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Preface

In 2017, Google announced Kotlin as an official language for Android app development.

Kotlin is an open source programming language that combines object-oriented programming and functional features into a unique platform.

It runs on the Java Virtual Machine (JVM), and can also be compiled to JavaScript and machine code.

Chapter 1, OOP in Brief, covers OOPs features deeply.

Chapter 2, An Introduction to Java, gives a complete idea of the Java language.

Chapter 3, An Introduction to Kotlin, introduces you to Kotlin.

Chapter 4, Kotlin Architecture, takes you deep in Kotlin architecture and guides you to set up the IDE.

Chapter 5, Kotlin Token, gives a detailed knowledge about Kotlin Token.

Chapter 6, Kotlin Input, teaches you how to input in Kotlin and casting.

Chapter 7, Kotlin Operator, focuses on Kotlin operators.

Chapter 8, String Operations, focuses on the various string operations.

Chapter 9, Conditional Statements, revises the conditional statements.

Chapter 10, Jumping Statement, gives an idea of jumping statement.

Chapter 11, Looping / Control Flow / Iteration, focuses on iteration.

Chapter 12, Kotlin Array, defines Kotlin array.

C hapter 13, Null Safety, tells you how to do null safety and use elvis operator.

Chapter 14, Kotlin Function, discusses the various Kotlin functions.

Chapter 15, Function Scope, tells about function scope.

Chapter 16, Kotlin Lambda Functions and Exception Handling, focuses on Kotlin lambda function and exception handling.

Chapter 17, Kotlin OOPs, gives an idea on Kotlin as an OOP language.

Chapter 18, Constructor, tells about constructors.

Chapter 19, Inheritance, focuses on inheritance.

Chapter 20, Abstract Keyword, discusses about abstract keyword.

Chapter 21, Polymorphism, covers polymorphism.

Chapter 22, Collection, coves collection interface in depth.

Chapter 23, Coroutines, introduces coroutines in Kotlin.

Chapter 24, Generics, covers Generics in Kotlin

Chapter 25, Regex, discusses about Regex.

Chapter 26, Interoperability with Java, tells how to do interoperability with Java.

Chapter 27, Kotlin for Android, tells how to use Kotlin in Android.

Chapter 28, Extras, covers some extras to cover topics which are important yet not discussed earlier.

C hapter 29, Interoperability with JavaScript, tells interoperability of Kotlin with JavaScript.

It is advisable to practice C Programming and Coding Question Bank with solution and Java A complete practical solution when practicing this book for strong programming concept.

A lthough care has been taken for accuracy, the possibility of minor inaccuracies cannot be ruled out. 

 

Lastly, thank you to all students who believe in me. 

 

All the Best.

Swati Saxena
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CHAPTER 1

OOP in Brief

OOP stands for object-oriented programming, refers to a programming methodology based on objects, instead of just functions and procedures.


Advantage of OOPs Over Procedure-oriented Programming Language


	OOPs makes development and maintenance easier, where as, in procedure-oriented programming language, it is not easy to manage the code if it grows as the project size grows.



	OOPs provides data hiding, whereas, in procedure-oriented programming language, a global data can be accessed from anywhere.



	OOPs provides the ability to simulate real-world events much more effectively.



	We can provide the solution of real world problem if we are using object-oriented programming languages.




What is an object?

An object is an entity which has a well-defined structure and behavior. Everything in world is an object if it has some identity, state, behavior, and  responsibility.

Characteristics of an object:


	State


	Behavior


	Identity


	Responsibility







Features of OOP

The features of OOP are as follows:


	Abstraction


	Encapsulation


	Inheritance


	Polymorphism





Abstraction

Abstraction is the process of identifying the key aspects of an entity and ignoring the rest. Data abstraction is a programming (and design) technique that relies on the separation of interface and implementation.

Advantages of data abstraction are:


	It makes the application secure by making data private and avoiding the user-level error that may corrupt the data



	It avoids code duplication




For example, a man has all the following properties but according to the need he is asked for the following information:



	Social Survey
	Health Care
	Employment



	Name

	Name

	Name




	Age

	Age

	Age




	Marital status

	Address

	Address




	Religion

	Blood group

	Qualification




	Income group

	Weight

	Department




	Address

	Previous record

	Job responsibility




	…….

	……..

	……..








Encapsulation

Encapsulation is a mechanism used to hide the data, internal structure, and implementation details of an object.

Data encapsulation led to the important OOP concept of data hiding. Data encapsulation is a mechanism of bundling the data, and the functions that use them and data abstraction is a mechanism of exposing only the interfaces and hiding the implementation details from the user.

C++ supports the properties of encapsulation and data hiding through the creation of user-defined types, called classes.
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Advantages of encapsulation:


	Encapsulation is useful in hiding the data of a class from an illegal direct access


	Encapsulation helps us in binding the data and the member functions of a class


	Encapsulation also helps us to make a flexible code which is easy to change and maintain




The main advantage of encapsulation is to protect the data from outside by giving access control. Encapsulation is the complement of abstraction.




Inheritance

Inheritance is the process by which one object can acquire the properties of another object.

When creating a class, instead of writing completely new data members and member functions, the programmer can designate that the new class should inherit the members of an existing class. This existing class is called the base/parent class, and the new class is referred to as the derived/child class.

Inheritance implements the “is a” relationship. For example, car is a vehicle.

In C++, you can use six types of inheritance:


	Single inheritance


	Multiple inheritance


	Hierarchical inheritance


	Multilevel inheritance


	Hybrid inheritance


	Multipath inheritance




The advantage of inheritance are as follows:


	Code reusability


	Code extensibility


	Leads to less development and maintenance costs


	Reduces code redundancy




The disadvantage of inheritance are as follows:


	Inherited functions work slower than normal function as there is indirection



	Often, data members in the base class are left unused which may lead to memory wastage







Polymorphism

The word polymorphism is derived from Greek which means many forms. It allows a single name to be used for more than one related purpose, which is technically different. The following are the different ways of achieving polymorphism in a C++ program.
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It allows the programmer to generate high-level reusable components that can be tailored to fit different applications, by changing their low-level parts.









CHAPTER 2

An Introduction to Java

Java is a general purpose, class based, object-oriented, platform independent, architecturally neutral, multithreaded, dynamic, distributed, portable, and robust, interpreted programming language.

Java was started as a green project by James Gosling, Patrick Naughton, Chris Warth, Mike Sheridan, and Ed Frank at Sun Microsystem in June 1991.

Initially, it was called as “GreenTalk”.

Later, it was renamed to “Oak” as it is strong like an Oak tree, but was again renamed to “Java” in 1995. It made the promise of "Write Once, Run Anywhere", with free runtimes on popular platforms.

Key points:

Java is an island of Indonesia where first coffee was produced (called Java coffee). Java is just a name not an acronym.

Now, Java is a subsidiary of Oracle Corporation.

The acquisition of Sun Microsystems by Oracle Corporation was completed on January 27, 2010. Significantly, Oracle, which was previously only a software vendor, has now owned both the hardware and software product lines from Sun.

The first version of Java was JDK 1.0.

When we compile a Java file, it is converted into .class file which consist a bytecode. Java byteyode is the language to which Java source is compiled and which the Java Virtual Machine understands.

Bytecode is a set of instructions designed to be executed by the Java runtime system, which is called JVM.

Versions of Java:


	JDK 1.0 (January 23, 1996)


	JDK 1.1 (February 19, 1997)



	J2SE 1.2 (December 8, 1998)



	J2SE 1.3 (May 8, 2000)



	J2SE 1.4 (February 6, 2002)



	J2SE 5.0 (September 30, 2004)



	Java SE 6 (December 11, 2006)



	Java SE 7 (July 28, 2011)



	Java SE 8 (March 18, 2014)



	Java SE 9 (September 21, 2017)



	Java SE 10 (March 20, 2018)




Features of Java:


	Simple: No need of header file or import packages from very first program



	Secure: No use of pointers



	Platform independent: Bytecode can be run on any OS having JVM



	Object-oriented: Supports features of OOPs



	Robust: Strong security, can check user input and stop abnormal termination of program



	Portable: Once bytecode is generated can be run on any OS and portable with new versions



	Dynamic: No wastage or leakage of memory



	Multithreaded: A process can be sub divided into light-weight process



	Compiled and interpreted: Compiled by javac and interpret by JVM 



	Supports networking: Can use TCP/UDP for networking



	High performance: Easy to use and secure language



	Distributed: Supports RMI



	Architecture neutral: Java is open source, you can create JVM according to OS





Requirements for Java: 

For executing any Java program, you need to perform the following steps:


	Install the JDK if you don't have it installed, download JDK and install it. It is advisable to download JDK from Oracle site:

https://www.oracle.com/technetwork/java/javase/downloads/index.html


	Set path of the jdk/bin directory (in Windows).


	Right-click on the Computer icon.


	Choose Properties from the context menu or in Control Panel.


	Click the Advanced System Settings link.


	Click Environment Variables. In the System Variables section, find the PATH environment variable and select it. Click Edit. If the PATH environment variable does not exist, click New.


	In the Edit System Variable (or New System Variable) window, specify the value (copy the path of installed JDK and paste here) of the PATH environment variable. Click OK. Close all remaining windows by clicking OK.


	Reopen Command Prompt window, and run your Java code.




	Create the Java program on any of the editor or IDE like Notepad, Notepad++, NetBeans, Eclipse , BlueJ, and so on.


	Compile (using javac ) and after compiling run the .class file.







Java Tokens 

Java Tokens are as follows:


	Keywords


	Variables


	Constants


	Identifiers


	Operators




Now let’s have a look at them in detail:


	Keywords: Keywords are predefined, reserved words, used in Java programming that have a special meanings to the compiler.
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