

[image: image]

Kotlin
at a Glance

By
Swati Saxena

[image:]

FIRST EDITION 2019

Copyright © BPB Publication, INDIA

ISBN: 978-93-8851-149-0

All Rights Reserved. No part of this publication can be stored in a retrieval system or reproduced in any form or by any means without the prior written permission of the publishers

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The Author and Publisher of this book have tried their best to ensure that the programmes, procedures and functions described in the book are correct. However, the author and the publishers make no warranty of any kind, expressed or implied, with regard to these programmes or the documentation contained in the book. The author and publisher shall not be liable in any event of any damages, incidental or consequential, in connection with, or arising out of the furnishing, performance or use of these programmes, procedures and functions. Product name mentioned are used for identification purposes only and may be trademarks of their respective companies.

All trademarks referred to in the book are acknowledged as properties of their respective owners.

Distributors:

BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

Published by Manish Jain for BPB Publications, 20, Ansari Road, Darya Ganj, New Delhi-110002 and Printed by Repro India Pvt Ltd, Mumbai

Dedication

I would like to dedicate this book to my parents, without whom my
life would not have any meaning. Thank you so much for all your
unconditional support, love, and education.
Everything I am, I owe to my parents.

Preface

In 2017, Google announced Kotlin as an official language for Android app development.

Kotlin is an open source programming language that combines object-oriented programming and functional features into a unique platform.

It runs on the Java Virtual Machine (JVM), and can also be compiled to JavaScript and machine code.

Chapter 1, OOP in Brief, covers OOPs features deeply.

Chapter 2, An Introduction to Java, gives a complete idea of the Java language.

Chapter 3, An Introduction to Kotlin, introduces you to Kotlin.

Chapter 4, Kotlin Architecture, takes you deep in Kotlin architecture and guides you to set up the IDE.

Chapter 5, Kotlin Token, gives a detailed knowledge about Kotlin Token.

Chapter 6, Kotlin Input, teaches you how to input in Kotlin and casting.

Chapter 7, Kotlin Operator, focuses on Kotlin operators.

Chapter 8, String Operations, focuses on the various string operations.

Chapter 9, Conditional Statements, revises the conditional statements.

Chapter 10, Jumping Statement, gives an idea of jumping statement.

Chapter 11, Looping / Control Flow / Iteration, focuses on iteration.

Chapter 12, Kotlin Array, defines Kotlin array.

C hapter 13, Null Safety, tells you how to do null safety and use elvis operator.

Chapter 14, Kotlin Function, discusses the various Kotlin functions.

Chapter 15, Function Scope, tells about function scope.

Chapter 16, Kotlin Lambda Functions and Exception Handling, focuses on Kotlin lambda function and exception handling.

Chapter 17, Kotlin OOPs, gives an idea on Kotlin as an OOP language.

Chapter 18, Constructor, tells about constructors.

Chapter 19, Inheritance, focuses on inheritance.

Chapter 20, Abstract Keyword, discusses about abstract keyword.

Chapter 21, Polymorphism, covers polymorphism.

Chapter 22, Collection, coves collection interface in depth.

Chapter 23, Coroutines, introduces coroutines in Kotlin.

Chapter 24, Generics, covers Generics in Kotlin

Chapter 25, Regex, discusses about Regex.

Chapter 26, Interoperability with Java, tells how to do interoperability with Java.

Chapter 27, Kotlin for Android, tells how to use Kotlin in Android.

Chapter 28, Extras, covers some extras to cover topics which are important yet not discussed earlier.

C hapter 29, Interoperability with JavaScript, tells interoperability of Kotlin with JavaScript.

It is advisable to practice C Programming and Coding Question Bank with solution and Java A complete practical solution when practicing this book for strong programming concept.

A lthough care has been taken for accuracy, the possibility of minor inaccuracies cannot be ruled out.

Lastly, thank you to all students who believe in me.

All the Best.

Swati Saxena

Table of Contents

Chapter 1: OOP in Brief

Advantage of OOPs Over Procedure-oriented Programming Language

Features of OOP

Abstraction

Encapsulation

Inheritance

Polymorphism

Chapter 2: An Introduction to Java

Java Tokens

Selection Statements

Iteration Statements

Jumping Statements

Object and Classes

Type System

Object Class and its Methods

Polymorphism and Inheritance

Overriding

Constructor

Final and Static

The this Keyword

Interface and Abstract Class

Abstract Class

Interface

Garbage Collection

The Finalize() Method

Package

Multithreading

Exception Handling

Chapter 3 An Introduction to Kotlin

History of Kotlin

Versions of Kotlin

An introduction to Kotlin

Why Kotlin?

Philosophy behind Kotlin

Chapter 4: Kotlin Architecture

JDK (Java Development Kit)

Setting up Kotlin in IntelliJ IDEA

Setting up Kotlin in Eclipse

How to Write Program in Kotlin?

Chapter 5: Kotlin Token

Comments

Variables

Datatypes

Kotlin String Literals

Kotlin String Equality

Chapter 6: Kotlin Input

Kotlin Type Conversion

The is Operator

Explicit Cast Operator “as”

Chapter 7: Kotlin Operator

Chapter 8: String Operations

String Replace

Split String

Split String to Lines

String Capitalize

Chapter 9:Conditional Statements

if…else

when…else

Chapter 10: Jumping Statement

Chapter 11: Looping / Control Flow / Iteration

The for Loop

The While Loop

The do…while Loop

The Repeat Statement

Chapter 12: Kotlin Array

Chapter 13: Null Safety

Elvis Operator ?:

The !! Operator (double bang operator)

Chapter 14: Kotlin Function

Spread Operator

Recursion and Tail Recursion

Chapter 15: Function Scope

Top Level Functions

Member Functions

Chapter 16: Kotlin Lambda Functions and Exception Handling

Exception

Types of Exceptions

Chapter 17: Kotlin OOPs

Nested Class

Inner Class

Companion Object

Reflection

Chapter 18: Constructor

Getter or Setter to Set Value of Properties

Chapter 19: Inheritance

Chapter 20: Abstract Keyword

Chapter 21: Polymorphism

Operator Overloading

Data Class

Sealed Class

Inline Class

Chapter 22: Collection

Properties of Map Interface

Functions of Map Interface

Properties of Set Interface

Functions of Set Interface

Chapter 23: Coroutines

Chapter 24: Generics

Delegation

Destructing Declaration

Chapter 25: Regex

Chapter 26: Interoperability with Java

Chapter 27: Kotlin for Android

Chapter 28: Extras

Chapter 29: Interoperability with JavaScript

Representing Kotlin Types in JavaScript

Calling Kotlin from JavaScript

Kotlin Plugin

Glossary

Hard Keywords

Soft Keywords

Modifier Keywords

Special Identifiers

Operators and Special Symbols

Important Question

CHAPTER 1

OOP in Brief

OOP stands for object-oriented programming, refers to a programming methodology based on objects, instead of just functions and procedures.

Advantage of OOPs Over Procedure-oriented Programming Language

	OOPs makes development and maintenance easier, where as, in procedure-oriented programming language, it is not easy to manage the code if it grows as the project size grows.

	OOPs provides data hiding, whereas, in procedure-oriented programming language, a global data can be accessed from anywhere.

	OOPs provides the ability to simulate real-world events much more effectively.

	We can provide the solution of real world problem if we are using object-oriented programming languages.

What is an object?

An object is an entity which has a well-defined structure and behavior. Everything in world is an object if it has some identity, state, behavior, and responsibility.

Characteristics of an object:

	State

	Behavior

	Identity

	Responsibility

Features of OOP

The features of OOP are as follows:

	Abstraction

	Encapsulation

	Inheritance

	Polymorphism

Abstraction

Abstraction is the process of identifying the key aspects of an entity and ignoring the rest. Data abstraction is a programming (and design) technique that relies on the separation of interface and implementation.

Advantages of data abstraction are:

	It makes the application secure by making data private and avoiding the user-level error that may corrupt the data

	It avoids code duplication

For example, a man has all the following properties but according to the need he is asked for the following information:

	Social Survey
	Health Care
	Employment

	Name

	Name

	Name

	Age

	Age

	Age

	Marital status

	Address

	Address

	Religion

	Blood group

	Qualification

	Income group

	Weight

	Department

	Address

	Previous record

	Job responsibility

	…….

	……..

	……..

Encapsulation

Encapsulation is a mechanism used to hide the data, internal structure, and implementation details of an object.

Data encapsulation led to the important OOP concept of data hiding. Data encapsulation is a mechanism of bundling the data, and the functions that use them and data abstraction is a mechanism of exposing only the interfaces and hiding the implementation details from the user.

C++ supports the properties of encapsulation and data hiding through the creation of user-defined types, called classes.

[image:]

Advantages of encapsulation:

	Encapsulation is useful in hiding the data of a class from an illegal direct access

	Encapsulation helps us in binding the data and the member functions of a class

	Encapsulation also helps us to make a flexible code which is easy to change and maintain

The main advantage of encapsulation is to protect the data from outside by giving access control. Encapsulation is the complement of abstraction.

Inheritance

Inheritance is the process by which one object can acquire the properties of another object.

When creating a class, instead of writing completely new data members and member functions, the programmer can designate that the new class should inherit the members of an existing class. This existing class is called the base/parent class, and the new class is referred to as the derived/child class.

Inheritance implements the “is a” relationship. For example, car is a vehicle.

In C++, you can use six types of inheritance:

	Single inheritance

	Multiple inheritance

	Hierarchical inheritance

	Multilevel inheritance

	Hybrid inheritance

	Multipath inheritance

The advantage of inheritance are as follows:

	Code reusability

	Code extensibility

	Leads to less development and maintenance costs

	Reduces code redundancy

The disadvantage of inheritance are as follows:

	Inherited functions work slower than normal function as there is indirection

	Often, data members in the base class are left unused which may lead to memory wastage

Polymorphism

The word polymorphism is derived from Greek which means many forms. It allows a single name to be used for more than one related purpose, which is technically different. The following are the different ways of achieving polymorphism in a C++ program.

[image:]

It allows the programmer to generate high-level reusable components that can be tailored to fit different applications, by changing their low-level parts.

CHAPTER 2

An Introduction to Java

Java is a general purpose, class based, object-oriented, platform independent, architecturally neutral, multithreaded, dynamic, distributed, portable, and robust, interpreted programming language.

Java was started as a green project by James Gosling, Patrick Naughton, Chris Warth, Mike Sheridan, and Ed Frank at Sun Microsystem in June 1991.

Initially, it was called as “GreenTalk”.

Later, it was renamed to “Oak” as it is strong like an Oak tree, but was again renamed to “Java” in 1995. It made the promise of "Write Once, Run Anywhere", with free runtimes on popular platforms.

Key points:

Java is an island of Indonesia where first coffee was produced (called Java coffee). Java is just a name not an acronym.

Now, Java is a subsidiary of Oracle Corporation.

The acquisition of Sun Microsystems by Oracle Corporation was completed on January 27, 2010. Significantly, Oracle, which was previously only a software vendor, has now owned both the hardware and software product lines from Sun.

The first version of Java was JDK 1.0.

When we compile a Java file, it is converted into .class file which consist a bytecode. Java byteyode is the language to which Java source is compiled and which the Java Virtual Machine understands.

Bytecode is a set of instructions designed to be executed by the Java runtime system, which is called JVM.

Versions of Java:

	JDK 1.0 (January 23, 1996)

	JDK 1.1 (February 19, 1997)

	J2SE 1.2 (December 8, 1998)

	J2SE 1.3 (May 8, 2000)

	J2SE 1.4 (February 6, 2002)

	J2SE 5.0 (September 30, 2004)

	Java SE 6 (December 11, 2006)

	Java SE 7 (July 28, 2011)

	Java SE 8 (March 18, 2014)

	Java SE 9 (September 21, 2017)

	Java SE 10 (March 20, 2018)

Features of Java:

	Simple: No need of header file or import packages from very first program

	Secure: No use of pointers

	Platform independent: Bytecode can be run on any OS having JVM

	Object-oriented: Supports features of OOPs

	Robust: Strong security, can check user input and stop abnormal termination of program

	Portable: Once bytecode is generated can be run on any OS and portable with new versions

	Dynamic: No wastage or leakage of memory

	Multithreaded: A process can be sub divided into light-weight process

	Compiled and interpreted: Compiled by javac and interpret by JVM

	Supports networking: Can use TCP/UDP for networking

	High performance: Easy to use and secure language

	Distributed: Supports RMI

	Architecture neutral: Java is open source, you can create JVM according to OS

Requirements for Java:

For executing any Java program, you need to perform the following steps:

	Install the JDK if you don't have it installed, download JDK and install it. It is advisable to download JDK from Oracle site:

https://www.oracle.com/technetwork/java/javase/downloads/index.html

	Set path of the jdk/bin directory (in Windows).

	Right-click on the Computer icon.

	Choose Properties from the context menu or in Control Panel.

	Click the Advanced System Settings link.

	Click Environment Variables. In the System Variables section, find the PATH environment variable and select it. Click Edit. If the PATH environment variable does not exist, click New.

	In the Edit System Variable (or New System Variable) window, specify the value (copy the path of installed JDK and paste here) of the PATH environment variable. Click OK. Close all remaining windows by clicking OK.

	Reopen Command Prompt window, and run your Java code.

	Create the Java program on any of the editor or IDE like Notepad, Notepad++, NetBeans, Eclipse , BlueJ, and so on.

	Compile (using javac) and after compiling run the .class file.

Java Tokens

Java Tokens are as follows:

	Keywords

	Variables

	Constants

	Identifiers

	Operators

Now let’s have a look at them in detail:

	Keywords: Keywords are predefined, reserved words, used in Java programming that have a special meanings to the compiler.

OEBPS/images/p004-001.jpg
Polymorphism

.
S

Compile Time Runtime
Example. Overloading Example, Overriding

OEBPS/nav.xhtml

Table of Contents

		Cover

		Kotlin at a Glance

		Copyright

		Dedication

		Preface

		Table of Contents

		Chapter 1: OOP in Brief

		Advantage of OOPs Over Procedure-oriented Programming Language

		Features of OOP

		Abstraction

		Encapsulation

		Inheritance

		Polymorphism

		Chapter 2: An Introduction to Java

		Java Tokens

		Selection Statements

		Iteration Statements

		Jumping Statements

		Object and Classes

		Type System

		Object Class and its Methods

		Polymorphism and Inheritance

		Overriding

		Constructor

		Final and Static

		The this Keyword

		Interface and Abstract Class

		Abstract Class

		Interface

		Garbage Collection

		The Finalize() Method

		Package

		Multithreading

		Exception Handling

		Chapter 3 An Introduction to Kotlin

		History of Kotlin

		Versions of Kotlin

		An introduction to Kotlin

		Why Kotlin?

		Philosophy behind Kotlin

		Chapter 4: Kotlin Architecture

		JDK (Java Development Kit)

		Setting up Kotlin in IntelliJ IDEA

		Setting up Kotlin in Eclipse

		How to Write Program in Kotlin?

		Chapter 5: Kotlin Token

		Comments

		Variables

		Datatypes

		Kotlin String Literals

		Kotlin String Equality

		Chapter 6: Kotlin Input

		Kotlin Type Conversion

		The is Operator

		Explicit Cast Operator “as”

		Chapter 7: Kotlin Operator

		Chapter 8: String Operations

		String Replace

		Split String

		Split String to Lines

		String Capitalize

		Chapter 9:Conditional Statements

		if…else

		when…else

		Chapter 10: Jumping Statement

		Chapter 11: Looping / Control Flow / Iteration

		The for Loop

		The While Loop

		The do…while Loop

		The Repeat Statement

		Chapter 12: Kotlin Array

		Chapter 13: Null Safety

		Elvis Operator ?:

		The !! Operator (double bang operator)

		Chapter 14: Kotlin Function

		Spread Operator

		Recursion and Tail Recursion

		Chapter 15: Function Scope

		Top Level Functions

		Member Functions

		Chapter 16: Kotlin Lambda Functions and Exception Handling

		Exception

		Types of Exceptions

		Chapter 17: Kotlin OOPs

		Nested Class

		Inner Class

		Companion Object

		Reflection

		Chapter 18: Constructor

		Getter or Setter to Set Value of Properties

		Chapter 19: Inheritance

		Chapter 20: Abstract Keyword

		Chapter 21: Polymorphism

		Operator Overloading

		Data Class

		Sealed Class

		Inline Class

		Chapter 22: Collection

		Properties of Map Interface

		Functions of Map Interface

		Properties of Set Interface

		Functions of Set Interface

		Chapter 23: Coroutines

		Chapter 24: Generics

		Delegation

		Destructing Declaration

		Chapter 25: Regex

		Chapter 26: Interoperability with Java

		Chapter 27: Kotlin for Android

		Chapter 28: Extras

		Chapter 29: Interoperability with JavaScript

		Representing Kotlin Types in JavaScript

		Calling Kotlin from JavaScript

		Kotlin Plugin

		Glossary

		Hard Keywords

		Soft Keywords

		Modifier Keywords

		Special Identifiers

		Operators and Special Symbols

		Important Question

OEBPS/images/cover.jpg
Kotlin#

AT A GLANCE

OEBPS/images/logo.jpg

OEBPS/images/p003-001.jpg

