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Preface


It's fair to say that the year 2020 will be imprinted boldly in the books of history. 2020 is the year when our fast-paced world took a pause, locked itself inside, and embarked on a journey to save the world, albeit strikingly different from the way the silver screen and its larger-than-life heroes portray it. It has also been the year when the Internet came to the fore. From rescue operations, data analysis, information service to locked-in entertainment, the Web and its insane variety of applications helped humanity wherever possible. It can only make you wonder the importance of the Web and its helpful associates.

This book is about web development. It is about unleashing the magic of JavaScript, a pretty straight-forward scripting language, that can help you create incredible next-generation applications on the Internet.

In simple words, web development is the process of creating and maintaining websites and web applications. The entire idea of web development revolves around the following three simple questions:


	What can a user see on the screen?

	How does it look?

	What happens when a user interacts with what he/she sees on the screen?



While the answer to the first two questions creates a web page that the users can only see but not interact with, it is the answer to the third question that brings alive a web page. The three technologies, which help solve the three stated problems are HTML, CSS, and JavaScript. In this book, we will not only explore, but master advanced JavaScript. This will help you set up a base to build next-generation web applications.

Over the 16 chapters in this book, you will learn the following:

Chapter 1 will introduce you to the world of JavaScript. In this chapter, we will revise the fundamental concepts of JavaScript. We will go through topics like the syntax of JavaScript, data types, operators, conditionals, looping, and hoisting in JavaScript. We will also see certain flavors of advanced JavaScript concepts.

Chapter 2 will help you explore the handy Chrome Developer Tools of Google Chrome. Typically, every code you write for your web application should be browser-agnostic, i.e., it should be generalized and not specific for any browser. However, based on popularity and for the sake of simplicity, we will be working with the Google Chrome browser.

Chapter 3 will teach you everything about functions. We will look at topics like when and why to use functions, types of functions, scopes, and closures.

Chapter 4 will help you revise the concept of arrays. At the same time, we will also glance at several important in-built methods of arrays that you will be using daily.

Chapter 5 will help you learn you everything about objects. We will look at topics like objects properties and methods, constructors, prototypes, and when to use objects.

Chapter 6 will introduce you to ECMAScript 2015, popularly known as ES6. ES6 rejuvenated JavaScript and cemented its position as the top standard language for developing web applications. In this chapter, we will explore and learn multiple concepts introduced by ES6, including, but not limited to let and const, arrow functions, new array methods, modules, destructuring, and so on.

Chapter 7 explores a concept introduced by ES6 – classes. Here, we will learn the need for classes, how to write classes, and how to handle inheritance.

Chapter 8 will kickstart the section 'Reaching out to the Servers'. In this chapter, we will first understand the concept of Asynchronous JavaScript. It will teach us how to resume execution of JavaScript while servers respond to requests sent from the browsers. After that, we will learn about callbacks and promises – the two methods for implementing asynchronous JavaScript.

Chapter 9 will take us on the journey of connecting with a live server using the principles of AJAX. We will also read about JSON, the universally accepted format for transmitting data across the Web.

Chapter 10 will give you the first taste of creating a live application using the concepts we have learned so far. We will create a JavaScript web application that can be hosted on any server for the world to see. We will follow traditional SDLC methods to create this application.

Chapter 11 will explain the concept of storing data on the browsers.

Chapter 12 will teach you how to debug applications that have crashed or applications that are performing erroneously. We will also learn how to handle errors in this chapter.

Chapter 13 will help you realise the importance of testing JavaScript code often. We will look at several testing frameworks and write a sample code using one of them.

Chapter 14 will teach you an important concept called Regular Expressions. It is primarily used for searching strings and patterns. However, it has a far more significance, not only in JavaScript, but in several programming languages.

Chapter 15 explores life after ES6. ES6 revolutionised JavaScript to be the most popular language for web development. However, several versions post ES6, have taken the language to another level. We will look at all the versions from ES6 to ES11.

Chapter 16 is the final chapter of this book. Here, we will simply look at some of the best practices followed by leading product companies like Google, Facebook, Twitter, and so on. We will also look at several tips and tricks to make life easier for developers.





How to use this book?


This book comprises seven sections.

The first three sections - Foundations, Functions and Objects, and ES6, will update your knowledge base with fundamental concepts of basic and advanced JavaScript. It's a given that every resilient building needs a strong foundation. The first three sections will help you cement that foundation for advanced topics.

The next two sections – Reaching out to the Servers and Web Storage, will take you on the journey you will tread often. Here, you will learn how to interact with the servers to create next-gen web applications. In the midst of learning these cool concepts, we will together create a live web application. It will give you a taste of what real-life web development feels like.

Section six – Debugging and Testing, will exclusively explain you the importance of testing your code. It will also teach you how to handle errors in your code.

The final section includes bonus topics like Regular Expressions, Versions of ECMAScript (the scripting standard adopted by JavaScript), and Tips & Tricks. This section will improve your coding skills to adapt to the ever-changing world.

As we mentioned earlier, during the course of this book, we will be creating a live project with an actual server. It will help you incorporate all your learnings in one real-life application. The end result can be used on your personal profile, and resume. We will also help you publish your code on a public platform for the world to see. At the end of every chapter, there will be questions to test your knowledge of the chapter. Text written in monospaced font represent code. It is highly recommended for you to practice this code on your local machines.
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CHAPTER 1

Introduction to JavaScript



You can't build a great building on a weak foundation. You must have a solid foundation if you are going to have a super-strong structure.

— Gordon B. Hinkley



On a slightly less serious note, to create next-generation kick-ass web applications, we need to write excellent JavaScript code. And to write a great JavaScript code, we need to have a substantial idea of the basic JavaScript concepts. In short, good command of the basic concepts of JavaScript will help you become the next best web developer in the industry. With that in view, let's kickstart our journey by refreshing our knowledge of the basic concepts of JavaScript.

One quick note here though, is that since this book caters towards advanced JavaScript concepts, we will not go through an extensive and detailed study of the basic concepts.

Structure

In this chapter, we will cover the following topics:


	Getting started with JavaScript

	Datatypes and operators in JavaScript

	Conditions and looping in JavaScript

	The journey of the web page

	JavaScript and the DOM



Objective

After studying this chapter, you should be able to learn the basics of JavaScript. You will be able to write a basic code in JavaScript and understand the process of web development.

Getting started with JavaScript

Every great story starts on a beautiful, if not, an enthralling beginning. Similarly, to understand a concept or a topic better, more often than not, it's essential to realize why it became necessary to birth the idea. What was it like before the concept came into existence?

In this section, we will start by exploring the conditions that turned JavaScript as the de facto coding language of web development. By the end of this section, we will have learned what JavaScript is, how does it contribute to the process of web development, and, finally, how to set up JavaScript in our HTML files.

The Inception of JavaScript

In the early years of the World Wide Web (WWW), the most popular web browser was a particular Netscape Navigator by the computer services company, Netscape. The web pages, in those times, were capable of only showing static content. Once a web page was loaded, there was no capability for any dynamic behavior, like clicking or hovering.

To remove this limitation, in 1995, Netscape proposed and introduced a scripting language that can work on client machines (read: browsers) called JavaScript. Sources claim that the company decided to ride on the then-success wave of the Java language, and used the name JavaScript as a clever marketing ploy, even though there is no connection between the two programming languages.

Although JavaScript was an instant success, the introduction of a few competing browsers, and their scripting languages made it difficult for web developers to write code that can work on all the browsers. All this chaos finally led to the standardization of client-side (browser) scripting language. A company by the name European Computer Manufacturers Association (ECMA) International achieved this standardization, which was to be followed by all the browsers. Hence, JavaScript is often confused with ECMAScript. However, they are two different concepts. ECMAScript is the standard from which JavaScript is derived. Imagine JavaScript as a subset of ECMAScript.

There have been several versions of ECMAScript. However, the most popular and accepted standard by all major browsers is version 3, which was released in 1999. Since then, the most significant update has been version 6, coined as ES6, in 2015. In this book, we will be working majorly on ES6. As time passes, newer versions will also be released. At the end of this book, we will look at versions till ES11, which are confirmed but not widely implemented.

What exactly is JavaScript?

In the last section, we understood why browsers introduced JavaScript. Now, let's explore where does JavaScript fit in the web development paradigm.

To give an analogy, let's understand web development with the help of an example of a construction of a building.

Building construction takes place in the following three phases:


[image: ]

Figure 1.1: Stages of development

Let’s understand each of these stages in the construction of a building and ultimately, derive an analogy with web development:


	Stage 1: When the building construction begins, workers lay down the iron rods at the designated space, and fill in the cement. The result is a grey-colored construction (often inhabitable), a foundation, with spaces allotted for rooms.

	Stage 2: This is the stage where the workers style the construction. The workers add designs and colors to the formerly grey building to make it look presentable.

	Stage 3: While the building at the end of stage two can suffice for living in, this stage truly completes the construction. In this stage, workers add the essentials like elevators, parking spaces, electricity, and so on.



The third stage might not be mandatory, but it's notably significant. Similarly, in web development, HTML and CSS complete the first two stages of development of web pages – foundation and style. However, the result will solely be a website with zero interaction. JavaScript is the stage three that takes the website/web application a notch higher.

JavaScript, commonly known as JS, not only adds interaction to your web pages, but comes preloaded with a bunch of features:


	Running code in response to particular events like clicking on an item on the webpage, pressing a key on the keyboard, scrolling down a web page, and many more.

	It is built-in on all major browsers like Google Chrome, Mozilla Firefox, Safari, Microsoft Internet Explorer, Microsoft Edge, Opera, and many more, and it is free to use.

	It is a structured and object-oriented programming language.

	It is an interpreted language, that is, it works in a run-time environment, which means that there is no need to compile the code beforehand!

	It can fetch data from the servers using a concept called AJAX, and utilize it to render elements on a web page.

	It can get HTML elements shown on a web page, and it can also manipulate them.

	Databases like MongoDB and platforms for server-side programming, for instance Nodejs, use JavaScript as their query language and application, respectively.



Setting up the system

In this section, we will set up our system to write exceptional code in JavaScript:


	Since JavaScript (JS) is built-in in the majority of web browsers, you can use one of Google Chrome, Mozilla Firefox, Safari, Internet Explorer, Microsoft Edge, or Opera browsers for viewing your web pages. However, using Google Chrome is highly preferable because of its security and a superior developers' console.

	Although you can use a simple text editor like Notepad on Windows machines for writing HTML, CSS, and JS code, it would be highly preferable if you install an Integrated Development Environment (IDE) software like Visual Studio Code or Atom.



In this book, we will be using Google Chrome and Visual Studio Code for development.

And that's it! You are ready to begin your journey of JavaScript!

How to add JavaScript to your web page?

You can apply JavaScript (JS) to the web page in the same way you add CSS to the web page. Like CSS, there are two distinct ways of adding JS to your code:


	Internal JavaScript: In this method, you can add JS to your HTML code by inserting a <script> tag in the <head> or the <body> of your HTML. Since you are adding JS inside your HTML code or in other words, internally, this method is known as Internal JavaScript.
To add JS code internally, open the Visual Studio Code application on your machine, and follow the steps, mentioned as follows:


	Create an empty folder at a preferred location on your computer. Give the folder a suitable name.
Tip: Naming conventions are very significant in web development. Although we will discuss this in greater lengths in the Bonus Chapters, a useful tip at this junction is that a good name should be short (less than 60 characters) and one look at the name should notify the reader about the content of that folder or file.


	Create an HTML file, as shown, by the name index.html, and save it inside the folder you just created.

	<!DOCTYPE html>

	<html>

	      <head>

	         <meta charset="utf-8">

	         <title>Adding JavaScript to the webpage</title>

	     </head>

	     <body>

	         <p>Hello World!</p>

	     </body>

	</html>
Code 1.1: index.html




	Next, create a <script> tag inside the head tag of your HTML code, and add the following lines:

	<script>

	    alert("Hello World!");

	</script>
Code 1.2: Adding the script tag to the HTML



Note: You can add the <script> tag inside the <body> of your HTML code, as well. The difference between adding <script> in the <head> and the <body> is a marked difference in the performance of your website. We will have a look at this in the topic, The journey from typing a URL to the rendering of a web page.

And that's it! Now, when you open index.html on your web browser, you will see a pop-up/dialog box with the words "Hello World" written inside it.
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Figure 1.2: Screen showing an alert “Hello World”




	External JavaScript: Going by the name of the term itself, External JavaScript (JS) refers to JS code added externally. It means that you do not write the JS code inside your HTML file. Instead, you write it on a separate file and inject (you will come across this term quite often) the JavaScript in your HTML file. To add external JS, follow the following steps:

	Inside the same folder where you have created your HTML file, create another folder called scripts.

	Inside the scripts folder, create a JS file by the name index.js. Remember, it's crucial to end the JS file with the extension .js. At this point, your folder structure should look like this:

[image: ]

Figure 1.3: Folder structure for External JS


	Copy the JS code you had written for internal JS, without the <script> tag, and paste that in the file index.js. Your index.js file will now look like the following:

	alert("Hello World!");
Code 1.3: Adding alert to the index.js file




	Now remove the <script> tag from your index.html and replace it with the following:

	<script src="./scripts/index.js"></script>
Code 1.4: Adding the external script tag



Your HTML file will now look like the following:


	<!DOCTYPE html>

	 <html lang="en">

	  <head>

	          <meta charset="UTF-8">

	             <meta name="viewport" content="width=device-width, initial-scale=1.0">

	             <title>Adding JavaScript to the webpage</title>

	             <script src="./scripts/index.js"></script>

	        </head>

	        <body>

	            <p>Hello World</p>

	        </body>

	 </html>
Code 1.5: HTML file after adding the external JS





The src attribute refers to the path where your JS file is stored. The string "./" in src refers to the current folder. So, we are moving to the scripts folder, and using /, we move inside the scripts folder and select the index.js file.





Now, when we open index.html in the browser, you will see a pop-up/dialog box with the words "Hello World" written inside it, as shown in figure 1.2.

Comments in JavaScript

As with every significant programming language, JavaScript also provides a way to add comments that the browser will ignore. These comments are extremely useful in providing instructions to the developers who are working on the code on how the code functions.

JavaScript provides the following two styles of comments:







	
// This is a single line comment


	
/*

This is a

multi-line

comment

*/






Table 1.1: Single-line comment vs multi-line comment

Datatypes and operators in JavaScript

Almost every programming language works on values and the operations between the values. For instance, when you try to sign into your email account, you enter your email address and a password. The email address and the password are nothing but values. Similarly, if you use Facebook or Instagram as a social media application, and you like a photo/post, then you will notice the count of the likes (again, values) increase by 1. Here, the web application performs the operation of adding 1 to the existing number of likes. In this section, we will learn about the different types of data (for instance, a text or a password in the first example and a number in the second) used in JavaScript, and the operators you can use on these data types.

Datatypes and variables in JavaScript

In every programming language, there is a container for storing values. This container is useful for storing numbers that you might require during a mathematical operation, or some text, or even an entire dictionary of information about some object like cars. This container is known as a variable.

In JavaScript (JS), variables can store just about anything. JS variables can store text strings, numbers, complex data, and entire functions.

To use a variable, we need to do the following things:


	Create a variable. (declaration)

	Give value to the variable. (initialization)



Create a variable (declaration)

To create a variable, we need to use the JS keyword var. (In section 3 ES6, we will look at a few more keywords to create variables.)

The syntax for creating a variable is:


	var name;

	var age;
Code 1.6: Syntax of variables




When you type the preceding command, JavaScript reserves a space in the memory for this variable. Think about this as an empty box (since we do not have any value assigned to it) placed in the system memory, which has the label of the name you attach to the variable.

Note: A variable that exists with no value assigned is NOT THE SAME as a variable that does not exist. Think about this as an empty box versus a box that does not exist. The former can place values inside it, while the latter cannot. A variable that has no value is called undefined.

Give a value to the variable (initialization)

Once a variable has been created (declared), you can give it a value. This process is known as initializing a variable. To initialize a variable, you type the name of the variable, followed by an equals sign (=), and complete it with the value you want to give to the variable.


	name = 'John Doe';

	age = 24;
Code 1.7: Initializing variables




In the preceding examples, we assign the values 'John Doe' and '24' to the variables we created in the previous section.

You can also declare and initialize variables in one line.


	var name = 'John Doe';
Code 1.8: Declaring and initializing a variable in one line




You can also update the value of a variable, which already has a value by typing the variable name followed by an equals sign, and the new value. For instance:


	name = 'Cristiano Ronaldo';
Code 1.9: Changing the value of a variable




If you try to print the value of the name variable now, it will no longer be John Doe. The value of the name variable now will be Cristiano Ronaldo.

Data types in JavaScript

The data or the value that you store inside a variable can be of different types. For instance, in the preceding examples, we have seen numbers and text types. Unlike other programming languages, you don't require different keywords for different types of data in JavaScript. The different types of data in JavaScript are as follows:


	Numbers: It comprises of whole numbers; for example, 30, or decimal numbers like 245.67. You don't need to put these values in quotes.

	var num1 = 45;
Code 1.10: Number datatype





	Strings: Strings are nothing but text. When you assign a string value to a variable, you need to wrap it with single-quotes or double-quotes.

	var name = 'John Doe';
Code 1.11: String datatype





	Booleans: Booleans have two values - true or false. You don't need to wrap the value in quotes. Booleans are mostly used for testing conditions. For instance, if the value of the boolean variable is true, then you can execute certain code, or else you can set some other code for execution. It can also contain an expression like 10>5 as the value. In this case, as numeric10 is greater than numeric 5, the value of the variable containing this expression will be true.

	var isNumber = true;
Code 1.12: Boolean datatype




	Arrays: Arrays are a complex data type that can store multiple values. Multiple values are stored inside square brackets and separated by commas. We will study arrays in more detail in Chapter 4: Arrays. 

	var cars = ['BMW', 'Audi', 'Rolls Royce'];
Code 1.13: Array datatype




	Objects: Objects are also a complex data type which can store multiple values. However, unlike arrays, in objects, you can name the data that you are storing. Objects are used for modelling a real-life object. The multiple values are named and stored inside curly brackets.

	var employee = {name: 'John Doe', age: 24, city: 'London'}
Code 1.14: Objects datatype






JavaScript automatically detects the type of the value of a variable. Hence, JS is also called as a 'dynamically typed language'.

Operators in JavaScript

JavaScript (JS) operators allow you to do mathematical operations, combine two strings, compare values, determine logic between variables or values, and also find the data type of a variable. Since this book caters specifically towards advanced JavaScript, we expect the readers to have a basic idea of JavaScript operators. While we will go through the theory of the basic JS concepts, and also look at one or two examples, we encourage the readers to practices different patterns on their own to refresh their knowledge of these basic concepts.

There are the following six major types of operators in JavaScript:


	Arithmetic Operators: They are used to perform arithmetic operations on numbers. Arithmetic operators include + (addition), - (subtraction), * (multiplication), / (division), % (modulus, the remainder of a division), ++ (increment), and – (decrement).

	var sum = 4 + 3;      //Output will be 7
Code 1.15: Example of arithmetic operators




	Assignment Operators: These operators are used for assigning values to the JavaScript variables.







	
Operator


	
Example


	
Meaning





	
=


	
a = 5


	
a = 5





	
+=


	
a += 5


	
a = a + 5





	
-=


	
a -= 5


	
a = a - 5





	
*=


	
a *= 5


	
a = a * 5





	
/=


	
a /= 5


	
a = a / 5





	
%=


	
a %= 5


	
a = a % 5





	
**=


	
a **= 5


	
a = a ** 5






Table 1.2: Assignment Operators


	String operators: When the + operator is used on strings; it concatenates two strings.

	var txt1 = 'Hello';

	var txt2 = 'World';

	var greeting = txt1 + txt2; //HelloWorld
Code 1.16: Example of string operators



Note: When you use the + operator on a number and a numeric string, the answer will be a string. For example, 5 + '5' will be '55'. However, if use any other arithmetic operator on a combination of strings and numeric strings, the arithmetic operation will succeed, and the answer will be numeric. For instance, '25'/5 will give 5.


	Comparison operators: These operators are used for comparing two or more variables and/or values. The answer to the operations using comparison operators are boolean values. The various comparison operators are as follows:







	
Operator

	
Example

	
Result




	
== (check equality)

	
5 == '5'

	
true




	
=== (check for equal value AND type)

	
5 === '5'

	
false




	
!= (check for non-equality)

	
5 != '5'

	
false




	
!== (check for non-equal value AND type)

	
5 !== '5'

	
true




	
> (greater than)

	
5 > 2

	
true




	
>= (greater than or equal to)

	
5 >= 5

	
true




	
< (less than)

	
5 < 2

	
false




	
< (less than or equal to)

	
2 <= 2

	
true





Table 1.3: Comparison Operators


	Logical operators: The logical operators determine the logic between variables and values. There are two major logical operators - && (logical and) and || (logical or). These operators will be extremely useful when you want to check multiple statements in conditional logic.

	(10 > 5) && (2 > 3)      //false
Code 1.17: Example of logical operators




	Type operators: The typeof operator returns the data type of a variable or a value.

	typeof 'John Doe'   //string

	typeof 24   //number
Code 1.18: Example of type operators






Conditionals and looping in JavaScript

Let's assume that we are creating an e-commerce application like Amazon or eBay. It's safe to expect that we will need to build hundreds, if not thousands, of rectangle cards to show items that are up for sale. Would you spend hours manually creating every individual card?

Given that it's an e-commerce application, there is every possibility that our user might search for a particular group of items. So, essentially, we will have to check whether the displayed items match the text typed by the user.

It's for cases like the ones mentioned here that we need concepts like looping and conditionals in JavaScript.

Conditional coding in JavaScript

Think about the following scenario:

You have an application that greets the user on the loading page. If it is morning or afternoon, the web application welcomes the user with the message "Good Day". If it is past 4 PM, the web application greets the user with "Good Evening ".

The very essence of our preceding problem statement relies on the if…else condition. JavaScript achieves this conditional coding using two types of conditionals – if…else and switch.

If…else conditional statement

The if…else conditionals are reasonably simple to use.

You type the keyword if followed by parentheses.

Inside the parentheses, you write a conditional test. If the value of the test is true, statement 1 will be executed. If the value of the test is false, then statement 2 will be executed.


[image: ]

Figure 1.4: Syntax of if…else statement

For our problem statement, the code could look something like the following:


	var hours = new Date().getHours();

	if(hours < 16) {

	    alert("Good Morning");

	} else {

	    alert("Good evening");

	}
Code 1.19: Example of if…else conditional statement




It's alright if you don't understand the first line of the code. You will read it in the future chapters. It gets the current date and fetches the hours as per the 24-hour format. The next two lines are basic conditional statements. To add multiple conditions, you can replace the else with an else if(condition).


	var hours = new Date().getHours();

	if(hours < 16) {

	    alert("Good Morning");

	} else if(hours > 16 && hours < 23) {

	    alert("Good evening");

	} else {

	    alert("Good night");

	}
Code 1.20: Example of if…else…if conditional statement.




Switch conditional statement

Let’s consider another scenario. In this use-case, a variable receives the grade of a student from the server. Based on the grade, our web application should print a message. If the grade is 'A', it should print 'Excellent'. If the grade is 'B', it should print 'Good'. 'C' should print 'Average', and 'D' should print 'Failed'.

In such a case, we can use the if…else…if conditionals, but the resultant code will be long and not so elegant. An elegant solution will be the switch statement.

In a switch statement, an expression or a variable is fed to the keyword switch. The answer to the expression or the value of the variable are one of the cases inside the curly braces following the switch keyword. If the case value matches the expression answer or the value of the variable, the statement inside the case is executed. If no value is matched, then the default case is executed.



[image: ]

Figure 1.5: Syntax of switch statement

So, our example can be resolved using the following code:

1. var grade = 'A';

2.

3. switch(grade) {

4.     case 'A':

5.         alert('Excellent');

6.         break;

7.     case 'B':

8.         alert('Good');

9.         break;

10.     case 'C':

11.         alert('Average');

12.         break;

13.     case 'D':

14.         alert('Failed');

15.         break;

16.     default: alert('Not present for exams');

17.}


Note: Having a break statement is extremely important in switch statements. If you remove the break statements and execute this code, you will observe that all the cases get executed.

Think of a switch statement as a waterfall. It will go through everything unless you apply an obstruction (break) in between.



Looping in JavaScript

Let's assume you have a task to display numbers from 1 to 100. What will you do? You would possibly go about creating 100 <p> elements having numbers from 1 to 100, correct? What if I increase the difficulty and make that 100 to 100,000?

In such cases, we make use of a JavaScript concept called loops. Looping functions basically begin with an initial value and keep incrementing or decrementing the value, until you resolve a condition.


[image: ]

Figure 1.6: Flowchart of looping

There are two types of looping functions in JavaScript – for loop and while loop (with an alternate version called do…while loop). As shown in figure 1.5, all the logics follow the same following pattern:


	Initialize a variable with a value.

	Test that value.

	Execute if true, quit if false.



In the following table 1.4, we will understand and compare the different looping methods in JavaScript:








	
for(var i=0; i<100; i++) {

console.log(i);

}


	
 var i=0;

while(i<100) {

console.log(i);

i++;

}


	
 var i=0;

do {

console.log(i);

i++

}

while(i<100);





	
In a for loop, the keyword for is followed by three expressions inside parentheses, separated by semicolon (;).

The first expression initializes the value, the second expression sets the condition, and the third expression updates the value.

After the statements inside the curly braces are updated, the value is updated by the third expression.

As long as the result of the condition expression is true, the statements inside the curly braces will be executed. If the result of the condition becomes false, the code will break out of the for loop.


	
In a while loop, the variable is initialized outside the actual looping statement.

The keyword while is followed by a condition expression. As long as the result of the condition expression is true, the statements inside the curly braces will be executed.

The value is updated inside the curly braces. After the statements inside the curly braces are executed and the subsequent value is updated, the condition at the top is checked again.

If the condition is true, the process is repeated, else the code will break out of the loop.


	
The do…while loop is similar to the while loop. The only difference here is that the condition is checked only after the statements inside the curly braces are executed at least once.

If the condition is true, the statements will be executed again or else the code will break out of the loop.






Table 1.4: The different looping methods in JavaScript

The Journey of the Web Page

The process we know is that we type a URL in the browser. A few seconds later, a web page magically appears on the browser.

The process we don't know is that the webpage goes through an entire adventure from the moment a user enters the URL to the point the browser shows the webpage. It begins its journey, as a URL, from the user's browser to a remote server, sends a request to the server, and receives the server's response to the request. Finally, it travels back from the server, and loads itself on the user browser as a webpage.


[image: ]

Figure 1.7: The journey of the webpage from a URL to a rendered page

Let's try to understand this process with an example of https://www.google.com:


[image: ]

Figure 1.8: Opening www.google.com on the browser


	Fetching the domain name: When a user types the URL 'https://www.google.com' in the browser, the browser takes the host-name (sometimes also called the domain-name) of the URL and calls the service of the DNS server. In a URL, the host-name is the part after the https (which is known as the protocol). In our case, the domain name, as a whole, will be www.google.com.

	Resolving the IP address: The Domain Name System (DNS) server is nothing but a public directory of domain names. The DNS server contains a list of hostnames and their IP addresses (a numeric label assigned to a device connected to a computer network). The DNS server looks up the IP address for www.google.com and returns that IP address to the browser.

	Creating the HTTP request: The browser creates an HTTP request for the server hosting the previously mentioned IP address and requests the server to send the HTML page for www.google.com.

	Returning the response: If the request is successful, the server sends back an HTTP response to the server with the HTML page attached to the response.
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