Collins

Published by Collins Learning
A division of HarperCollinsPublishers India Private Limited HarperCollinsPublishers
A-75, Sector-57, Noida, Uttar Pradesh 201301, India
1 London Bridge Street, London, SE1 9GF, United Kingdom
2 Bloor Street East, Toronto, Ontario M4W 1A8, Canada
Lvl 13, 201 Elizabeth Street (PO Box A565, NSW, 1235), Sydney NSW 2000, Australia
195 Broadway, New York, NY 10007, USA
Browse the complete Collins catalogue at www.collins.in
For any queries/feedback, please write to us at
SCHOOLSUPPORT@harpercollins.co.in or call us on 0120-4044800.
First edition 2020

© HarperCollinsPublishers India Private Limited, 2020

Reprint: 10987654321
ISBN: 9789353027452
Collins ${ }^{\circledR}$ is a registered trademark of HarperCollinsPublishers Limited
All rights reserved. No part of this book may be reproduced, stored in retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission in writing of the Publisher. This book is sold subject to the conditions that it shall not, by way of trade or otherwise, be lent, re-sold, hired out or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.
Content co-developed by EXCELSOFT TECHNOLOGIES PVT. LTD.
Typesetting design and layout by Interactive Book Services Pvt. Ltd.
Cover design by Interactive Book Services Pvt. Ltd.
Illustrations by Interactive Book Services Pvt. Ltd.
Printed and bound in India by

Acknowledgements

The publisher wishes to thank the following for permission to use copyrighted images.

Cover - Tahreer Photography

Inside - 7: LoopAll; 7: sabelskaya; 7: santhosh_varghese; 8: AnnaSqBerg; 9: MuchMania; 9: funnybank; 9: pijama61; 26: A-Digit; 27: Mellok; 42: Javier Zayas Photography; 42: architetta; 45: JulyVelchev; 45: filo; 55: Alpesh Ambalal Patel; 55: pixel107; 56: Martin Barraud; 79: pijama61; 98: exdez; 99: domin_domin; 99: artisteer; 99: Creative Crop; 99: Janine Lamontagne; 99: Nora Carol Photography; 107: maystra; 108: Tetkoren; 108: NATALIIA OMELCHENKO; 116: buzstop; 143: owattaphotos; 144: VectorPocket; 149: hudiemm; 150: Borodatch; 159: Katerina_Andronchik; 160: elinedesignservices; 160: eliflamra; 161: narvikk; 171: ONYXprj; 172: Smokeyjo; 178: frimages; 199: levgeniia Lytvynovych; 199: D-BASE; 205: hpkalyani; 205: Nimit Nigam; 205: Thomas Lydell; 209: matsabe; 209: HappyJack29; 209: Viktoriia Honcharuk; 278: FingerMedium
The screens and illustrations including the literary and artistic works as well as the trademarks displayed are the sole and exclusive intellectual property of their respective owners and Collins India do not claim any right whatsoever over them. The screens, illustrations and trademarks have been displayed only for educational and instructional purposes.
The IMO paper has been printed with the permission of Science Olympiad Foundation. No part of this may be reproduced, transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the permission of the copyright holder. For more details on IMO, you can visit their website www.sofworld.org. Their corporate office is at Plot No. 99, Sector - 44, Gurgaon, Haryana - 122003, India

Preface

Maths Now is a series of eight books for classes 1 to 8 based on the NCERT syllabus. The series follows an activity-oriented approach to make mathematics engaging for students through emphasizing connections between mathematics and day-to-day experiences. This series also features the balanced use of manipulatives, virtual manipulatives, abstract ideas and other interesting features to improve inherent mathematical skills of students by creating foundational interest in the subject.
This series has been created with a view to enhance the students' understanding of the key concepts of mathematical problem-solving and to increase practical learning by bringing in contexts from outside the classroom. The main aim of the series is to eradicate maths phobia among students, make mathematical concepts crystal clear so that students appreciate the beauty of the subject and the role it plays in one's life.

Key Features

Let's Get Started Chapter starter in the form of a picture-based exercise
Mental Maths Objective-type questions to develop quick-thinking skills
Go Easy! Additional tips helping students to calculate quickly
Do You Know? Nuggets of information to add real-world context to abstract mathematical concepts
Common Errors Pointers highlighting common mistakes and misconceptions
Solved Examples Exercises with step-by-step solutions
Word Problems Textual questions based on real-life situations
Exercises In-text objective-type questions for quick review
Crossword and Puzzles Mathematical problems to stimulate the students' engagement
Maths Lab Activity Hands-on activity to connect concepts with their practical uses in real-life situations
Concept Map Graphic organizer to logically represent relationships between concepts under one topic
Key Concepts List to concisely give an overview of concepts in each topic
Chapter Revision Exercises at the end of each chapter for a comprehensive review
Skill Up!

- Project Practical activities to enhance real-world application of concepts
- Life Skills Questions to inculcate positive behaviour and add a layer of ethical thinking while solving practical mathematical questions
- Mind Buzzer Questions to provide challenging questions relating to real-life examples

Teacher's Notes Important tips related to concepts for the teacher
Worksheets Exercises that covers financial literacy, inferential and experiential learning
Reasoning Worksheet Questions to stimulate rational thinking using mathematical skills
Eminent Mathematicians Brief write-up on eminent mathematicians and their contributions
Poster Important points and formulae in the form of a pull-out page
Review Corner Variety of questions at the end of the book for additional practice
I would like to take this opportunity to thank all the teachers and educationist, especially Dr. C.B. Mishra, Prudence Group of School, who reviewed the books and provided their feedback, which helped in improving the quality of the content.
I would like to dedicate this series to my father, late Mr. S.P. Gupta.
Feedback, invaluable comments and suggestions from users are welcome.
Author

Key Features

Different features interspersed within the book aim to provide active learning tools and techniques. These tools and techniques have been designed keeping in mind the 5E principle based on the constructivist approach to learning. These features can be used as learning strategies to enhance the understanding of key concepts of mathematics and increase practical learning and problem-solving by bringing in real-life contexts from outside the classroom.

Balanced use of Manipulatives, Virtual

 Manipulatives and Abstract Ideas!
About the Features

Let's Get Started

Picture-based chapter-opening exercise

??? Mental Mathis Objective-type questions to develop quick-thinking skills

Eminent Mathematicians
Brief write-up on eminent mathematicians and their contributions
VEDIC MATHS
Shortcut
techniques to
solve mathematical
calculations
Poster
Important points
and formulae in
the form of a
pull-out page

Important points formulae in pull-out page

Note

Pointers for better understanding of : concepts

SOLVED EXAMPLES

Example exercises with
step-by-step solutions

Concept Map

, Logical representation , of relationships between

Definition of importan terms and formulae given as bulleted list

WORD PROBLEMS
Textual questions based on real-life situations

риәґхヨ

SKILL UP!

$\left.\begin{array}{|lll}\text { Project } & \text { Life Skills } & \text { Mind Buzzer } \\ \begin{array}{lll}\text { Practical activities } \\ \text { to enhance } \\ \text { real-world }\end{array} & \begin{array}{l}\text { Thought-provoking questions } \\ \text { to help develop sensible life } \\ \text { application of }\end{array} & \begin{array}{l}\text { Questions to arouse } \\ \text { intellectual curiosity }\end{array} \\ \text { empathy as better awareness, } & \text { and encourage the }\end{array}\right\}$

Maths Lab Activity

Hands-on activity to help improving investigation, reinforcement and extension of concepts just learnt

In-text objective-type questions for quick review, assessment and evaluation

mathematical skills problem-solving questions

-REVIEW CORNER

Variety of questions at the end of the book for additional practice

Maths Around Us

A two-page feature providing a variety of interesting information and activities that connect maths and Indian history, art, culture, real-life situations and financial literacy

Maths Around Us 7

1. Number System 9
Worksheet 26
2. Whole Numbers. 27
Worksheet 41
3. Integers 42
Worksheet 55
4. Playing with Numbers 56
Worksheet 79
5. Fractions 80
Worksheet 98
6. Decimals 99
Worksheet 116
7. Introduction to Algebra. 117
Worksheet. 134
8. Ratio and Proportion 135
Worksheet 148
9. Basic Geometrical Ideas 149
Worksheet 160
10. Understanding Elementary Shapes. 161
Worksheet 178
11. Practical Geometry 179
Worksheet 198
12. Symmetry 199
Worksheet. 209
13. Perimeter and Area of Polygons 210
Worksheet 224
14. Data Handling 225
Worksheet 238
Reasoning Worksheets 239
Vedic Maths 246
Review Corner 249
International Mathematics Olympiad Paper. 259
Answers. 267
Eminent Mathematicians 280

Maths Around Us

NEEDS, WANTS, BARTER SYSTEM AND TRADE

Have you ever needed something? Or was it just want? Basic things that we need to live and survive are considered needs. For example, food, water, clothes and shelter. Other things that you would like to have but do not need for survival are considered wants. For example, soft drinks, eating at restaurants, watching movies, amusement parks, expensive shoes and clothes.

The things that we need or want can be classified into goods or services. Goods are the tangible things that you can own and move. Services are activities such as tourism, banking, accountancy, renting a car, food and lodging. Services do not involve the production of goods. Producers manufacture or provide services and the consumers buy the goods or avail the services.
We buy goods and avail services that we need or want with money. When we buy goods or services, there is a transfer of ownership of goods and services in exchange for money. The activity of buying, selling or exchanging goods or services between people, markets or countries is called trade.
Before there was no money and no bank, how did people get the things they needed or wanted? During those times, people used to exchange goods and services for goods or services. This exchange of goods and services for other goods and services, rather than selling for money is known as barter system or bartering.

With your group of friends or classmates, open a garage sale. Collect things from your household that you no longer need or want. Make a list of the items in the table given below.

Things that you no longer need	Things that you no longer want

What are the things that your friends have collected? Which of the things would you barter or buy from your friend? Sort and write in the space provided below.

Number System

Learning Objectives

- To represent numbers in Indian, International and Roman Number System
- To form various numbers using given digits
- To convert distance and weight from one unit of measurement to another

Let's Get Started

We use numbers every day in most of our activities. When we get up, we check what time it is. We get ready to reach school on time; every period is of a fixed duration.

Name any three more activities, from our daily life, where numbers are used. Take hints from the pictures given below.

When we buy anything, money is used. When we play on the field, in most games, our winning/ losing is dependent on the scores, which are again NUMBERS! When we are evaluated for how much concept we have understood, we are given marks. Since numbers and their usage is a part of our lives, we should learn how to calculate them.

DIGITS AND NUMBERS

In any language, a letter is the smallest part into which a word can be broken. Similarly, in mathematics, a digit is the smallest part into which we can break a number. $0,1,2,3,4,5,6,7,8$ and 9 are the ten digits/figures used to form numbers in the Hindu-Arabic System of writing numbers.
A number is used for counting objects or for measuring a certain quantity. A combination of one or more digits used to denote a number is called a numeral.

NUMERATION

Numeration means to write a number in words or symbols. For thousands of years, people used fingers and toes for counting. Later they started using tally marks for counting. Some of the ancient number systems are Babylonian Number System, Roman Number System and Indian Number System. The Indian Number System is also called the Hindu-Arabic Number System.

Do you know?

The number system which uses 2 digits (0 and 1) is called the binary number system. Computers understand binary number system.

Indian System of Numeration

Crores, lakhs, thousands and ones are periods of the Indian Number System. A comma is placed after every period as follows:
Two places for crores, two places for lakhs, two places for thousands, three places for ones. For placing commas in a number, start from its end and move towards the left. Place a comma before the last 3 digits, that is after the thousands period. Then move two more places to the left and place a comma after the lakhs period and so on.
Consider the number 123456789.

Thus, 123456789 can be written as $12,34,56,789$.

Face value and place value of a digit in a number

Face value of a digit is the same as the digit itself. It does not change with the location of the digit in the number. Place value of a digit depends upon its location in the period.
In the number 57,802 , face value of 7 is 7 and place value of 7 is $7 \times 1000=7000$.
Face value of 5 is 5 and place value of 5 is $5 \times 10,000=50,000$.
Few more numbers and their place value in the Indian system of numeration, expanded form of the numbers and the number in words are given in Tables 1.1, 1.2 and 1.3.

Table 1.1 Place value in the Indian system of numeration

Number	Crores		Lakhs		Thousands		Ones		
	$\begin{aligned} & \text { Ho } \\ & 0.0 \\ & 0 \\ & \overline{0} \end{aligned}$	$\begin{aligned} & \mathscr{0} \\ & \text { bu } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { e } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & = \\ & \hline \end{aligned}$	$\begin{aligned} & \text { y } \\ & E \\ & 0 \\ & 0 \\ & 0 \\ & = \end{aligned}$	$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \\ & \text { B } \\ & \text { B } \end{aligned}$	$\stackrel{\mathscr{0}}{\stackrel{0}{0}}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$
56,792					5	6	7	9	2
4,39,108				4	3	9	1	0	8
67,23,952			6	7	2	3	9	5	2
3,26,87,195		3	2	6	8	7	1	9	5
12,34,56,789	1	2	3	4	5	6	7	8	9

Table 1.2 Expanded form of numbers

Number	Expanded form
56,792	$5 \times 10000+6 \times 1000+7 \times 100+9 \times 10+2 \times 1$
$4,39,108$	$4 \times 100000+3 \times 10000+9 \times 1000+1 \times 100+0 \times 10+8 \times 1$
$67,23,952$	$6 \times 1000000+7 \times 100000+2 \times 10000+3 \times 1000+9 \times 100+5 \times 10+2 \times 1$
$3,26,87,195$	$3 \times 10000000+2 \times 1000000+6 \times 100000+8 \times 10000+7 \times 1000+1 \times 100+9 \times 10+5 \times 1$
$12,34,56,789$	$1 \times 100000000+2 \times 10000000+3 \times 1000000+4 \times 100000+5 \times 10000+6 \times 1000+7 \times$ $100+8 \times 10+9 \times 1$

Table 1.3 Numbers in words in the Indian system of numeration

Number	Number name
56,792	Fifty-six thousand seven hundred ninety-two
$4,39,108$	Four lakh thirty-nine thousand one hundred eight
$67,23,952$	Sixty-seven lakh twenty-three thousand nine hundred fifty-two
$3,26,87,195$	Three crore twenty-six lakh eighty-seven thousand one hundred ninety-five
$12,34,56,789$	Twelve crore thirty-four lakh fifty-six thousand seven hundred eighty-nine

International System of Numeration

International system of numeration is widely used in the world. Billions, millions, thousands and ones are periods of the International Number System.
A comma is placed after every period as follows:
Three places for billions, three places for millions, three places for thousands, three places for ones.
For placing commas in a number, start from its end and move towards the left. Place a comma before the last 3 digits, that is after the thousands period. Then move three more places to the left and place a comma after the millions period and so on.
Table 1.4 Place value in the International system of numeration

Number	Billions	Millions			Thousands				Ones	
			$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{E} \\ & \frac{0}{2} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		y E 0 0 0 E E	0 $=$ 0 $=$ $=$		$\stackrel{E}{0}$	$\begin{aligned} & \mathscr{E} \\ & 0 \end{aligned}$
56,792						5	6	7	9	2
439,108					4	3	9	1	0	8
6,723,952				6	7	2	3	9	5	2
32,687,195			3	2	6	8	7	1	9	5
123,456,789		1	2	3	4	5	6	7	8	9

Table 1.5 Number in words in the International system of numeration

Number	Number name
56,792	Fifty-six thousand seven hundred ninety-two
439,108	Four hundred thirty-nine thousand one hundred eight
$6,723,952$	Six million seven hundred twenty-three thousand nine hundred fifty-two
$32,687,195$	Thirty-two million six hundred eighty-seven thousand one hundred ninety-five
$123,456,789$	One hundred twenty-three million four hundred fifty-six thousand seven hundred eighty-nine

COMPARING NUMBERS

To compare numbers, that is to find which number is greater/smaller or whether the numbers are equal, follow the steps given below.

1. Check whether the number of digits is the same in both the numbers.
2. If the first number has more digits than the second, the first number is greater; else the second number is greater.
3. If both numbers have equal number of digits and the digits are the same, the numbers are equal.
4. If both numbers have equal number of digits, the number with the greater digit in the leftmost position (that is the first digit) is greater.
5. If the leftmost digits are equal, compare the second digits of both the numbers (and continue this way) to find the greater digit and the greater number.

SOLVED EXAMPLES

\qquad
Example 1: Compare 367 and 367.
Solution: $367=367$
As both numbers have equal number of digits and the digits are exactly same.
Example 2: Compare 4528 and 458.
Solution: $4528>458$
As 4528 has four digits and 458 has only three digits.
Example 3: Compare 7293 and 6293.
Solution: 7293 > 6293
Both numbers have equal number of digits but $7>6$.
Example 4: Compare 8126 and 8216.
Solution: $8126<8216$

To arrange numbers in ascending/ descending order, write $1,2,3, \ldots$ above the numbers according to their sorting order. Then write the corresponding number as per the sorting order.

Both numbers have equal number of digits. First digit in both is 8 but $1<2$.
Example 5: Arrange the numbers 45893, 42947, 42356, 36789 in ascending order.
Solution: $36789<42356<42947<45893$
Example 6: Arrange the numbers 765844, 783975, 867893, 68993 in descending order.
Solution: $867893>783975>765844>68993$

? Mental Maths

Form the greatest and the smallest 5-digit numbers using all the digits $0,4,5,6$ and 7 based on the following conditions.
a. 0 is the second digit.
b. Even digits can occupy only even places.
c. The number ends with a zero or a 5 .
d. 6 is the first digit.
e. 5 is at the tens place

1. Fill in the blanks.
a. The face value of 7 in 45789 is \qquad .
b. The place value of 7 in 45789 is \qquad .
c. Four hundred fifty-six million two hundred three thousand seven is written as
\qquad .
d. Six hundred fifty million seven thousand nine is written as \qquad .
e. Thirty-two crore four lakh eight thousand three is written as \qquad .
f. \qquad lakhs $=1$ million.
g. \qquad crores $=100$ millions.
h. \qquad thousands $=1$ lakh.
2. Write the following numbers in words in Indian and International Number Systems.
a. 594868
b. 3907843
c. 59384323
d. 471209474
3. Write the following numbers in expanded form.
a. 293748
b. 2039894
c. 4769400
d. 28495061
4. Fill in the blanks with the correct symbol < or >.
a. 692378 \qquad 693425
b. 32445 \qquad 327863
c. 710293 \qquad 710200
d. 9008763 \qquad 900834
e. 173927 \qquad 179372
f. 263730 \qquad 263729
5. Arrange the following numbers in ascending order. 26893, 262447, 262156, 263739
6. Arrange the following numbers in descending order.

92693, 92627, 926216, 9263739, 92637, 926371
7. Form numbers without repeating digits and by using all the given digits.

Digits	Greatest number	Smallest number
7,1		
$5,0,9$		
$4,2,3,8$		
$1,0,9,3,6$		
$3,0,9,4,7,1$		

8. Form the greatest and the smallest 4-digit numbers (repetition of digits is allowed) based on the following conditions.
a. The number is an even number.
c. The number is divisible by 3 .
b. The number is an odd number.
e. The smallest digit used is 3 .
d. The greatest digit used is 5 .
g. The sum of the digits is 8 .
f. Each digit is repeated twice.
h. The product of the digits is 8 .

ESTIMATION AND ROUNDING OFF NUMBERS

Estimation means guessing an approximate value for any calculation. Value of certain calculations can be estimated by rounding off.
To round off a number to the nearest 10,100 and 1000 , follow the steps given in the flowchart.

SOLVED EXAMPLES

Example 7: Round off the number 38645 to the nearest 10.
Solution:

| TTh | Th | H | T | O |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 8 | 6 | $4]$ | 5 |

The tens digit is 4. Place the "]" mark after it. Next digit is $5.5 \geq 5$. So, increase 4 by 1 and replace the digit after it by 0 .
The number 38645 rounded off to the nearest 10 is 38650 .

Example 8: Round off the number 712543 to the nearest 100.
Solution:

L	TTh	Th	H	T	O
7	1	2	$5]$	4	3

For estimating or rounding off numbers to the nearest 10, 100 and 1000, find an approximate value of the number. The value of the number does not change drastically. 261936 on rounding off cannot become 900 or 2000 or 60000. x

The value will be close to 200000 or 300000.

Common Errors

?

The hundreds digit is 5. Place the "]" mark after it. Next digit is $4.4<5$. So, 5 remains in the hundreds place and replace the digits after it by 0 .
The number 712543 rounded off to the nearest 100 is 712500 .
Example 9: Round off the number 6999543 to the nearest 1000.
Solution:

Tl	L	TTh	Th	H	T	O
6	9	9	$9]$	5	4	3

The thousands digit is 9 . Place the "]" mark after it. Next digit is $5.5 \geq 5$. So, increase 9 by 1 and replace the digits after it by 0 .
The number 6999543 rounded off to the nearest 1000 is 7000000 .
Example 10: Estimate the sum of 74 and 38 to the nearest 10.
Solution: Estimated value of 74 to the nearest $10=70$
Estimated value of 38 to the nearest $10=40$
Estimated value of $(74+38) \approx 70+40=110$
Example 11: Estimate $345+67$.
Solution: When it is not specified up to which place value we need to estimate our answer, estimate each given number to the place value of its first digit.
$345+67 \approx 300+70=370$. Since the first digit 3 of 345 is at the hundreds place, we round off 345 to the nearest 100. The first digit 6 of 67 is at the tens place and we round off 67 to the nearest 10 .
Example 12: Estimate $12890+82$.
Solution: $12890+82 \approx 10000+80=10080$

?
 Mental Maths

What would be the estimated value of $12890+82$ if 12890 is rounded off to the nearest 1000 ?

Note

The symbol \approx means approximately equal.

Example 13: Estimate $5689+35482$ to the nearest 100 .
Solution: $5689+35482 \approx 5700+35500=41200$
Example 14: Estimate a. $4182-384$
b. $675 \div 38$
c. 3679×256
Solution: a. $4182-384$
$\approx 4180-380$
$=3800$
b. $675 \div 38$
$\approx 680 \div 40$
$=17$
c. 3679×256
$\approx 3700 \times 300$
$=1110000$
$?$

Estimate the answer.
a. $68 \div 10$
b. 82×53
c. 57×14
c. $185 \div 109$
e. 356×14

EXERCISE 1B

1. Round off the following numbers as indicated.

	Number	Rounded to the nearest		
		Ten	Hundred	Thousand
a.	74385			
b.	89546			
c.	38479			
d.	753284			
e.	468542			

2. Estimate the following calculations to the nearest 10.
a. $97+56$
b. $922+304$
C. 84×15
d. 610×97
e. $538 \div 23$
f. $802 \div 103$
g. $226-83$
h. $7582-474$
3. Estimate the following calculations to the nearest 100.
a. $4568+719$
b. $9689+932$
c. 126×380
d. 3672×123
e. $378-273$
f. 2837-1482
g. $702 \div 98$
h. $664 \div 134$
4. Estimate the following calculations.
a. $568+79$
b. $9689+932$
c. 126×38
d. 1772×150
e. $38318-7973$
f. $2917-402$
g. $710 \div 68$
h. $374 \div 124$

CONVERSION BETWEEN UNITS OF LENGTH

\qquad
To convert a number from a bigger unit to a smaller unit, multiply the number by $10,100,1000, \ldots \ldots$. To convert a number from a smaller unit to a bigger unit, divide the number by $10,100,1000$, Kilometre, hectometre, decametre, metre, decimetre, centimetre and millimetre are the units in descending order used for measuring length.

Note

As we move down in the table, the units of length become smaller. From a particular unit when we move down one level for conversion, we multiply by 10 . If we move down two levels, we multiply by 100 and so on. If we move up one level, we divide by 10 . If we move up two levels, we divide by 100 and so on.

$\begin{aligned} & \frac{8}{8} \\ & \frac{0}{E} \\ & \hline \end{aligned}$	Kilometre	km
	Hectometre	hm
	Decametre	dam
	Metre	m
8	Decimetre	dm
E	Centimetre	cm
$\hat{\vec{b}}$	Millimetre	mm

SOLVED EXAMPLES

Example 15: Convert 5 km into a. hectometre, b. decametre, c. metre.
Solution: a.

b.

$1 \mathrm{~km}=100 \mathrm{dam}$
$5 \mathrm{~km}=5 \times 100$
$=500 \mathrm{dam}$
c.

$$
\begin{aligned}
1 \mathrm{~km} & =1000 \mathrm{~m} \\
5 \mathrm{~km} & =5 \times 1000 \\
& =5000 \mathrm{~m}
\end{aligned}
$$

Example 16: Convert 7000 cm into a. decimetre, b. metre, c. hectometre.

Solution: a.

km	
hm	
dam	
m	
dm	A
cm	
mm	

$1 \mathrm{~cm}=\frac{1}{10} \mathrm{dm}$
$7000 \mathrm{~cm}=\frac{7000}{10}$
$=700 \mathrm{dm}$
b.

$1 \mathrm{~cm}=\frac{1}{100} \mathrm{~m}$

$$
7000 \mathrm{~cm}=\frac{7000}{100}
$$

$$
=70 \mathrm{~m}
$$

c. | 学m | |
| :---: | :---: |
| hm | |
| yam | |
| | |
| m | |
| dm | |
| cm | |
| mm | |

$1 \mathrm{~cm}=\frac{1}{10000} \mathrm{hm}$
$7000 \mathrm{~cm}=\frac{7000}{10000} \mathrm{hm}$
$=\frac{7}{10} \mathrm{hm}$

Conversion between the units of weight like gram, kilogram and milligram is done in a similar way.

BODMAS

When many arithmetic operations are there in a sum, calculations are done in the order of BODMAS. If brackets are there in a calculation, do all the calculation inside the bracket until only one number is left inside the bracket. After that, remove the bracket. Until the bracket is removed, the rest of the numbers and the operations outside the bracket are just copied to the next step.
The operation "Of" works like multiplication. "Of" is performed before division but multiplication is performed after division. So, do not replace "Of" by multiplication

Bracket

Divide
Multiply
Add
Subtract in calculations which have other arithmetic operators too.
After brackets and "Of" calculations are over in a sum, perform division, multiplication, addition and subtraction one after another.

SOLVED EXAMPLES

Example 17: Simplify $50-3$ of $12 \div 4 \times 5$.
Solution: $50-3$ of $12 \div 4 \times 5=50-36 \div 4 \times 5$

$$
=50-9 \times 5=50-45=5
$$

Example 18: Simplify $15+2(25-18)-(13+2$ of 6).
Solution: $15+2(25-18)-(13+2$ of 6$)=15+2 \times 7-(13+12)$

$$
=15+14-25=29-25=4
$$

Example 19: Simplify $(72 \div 18)$ of $9-800 \div 40$.
Solution: $(72 \div 18)$ of $9-800 \div 40=4$ of $9-800 \div 40$

$$
=36-20=16
$$

EXERCISE 1 C

1. Do the following conversions.
i. Convert into metre.
a. 500 cm
b. 700000 mm
C. 342 km
d. 67 hm
e. 81 dam
ii. Convert into kilometre.
a. $\quad 600000 \mathrm{~cm}$
b. 90000 dm
c. 520 hm
d. 4000 dam
e. $\quad 40000 \mathrm{~m}$
iii. Convert into centimetre.
a. $\quad 72 \mathrm{~m}$
b. 500 mm
c. 20 dam
d. 52 hm
e. $\quad 3700 \mathrm{~mm}$
2. Simplify the following.
a. $19+2 \times 11+6 \times 2$
b. $15 \div 5$ of 3×9
c. $(17-7)$ of $12-10(17-5)$
d. $1+5 \div 1$ of $5-1$
e. $284-14(296-276)$
\qquad
The Roman Number System originated in ancient Rome. Roman numbers are written using one of the following seven letters from the Latin alphabets.

Roman numeral	I	V	X	L	C	D	M
Hindu-Arabic numeral	1	5	10	50	100	500	1000

Rules for Writing Roman Numbers

The rules for writing Roman numbers are given below:

1. A symbol can be repeated a maximum of three times. If a symbol is repeated in succession, the value of each symbol is added. The symbols I, X, C and M can be repeated but the symbols V, L and D cannot be repeated.

$$
\begin{array}{lll}
\text { III }=1+1+1=3 & \mathrm{XX}=10+10=20 & \text { IIII is not allowed } \\
\mathrm{CC}=100+100=200 & \mathrm{MM}=1000+1000=2000 & \text { DD is not allowed }
\end{array}
$$

2. If a smaller numeral is written to the right of a larger numeral, its value is added but if a smaller numeral is written to the left of a larger numeral, its value is subtracted.

$$
\begin{array}{lll}
\mathrm{VII}=5+1+1=7 & \mathrm{XV}=10+5=15 & \mathrm{LXX}=50+10+10=70 \\
\mathrm{XI}=10+1=11 & \mathrm{XVI}=10+5+1=16 & \mathrm{IX}=10-1=9 \\
\mathrm{XC}=100-10=90 & \mathrm{CD}=500-100 &
\end{array}
$$

3. The symbols V, L and D cannot be written to the left of a symbol of greater value. So, their values cannot be subtracted. Also, these three symbols cannot be repeated.
4. I can be subtracted from V and X only.

1	2	3	4	5	6	7	8	9	10
I	II	III	IV	V	VI	VII	VIII	IX	X

5. X can be subtracted from L, M and C only.

EXERCISE 1D

1. Write in Roman numerals.
a. 15
b. 200
c. 400
d. 49
e. 124
f. 104
g. 1698
h. 1850
2. Write in Hindu-Arabic numerals.
a. XIX
b. XXI
c. XXXV
d. CL
e. XLIV
f. LXX
g. CLV
h. CCC
i. CCCL
j. XLIX
k. MD
3. MC

3. Solve the following word problems.

a. A man bought 1.5 kg guava, 20 hg apples and 1800 g pomegranate. Find the total weight of the fruits in kilogram.
b. A businessman has a laptop worth $₹ 1,28,500$, a desktop computer worth $₹ 74,100$ and a tablet worth ₹ 65,000 . Find the total cost of these gadgets.
c. A car is travelling from Imphal to Kohima. The car stops frequently during the journey. The distances travelled by the car in the journey are $22.1 \mathrm{~km}, 56730 \mathrm{~m}, 281700 \mathrm{dm}$ and 289 hm . Calculate the distance between the two places in kilometres.
d. The distance between Jammu and Srinagar is 266.3 km . The distance between Jammu and Pahalgam is 2482 hm . Find the difference in the two distances in kilometres.
e. For a school adventure trip to Ladakh, each child had to pay ₹ 32,500 . What was the total money paid by 37 children who went for the trip?
f. During a charity event, storybooks were given away to children as gifts. The total cost of books distributed to 43 children is ₹ 12,685 . Find the cost of each book.

Maths Lab Activity

Aim: To form as many numbers as possible with the given digits (without repeating the digits)
Materials required: One chart paper of any colour, 2 long rulers, pencils, erasers, 2 glue sticks, 4 scissors and 2 sheets of paper for making digit cards

Procedure:

1. Arrange the students into four groups. Give four different digits such as $1,2,3,4$ or $0,1,2,3$ to each group.
2. For each digit given to a group, make 24 similar digit cards by cutting the sheets. The digit cards should be of measurement $4 \mathrm{~cm} \times 4 \mathrm{~cm}$.
3. Paste the digit cards on the chart paper so that four different digits combine to form different numbers.

Formation of numbers from given digits								
1	2	3	4					

Concept Map

Key Concepts

- Numeral: A figure, symbol or group of figures or symbols that denotes numbers
- Digits: Any of the numerals from 0 to 9
- Numbers: Combination of digits
- Numeration: Word form of numbers
- Place value: Value of each digit in a number
- Face value: Actual value of the digit
- Conversion: Converting numbers between different number systems of numeration
- Rounding off: Making a simpler value of a number

A. Choose the correct option.

1. Pick the odd one out.
a. XXX
b. CCC
c. LLL
d. III
2. Pick the odd one out.
a. $12,76,257$
b. $1,276,257$
c. $5,36,354$
d. 36,354
3. Pick the odd one out.
a. thousand
b. lakh
c. million
d. billion
4. Roman number representation of 89 is
a. XXCIX
b. XIC
c. LXXXIX
d. none of them
5. 100 million is same as
a. 1 lakh
b. 10 lakh
c. 1 crore
d. 10 crore
B. Fill in the blanks.
6. The number XXXIV rounded off to the nearest 10 in the Indian number system is \qquad .
7. $8 \times 100000+3 \times 10000+1 \times 1000+0 \times 100+2 \times 10+7 \times 1=$ \qquad .
8. The greatest four-digit even multiple of 7 is \qquad .
9. The smallest four-digit even multiple of 7 is \qquad ,
C. State whether the following statements are true or false.
10. Face value of 7 in 34675 is 70 .
11. There are 90000 five-digit numbers in all.
12. $9385743>9384743>9384643>9384653>9384623$ is in descending order.
13. $7484743<7484741<7494023<7494153<7494143$ is in ascending order.
14. The smallest five-digit number with different even digits is 20468.
D. Match the following.
15. The greatest 3-digit number
a. 990
16. The greatest 3 -digit number divisible by 2
b. 992
17. The greatest 3 -digit number divisible by 4
c. 994
18. The greatest 3-digit number divisible by 7
d. 996
19. The greatest 3 -digit number divisible by 8
e. 998
20. The greatest 3 -digit number divisible by 11
f. 999

E. Solve the following.

1. Arrange the numbers $324813,3163547,316156,324739$ and 3168273 in ascending order.
2. Write 5284956 in words in the Indian and International number system.
3. Form the greatest and the smallest 4 -digit numbers using all the digits $1,0,3,6$ such that
a. 0 is the second digit.
b. Odd digits can occupy only odd places.
c. The sum of digits in odd places is 6 .
d. 3 is the second digit.
4. Estimate the following calculations.
a. $564+99$
b. 48293-39
c. $380 \div 24$
d. $218 \div 24$
5. Simplify the following.
a. $840 \div 7-20 \times 4$
b. $144-3(12+4 \times 7)$
c. $(124-34)(2 \times 7-4)$
6. Convert into metre.
a. $\quad 50000 \mathrm{~mm}$
b. 43 km
c. $\quad 40 \mathrm{hm}$
d. 70 dam
e. 470 cm
7. Write the Roman numeral for the following.
a. 50
b. 36
c. $\quad 72$
d. 97
e. 613
8. Write the Hindu-Arabic numeral for the following.
a. XXVI
b. MC
c. CLX
d. XXIX
e. XLIX
9. Convert the following as indicated.
a. $\quad 18400 \mathrm{~m} 300000 \mathrm{~cm}$ to km
b. $\quad 18 \mathrm{~kg} 38000 \mathrm{mg}$ to g

F. Answer the following questions.

1. The number of devotees who visited Ajmer Sharif on three consecutive days was $1,56,639$ on the first day, $1,52,378$ on the second day and $1,48,921$ on the third day. Calculate the total number of people who visited the holy place in these three days.
2. Ajay bought 1.25 kg almonds, 4 hg cashew nuts, 60000 cg figs and 200 g raisins. Find the total weight of the dry fruits in grams.
3. Rohan walks 3 km in 1 hours 30 minutes. How many kilometres can he walk in 2 hours 30 minutes.
4. The cost of 1500 cookie biscuits is ₹ 39000 . Find the cost of 1 biscuit.
5. The number of visitors to the Statue of Unity from Thursday to Sunday in a certain week was 28374, 29416, 30048 and 32893. Calculate the total number of people who visited the place in four days.
6. By how much does 9285254 exceed 543978 ?
7. Add $54 \mathrm{~m}, 230 \mathrm{~cm}, 1 \mathrm{~km}$ and 15 dam. Give your answer in decimetre.
8. A car is travelling from Chennai to Tirupati. The car has to stop frequently because there are small children in the car. The distances travelled by the car in the journey are 42.5 km , $56730 \mathrm{~m}, 281700 \mathrm{dm}$ and 289 hm . Calculate the distance between the two places.

SKILL UP!

Project

India is the second most populous country in the world, the first being China. The current population of India is $1,362,575,857$. In 2018, it was $1,354,051,854$ whereas in 2017, it was $1,339,180,127$. The urban population in 2019 is $460,249,876$. In 2018 , it was $449,945,237$ whereas in 2017 it was $439,801,466$. (All values are mentioned approximately.)

1. Is the growth in Indian population at this rate good for the country? What will be the effect of this rapid growth in population?
2. Is the land area of the country also changing?

Write a report on the topic "Population of India" using the numbers given in the passage.

Life Skills

Rewrite the passage given under project by rounding off each given number to the nearest 100 . Then answer the following questions:

1. What is the increase in the Indian population from 2017 to 2018 and from 2018 to 2019? (Estimated to the nearest 100.)
2. What is the increase in the Indian urban population from 2017 to 2018 and from 2018 to 2019? (Estimated to the nearest 100.)

Find out how many people in India are below poverty line (BPL). How can school students help people below poverty line?

Mind Buzzer

1. Form the greatest and the smallest 4-digit even numbers such that:
a. repetition of digits is allowed
b. repetition of digits is not allowed.
2. The time taken by a car to travel from Guwahati to Shillong is 3 hours 30 minutes. Its average speed is 34 kilometre per hour. Find the distance between the two places.

Teacher's Notes

- Introduce topics with real-life examples of large numbers and Roman numbers.
- Play memory games and matching games with the help of flash cards to make students familiar with 6, 7 and 8-digit numbers.

```
x & t x
```


Have you ever been to an amusement park? Which rides do you prefer? Does the choice you make affect the park's business? Answer the questions given below to find out.

The following table shows the sale of amusement park tickets in a city in the month of March.
Entry fee is included in the package price for dry and wet package.

Ticket/ Cost	Week 1	Week 2	Week 3	Week 4
Entry/₹85	131	115	152	134
Dry package/₹425	158	175	210	186
Wet package/₹350	72	91	154	215

Based on the above information, answer the following questions:

1. Which kind of ticket was the least popular in week 1 ?
2. Which kind of ticket was the most popular in week 2 ?
3. Which was the best week for the sale of wet package ticket?
4. What could be the probable reason for the answer of question 3 ?
5. What was the total collection from the sale of tickets in week 1 ?
6. What was the total collection from the sale of tickets in week 2 ?
7. What was the difference in the collection from the sale of tickets in week 1 and week 2 ?
8. What was the total collection from the sale of entry tickets in the four weeks?
9. What was the total collection from the sale of dry package tickets in the four weeks?
10. What was the total collection from the sale of wet package tickets in the four weeks?

为 8 为 x

Learning Objectives

- To learn about whole numbers
- To understand the difference between whole numbers and natural numbers
- To learn the properties of whole numbers
- To learn the techniques of doing calculations faster
- To be able to see patterns, identify and formulate rules

Let's Get Started

Count the number of birds and flowers in the picture given below.

Did you start counting from 0 or you started counting at 1 ? Which numbers did you use for counting? Is there a specific name for such numbers?
Now, add the numbers 12 and 26 . Then add 8 to the result.
Add the numbers 12 and 8 . Then add 26 to the result.
Is the result the same in both the above cases? Which calculation is easier and faster? If you are asked to calculate mentally, which of the above two arrangements would you prefer and why? Multiply 16 by 6,16 by 14 . Then add both the results.
Add 14 and 6. Multiply the result by 16 .
Is the result the same in both the above cases? Which calculation is easier and faster?

WHOLE NUMBERS

The numbers used for counting are called natural numbers (or \mathbf{N}). When we start counting the number of objects, we start counting at 1 , not 0 . So, $1,2,3,4 \ldots \ldots$ are natural numbers. The collection of natural numbers is infinite. The smallest natural number is 1 but there is no largest natural number. 0 included in the collection of natural numbers gives the set of whole numbers (or \mathbf{W}). Whole numbers are $0,1,2,3,4, \ldots \ldots$. The smallest whole number is 0 . The collection of whole numbers is infinite.

Whole numbers can be represented on a number line. A number line is a straight line with numbers placed at equal intervals along its length. To represent the number 8 on the number line, move 8 steps to the right of 0 . The point where you reach represents the number 8 .

SOLVED EXAMPLES

Example 1: Count the number of whole numbers between 18 and 25.
Solution: The number of whole number between

18 and $25=25-18-1=7-1=6$.
Let us verify this.
The numbers that should be included in the above example are $19,20,21,22,23$ and 24. There are 6 numbers here. Hence, verified.
Example 2: Find the number of whole numbers from 18 to 25 .
Solution: Number of whole numbers from 18 to 25
$=25-18+1=7+1=8$.
Let us verify this.
The numbers that should be included in the above example are $18,19,20,21,22,23,24$ and 25 . There are 8 numbers here. Hence, verified.

PROPERTIES OF WHOLE NUMBERS

Mathematical calculations involving numbers are called arithmetic operations. There are four basic arithmetic operations namely addition, subtraction, multiplication and division. Whole numbers follow certain laws while performing these arithmetic operations. These laws are listed below.
Closure Law When an arithmetic operation is performed on two whole numbers and we get a whole number as the result, we say that the closure law is true or the closure law holds good for that operation on the whole numbers.
Commutative Law When an arithmetic operation "*" is performed on two whole numbers a and b such that $\mathrm{a} * \mathrm{~b}=\mathrm{b} \star \mathrm{a}$, we say that the commutative law is true or the commutative law holds good for "*" on the whole numbers.

