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Preface


In recent years, there has been commendable progress made in the field of Computer Vision i.e. how machines see, process, analyze and interpret images, with advancements in deep learning - a technique which makes it possible for the computers to learn by example. This has opened up new opportunities and Computer Vision is now being used for various purposes from medical imaging to driverless cars to SnapChat's filters. This book discusses the fundamental concepts of Computer Vision and Deep Learning which form the basis of all such applications. The book is divided into 5 chapters and provides a lucid and intuitive explanation of the core concepts of computer vision and deep learning.

Chapter 1 introduces the deep learning framework - TensorFlow and discusses its fundamental concepts.

Chapter 2 discusses the core concept of Deep Learning - neural networks along with other related concepts such as loss functions, gradient descent optimization, activation functions and how backpropagation works for training multi-layer perceptrons.

Chapter 3 introduces the convolution operation before moving on to the convolutional neural networks and thereafter describes different building blocks of the CNN architecture such as kernel size, stride, padding, and pooling and how to build a small CNN model.

Chapter 4 discusses different popular CNN architectures such as AlexNet, VGGNet, Inception, and ResNets along with different object detection algorithms such as RCNN, SSD, and YOLO.

Chapter 5 discusses sequential models, such as RNN, GRU, and LSTMs, their architectures and their applications in machine translation, image/video captioning and video classification.
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We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors if any, occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com
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CHAPTER 1

Introduction to TensorFlow


We live in the information age more precisely the digital age. Technology has been advancing by leaps and bounds over the past few years, and this has led to the creation of various smart devices. In this pervasive world, smart devices like smartphones, vehicles, smartwatches, household appliances or any Internet of Things (IoT) devices are becoming ubiquitous and involve communication with databases maintained in the cloud. These communications create lots of data that gets stored in huge databases. The Internet is exploding with a huge amount of data as every second elapses in the time continuum. Around 2.5 quintillion bytes of data gets created each day at current pace. Images and videos are the major contributors to this huge data source. With the development of cloud and flexible storage capacity, developers are opting for more the merrier approach, and actively working to gather more data. This helps them to enhance their technology.

With proliferation of IoT devices and advent of social media, a huge amount of multimedia data is being generated and most of it are unstructured and multimodal.

Hence, it requires computation of multimedia data which has created huge opportunities in storage, processing, and analysis.

Structure

In this chapter we will be covering:


	Defining tensors

	Basic operations using TensorFlow

	Session logging and variables

	TensorBoard



Objective

Learn basic manipulations like assigning variables, matrix multiplication, transpose of matrix, resizing vectors and matrices using TensorFlow.

Machine learning and deep learning

It is apt to tell that computer vision is at the frontier of an intersection of computation, storage and the future of deep learning research. Some important applications in computer vision include the following:


	Self-driving transportation

	Fraud detection

	Security system

	Public administration

	Content analysis, management, and retrieval



Alongside the proliferation of data, it requires various computationally efficient techniques to use these data in a meaningful manner. But the growth in CPU speed has not been at par with data creation speed, leading up to the development of many parallel processing architectures. Lately, we have seen a rise in usage of GPUs, to overcome this issue of computation, which have primarily been used for computer games, now it is being used for the computational purpose, and it has helped immensely in the rise of machine learning field.

Machine learning is a technique that uses statistical and mathematical models to extract some desired insights/information by utilizing data. This technique has been used to forecast the value by using previous years data and various other indicators, to classify emails into different categories, as a recommendation system to feed users with choices aligned with their past behavior, among many other things. Recently, a new branch of machine learning called deep learning has become popular among developers.

Deep learning is a powerful technique that provides flexible models to use, by combining the multilayer perceptron algorithm with various mathematical concepts. In deep learning, the model automatically finds the optimum combination of input features when properly tuned, and hence it enhances the accuracy of a decision-making process. We will get to know more about deep learning in further chapters but before that, let’s discuss frameworks and libraries which we will use to learn and implement various deep learning concepts and techniques.

In deep learning literature, several mathematical concepts and techniques have been proposed. It requires dedicated programming tools and frameworks for the implementation of those concepts to train deep models by utilizing a huge amount of data. In recent years, several programming libraries have been developed. But most of the proposed libraries came with trade-offs in terms of flexibility and scalability. In the research field, libraries having flexible structure are widely in demand, but these are often not good for scalability. To overcome this problem, different libraries have been developed, which are fast and scalable but built for specific models and networks, and hence not suitable for research purposes to experiment faster and develop better models.

In November 2015, Google developed TensorFlow, a novel open source library to overcome the above-mentioned problems.

What is TensorFlow?

When we visit TensorFlow website (https://www.tensorflow.org), at the very beginning it is defined as an opensource software library for machine intelligence. But when we start to read its first paragraph, TensorFlow is defined as an open-source software library for numerical computation using data flow graphs. The latter definition seems more cogent and comprehensive explanation of TensorFlow which includes its core structure. Don’t worry, if you are not aware of the term like data flow graph, we will look into all those terms, and will get familiarized with them.

From the website, we can see that TensorFlow is not merely defined as machine learning library rather it uses a more comprehensive term, numerical computation for its definition. TensorFlow contains a high-level wrapper package called Scikit Flow, which performs equally or better than the functionality of Scikit Learn but it is not primarily designed to provide novel Machine Learning solutions. Instead, TensorFlow helps users to design models from basics by providing various functions and classes. Hence, it helps the users to build customized and flexible models. TensorFlow does offer machine learning functionality, so it is equally good to perform complex mathematical computations also.

TensorFlow installation

Before diving deeper into TensorFlow concepts, let’s install TensorFlow library first as it will be better for us to validate our discussions and arguments simultaneously by writing the code. TensorFlow website provides step by step procedure to install TensorFlow for macOS, Ubuntu, and Windows. We have illustrated the complete process below for an Ubuntu environment.

In this section, we will get to know about the importance of other software like pip, virtual environment, notebook, and so on which will be helpful in installing and using TensorFlow.

If you know how to use all this software, then you can install TensorFlow directly from the official guide at TensorFlow website.

Okay, let’s discuss the importance of third-party software.

Jupyter Notebook and Matplotlib are two famous open source software that are widely practiced in data science. Jupyter Notebook helps to check the output of the script in the desired chunk or in step by step also. We can use Jupyter Notebook as a debugger for our script. In case of TensorFlow, which uses a graphical approach to solve a problem, it will be handy to use Jupyter Notebook to check the output at each node while debugging.

Matplotlib is another useful library which is being used for visualization.

Virtual environment

We can directly install software at machine level, but it has some disadvantages.

Let’s understand how. Suppose we want to install a software A and it requires any other software x as part of the installation with version 1.0. Now, for other programs we want to install software B which also require software x in installation but with version 2.0. Now, if we use B then A will not work, and if we use A then B will not work due to the conflict in terms of dependency. The virtual environment helps to overcome this type of problems. In a virtual environment, we create a separate environment for the different version of the software and import that software locally in the code.

To install pip and virtual environment, run the following command in Terminal.

For Ubuntu Linux 64-bit,

Python 3:

$ sudo apt-get install python3-pip

$ sudo pip3 install --upgrade virtualenv

To install any software in a virtual environment, first, we will have to create virtual environment folder. We can make this folder in any directory but right now we will create virtual environment folder in the user’s home directory that is ~/ (or home directory).

Let’s see how we can do it in terminal.

$ cd

$ mkdir envs

$ cd envs

$ Virtualenv

Tensorflow(or any name we want)

After completing these steps, we can see virtual environment named TensorFlow (depend on folder name used in command) in envs folder. To use this virtual environment folder, first, we will have to activate it.

We can activate this folder by using the following commands in Terminal.

$ source ~/ activate envs/tensorflow/bin/

Now we can see the change in the terminal, it will show (tensorflow) $. After finishing the work, we will deactivate the virtual environment by using the following command.

(tensorflow) $ deactivate

We can avoid the above-mentioned steps to activate virtual environment folder by writing the following line in bash file, and next time, we will have to type only folder name, and it will get activated.

Alias tensorflow=”source ~/env/tensorflow/activate”

After activating virtual environment, we can install TensorFlow using pip command.

Python 2 and CPU:

(tensorflow)$ pip install --upgrade tensorflow

Python 3 and CPU:

(tensorflow)$ pip3 install --upgrade tensorflow

If we want to install TensorFlow for GPU, we can use the following commands:

Python 2 and GPU:

(tensorflow)$ pip install --upgrade tensorflow-gpu

Python 3 and GPU:

(tensorflow)$ pip3 install --upgrade tensorflow-gpu

To check whether TensorFlow is installed or not, we will use traditional hello world example. Before executing code, make sure virtual environment is activated otherwise, it will throw an error messaging, ImportError: No module named tensorflow.

import tensorflow as tf a =

tf.constant(“Hello world”) sess =

tf.Session() print(sess.run(a))

It will return Hello world. Don’t worry about descriptions of the code, we will discuss it later in detail.

To run a TensorFlow program on a GPU with a Nvidia GPU, we will need the CUDA toolkit 7.0 or greater. We can get it by using the following command.

$ sudo apt-get install cuda-command-line-tools

Now, add path to environment variable.

$ export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/C

For more understanding about CUDA, please refer this link- https://gist.github.com/zhanwenchen/e520767a409325d9961072f666815bb8.

Now, let’s install two more libraries which will be useful in learning TensorFlow.

Jupyter Notebook:

Python 2

$ sudo pip install jupyter

Python 3

$ sudo pip3 install jupyter

Matplotlib:

Python 2

$ sudo pip install matplotlib

Python 3

$ sudo pip3 install matplotlib

Let’s use these libraries in an example and in this way, you can check whether you have installed Jupyter Notebook and Matplotlib correctly or not.

Make sure to activate virtual environment, then add the following code:

(tensorflow) mkdir test_code

(tensorflow) cd test_code

(tensorflow) jupyter notebook

It will open Jupyter Notebook at localhost in the web browser as shown is Figure 1.1a. We can see tab named New, if we click on this, it will give the option to choose Python version. On click, it will open new notebook file.

import tensorflow as tf

import matplotlib as plt

a = tf.random_uniform([2, 30])

b = tf.random_uniform([2, 30])

sess = tf.Session()

x = sess.run(a)

y = sess.run(b)

plt.scatter(x, y)

plt.show()

In Jupyter Notebook, it will resemble Figure 1.1a:


[image: ]

Figure 1.1a

In Jupyter Notebook, enter the above piece of sample code, it will resemble Figure 1.1b.
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Figure 1.1b

If you have installed all those libraries, you will get a similar image.

Dataflow graphs

In TensorFlow, algorithms and its operations are represented by dataflow or computational graph. Dataflow graph is a form of a directed graph in which all nodes are connected, and edges are directed from one node to another. In this graph, each node represents operations and an edge represents output value (tensors) of these operations. As each vertex represents the flow of tensors so it is called TensorFlow. Each node can have zero or more than one input and consequently zero or more output. Nodes are generally represented by box or circle and vertices represented by an arrow as notation. Example of directed graph is shown in Figure 1.2:
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Figure 1.2

There are various reasons that help to understand why dataflow graph is chosen as the computational model in TensorFlow. In deep learning, models are generally visualized as a directed graph which helps to implement and debug the networks. Deep learning model requires gradient computation of output node with respect to other node and by creating nodes for each operation it becomes easier to compute the derivatives. It also helps to distribute the operations in multiple CPUs or GPUs.

Tensors

A tensor can be defined as collections of static and fixed homogeneous values in higher dimensions. Mathematically, a tensor can be defined as N-dimensional vector, that is an abstraction of vectors and matrices to higher dimensions. Rank of a tensor represents its dimensions.

A tensor with rank zero is considered as a scalar. It is also denoted as zero-dimension tensor. [ ], represents the shape of zero-dimension tensor.

Vector or 1D array is defined as 1D tensor with rank one.

[5, 3, 7, 11], the shape of the tensor is (4,).

A tensor with rank two is called a matrix.

[[3, 7,11, 13], [2, 4, 6, 9]], the shape of tensor is (2,4) and so on for higher dimensions.

In this section, we will get to know about the core structure of TensorFlow and its fundamental operations.

Graph

At the core level, TensorFlow uses directed graph, a form of dataflow graph/computational graph to implement its algorithms and execute its operations. Dataflow graph and computational graph will be used in this book interchangeably. This form of structure is suitable for deep learning model which requires chained derivatives. Dataflow graph helps to implement complex computation into simpler one, by splitting up in nodes. Figure 1.3 represents a trivial example.
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Figure 1.3

Above example shows the basic addition using graph. Node is represented as a circle. Each node defines single operation or mathematical functions. In this example, it takes 2 inputs X and Y as represented by arrows. When these inputs pass through the node which performs an addition operation, it returns output X + Y. Further, this output can be used as input for another node or it can be the final output.

Nodes and edges are elementary blocks of a graph. Usually, nodes are represented by circle or box and arrows represents edges. Mathematical operations are implemented at nodes and its value is carried out by edges to other nodes hence in this way edges works as a linker between nodes.

Figure 1.4 shows bit complex and interesting example:
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Figure 1.4

As dataflow graph uses a directed graph, the direction of computation is shown by the arrow. Let’s understand each operation of the graph step by step:


	At left, we can see two circles a and b represents two inputs, input1 and input2. These inputs can be from other graph or it can be primary inputs.

	These two circles pass its corresponding values to the boxes (nodes), node c and node d for further computation. Node c perform addition operation and node d execute multiplication.

	Node c takes two values 6 and 4 as inputs and after multiplying these values it gives 24 as an output result. Alongside, node d also takes two values 6 and 4, perform addition operation and it gives 10 as an output result.

	Finally, node e takes the output of node c and node d as inputs and perform addition operation and gives 34 as an output result. Output of node e can be final output, or it could be input for next nodes.



Let’s see the mathematical interpretations of the computational graph. Here, nodes are represented by a, b, c, d, and e.

a = input 1

b = input 2

c = a + b; d = a*b

And finally, e = c + d.

Let’s put the value of input 1 and input 2 be 6 and 4. So, a = 6 and b = 4.

Now, c = a + b = 6 + 4 = 10; d = a*b = 6*4 = 24.

Finally, e = c + d = 10 +24 = 34

Let’s discuss why this nodal approach has been practiced. In this approach, input values can be exploited by various mathematical operations, and hence it can be used by a large number of nodes in the next layers. Otherwise, each node would require specific and corresponding values to perform operations and this will make the task tedious. Secondly, questions can be asked, which node will get executed first. Depending on observers analyzing criterion many can say node c or node d. Executions of nodes depend on its implementations and hardware requirements. From the above example, it will be more accurate to say, both nodes are independent, and will execute independently. As it can be seen, both nodes do not require any information from each other to perform its mathematical operations.

We can always add more nodes and edges to manipulate inputs and can also link any nodes with other nodes in the next layer.

Let’s look at the example of a graph.
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Figure 1.5

Few changes have been made in this graph, the last node takes the input from one of the input nodes, and one of the middle layer nodes. This is a valid graph. This graph supports the argument that more nodes can be added to the layers, and any node can be linked with another node in the next layers.

Now, let’s discuss dependencies of nodes with each other.

TensorFlow uses directed graph so there are certain types of directed graphs like cyclic graph which cannot be used in TensorFlow for computation. Let’s understand dependency between nodes to understand limitations. Let’s define two nodes A and B. If node A requires any information from node B to perform an operation, then node A is dependent on node B or we can say that there is a dependency between node A and node B.

Now, look at this graph:
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Figure 1.6

In the graph shown in Figure 1.6, node c and d are independent with each as neither of these nodes requires any information from each other. What about the relation between node c, d, and e. Suppose we remove the connection between node c and node e from the graph as shown in Figure 1.7. It means node d has completed its operations and node c is unable to finish it yet. But node e requires output from both nodes c and d to compute the output. So, we can say that node e is dependent on node c, similarly, this can be shown for node d. Now, what about the dependencies between node e and input nodes. Node e is not taking input directly from these nodes, but it can be easily shown that nodes a and b are not directly but indirectly related to node e.
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Figure 1.7

Let’s see what happen if we remove any one of the inputs from the graph as shown in Figure 1.8:
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Figure 1.8

It can be seen from the graph that when the connections between input1 and other nodes are removed, almost whole computation stops. This situation shows the transitive relations amongst dependent nodes. It means, node c is dependent on node a, node e is dependent on node c, hence node e is dependent on node a, similarly we can show the transitive relation between node b and node e. Hence, it also supports the earlier argument that node e
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