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Preface


The goal of Artificial Intelligence is to design algorithms that can perform: “data based automated decision-making under uncertainty”. To understand the theory of automated decision-making, a descent knowledge in the following mathematical concepts is essential: (1) Linear algebra (2) Vector calculus (3) Probability (4) Statistics. This book covers in depth these fundamental mathematical concepts. Each of these have a very vast literature of its own. So, we always wonder where to start and how far to go. In this book we have tried to put together the most essential topics from all these four areas of Mathematics. We have avoided detailed proofs wherever possible and tried to explain more intuitively these concepts. As new advancements are being made almost every day in the field of AI, it’s hard to keep oneself updated by constant study of latest research publications. However, with a strong mathematical foundation provided by this book, the learning curve will appear much less steep.

This book takes a practical approach for introducing the mathematical theory. It provides code or pseudocode in python for most of the mathematical concepts discussed, enabling the readers to use these concepts in their projects wherever applicable. For example, computation of gradient of a function of several variables is introduced mathematically and then corresponding code is also given both in naive python, numpy and tensorflow to clarify the concepts. This book also covers the application of the mathematical theory in building various AI algorithms. Also, this book discusses about a majority of popular neural network architectures. The readers should be able to reuse these building blocks for custom neural network architecture engineering.

This book is divided into twelve chapters. The first six chapters are theory oriented, and we strongly suggest the readers to read them in order as there are many interdependencies in these chapters. The remaining chapters are applications of these concepts and hence can be read in any order.

Chapter 1 Overview of AI: Chapter provides a high-level overview of Artificial Intelligence and its subcomponents. The common terminologies like model, data, parameters of models, dependent and independent variables and model evaluation metrices will be explained in this chapter and will be referenced repeatedly in later chapters.

Chapter 2 Linear Algebra: Covers most topics of Linear Algebra with examples that finds its application in AI. Well thought figures in the chapter helps reader to understand the concept with clarity. This chapter will discuss about representing the real-world data in numeric form called vectors and introduce the required mathematical tools to process vectors.

Chapter 3 Vector Calculus: Chapter discuss differentiation and integration of vectors. The concept of tensors is also introduced in this chapter along with basic tensor algebra and tensor calculus. Moreover, this chapter provides basic optimization topics for function of several variables and functions over tensor.

Chapter 4 Basic Statistics and Probability Theory: This chapter covers introductory concepts of statistics like collecting, organizing, analyzing of data for the purpose of effective decision-making. Real world data has various sources of uncertainty. To quantify this uncertainty in data, probability theory is introduced.

Chapter 5 Statistical Inference and Applications: Statistical inference covers the techniques of decision making under uncertainty. In machine learning uncertainty can arise from noisy data, incomplete information about the problem domain etc. This chapter covers the core concepts of statistical inference and its application to linear models in ML like linear regression, curvilinear regression, and logistic regression.

Chapter 6 Neural Networks: Most of latest the AI algorithms are based on neural networks. This chapter introduces neural networks in general. Also, the fundamental back propagation algorithm is explained in details including the application of tensor calculus to compute layer wise derivatives if the network.

Chapter 7 Clustering: In few domains, data will be unlabeled. In these scenarios, task would be to find natural groups among data samples. Each identified group has unique characteristics which are learnt by algorithms. Learning will help in assigning new data samples to the existing groups based on its characteristics. This chapter will discuss about these algorithms that identifies natural groups.

Chapter 8 Dimensionality Reduction: In most cases, real-world data sample is of more than three dimensions. Higher dimensional data will result in data sparsity which in turn decreases accuracy of learning algorithms. Also, visualization of data whose dimensions are greater than three is not possible. This chapter will discuss algorithms that would be used in reducing dimensions of the data.

Chapter 9 Computer Vision: This chapter provides some theoretical background for the state-of-the-art AI models in computer vision. A specialized neural network architecture called convolution neural network or CNNs used of such models, is explained in details. Variations of the CNN architectures are used for different types of vision tasks. The motivation behind these architectures and how to train these networks is covered and references are provided for the model and code of these architectures.

Chapter 10 Sequence Learning Models: In few domains, data is sequential. Audio clips, video clips, time-series data are few examples of sequential data. Here, prediction of the future output will depend on previous data history. This chapter will discuss about algorithms which would help in learning and predicting based on sequential ordered data.

Chapter 11 Natural Language Processing: Natural Language has been important communication tool among humans and has grown in complexity which our brain can comprehend. This chapter will discuss about algorithms that would learn to understand natural language, represent natural language in concise human readable form.

Chapter 12 Generative Models: Generative modeling is a branch of AI which involves automatically discovering and learning the regularities or patterns in input data in such a way that the model can be used to generate new examples that plausibly could have been drawn from the original dataset. This chapter covers various generative modelling techniques like variational autoencoders, different types of generative adversarial nets (GAN).
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CHAPTER 1

Overview of AI


From the age of civilization, humans are making machines to reduce physical labor. Today, the world is full of machines. Machines cultivate and harvest our crops, make our houses, fly our planes, assemble our cars, control traffic, cook and pack food, entertain us, and even take care of us when we are sick. Machines have not only replaced physical labor but have also exponentially increased human capability. However, a majority of these machines work by following a set of predefined steps required to complete a task successfully. Computing machines and algorithms are at the core of these big and small machine. Algorithms help us formally define the steps to be executed by a machine, and the computer hardware execute these steps in sequence to complete the given task. With advancement of computing capability, new algorithms to solve more complex problems have evolved.

For the past few decades, we have been trying to build intelligent machines that can think and take decisions. Since then, machines are taking over more and more tasks from us. They began to control other machines for us. On this path of evolution, we have strived to impart human intelligence like reasoning, creativity, analyzing, problem solving ability, and natural language understanding to computers. The field of algorithms that strive to impart human intelligence to machines is called Artificial Intelligence (AI).

Structure

In this chapter, we will cover the following topics:


	AI Systems

	Categories of AI Algorithms

	Applications of AI

	Role of Mathematics in AI



Objectives

This chapter gives a high-level overview of AI and its various components. You will be able to learn about common terminologies like model, data, parameters of models, and dependent and independent variables in this chapter, which will be referenced repeatedly in the subsequent chapters. Lastly, we will cover why mathematics is important for understanding AI.

AI systems

AI is a multidisciplinary field of research with a goal to create technology that can enable machines to function like humans. Human mind consists of memories, intellect, thoughts (emotions), and a sense of identity. Human intellect is the discriminative faculty of the mind that determines whether an action is right or wrong. The sense organs present the current situation someone is in, to their intellect. Then, intellect consults the memory, past experiences, present thoughts, and emotions and decides the action. The actions can be speaking, running, smiling, crying, fighting and so on. So, for a machine to function like a human, it should have all these capabilities. Well, machines may not have emotions to influence their decisions! But machines must learn from past experiences, and these experiences must influence their decisions. At first, a machine should have the sense organs by which it can digitally map and record our physical world. Then, it must have the ability to learn from the mistakes it makes.

AI systems are classified by their ability to imitate human behavior. The classification is as follows:


	Artificial narrow intelligence (ANI or narrow AI) refers to a computer’s ability to perform a single task extremely well. This is the only type of AI that exists in reality. For example, voice assistants like Siri, computer playing chess, flying aeroplanes, recommending products and online content as per our interest. These machines don’t think, and they also don’t have emotions like humans.

	Artificial general intelligence (AGI or strong AI) is when a computer program can perform any intellectual task exactly like a human, that is, machines exhibit human intelligence. They can reason, represent knowledge including common sense, plan, learn, and converse in natural language. The general AI does not exist in reality today, but the idea is depicted in many sci-fi movies like Interstellar. Also, there are many theoretical frameworks and models proposed for AGI. Alan Turing, who first posed the question in 1950, ‘can machines think?’ also suggested a test to evaluate this. Turing Test: A machine and a human converse with a second human who cannot see or know with whom they are conversing. This second human should evaluate and conclude who is human and who is machine. If the machine can fool the human evaluator, it means AGI is achieved.

	Artificial super intelligence (ASI) is an AI system that surpasses human intellect, that is, machines having greater problem solving and decision-making capabilities that are far superior to human beings. This is hypothetical AI. For such machines to be of any use for life, they must be ethical, must understand human emotions, and must be self-aware. Self-awareness is required for safety, effectiveness, trustworthiness, transparency or explainability of decision-making. Self-awareness also allows for faster reactions and adaptations to changes in dynamic environments. This means machines must have some level of consciousness like humans or possibly, much higher levels of consciousness than humans!



In this book, we will limit our discussions to ANI only. Figure 1.1 depicts various forms of ANI at a very high level. Each of these is a huge independent literature in its own. Refer to the following figure:


[image: ]

Figure 1.1: Subcomponents of AI present today

The computer vision literature gives eyes to the AI system. The speech processing literature helps the system to listen by acting as its ears. Robotics uses these artificial senses and gives limbs to the AI system, like robotic arms that can perform highly sophisticated tasks like microscopic surgery. Analyzing natural language spoken by human and understanding it helps the system to converse with humans in any natural language. An expert system is a computer system emulating the decision-making ability of a human expert. The first expert system was built in 1970s, which had two main parts: a knowledge base that represented facts and rules, and inference engine that applies the rules to the known facts to deduce new facts. All these together are essential parts of a future AGI system. Machine learning (ML) is a broad class of algorithms that is used to build these components of an AI system.

Machine Learning

Machine Learning (ML) includes the study, design, and development of algorithms to give computers the capability to learn from data instead of requiring explicit programming of hard-coded rules. The process of discovering an algorithm involves manual analysis of input-output examples and deriving set of rules and steps such that given the input, we can always find the output by following these steps. This may be easy for certain class of problems, but when the number of possible rules is very high, it becomes almost impossible to figure out all possible rules to find a robust algorithm. Figure 1.2 shows the difference of classical algorithm development vs ML:
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Figure 1.2: Difference b/w classical programming and machine learning

To understand this better, let us consider the problem of classifying flowers. Consider a huge basket of flowers, and assume that there are three categories of flowers, as shown in Figure 1.3:
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Figure 1.3: Three species of Iris flower

Flowers vary in size, colour, texture, and shape. We want to build an algorithm than can classify the flowers to a type. The first step is to select the properties or features of flowers that will be useful to identify flower species. Once selected, these features are represented with a numerical value that an algorithm can take as input. Here, we have considered sepal length, sepal width and petal length, petal width as the four features. Figure 1.4 shows a sample of five flowers and their corresponding features and categories:
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Figure 1.4: Iris flower’s features values and its species/category

Once features are identified, we must define set of rules to classify a flower. Here, our output or target variable is the category of flower. This is also called independent variable and the features are termed as dependent variables. Figure 1.5 is an example of rules using only the first two features. The range of values of sepal length and petal length differ. We can apply some data transformations such that all the feature values in the dataset to are mapped a common scale, without distorting differences in the ranges of values. This is called data normalization. The feature values are normalized or scaled such that they are centred around zero; that’s why we see negative and zero values in the axes. The original data set has all positive quantities as all the four flower features are length or width. Refer to the following figure:
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Figure 1.5: Identifying the Iris species using first two features

Simple rules to classify the flowers into the respective categories by observing only two features are as below:


	If the normalized sepal length < 0 and normalized sepal width > 0, then it’s setosa.

	If the sepal length and width fall in the lower triangular region, it’s versicolor with a high chance. This triangular region can be defined by three straight line equations.

	Otherwise, its virginica.



This collection of rules or a mathematical function representing these rules that helps to identify flower type is called a model.

Manually deriving rules or a mathematical function is time-consuming task. Machine learning algorithms try to automate this process by learning rules or decision boundaries or a mathematical function that takes a flower’s numeric representation as input and outputs the possible category of the flower.

Does selection of features impact the classification accuracy of the learned model? Yes, classification accuracy depends on selected features of flowers. We see in the preceding example that, as we have chosen only two features, we are unable to properly distinguish the two classes: versicolor and virginica. In the next section, we will discuss a step-by-step process for designing an ML-based model.

How are ML Models created?

Building a ML model is an iterative process. It starts with understanding the business problem and then collecting data related to the problem domain. Then, this data is processed, cleaned, and prepared for modelling. This is depicted in Figure 1.6:
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Figure 1.6: Building ML model

Following are the various steps for building ML model:


	Data collection: The process of collecting observations or data related to the problem is called data collection. In Iris flower subtype classification, we must measure petals and sepal’s length and width for each flower in the collected sample. Will these features of the flower and number of sample flowers sufficient for solving the problem? The answer is, we can’t initially say if these features or the number of collected samples will be sufficient. Human domain expert in flower identification can provide useful information about sufficiency of the selected features. How many samples of flowers we need to collect? This will not be clear initially. After the model building and initial analysis, we can revisit this question. A rule of thumb is, if we have more features for each sample, we must collect more data samples.

	Data preparation: In this step, the observations are analyzed to check whether there are any missing values, any error in data collection like an abnormal value of observation, and if so, those must be corrected or removed from dataset.

	Feature extraction/selection: The features of the cleaned data are further analyzed for obvious intercorrelations. It may happen that some features are very highly correlated, and using any one of these related features is sufficient to solve the problem. There may be features that are not important at all for the problem. These are statistical checks that are discussed in detail in Chapter 5, Statistical Inference and Applications. After this step, a few features are selected. Sometimes, we may have to derive a new feature from the collected features. For example, we may use a logarithm function to transform a feature value and use the log value as the feature. This step is also called feature engineering.

	Train model: Choosing a mathematical function that accepts selected features and outputs desired result: Model selection. Generally, these mathematical functions are parametric, that is, their functional forms are fixed, but changing the parameters will change the function. In the Iris flower classification shown in Figure 1.5, the parametric function is a straight line in two dimensions having the general equation: ax + by + c = 0, where a, b, c are parameters. In fact, we have 3 such lines; hence, we need 9 parameters to define the model function. For one set of fixed values of these parameters, we have a decision boundary or rules that we call model. The process of finding these parameter values that provides results near to the expected (or ground truth) is called model training.

	Model evaluation: Various metrices are designed to access the quality of the models created in the previous step. These metrices are different for different types of ML algorithm. These are discussed in the following section on ML model types.

	If it’s found that the model quality is not acceptable, then various ways of improving the models are tried. This may involve choosing a different functional form, like using a quadratic function ax2 + bx + cxy + d = 0 as the model, and its parameters are again estimated. If we are still unsuccessful at finding a good model, we may have to go back to the data preparation stage and design more features or may have to go back further to collect more relevant data and features to solve the problem. These are depicted as the dotted lines going backward in Figure 1.6.



There are various types of ML algorithm for solving different types of problems. All these algorithms are built iteratively by learning from data. The data or observations about a problem domain is the starting point of ML algorithms, and then these algorithms are iteratively improved by taking feedback from the data. We will first discuss briefly the different types of data and then the different types of ML algorithm.

Data types

Data is the starting point for solving any problem in AI. Data can be broadly categorized into two types: structured and unstructured. Structured data is tabular data where we have certain predefined features or attributes, that is, the columns are defined in the table. The rows in the table contain values of these attributes. Unstructured data is information that is not arranged according to a pre-defined data model or schema, and therefore, cannot be put in a tabular form. In Figure 1.7, these two categories are further split into different subcategories with examples:



[image: ]

Figure 1.7: Data types

All data types must be converted to numerical form before feeding them into machine learning model. This is done in the feature extraction phase of ML model building.

Learning From data

For algorithms to learn from data, there needs to be feedback about the rules or logic learnt by the algorithms. Based on the feedback, algorithms will learn better representation of the data to achieve desired output. Different algorithms are required for different degrees of feedback obtained. Next, we will discuss the various types of these algorithms.

Types of ML algorithm

We can categorize machine learning model types based on the level of the feedback that algorithms receive during its learning phase. This is depicted in Figure 1.8. Let’s discuss these three types of algorithms in further detail. Refer to the following figure:



[image: ]

Figure 1.8: Model types based on feedback during learning

Unsupervised learning

Unsupervised learning is about identifying unknown patterns/groups from the given unlabeled data. Here, classes of data samples or total number of classes or desired output for each data sample is not part of the data; this kind of data is called unlabeled data. Two popular techniques that fall under this category are clustering and dimensionality reduction.

Clustering is about automatically discovering natural groups/clusters in the unlabeled data so that the degree of similarity between samples of the same cluster and the degree of dissimilarity between samples of different clusters are maximized. Similarity and dissimilarity criteria can vary based on the problem statement. The similarity between data points is defined using a distance function. There are also various ways of evaluating the quality of clusters formed, which are discussed in further detail in the Chapter 7, Clustering.

Dimensionality reduction is transformation of data from high-dimensional space to low-dimensional space, such that data represented in lower-dimensional space retains the properties of original data to achieve the required task. Figure 1.9 shows a simple example of dimensionality reduction. Here, we have a two-dimensional data distributed, represented with axis f1 & f2. We need two dimensions to represent the data. Suppose we now rotate the axis along the line of distribution; we can then represent the points using one axis e1 by projecting these points on e1. Here, the scattering of the data was along the e1 direction, and we have rotated the axes. We can reduce dimensionality of the data using this principle and some mathematical tools from linear algebra. Refer to the following figure:



[image: ]

Figure 1.9: Finding optimal number of new axes for the given data

Reducing dimensionality is beneficial as algorithms will overcome sparse data representation and curse of dimensionality. The phrase Curse of dimensionality is coined by Richard E Bellman, and it refers to various challenges that arise when analyzing data in high-dimensional spaces. As dimensionality increases, volume of the space increases exponentially, which make existing data sparse. For algorithms to work reliably, we need to increase the data exponentially. Choosing right features and converting data to lower-dimension space plays an important role in the success of machine learning algorithms. Due to this, dimensionality reduction is often used as an intermediate step for various machine learning algorithms. We will discuss these techniques and its applications in greater detail in Chapter 8, Dimensionality Reduction.

Reinforcement learning

There exist many situations where there is partial feedback or the feedback is delayed. Consider the game of chess where the objective of the task is to win the match. There do not exist feedback about every move. Feedback is delayed to the end of the game. There do exist partial feedback during the game when a piece is captured. Capturing opponent’s piece is positive sign but doesn’t guarantee the win. When rewards or feedback is received from the game/environment, it must be recorded, and the path taken to reach the present state must be rewarding accordingly. This approach of utilizing partial or delayed rewards/feedback to learn actions for various situations/states is called Reinforcement Learning (RL). The objective of the RL algorithm is to find optimal action for each state that would result in maximum cumulative long-term reward.

Figure 1.10 shows an example of a simple RL problem: A robot trying to walk as long as possible without falling: The robot can be in three states: Fallen state, Standing state, or Moving state. The robot can perform only two actions: moving the legs slowly, as depicted in Figure 1.10 with light-colored arrows, and moving the legs aggressively/fast, as depicted in Figure 1.10 with dark-colored arrows. Given that the robot is in any of these three states, the dark arrows show what happens with slow action, and the light arrows show what happens with the aggressive action. The number over these arrows shows the partial feedback or reward on taking the action. These rewards are given by the environment where the robot is walking. The ultimate goal of the robot is to learn a strategy or policy such that it can walk for very long time, that is, to discover the best possible action (slow or fast moving) at each state so as to maximize the cumulative future reward. Refer to the following figure:


[image: ]

Figure 1.10: State transition experienced by the robot

Figure 1.10 represents the environment the robot is walking as a state transition diagram. One important point to note here is that this environment is not deterministic, that is, taking a fixed action at a given state may either lead the robot to any of the possible states reachable from the given state. Suppose the robot is in fallen state; it may be able to stand by moving its legs slowly or may remain fallen. The chance of landing to another state may vary and is an inherent property of the environment. The objective of RL is to learn the best possible strategy under these uncertain conditions. Figure 1.11 shows examples of 3 possible policies π1, π2, π3 the RL algorithm can learn. Policies are outputs of RL algorithm. Refer to the following figure:


[image: ]

Figure 1.11: RL policies

Following are the different components of a RL problem:


	Agent: This is the component that makes the decision of what action to take; it is the robot’s decision-making algorithm in the previous example.

	Environment: This is the thing agent interacts with, comprising everything outside the agent. The floor area on which the robot can move along with external factors like wind adds uncertainty to the outcome of action. States the robot is in are associated with the body of the robot. So, the body of robot is also part of the environment.

	State: This is the current condition of the environment, for example, whether the robot is fallen or standing or moving.

	Action: This is the move taken by the agent. In previous example, there are two possible actions at every stage: slow moving and fast moving.

	Policy: Defines the agent’s way of behaving at a given time and state. It’s a mapping from perceived states of the environment to actions to be taken when in those states. This is the output of the RL algorithm.



If number of states are few and transition probabilities are known, then there exist dynamic programming-based algorithms like policy iteration, q-learning to learn the policy. For large state space, function approximators are used to learn the policy.

In industry, RL-based robots are used to automate various tasks. One example is AI agents by DeepMind to cool Google data centers, which led to a 40% reduction in energy spending. RL algorithms can learn policies from medical diagnosis of patients and then can act as a virtual doctor where patients can receive treatment from policies learned by RL systems. RL is also being used for stock trading.

Next, let’s look at another class of ML algorithms where complete feedback is provided from the data. Here, the data used to build the model is called training data. Each instance of the training data has one or more target features, which act as feedback to the training algorithm.

Supervised learning

Supervised learning is about learning parameters of the function based on the labelled data. In labelled data, desired output for each data sample is provided. Output desired for each data sample can be either categorical data representing a class label for the data instance or real number (continuous variable) indicating some measurement. If desired output represents class number, then it is called classification. If desired output represents continuous variable, then it is called regression. Identifying the type of Iris flower discussed before is an example of supervised classification where the target label are the three classes of flowers. An example of regression would be predicting the price of a house based on its location, square foot area, and so on. There are various types of supervised learning algorithms, which we will cover in this book. We will be first providing the mathematical tools required to understand the theory behind these algorithms and then introduce these algorithms along with applications to solve various ANI tasks. Various metrics are defined to evaluate the quality of the learned model for regression or classification. Let’s first discuss the classification metrices.

Metrices for evaluating classification model

We will consider an example of 10 predictions for the flower classification problem (Figure 1.3) to illustrate these metrices. The predictions are made using the model shown in Figure 1.5 by checking which region the point falls. Table 1.1 shows a sample prediction output of a model built on two sepal features, and the true output is depicted in the target column:










	
	
sepal length (cm)


	
sepal width (cm)


	
prediction


	
target





	
0


	
0.192454015


	
2.08478395


	
setosa


	
setosa





	
1


	
1.132206284


	
-1.72578699


	
virginica


	
virsicolor





	
2


	
-0.959849197


	
2.173531324


	
setosa


	
setosa





	
3


	
2.952024909


	
2.138220415


	
virginica


	
virsicolor





	
4


	
-0.505463006


	
-2.149987293


	
virsicolor


	
virginica





	
5


	
0.80187062


	
0.622172986


	
virginica


	
virginica





	
6


	
-0.958066983


	
-2.170298289


	
virsicolor


	
virsicolor





	
7


	
0.877714008


	
0.053590407


	
virginica


	
virginica





	
8


	
-4.388166428


	
-0.23903155


	
virsicolor


	
setosa





	
9


	
-1.419429199


	
-0.686692025


	
setosa


	
setosa






Table 1.1: Prediction by a model on test data

We will first define some terms and then define the metrics using those. We will apply these terms and metrics on the output of a model captured in Table 1.1:


	True Positive (TP): If the model predicts target class A as A, then the case is called True Positive. In previous table, there are four actual samples from class setosa, and the model has predicted three as setosa. So, the TP count for this class is three.

	False Negative (FN): If the model predicts the class A as not A (any class other than A) then it is called False Negative. For setosa class here, we have one FN count.

	False Positive (FP): If the model predicts not A (any class other than A) as A, then it is called False Positive. Considering the versicolor class, we see sample numbers 4 and 8 are predicted as versicolor but are actually not of that type. So, for versicolor, the FP count is 2. However, for setosa class, there is no FP.

	True Negative (TN): If the model correctly predicts the class not A as not A, then it is called True Negative. For the setosa class again, not setosa means all the 6 samples whose true labels are not setosa. we see none of them are predicted as setosa. so, TN count for setosa is 6.



Following are the metrics for evaluating a classification model:

Following are the metrics for evaluating a classification model:


	Classification accuracy: Fraction of predicted labels matching exactly with true target labels. Here we have 6 rows out of 10 where we find exact match and hence accuracy = [image: ].

	Class-wise accuracy: Ratio of number of correct predictions for a target class to the total number of actual labels for the target class:
accuracy = [image: ]

 For setosa, TP = 3, TN = 6, FP = 0, FN = 1 and hence, accuracy = [image: ]

 For versicolor, TP = 1, TN = 5, FP = 2, FN = 2 and hence, accuracy = [image: ]

 For virginica, TP = 2, TN = 5, FP = 2, FN = 1 and hence, accuracy = [image: ]


	Precision: The ratio of TP count for a class A to total number of predicted labels A by the model.
precision = [image: ]


	Recall: The ratio of TP count to the total actual positive count for the class. This is also known as True Positive Rate (TPR) or Sensitivity:
recall = [image: ]


	F1 score: The harmonic mean of recall and precision is called F1-score. It provides a balanced score for precision and recall. The F1 will be high only when both precision and recall are high. Generally, increasing recall by modifying the prediction algorithm will decrease precision and vice versa. This is called precision/recall trade-off. Using the Python Scikit metrics.classification_report function, we can calculate the F1 score, precision, recall and accuracy together; the output is captured in Figure 1.12:

[image: ]

Figure 1.12: Classification report


	Confusion matrix: Consider a n x n matrix (where n is the number of targets) with rows representing an actual class and columns representing a predicted class. The row sum of this matrix will be equal to the support or number of true class labels for each class. The diagonal element will show the TP count the (i, j) the entry of the matrix, where i ≠ j represents number of misclassifications of the ith class as jth class. Confusion matrix for the example is captured in Figure 1.13:

[image: ]

Figure 1.13: Confusion matrix

The best desired confusion matrix is one which has large diagonal elements and small entries in the rest of the matrix.




Based on the classification problem we are solving, some of these metrices may have more importance than others. For example, if we are detecting whether a transaction is fraudulent, it’s more important to detect a fraud. We need high recall in this case at the cost of precision. As most of the models output some score for a prediction, these adjustments in predictions can be done by putting some thresholds. For this fraud detection case, suppose our model outputs a score between [0, 1]. We may predict a transaction as fraud even if score > 0.3 and non-fraud otherwise. Thus, increasing recall and compromising on precision. Varying the prediction thresholds, we can come up with the following metrics and get the best out of our model:


	Specificity or True Negative Rate (TNR): The ratio of number of negative classes, that is, not A, which are correctly being classified as not A.
TNR = [image: ]


	False Positive Rate (FPR): The ratio of number of negative classes, that is, not A, which are inaccurately being classified as A.
FPR = [image: ], thus FPR = 1 – TNR




We can also compare two different prediction models using these rates. For that, we need another metric called Receiver Operating Characteristics (ROC).


	Receiver Operating Characteristic (ROC) curve: ROC plots the True Positive Rate (TPR) vs False Positive Rate (FPR), as shown in Figure 1.14. The area under the curve is used as a measure. For a perfect classifier, the area under the ROC curve is 1, and hence, the closer the area under the ROC curve is to 1, the better the classifier. It’s generally used to compare two different prediction models. Refer to the following figure:


[image: ]

Figure 1.14: ROC curve




Next, let’s look at the metric used for regression tasks.

Metrices for evaluating regression model

For discussing the regression metrices, let’s take a simple linear regression example. Suppose we want to predict the weight gain based upon calories consumed only, and we have a sample data collected as shown in Table 1.2:



	
id


	
calories


	
weight_gain





	
0


	
1489


	
5.167585591





	
1


	
1446


	
6.172757721





	
2


	
1222


	
6.38994428





	
3


	
1141


	
3.915110902





	
4


	
206


	
4.047348025





	
5


	
1247


	
3.285284391





	
6


	
1338


	
4.404260107





	
7


	
196


	
3.160958623





	
8


	
213


	
6.701951781





	
9


	
738


	
3.64042916






Table 1.2: Calories intake and resulting weight gain

Here, we have only one independent variable, which is the calories consumed (x). We have plotted this data in Figure 1.15. Suppose our mathematical model for regression is a straight line y = 0.0004 x + 4.2, as shown in Figure 1.15. Then, for calorie consumed = 1222 (2nd sample above), the predicted weight gain is 4.7 but the actual wight gain is 6.38 kg. Refer to the following figure:


[image: ]

Figure 1.15: Plot of calories and resulting weight gain

Following are the metrics for evaluating a regression model:


	Mean Absolute Error (MAE): MAE is a very simple metric that calculates the average absolute difference between actual and predicted values. In the previous example, the predicted value by our model is point on the line corresponding to each value of the calories in the x-axis; thus:
MAE = [image: ] (|5.18 – 4.79|+|6.17 – 4.78|+ … +|3.64 – 4.49|) = 1.075

 This indicates that, on an average, the weight gain estimate by our model above is going to have an error of ±1.075 kg error. This error has the same unit as the target variable.


	Mean Squared Error (MSE): MSE finds the average squared difference between actual and predicted value.
MSE = [image: ] ((5.18 – 4.79)2 + (6.17 – 4.78)2 + … + (3.64 – 4.49)2 ) = 1.536

 The squared error is more for points far away from the predicted value compared to MAE. But the error is now a squared quantity and does not have the same unit as the predicted value.


	Root Mean Squared Error (RMSE): RMSE is a simple square root of mean squared error. This has the same unit as the target.



There are few other metrics for measuring regression like R-squared and adjusted R-squared for measuring regression error. We will be revisiting these metrices in the subsequent chapters.

For comparing various models of regression, there are few statistical measures. Models are scored both on their performance on the training dataset and based on the number of model parameters or the complexity of the model.


	Akaike Information Criterion (AIC): AIC penalizes models that use more parameters.
AIC = 2k – 2ln(L)

 k is the number of model parameters. L log of the probability that the model could have produced your observed target values. Lower the AIC, better is the model. Calculation of these log probabilities will be discussed in the later chapters.


	Bayesian Information Criterion (BIC): Another similar metric that also takes the number of examples into consideration for scoring the models is called BIC. Lower BIC values indicate better models. We will provide the mathematical formula for this later as it requires some more theoretical foundations of regressions to be introduced.



AIC, BIC can be also calculated for classification models and compare them.

In all the above types of ML algorithms, supervised, unsupervised and RL, one important step is feature engineering. This is a manual step that involves handcrafting features from the observations using domain knowledge. To understand the complexity of this step, let’s take another example of feature engineering for a slightly complex classification problem: face recognition. Given a query face image and a database of known faces, the task is to find the closest match of the query image with images in the database. The first logical step to solve this problem is to extract features from face images and represent the faces in the database numerically. The query image can be also converted to a set of numeric observations, and then we can compare query image observations with numeric representation of all the images in the database. In order to come up with this representation of the image, we have used domain knowledge – what are the most distinguishing features of a face: eyes, eyebrows, nose, jawline, mouth, and relative distance between these. Then, we have to design algorithms to find these points from a face image.

Thus, we see that the feature engineering step is the most time consuming and difficult in ML. Is there a way we can automate the feature engineering process? A subclass of ML algorithms discussed in following section addresses this.

Deep learning

Deep learning is a subfield of machine learning, where a hierarchical representation of the data is created. Higher levels of the hierarchy are formed by the composition of lower-level representations. More importantly, this hierarchy of representation is learned automatically from data by completely automating feature engineering. Automatically learning features at multiple levels of abstraction allows a system to learn complex representations of the input to the output directly from data, without depending on human-crafted features. Models used in deep learning are generically called neural networks.

Neural networks consist of small computation units called neurons (inspired by the biological neurons in human brain), which are basically parametric functions of the input. The output of a neuron is a single real number. Thus, having N neurons, we can get a set of N real numbers or set of N features. Changing the parameter values gives different feature vectors for the same input. For the face recognition example, we can design a neural network which takes a raw digital image as input. The input image is a n × n array or matrix of pixels. We define a parametric function that computes the weighted average of every set of consecutive 3 × 3 pixels in the image and outputs a single value. The weights, used in computing the weighted average, are the parameters of the neuron. These parameters are learned from data. We can have many such neurons with different sets of weights and thus have a layer of neurons representing various image features like edges, color, and texture. Putting multiple hierarchy of layers like this, we can have a network of neurons called deep neural network. The depth of the network is defined by the number of layers of neurons. A comparison between deep learning’s approach and classic machine learning’s approach is depicted in Figure 1.16:



[image: ]

Figure 1.16: Deep learning vs classic machine learning

We will discuss neural networks in greater detail in Chapter 6, Neural Networks, but most of the mathematical tools required to understand the theory of neural networks is covered in Chapters 2 to 5. We will cover various applications of neural networks Chapter 9 onward. The success of neural networks depends on the availability of large volumes of data and immense computing power of present day.

Dataset preparation

Neural networks need large volumes of data for computing features automatically. How much data is sufficient for the algorithm to learn? The rule of thumb is that the dataset size must increase with an increase in learnable parameters and dimensions of the data.

Tip: We must make sure that samples in the dataset are not repeated or the number of samples of a category is higher as compared to others. This will push a model to learn better representation for the skewed category/samples, leading to lower performance for other categories or samples.

In practice, the entire dataset is not used for training the neural network model. After cleaning of the data, it is divided into three sets: training, validation, and test. Dividing should be such that variation of the data is captured in all three sets. The neural network learning algorithm and many other machine learning algorithm is an iterative algorithm.

Most learning algorithms generally start with a random initialization of parameters and iteratively improve the parameter values by taking feedback from training data. As learning algorithm learns parameter values during training phase, it needs to validate whether it is moving in the right direction. For this, validation dataset is used. After few iterations of learning parameters from the training data, partially trained model is run on validation set with recently run parameters. Performance on the validation set gives direction for the model to search for better parameter’s values. The need for model validation is to restrict the model to only work on the training examples and fail miserably on any data outside training examples. Such a model is of no use, and it’s called overfitted model. The performance evaluation of the model on validation data makes sure that the model is learning general patterns in the data and not memorising the training examples.

Another scenario can also arise. We see that the model is not even able to learn the training data well, and thus, the performance on validation is also not improving. Such a scenario is called an underfitted model. This generally indicates that our model needs more parameters or more capacity to learn the pattens in the data. After completion of training, trained model is evaluated on test set, and these numbers are reported as model performance.

Note: The test set is never used in training or validation. The model performance must always be reported on the test set.

For reasonable size dataset, we can split the dataset into training: 80%, and test: 20%. Out of the training set, 5% can be used as validation dataset. If dataset size if over million samples, then we can split the dataset into training: 98% and test: 2%. The validation set can be 2% of the training examples. Divided sets should reflect similar patterns (statistical distribution) when analysed. Skewed data towards any pattern or class in any of the sets would lead to degradation of the learning algorithm’s performance.

Tip: To obtain similar statistical distribution or patterns among all three sets, we can randomly shuffle the dataset and select the samples for each set. If it is classification dataset, then make sure that samples from each class are proportionally represented in each set.

While selecting the validation set out of the training set, we can take either a fixed validation set or randomly take out few examples from the training set in each training iteration and use these examples as validation. The latter technique is called cross-validation and is considered more robust in situations when the dataset size is small. Few popular cross-validation strategies are mentioned below:


	K-fold cross validation: Training samples are randomly partitioned into k equal-sized sets. In an iteration of training, one set is selected as validation set and remaining k-1 sets are considered for training. This is repeated k times where a set is considered as validation set only one. These k results are then averaged to produce single estimation. k can be any value, usually k=10 which is depicted in Figure 1.17. In the figure, represents the cost or error associated with the iteration. ‘E’ represents single estimation obtained by averaging all ’s. Refer to the following figure:

[image: ]

Figure 1.17: 10-fold cross-validation


	Leave-p-out cross validation: Out of n training set samples, this method uses p observation as validation set and remaining n-p observations as training set for one iteration of training. This is repeated on all possible [image: ] sets. p can be any value. The most popular value is p=1, which is called Leave-one-out cross validation.

	Repeated random sub-sampling method: This method is also known as Monte-Carlo cross-validation. Here, sample set is randomly split into training and validation set. Split set is used for one iteration of training. For each iteration of training, sample set is randomly split every time. Results are then averaged to produce single estimation. Number of iterations will not depend on sample set size. In this method, it may happen that a few samples may never be selected for validation set, and a few samples may end up being selected more than once.



In many situations, the dataset is not exhaustive enough to capture all variations of the real data. This leads to high performance on training and cross-validation dataset and does good even on test set, but it will perform poorly when deployed in a real environment. We should collect more samples that would reflect statistical distribution of real data.

Data augmentation is one of the techniques to make a dataset robust. Data augmentation technique adds more samples to the dataset by imparting slight modification to the existing dataset or synthesize new samples from the existing dataset. Modification or synthesis should be performed such a way that the label of original sample and its corresponding modified or synthesized sample should remain the same.

Techniques to augment the data depends on the nature of the data and desired output.

Consider dataset of images to recognize dog or cat. For this dataset, we can apply rotation, translation, shear, flipping techniques on the existing images. Do note that, these techniques don’t change the label from original sample to transformed sample. Image containing cat will still be recognized as cat after these transformations. Few of these image augmentation techniques will be discussed in Chapter 9, Computer Vision.

Application of AI

AI is being used across industries for better decision-making, increasing efficiency, and eliminating repetitive work. AI is augmenting human capacity in all fields, including healthcare, education, agriculture, automobile, finance, gamming, ecommerce, fashion design, and advanced scientific research like space exploration and particle physics. Figure 1.18 depicts one application in each of these fields:



[image: ]

Figure 1.18: Applications of ML

All these applications of AI fall under the category of ANI or specialized AI. These AI systems rely largely on human-generated data and excel at mimicking human behaviour on well-known tasks. They also incorporate human biases as the bias is in the training data itself. These systems lack robustness, that is, the ability to perform consistently under changing circumstances. Moreover, these systems often have the problem of explainability, that is, we are unable to explain why a decision is taken by the system under a given circumstance. These problems open up new frontiers for research, the ultimate goal being AGI, which experts agree is far in the future.

Role of Mathematics in AI

The goal of AI is to design algorithms that can perform data-based automated decision-making under uncertainty. Data is the starting point, and this data is always insufficient. It’s never possible to capture all possible scenarios in any dataset, and if we can, then there is no need for AI. We don’t need AI for writing an algorithm that can compute the sum of any two numbers, as we know all possible scenarios that can come and have rules for all of them. Insufficiency in data is a primary source of uncertainty, that is, working with imperfect or incomplete information.

Other sources of uncertainty are noise in data, errors while collecting data, and assumptions made while modelling. We can represent this uncertainty qualitatively with the mathematical theory of probability and statistics. Probability provides the foundation and tools for quantifying, handling, and harnessing uncertainty. Statistics deals with the methods of collecting, presenting, analysing, interpreting, and inferencing from data. Data is represented numerically as a point in high-dimensional space called vector space. However, beyond three dimensions, we cannot visualize data; thus, every observation collected is an abstract numerical object. Linear algebra provides us with all the tools to operate with these abstract objects called vectors and also define concepts of similarity, distance, and angle between these vectors.

With all these tools, we are equipped to mathematically define decision-making, which is required to automate decision-making from data, that is, to achieve the final goal of AI. These decisions can be of two types: discrete or continuous. Discrete decisions are like classification or deciding an action in a RL scenario, and continuous decisions are like regression.

Mathematically, discrete decisions can be represented as a way of partitioning the high dimensional space where the data points lie and assigning a category to each partition. Continuous decisions, on the other hand, are some functions mapping a point in high dimensional space to a real number. In both cases, a set of parametric mathematical functions must be found that can output the best possible decisions. To do this, we need tools for function optimization in high-dimensional space, and this is given by the theory of vector calculus. These four mathematical tools, i.e., Linear algebra, Vector calculus, Probability, and Statistics, are the four pillars of AI, depicted in Figure 1.19. Each of these topics are vast, and it is not necessary to gain completer mastery on these topics to understand the theory of AI. In this book, we have presented the essential concepts from these topics required to get a good in-depth understanding of AI. Refer to the following figure:



[image: ]

Figure 1.19: Pillars of AI

As the era of AI is still in the initial stages, there is a huge scope for all of us to contribute to this field. These mathematical tools are the foundation of the technology that is already in use and all that is yet to come. Having a deeper understanding of these mathematical basics will help the reader become a successful contributor to the next generation AI technologies and appropriately use the existing technology.

Conclusion

In this chapter, we provided a high-level overview of AI and discussed various types of algorithms and the challenges in AI. The next four chapters will be on the four foundational mathematical pillars of AI. Chapter 6, Neural Networks will discuss about deep learning – the core of most of the state-of-the-art ANI components. After that, various ANI topics will be covered in the remaining chapters. These chapters will be based on the theory discussed in first six chapters. We strongly encourage the reader to go through chapters 1-6 first, and the remaining chapters can be read in any order.
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