMLtext
Folder

Text Document






OEBPS/images/cover.jpg
Decoding
JavaScript

A Simple Guide for the Not-so-Simple JavaScript Concepts,
Libraries, Tools, and Frameworks

RUSHABH MULRAJ SHAH






OEBPS/images/Figure-1.4.jpg
J
if(condition) {






OEBPS/images/Figure-1.5.jpg
switch(expression) {
case A:
//statement1
case B:
//statement2
default:
//statement3





OEBPS/nav.xhtml




Table of Contents





		Cover Page



		Title Page



		Copyright Page



		Dedication Page



		About the Author



		About the Reviewer



		Acknowledgement



		Preface



		How to use this book?



		Errata



		Table of Contents



		1. Introduction to JavaScript



		Structure



		Objective



		Getting started with JavaScript



		The Inception of JavaScript



		What exactly is JavaScript?



		Setting up the system



		How to add JavaScript to your web page?



		Comments in JavaScript



		Datatypes and operators in JavaScript



		Datatypes and variables in JavaScript



		Create a variable (declaration)



		Give a value to the variable (initialization)







		Data types in JavaScript



		Operators in JavaScript







		Conditionals and looping in JavaScript



		Conditional coding in JavaScript



		If…else conditional statement



		Switch conditional statement







		Looping in JavaScript







		The Journey of the Web Page



		JavaScript and the DOM



		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		2. The Developer’s Tools



		Structure



		Objective



		Event Listeners in JavaScript



		Introduction to the Developer Tools



		Opening the DevTools







		Panels of DevTools



		JavaScript and the DevTools



		Console Panel



		Console Area



		Filter Area



		Header of the console



		Sources Panel







		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		3. Functions



		Structure



		Objective



		Exploring Functions



		Syntax







		Functions returning values



		Types of functions



		JavaScript Scope



		JavaScript Closure



		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		4. Arrays



		Structure



		Objective



		Introducing Arrays



		Using Arrays



		Creating an array



		Declaring an array



		Initializing an array



		Access the elements of an array



		Change the elements of an array











		Array Properties and Methods



		length



		Accessing first and last elements of an array



		Looping through an array







		push and pop



		delete



		shift and unshift



		splice and slice



		Splicing an array



		Slicing an array







		concat



		toString



		join







		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		5. Objects



		Structure



		Objective



		Introducing Objects



		Using objects



		Object definition



		An object literal



		JavaScript keyword new



		Constructor











		Object properties and methods



		Object properties



		Accessing Object Properties











		Dot notation



		Square bracket notation



		Changing object properties



		Displaying object properties







		Display object properties by name



		Using Object.values()



		Object methods



		The 'this' keyword







		Objects versus Primitive values



		Copy by value



		Copy by reference











		Object Constructors



		Object Prototypes



		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		6. ES6



		Structure



		Objective



		Introduction to ES6



		JavaScript hoisting



		New ES6 Syntax



		Let and const



		let



		const







		Bind, call, and apply



		bind



		call



		apply







		Advanced operators



		Ternary operator



		Rest Parameters



		Spread operators



		Template literals











		Arrow functions



		Shorter syntax



		The this keyword in ES6 functions







		New array methods – map, filter, and reduce



		map()



		filter()



		reduce()







		Array and object destructuring



		ES6 Modules



		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		7. Classes



		Structure



		Objective



		Understanding classes



		When to use functions and when to use classes?



		Are classes hoisted?







		Classes and methods



		Inheritance



		Getters and Setters



		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		8. Callbacks and Promises



		Structure



		Objective



		Asynchronous JavaScript



		When to use asynchronous JavaScript







		Callback Functions



		How can callback functions help in asynchronous JavaScript







		Callback Hell



		Promises



		Chaining Promises







		async and await



		async



		await







		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		9. AJAX and Interacting with Servers



		Structure



		Objective



		JSON – The Web’s favorite file format



		Structure of JSON



		Working with JSON



		JSON.stringify()



		JSON.parse()



		Exchanging data











		AJAX



		HTTP



		HTTP Methods











		GET



		POST



		PUT



		PATCH



		DELETE



		HEAD



		OPTIONS



		HTTP status messages







		1xx: Information



		2xx: Successful



		3xx: Redirection



		4xx: Client Error



		5xx: Client Error



		The Process of AJAX



		HTTP Headers



		setRequestHeader()







		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		10. Developing a Live Application!



		Structure



		Objective



		The live application – Nom Nom!



		Software development lifecycle







		The Idea



		The Flow



		The Design



		Laying the foundations



		The folder structures



		Creating the HTML files



		Index.html



		Recipe-detail.html











		The Initial Styling



		Connecting to the server



		Updating the Home page with the server response



		Moving to the Recipe Detail page



		Updating the Recipe Details page



		Fetching the detailed recipe



		Fetching the id passed from the home page











		Sending a request to the server with the id



		Create the HTML elements inside the Recipe Details page



		Adding the link back to the home page



		System testing



		Adding a text for loading



		Error Handling







		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		11. Storing Data in Browsers



		Structure



		Objective



		Introduction to Web Storage



		Cookies



		Usage



		Disadvantage



		Structure



		Creating cookie with JavaScript



		Reading cookies with JavaScript



		Deleting cookies with JavaScript



		Security



		Third-party cookies







		Web storage APIs



		Session Storage



		Setting the value inside session storage



		Fetching the value from session storage



		 Removing a value from session storage







		Local Storage



		Setting the value inside local storage



		Fetching the value from local storage



		Removing a value from local storage











		IndexedDB API



		Features of IndexedDB API



		IndexedDB terms



		IndexedDB process



		Check if IndexedDB is supported



		Open the database



		Add data



		View data











		Service workers



		Caches



		Testing on Console



		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		12. Debugging and Error Handling



		Structure



		Objective



		Errors



		Types of Errors



		EvalError



		RangeError



		ReferenceError



		SyntaxError



		TypeError



		URIError











		Introduction to Debugging



		The console.log() method



		Debugging with breakpoints



		The debugger keyword







		Try, catch, and finally



		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		13. Testing and Test Frameworks



		Structure



		Objective



		Introduction to testing



		Test-Driven Development



		Behavior-Driven Development







		Types of testing



		Unit tests



		Integration tests



		End-to-end tests







		Ideal testing structure



		Testing Frameworks



		jsdom



		Karma



		Chai



		Cucumber



		Jest



		Jasmine



		Mocha



		Selenium







		Jest



		Install package managers



		Initialize a new project



		Install Jest using npm or yarn



		Create a function for testing



		Create the test file



		Add/Modify package.json



		Running the test







		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		14. Regular Expressions



		Structure



		Objective



		Introduction to Regular Expressions



		Creating a Regular Expression



		Regular Expression Literal



		JavaScript RegExp Object











		Writing Regular Expressions pattern



		Using simple patterns



		Using groups and ranges



		x|y



		[xyz] or [x-z]



		[^xyz] or [^x-z]











		Using special characters



		Assertions



		^



		$



		\b



		x(?=y)



		(?<=y)x



		Character Classes



		Quantifiers











		Advanced searching with flags



		g



		i



		m







		JavaScript methods for Regular Expressions



		exec()



		test()



		matchAll()



		replace()



		replaceAll()







		Practical example of Regular Expressions



		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		15. Life After ES6



		Structure



		Objective



		Introduction to ECMAScript



		The Origin



		The Browser War



		The Standardization



		So, is JavaScript the same as ECMAScript?







		The Versions



		ES6 – The new future!







		ES7



		Array.prototype.includes()



		Exponentiation Operator







		ES8



		Object.values()



		Object.entries()



		String padding



		Async functions (async and await)



		Trailing commas in functions



		Object.getOwnPropertyDescriptors()







		ES9



		Rest/Spread properties



		Regular Expression – Lookahead and Lookbehind



		Asynchronous Iterations



		Finally in promises







		ES10



		Array.flat()



		Array.flatMap()



		Object.fromEntries()



		String.trimStart() and String.trimEnd()



		Function.toString()



		Optional catch binding







		ES11



		Optional chaining operator



		Private fields



		Dynamic Imports



		Import meta



		New datatype - bigint



		globalThis



		matchAll



		Promise.allSettled()







		ES.Next



		Conclusion



		Points to remember



		Multiple choice questions



		Answers











		16. Tips and Tricks



		Structure



		Objective



		Best practices



		Naming



		Naming conventions



		White Spaces



		Rule of 80



		Declarations at the top of the scope



		Consistency with quotes



		Comment your code often







		Tips and Tricks



		Filter unique values in an array



		Object destructuring



		Get last items of an array



		Set dynamic keys of an object



		Truncate an array



		Improving conditionals



		Setting default values



		Every and some







		Conclusion



		Points to remember







		Index











Guide





		Title Page



		Copyright Page



		Table of Contents



		1. Introduction to JavaScript











