
[image: image]

Practical
Mathematics for AI
and Deep Learning

[image:]

A Concise yet In-Depth Guide on Fundamentals
of Computer Vision, NLP, Complex Deep Neural
Networks and Machine Learning

[image:]

Tamoghna Ghosh

Shravan Kumar Belagal Math

[image:]

www.bpbonline.com

FIRST EDITION 2023

Copyright © BPB Publications, India

ISBN: 978-93-5551-194-2

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

[image:]

www.bpbonline.com

Dedicated to

From Tamoghna

My grandfather, late Mr. Dukari Roychoudhury who introduced me to a great Mathematics teacher and always guided me with his wise words.

My beloved grandmother, late Mrs. Renuka Roychoudhury.

From Shravan

Parents Basavaraj & Sulakshana, who supported me in all phases of life and continue to do so.

Brother Chethan, whose thinking always is in sync with mine, rarely we disagree on any topic.

Charming spouse Sudha, who has always encouraged me to achieve greater heights.

Adorable kids Anvika & Anirudh, whose presence keeps us cheerful.

About the Authors

Tamoghna is an AI Software Solutions Engineer in Client Computing Group at Intel and has 15 years of work experience. He has a master’s in computer science from Indian Statistical Institute and a master’s in mathematics form Calcutta University. He has 4 US patents, 3 IEEE papers and has also authored book on Transfer learning.

Shravan is currently an AI Engineer at Intel’s Client Computing Group with 11 years of working experience. He had Master of Engineering degree from Indian Institute of Science, Computer Science and Automation department. He has been granted with 4 US patents. His interest lies in application of AI algorithms to solve real world problems.

About the Reviewer

Koushik Bhattacharyya is an accomplished Software Professional, who after completing M.Sc Pure Mathematics from Burdwan University and M.Tech in Computer Science (Gold Medalist) from Indian Statistical Institute, Kolkata, worked for technology giants like NVIDIA, AMD, Toshiba and Intel. He has more than 18 years of experience in software development with Architectures and Lead roles in diverse domains and technologies, including Medical Image Processing, Computer Vision, Machine Learning, Deep Learning, GPGPU and more. Koushik has also authored a book viz. OpenCL Programming by Example. His present interests include AR/VR and Blockchain.

Acknowledgements

There are a few people we want to thank for the continued and ongoing support they have given us during the writing of this book. We would like to thank our managers for continuously encouraging us for writing the book. Also, without the support of our family members could have never completed this book.

We are grateful to the technical reviewer of the book Mr. Koushik Bhattacharyya who is a AI Software Solutions Engineer in Intel Habana Labs division. His diligent reviews helped us correct few unintended mistakes. He also suggested some subtopics to be rephrased for better clarity.

Our gratitude also goes to the team at BPB Publication (including Surbhi, Shali, Lubna) for being supportive enough to provide us quite a long time to finish the first part of the book and also allow us to make some late changes to the content of the book.

Preface

The goal of Artificial Intelligence is to design algorithms that can perform: “data based automated decision-making under uncertainty”. To understand the theory of automated decision-making, a descent knowledge in the following mathematical concepts is essential: (1) Linear algebra (2) Vector calculus (3) Probability (4) Statistics. This book covers in depth these fundamental mathematical concepts. Each of these have a very vast literature of its own. So, we always wonder where to start and how far to go. In this book we have tried to put together the most essential topics from all these four areas of Mathematics. We have avoided detailed proofs wherever possible and tried to explain more intuitively these concepts. As new advancements are being made almost every day in the field of AI, it’s hard to keep oneself updated by constant study of latest research publications. However, with a strong mathematical foundation provided by this book, the learning curve will appear much less steep.

This book takes a practical approach for introducing the mathematical theory. It provides code or pseudocode in python for most of the mathematical concepts discussed, enabling the readers to use these concepts in their projects wherever applicable. For example, computation of gradient of a function of several variables is introduced mathematically and then corresponding code is also given both in naive python, numpy and tensorflow to clarify the concepts. This book also covers the application of the mathematical theory in building various AI algorithms. Also, this book discusses about a majority of popular neural network architectures. The readers should be able to reuse these building blocks for custom neural network architecture engineering.

This book is divided into twelve chapters. The first six chapters are theory oriented, and we strongly suggest the readers to read them in order as there are many interdependencies in these chapters. The remaining chapters are applications of these concepts and hence can be read in any order.

Chapter 1 Overview of AI: Chapter provides a high-level overview of Artificial Intelligence and its subcomponents. The common terminologies like model, data, parameters of models, dependent and independent variables and model evaluation metrices will be explained in this chapter and will be referenced repeatedly in later chapters.

Chapter 2 Linear Algebra: Covers most topics of Linear Algebra with examples that finds its application in AI. Well thought figures in the chapter helps reader to understand the concept with clarity. This chapter will discuss about representing the real-world data in numeric form called vectors and introduce the required mathematical tools to process vectors.

Chapter 3 Vector Calculus: Chapter discuss differentiation and integration of vectors. The concept of tensors is also introduced in this chapter along with basic tensor algebra and tensor calculus. Moreover, this chapter provides basic optimization topics for function of several variables and functions over tensor.

Chapter 4 Basic Statistics and Probability Theory: This chapter covers introductory concepts of statistics like collecting, organizing, analyzing of data for the purpose of effective decision-making. Real world data has various sources of uncertainty. To quantify this uncertainty in data, probability theory is introduced.

Chapter 5 Statistical Inference and Applications: Statistical inference covers the techniques of decision making under uncertainty. In machine learning uncertainty can arise from noisy data, incomplete information about the problem domain etc. This chapter covers the core concepts of statistical inference and its application to linear models in ML like linear regression, curvilinear regression, and logistic regression.

Chapter 6 Neural Networks: Most of latest the AI algorithms are based on neural networks. This chapter introduces neural networks in general. Also, the fundamental back propagation algorithm is explained in details including the application of tensor calculus to compute layer wise derivatives if the network.

Chapter 7 Clustering: In few domains, data will be unlabeled. In these scenarios, task would be to find natural groups among data samples. Each identified group has unique characteristics which are learnt by algorithms. Learning will help in assigning new data samples to the existing groups based on its characteristics. This chapter will discuss about these algorithms that identifies natural groups.

Chapter 8 Dimensionality Reduction: In most cases, real-world data sample is of more than three dimensions. Higher dimensional data will result in data sparsity which in turn decreases accuracy of learning algorithms. Also, visualization of data whose dimensions are greater than three is not possible. This chapter will discuss algorithms that would be used in reducing dimensions of the data.

Chapter 9 Computer Vision: This chapter provides some theoretical background for the state-of-the-art AI models in computer vision. A specialized neural network architecture called convolution neural network or CNNs used of such models, is explained in details. Variations of the CNN architectures are used for different types of vision tasks. The motivation behind these architectures and how to train these networks is covered and references are provided for the model and code of these architectures.

Chapter 10 Sequence Learning Models: In few domains, data is sequential. Audio clips, video clips, time-series data are few examples of sequential data. Here, prediction of the future output will depend on previous data history. This chapter will discuss about algorithms which would help in learning and predicting based on sequential ordered data.

Chapter 11 Natural Language Processing: Natural Language has been important communication tool among humans and has grown in complexity which our brain can comprehend. This chapter will discuss about algorithms that would learn to understand natural language, represent natural language in concise human readable form.

Chapter 12 Generative Models: Generative modeling is a branch of AI which involves automatically discovering and learning the regularities or patterns in input data in such a way that the model can be used to generate new examples that plausibly could have been drawn from the original dataset. This chapter covers various generative modelling techniques like variational autoencoders, different types of generative adversarial nets (GAN).

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/5m25ppc

The code bundle for the book is also hosted on GitHub at https://github.com/bpbpublications/Practical-Mathematics-for-AI-and-Deep-Learning. In case there's an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit www.bpbonline.com. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Table of Contents

1. Overview of AI

Structure

Objectives

AI systems

Machine Learning

How are ML Models created?

Data types

Learning From data

Types of ML algorithm

Unsupervised learning

Reinforcement learning

Supervised learning

Metrices for evaluating classification model

Metrices for evaluating regression model

Deep learning

Dataset preparation

Application of AI

Role of Mathematics in AI

Conclusion

2. Linear Algebra

Structure

Objectives

Linear equations

Solving system of equations analytically

Infinitely many solutions

Inconsistent system

Introducing matrix

Augmented matrix

Pseudocode forward substitution

Pseudocode back substitution

Basic matrix operations

Euclidean space

Vectors and basic properties

Representing vector

Norm

Direction

Scalar multiplication

Addition/subtraction of vectors

Distance between vectors

Dot product and orthogonality

Linear Combination of Vectors

Dimension and basis of the space

Orthogonal and orthonormal basis

Natural orthonormal basis of ℝn

Subspaces

Dimension of subspace

Hyperplanes and Halfspaces

Defining vector space

Vector spaces

Normed vector space

Norm of real numbers

lp Norm

Maximum norm

Matrix norm

Inner product

Application on real dataset

K-nearest neighbor

Representing vectors in matrix

Matrix rank

Matrices types

Identity matrix

Symmetric matrix

Skew symmetric matrix

Invertible matrices

Properties of Matrix Inverse

Permutation matrix

Orthogonal matrix

Matrices in ML problem formulation

Feature/data matrix

One hot encoding

Distance matrix

Gram matrix

Covariance matrix

Correlation matrix

Jacobian and Hessian matrix

Subspaces of matrix and orthogonality

Null space

Orthogonality among subspaces

Determinant

Inverse of Matrix

Orthonormalization

Applications of Orthonormalization

Linear transformation

Matrix associated with linear map

Composition of linear transformation

Eigenvalues and vectors

Eigen properties

Geometric analysis

Existence of zero eigenvalue

Eigen properties of symmetric matrices

Positive definite

Matrix decomposition

LU decomposition

By-product of Gauss-Jordan elimination

QR decomposition

Eigen decomposition

Real symmetric matrix

Singular value decomposition

Conclusion

Points to remember

Further Reading

3. Vector Calculus

Structure

Objectives

Analysis of real functions

Limit of a function

Continuous functions

Derivative of a function

Higher Order derivatives

Taylor series expansion

Scalar and vector fields

Limits and continuity

Derivative of scalar fields w.r.t. vector

Directional derivative and partial derivatives

Total derivative

Geometry of gradient vector

Derivative of vector fields w.r.t. vector

Chain rule for derivatives of vector fields

Matrix form of the chain rule

Tensors

Einstein notation

Dot product of tensors

Tensor calculus

Total derivative of tensor

Mathematical optimization

Maxima, minima, and saddle point

Decent methods

Function optimization with constraints: Lagrange multipliers

Optimization with inequality constraints

The Lagrange dual function

Convex functions

Properties of convex functions

Convex optimization

Karush-Kuhn-Tucker conditions (KKT)

Conclusion

Points to remember

Further readings

4. Basic Statistics and Probability Theory

Structure

Objectives

Basic statistics

Measures of central tendency

Mean

Median

Mode

Partition Values

Measures of dispersion

Range

Interquartile Range

Mean deviation

Standard deviation

Coefficients of dispersion

Moments

Skewness and kurtosis

Correlation

Probability and odds

Random experiment

Events as sets

Conditional probability

Independent Events

Conditional independence

Total probability theorem

Bayes theorem

Bayesian Decision Theory

Random variable

Discrete probability distributions

Bernoulli and categorical distribution

Binomial distribution

Poisson distribution

Continuous probability distributions

Cumulative Probability Distribution Function (C.D.F)

Uniform distribution

Gaussian distribution or normal distribution

Exponential Distribution

Mathematical expectation of a random variable

Joint Probability Distributions

Transformation of a random variable

Multivariate distributions

Multinomial distribution

Multivariate gaussian distribution

Information theory

Entropy

Relative entropy or KL divergence

Mutual information

Decision tree

Conclusion

Points to remember

Further reading

5. Statistical Inference and Applications

Structure

Objectives

Large Sample Theory

Sample statistics

Sampling from known distributions

Hypothesis testing

Statistical inference

Estimator properties

Minimum Variance Unbiased (M.V.U) estimators

Likelihood function

Cramer-Rao inequality

Method of Maximum Likelihood Estimation (MLE)

Bias-variance decomposition of estimator

Applications – Formulating ML problems as statistical inferencing

Data distribution

Classification

Naive Bayes classifier

Regression

Linear and curvilinear regression

Estimating model parameters

Iterative estimation of model parameters

Overfitting and underfitting

Bias variance trade-off

Logistic Regression

Multiclass logistic regression

Poisson regression

Interpretability of linear models

Conclusion

Points to remember

Further Reading

6. Neural Networks

Structure

Objectives

Artificial neuron: An adaptive basis function

Feed Forward neural network

Training neural network

Stochastic Gradient Descent

Computing error derivatives

Backpropagation algorithm

Challenges of training neural networks

Modifications of SGD

Momentum methods

Adaptive learning rate

Bias-variance trade-off in neural networks

Regularization of neural nets

Sensitivity of neural networks to small perturbations

Neural Network Architectures

Conclusion

Points to remember

Further Reading

7. Clustering

Structure

Objectives

Forming clusters

Distance and similarity

Cluster quality

Internal evaluation

Davies-Bouldin indicator

Dunn indicator

Silhouette coefficient

External evaluation

Rand index

F-measure

Fowlkes–Mallows index

Jaccard index

Clustering algorithms

Partition-based clustering

K-means

K-medoids

Density-based clustering

DBSCAN

Distribution-based clustering

Gaussian Mixture Model

Hierarchical-based clustering

Agglomerative clustering

Distance between clusters

BIRCH

Graph-based clustering

Fuzzy theory-based clustering

Fuzzy c-means

Conclusion

References

8. Dimensionality Reduction

Structure

Objectives

Reducing dimensionality

Principal Component Analysis

Loading Iris dataset

Calculating covariance matrix

Decomposition of covariance matrix

Reducing with principal components

Variance retention

When to use PCA

Autoencoder

Iris autoencoder

t-SNE

Choosing σi

PCA vs t-SNE

t-SNE on Iris Dataset

Conclusion

Further reading

References

9. Computer Vision

Structure

Objectives

Digital Image Formation

Capture the light

Sampling and quantization

Pixels

Accessing pixels

Spatial filtering

Geometric spatial transformation

Neighbor pixel operation

Convolution properties

Separable kernels

Convolution with separable kernels

Gaussian kernel

Discrete approximation of Gaussian function

Application of Gaussian filter

Image derivative-based kernels

Laplacian kernel – Second order derivative

Sobel kernel: First order derivative

Non-linear filters

Learning filters

Convolution Neural Networks

Convolution layer

Pooling layer

Spatially separable convolution

Depthwise separable convolution

Depthwise convolution

Pointwise convolution

Optimization

Upsampling: Transposed convolution

Development of CNN

AlexNet

TensorFlow Model

Counting trainable parameters

Inception

VGG

ResNet

Xception

Application of CNN models

Image classification

Object detection

R-CNN – Regions with CNN features

YOLO – You Only Look Once

Image segmentation

U-Net

Summary

Further reading

Points to remember

References

10. Sequence Learning Models

Structure

Objectives

Time series models

Decomposition of time series

Differencing

Time series forecasting

OLS model

Exponential smoothing

Autoregressive Integrated Moving Average

Probabilistic sequence models

Markov chain

Hidden Markov model

Recurrent neural networks

Training RNN

Long Short-Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Stacked LSTM/RNN

Generative models for sequence

Handwriting generation

Mixture Density Network

Sequence classification

Bi-directional RNN

Sequence to Sequence

Connectionist Temporal Classification

Training CTC network: Maximum likelihood

DP formulation for CTC loss

Inferencing from CTC network

Encoder-Decoder architecture

Attention mechanism

Key-value-query formulation of attention

Language translation model

Speech recognition model

Self-attention and transformers

Computing self-attention

Transformer architecture

Conclusion

Points to remember

Further Reading

11. Natural Language Processing

Structure

Objectives

Natural language

Syntactic structure of language

Parts of Speech (POS)

Phrases

Clause

Sentence

Document and Text corpus

Semantic structure of language

Wordnet

Text preprocessing

Models for text

Bag of Words (BoW) model

Vector Space Model

Count based or Boolean

Term Frequency (TF)-Inverted Document Frequency (IDF)

Latent Semantic Indexing (LSI) model

Probabilistic models of text

Topic models

Probabilistic generative models: Latent Dirichlet allocation

Neural language models

Contextual models

ELMo model

BERT

Position encoding

Pre-training BERT

Input representation for pre-training tasks of BERT

WordPiece tokenization

ERNIE

Generative Pre-Training by OpenAI

Conclusion

Points to remember

Further reading

12. Generative Models

Structure

Objectives

A simple generative model

Variational Autoencoders (VAE)

Generative Adversarial Nets

Equilibrium state for GAN training

Implementing GAN

GAN training challenges

Solutions for mitigating GAN training issues

Wasserstein GAN (WGAN)

Some properties of EM distance

WGAN training

Ensuring Lipschitz Constraint in Discriminator

Conditional GAN (cGAN)

Cycle GAN (CycleGAN)

Autoregressive generative models

Applying generative models

Conclusion

Points to remember

Further Reading

Index

CHAPTER 1

Overview of AI

From the age of civilization, humans are making machines to reduce physical labor. Today, the world is full of machines. Machines cultivate and harvest our crops, make our houses, fly our planes, assemble our cars, control traffic, cook and pack food, entertain us, and even take care of us when we are sick. Machines have not only replaced physical labor but have also exponentially increased human capability. However, a majority of these machines work by following a set of predefined steps required to complete a task successfully. Computing machines and algorithms are at the core of these big and small machine. Algorithms help us formally define the steps to be executed by a machine, and the computer hardware execute these steps in sequence to complete the given task. With advancement of computing capability, new algorithms to solve more complex problems have evolved.

For the past few decades, we have been trying to build intelligent machines that can think and take decisions. Since then, machines are taking over more and more tasks from us. They began to control other machines for us. On this path of evolution, we have strived to impart human intelligence like reasoning, creativity, analyzing, problem solving ability, and natural language understanding to computers. The field of algorithms that strive to impart human intelligence to machines is called Artificial Intelligence (AI).

Structure

In this chapter, we will cover the following topics:

	AI Systems

	Categories of AI Algorithms

	Applications of AI

	Role of Mathematics in AI

Objectives

This chapter gives a high-level overview of AI and its various components. You will be able to learn about common terminologies like model, data, parameters of models, and dependent and independent variables in this chapter, which will be referenced repeatedly in the subsequent chapters. Lastly, we will cover why mathematics is important for understanding AI.

AI systems

AI is a multidisciplinary field of research with a goal to create technology that can enable machines to function like humans. Human mind consists of memories, intellect, thoughts (emotions), and a sense of identity. Human intellect is the discriminative faculty of the mind that determines whether an action is right or wrong. The sense organs present the current situation someone is in, to their intellect. Then, intellect consults the memory, past experiences, present thoughts, and emotions and decides the action. The actions can be speaking, running, smiling, crying, fighting and so on. So, for a machine to function like a human, it should have all these capabilities. Well, machines may not have emotions to influence their decisions! But machines must learn from past experiences, and these experiences must influence their decisions. At first, a machine should have the sense organs by which it can digitally map and record our physical world. Then, it must have the ability to learn from the mistakes it makes.

AI systems are classified by their ability to imitate human behavior. The classification is as follows:

	Artificial narrow intelligence (ANI or narrow AI) refers to a computer’s ability to perform a single task extremely well. This is the only type of AI that exists in reality. For example, voice assistants like Siri, computer playing chess, flying aeroplanes, recommending products and online content as per our interest. These machines don’t think, and they also don’t have emotions like humans.

	Artificial general intelligence (AGI or strong AI) is when a computer program can perform any intellectual task exactly like a human, that is, machines exhibit human intelligence. They can reason, represent knowledge including common sense, plan, learn, and converse in natural language. The general AI does not exist in reality today, but the idea is depicted in many sci-fi movies like Interstellar. Also, there are many theoretical frameworks and models proposed for AGI. Alan Turing, who first posed the question in 1950, ‘can machines think?’ also suggested a test to evaluate this. Turing Test: A machine and a human converse with a second human who cannot see or know with whom they are conversing. This second human should evaluate and conclude who is human and who is machine. If the machine can fool the human evaluator, it means AGI is achieved.

	Artificial super intelligence (ASI) is an AI system that surpasses human intellect, that is, machines having greater problem solving and decision-making capabilities that are far superior to human beings. This is hypothetical AI. For such machines to be of any use for life, they must be ethical, must understand human emotions, and must be self-aware. Self-awareness is required for safety, effectiveness, trustworthiness, transparency or explainability of decision-making. Self-awareness also allows for faster reactions and adaptations to changes in dynamic environments. This means machines must have some level of consciousness like humans or possibly, much higher levels of consciousness than humans!

In this book, we will limit our discussions to ANI only. Figure 1.1 depicts various forms of ANI at a very high level. Each of these is a huge independent literature in its own. Refer to the following figure:

[image:]

Figure 1.1: Subcomponents of AI present today

The computer vision literature gives eyes to the AI system. The speech processing literature helps the system to listen by acting as its ears. Robotics uses these artificial senses and gives limbs to the AI system, like robotic arms that can perform highly sophisticated tasks like microscopic surgery. Analyzing natural language spoken by human and understanding it helps the system to converse with humans in any natural language. An expert system is a computer system emulating the decision-making ability of a human expert. The first expert system was built in 1970s, which had two main parts: a knowledge base that represented facts and rules, and inference engine that applies the rules to the known facts to deduce new facts. All these together are essential parts of a future AGI system. Machine learning (ML) is a broad class of algorithms that is used to build these components of an AI system.

Machine Learning

Machine Learning (ML) includes the study, design, and development of algorithms to give computers the capability to learn from data instead of requiring explicit programming of hard-coded rules. The process of discovering an algorithm involves manual analysis of input-output examples and deriving set of rules and steps such that given the input, we can always find the output by following these steps. This may be easy for certain class of problems, but when the number of possible rules is very high, it becomes almost impossible to figure out all possible rules to find a robust algorithm. Figure 1.2 shows the difference of classical algorithm development vs ML:

[image:]

Figure 1.2: Difference b/w classical programming and machine learning

To understand this better, let us consider the problem of classifying flowers. Consider a huge basket of flowers, and assume that there are three categories of flowers, as shown in Figure 1.3:

[image:]

Figure 1.3: Three species of Iris flower

Flowers vary in size, colour, texture, and shape. We want to build an algorithm than can classify the flowers to a type. The first step is to select the properties or features of flowers that will be useful to identify flower species. Once selected, these features are represented with a numerical value that an algorithm can take as input. Here, we have considered sepal length, sepal width and petal length, petal width as the four features. Figure 1.4 shows a sample of five flowers and their corresponding features and categories:

[image:]

Figure 1.4: Iris flower’s features values and its species/category

Once features are identified, we must define set of rules to classify a flower. Here, our output or target variable is the category of flower. This is also called independent variable and the features are termed as dependent variables. Figure 1.5 is an example of rules using only the first two features. The range of values of sepal length and petal length differ. We can apply some data transformations such that all the feature values in the dataset to are mapped a common scale, without distorting differences in the ranges of values. This is called data normalization. The feature values are normalized or scaled such that they are centred around zero; that’s why we see negative and zero values in the axes. The original data set has all positive quantities as all the four flower features are length or width. Refer to the following figure:

[image:]

Figure 1.5: Identifying the Iris species using first two features

Simple rules to classify the flowers into the respective categories by observing only two features are as below:

	If the normalized sepal length < 0 and normalized sepal width > 0, then it’s setosa.

	If the sepal length and width fall in the lower triangular region, it’s versicolor with a high chance. This triangular region can be defined by three straight line equations.

	Otherwise, its virginica.

This collection of rules or a mathematical function representing these rules that helps to identify flower type is called a model.

Manually deriving rules or a mathematical function is time-consuming task. Machine learning algorithms try to automate this process by learning rules or decision boundaries or a mathematical function that takes a flower’s numeric representation as input and outputs the possible category of the flower.

Does selection of features impact the classification accuracy of the learned model? Yes, classification accuracy depends on selected features of flowers. We see in the preceding example that, as we have chosen only two features, we are unable to properly distinguish the two classes: versicolor and virginica. In the next section, we will discuss a step-by-step process for designing an ML-based model.

How are ML Models created?

Building a ML model is an iterative process. It starts with understanding the business problem and then collecting data related to the problem domain. Then, this data is processed, cleaned, and prepared for modelling. This is depicted in Figure 1.6:

[image:]

Figure 1.6: Building ML model

Following are the various steps for building ML model:

	Data collection: The process of collecting observations or data related to the problem is called data collection. In Iris flower subtype classification, we must measure petals and sepal’s length and width for each flower in the collected sample. Will these features of the flower and number of sample flowers sufficient for solving the problem? The answer is, we can’t initially say if these features or the number of collected samples will be sufficient. Human domain expert in flower identification can provide useful information about sufficiency of the selected features. How many samples of flowers we need to collect? This will not be clear initially. After the model building and initial analysis, we can revisit this question. A rule of thumb is, if we have more features for each sample, we must collect more data samples.

	Data preparation: In this step, the observations are analyzed to check whether there are any missing values, any error in data collection like an abnormal value of observation, and if so, those must be corrected or removed from dataset.

	Feature extraction/selection: The features of the cleaned data are further analyzed for obvious intercorrelations. It may happen that some features are very highly correlated, and using any one of these related features is sufficient to solve the problem. There may be features that are not important at all for the problem. These are statistical checks that are discussed in detail in Chapter 5, Statistical Inference and Applications. After this step, a few features are selected. Sometimes, we may have to derive a new feature from the collected features. For example, we may use a logarithm function to transform a feature value and use the log value as the feature. This step is also called feature engineering.

	Train model: Choosing a mathematical function that accepts selected features and outputs desired result: Model selection. Generally, these mathematical functions are parametric, that is, their functional forms are fixed, but changing the parameters will change the function. In the Iris flower classification shown in Figure 1.5, the parametric function is a straight line in two dimensions having the general equation: ax + by + c = 0, where a, b, c are parameters. In fact, we have 3 such lines; hence, we need 9 parameters to define the model function. For one set of fixed values of these parameters, we have a decision boundary or rules that we call model. The process of finding these parameter values that provides results near to the expected (or ground truth) is called model training.

	Model evaluation: Various metrices are designed to access the quality of the models created in the previous step. These metrices are different for different types of ML algorithm. These are discussed in the following section on ML model types.

	If it’s found that the model quality is not acceptable, then various ways of improving the models are tried. This may involve choosing a different functional form, like using a quadratic function ax2 + bx + cxy + d = 0 as the model, and its parameters are again estimated. If we are still unsuccessful at finding a good model, we may have to go back to the data preparation stage and design more features or may have to go back further to collect more relevant data and features to solve the problem. These are depicted as the dotted lines going backward in Figure 1.6.

There are various types of ML algorithm for solving different types of problems. All these algorithms are built iteratively by learning from data. The data or observations about a problem domain is the starting point of ML algorithms, and then these algorithms are iteratively improved by taking feedback from the data. We will first discuss briefly the different types of data and then the different types of ML algorithm.

Data types

Data is the starting point for solving any problem in AI. Data can be broadly categorized into two types: structured and unstructured. Structured data is tabular data where we have certain predefined features or attributes, that is, the columns are defined in the table. The rows in the table contain values of these attributes. Unstructured data is information that is not arranged according to a pre-defined data model or schema, and therefore, cannot be put in a tabular form. In Figure 1.7, these two categories are further split into different subcategories with examples:

[image:]

Figure 1.7: Data types

All data types must be converted to numerical form before feeding them into machine learning model. This is done in the feature extraction phase of ML model building.

Learning From data

For algorithms to learn from data, there needs to be feedback about the rules or logic learnt by the algorithms. Based on the feedback, algorithms will learn better representation of the data to achieve desired output. Different algorithms are required for different degrees of feedback obtained. Next, we will discuss the various types of these algorithms.

Types of ML algorithm

We can categorize machine learning model types based on the level of the feedback that algorithms receive during its learning phase. This is depicted in Figure 1.8. Let’s discuss these three types of algorithms in further detail. Refer to the following figure:

[image:]

Figure 1.8: Model types based on feedback during learning

Unsupervised learning

Unsupervised learning is about identifying unknown patterns/groups from the given unlabeled data. Here, classes of data samples or total number of classes or desired output for each data sample is not part of the data; this kind of data is called unlabeled data. Two popular techniques that fall under this category are clustering and dimensionality reduction.

Clustering is about automatically discovering natural groups/clusters in the unlabeled data so that the degree of similarity between samples of the same cluster and the degree of dissimilarity between samples of different clusters are maximized. Similarity and dissimilarity criteria can vary based on the problem statement. The similarity between data points is defined using a distance function. There are also various ways of evaluating the quality of clusters formed, which are discussed in further detail in the Chapter 7, Clustering.

Dimensionality reduction is transformation of data from high-dimensional space to low-dimensional space, such that data represented in lower-dimensional space retains the properties of original data to achieve the required task. Figure 1.9 shows a simple example of dimensionality reduction. Here, we have a two-dimensional data distributed, represented with axis f1 & f2. We need two dimensions to represent the data. Suppose we now rotate the axis along the line of distribution; we can then represent the points using one axis e1 by projecting these points on e1. Here, the scattering of the data was along the e1 direction, and we have rotated the axes. We can reduce dimensionality of the data using this principle and some mathematical tools from linear algebra. Refer to the following figure:

[image:]

Figure 1.9: Finding optimal number of new axes for the given data

Reducing dimensionality is beneficial as algorithms will overcome sparse data representation and curse of dimensionality. The phrase Curse of dimensionality is coined by Richard E Bellman, and it refers to various challenges that arise when analyzing data in high-dimensional spaces. As dimensionality increases, volume of the space increases exponentially, which make existing data sparse. For algorithms to work reliably, we need to increase the data exponentially. Choosing right features and converting data to lower-dimension space plays an important role in the success of machine learning algorithms. Due to this, dimensionality reduction is often used as an intermediate step for various machine learning algorithms. We will discuss these techniques and its applications in greater detail in Chapter 8, Dimensionality Reduction.

Reinforcement learning

There exist many situations where there is partial feedback or the feedback is delayed. Consider the game of chess where the objective of the task is to win the match. There do not exist feedback about every move. Feedback is delayed to the end of the game. There do exist partial feedback during the game when a piece is captured. Capturing opponent’s piece is positive sign but doesn’t guarantee the win. When rewards or feedback is received from the game/environment, it must be recorded, and the path taken to reach the present state must be rewarding accordingly. This approach of utilizing partial or delayed rewards/feedback to learn actions for various situations/states is called Reinforcement Learning (RL). The objective of the RL algorithm is to find optimal action for each state that would result in maximum cumulative long-term reward.

Figure 1.10 shows an example of a simple RL problem: A robot trying to walk as long as possible without falling: The robot can be in three states: Fallen state, Standing state, or Moving state. The robot can perform only two actions: moving the legs slowly, as depicted in Figure 1.10 with light-colored arrows, and moving the legs aggressively/fast, as depicted in Figure 1.10 with dark-colored arrows. Given that the robot is in any of these three states, the dark arrows show what happens with slow action, and the light arrows show what happens with the aggressive action. The number over these arrows shows the partial feedback or reward on taking the action. These rewards are given by the environment where the robot is walking. The ultimate goal of the robot is to learn a strategy or policy such that it can walk for very long time, that is, to discover the best possible action (slow or fast moving) at each state so as to maximize the cumulative future reward. Refer to the following figure:

[image:]

Figure 1.10: State transition experienced by the robot

Figure 1.10 represents the environment the robot is walking as a state transition diagram. One important point to note here is that this environment is not deterministic, that is, taking a fixed action at a given state may either lead the robot to any of the possible states reachable from the given state. Suppose the robot is in fallen state; it may be able to stand by moving its legs slowly or may remain fallen. The chance of landing to another state may vary and is an inherent property of the environment. The objective of RL is to learn the best possible strategy under these uncertain conditions. Figure 1.11 shows examples of 3 possible policies π1, π2, π3 the RL algorithm can learn. Policies are outputs of RL algorithm. Refer to the following figure:

[image:]

Figure 1.11: RL policies

Following are the different components of a RL problem:

	Agent: This is the component that makes the decision of what action to take; it is the robot’s decision-making algorithm in the previous example.

	Environment: This is the thing agent interacts with, comprising everything outside the agent. The floor area on which the robot can move along with external factors like wind adds uncertainty to the outcome of action. States the robot is in are associated with the body of the robot. So, the body of robot is also part of the environment.

	State: This is the current condition of the environment, for example, whether the robot is fallen or standing or moving.

	Action: This is the move taken by the agent. In previous example, there are two possible actions at every stage: slow moving and fast moving.

	Policy: Defines the agent’s way of behaving at a given time and state. It’s a mapping from perceived states of the environment to actions to be taken when in those states. This is the output of the RL algorithm.

If number of states are few and transition probabilities are known, then there exist dynamic programming-based algorithms like policy iteration, q-learning to learn the policy. For large state space, function approximators are used to learn the policy.

In industry, RL-based robots are used to automate various tasks. One example is AI agents by DeepMind to cool Google data centers, which led to a 40% reduction in energy spending. RL algorithms can learn policies from medical diagnosis of patients and then can act as a virtual doctor where patients can receive treatment from policies learned by RL systems. RL is also being used for stock trading.

Next, let’s look at another class of ML algorithms where complete feedback is provided from the data. Here, the data used to build the model is called training data. Each instance of the training data has one or more target features, which act as feedback to the training algorithm.

Supervised learning

Supervised learning is about learning parameters of the function based on the labelled data. In labelled data, desired output for each data sample is provided. Output desired for each data sample can be either categorical data representing a class label for the data instance or real number (continuous variable) indicating some measurement. If desired output represents class number, then it is called classification. If desired output represents continuous variable, then it is called regression. Identifying the type of Iris flower discussed before is an example of supervised classification where the target label are the three classes of flowers. An example of regression would be predicting the price of a house based on its location, square foot area, and so on. There are various types of supervised learning algorithms, which we will cover in this book. We will be first providing the mathematical tools required to understand the theory behind these algorithms and then introduce these algorithms along with applications to solve various ANI tasks. Various metrics are defined to evaluate the quality of the learned model for regression or classification. Let’s first discuss the classification metrices.

Metrices for evaluating classification model

We will consider an example of 10 predictions for the flower classification problem (Figure 1.3) to illustrate these metrices. The predictions are made using the model shown in Figure 1.5 by checking which region the point falls. Table 1.1 shows a sample prediction output of a model built on two sepal features, and the true output is depicted in the target column:

	
	
sepal length (cm)

	
sepal width (cm)

	
prediction

	
target

	
0

	
0.192454015

	
2.08478395

	
setosa

	
setosa

	
1

	
1.132206284

	
-1.72578699

	
virginica

	
virsicolor

	
2

	
-0.959849197

	
2.173531324

	
setosa

	
setosa

	
3

	
2.952024909

	
2.138220415

	
virginica

	
virsicolor

	
4

	
-0.505463006

	
-2.149987293

	
virsicolor

	
virginica

	
5

	
0.80187062

	
0.622172986

	
virginica

	
virginica

	
6

	
-0.958066983

	
-2.170298289

	
virsicolor

	
virsicolor

	
7

	
0.877714008

	
0.053590407

	
virginica

	
virginica

	
8

	
-4.388166428

	
-0.23903155

	
virsicolor

	
setosa

	
9

	
-1.419429199

	
-0.686692025

	
setosa

	
setosa

Table 1.1: Prediction by a model on test data

We will first define some terms and then define the metrics using those. We will apply these terms and metrics on the output of a model captured in Table 1.1:

	True Positive (TP): If the model predicts target class A as A, then the case is called True Positive. In previous table, there are four actual samples from class setosa, and the model has predicted three as setosa. So, the TP count for this class is three.

	False Negative (FN): If the model predicts the class A as not A (any class other than A) then it is called False Negative. For setosa class here, we have one FN count.

	False Positive (FP): If the model predicts not A (any class other than A) as A, then it is called False Positive. Considering the versicolor class, we see sample numbers 4 and 8 are predicted as versicolor but are actually not of that type. So, for versicolor, the FP count is 2. However, for setosa class, there is no FP.

	True Negative (TN): If the model correctly predicts the class not A as not A, then it is called True Negative. For the setosa class again, not setosa means all the 6 samples whose true labels are not setosa. we see none of them are predicted as setosa. so, TN count for setosa is 6.

Following are the metrics for evaluating a classification model:

Following are the metrics for evaluating a classification model:

	Classification accuracy: Fraction of predicted labels matching exactly with true target labels. Here we have 6 rows out of 10 where we find exact match and hence accuracy = [image:].

	Class-wise accuracy: Ratio of number of correct predictions for a target class to the total number of actual labels for the target class:
accuracy = [image:]

 For setosa, TP = 3, TN = 6, FP = 0, FN = 1 and hence, accuracy = [image:]

 For versicolor, TP = 1, TN = 5, FP = 2, FN = 2 and hence, accuracy = [image:]

 For virginica, TP = 2, TN = 5, FP = 2, FN = 1 and hence, accuracy = [image:]

	Precision: The ratio of TP count for a class A to total number of predicted labels A by the model.
precision = [image:]

	Recall: The ratio of TP count to the total actual positive count for the class. This is also known as True Positive Rate (TPR) or Sensitivity:
recall = [image:]

	F1 score: The harmonic mean of recall and precision is called F1-score. It provides a balanced score for precision and recall. The F1 will be high only when both precision and recall are high. Generally, increasing recall by modifying the prediction algorithm will decrease precision and vice versa. This is called precision/recall trade-off. Using the Python Scikit metrics.classification_report function, we can calculate the F1 score, precision, recall and accuracy together; the output is captured in Figure 1.12:

[image:]

Figure 1.12: Classification report

	Confusion matrix: Consider a n x n matrix (where n is the number of targets) with rows representing an actual class and columns representing a predicted class. The row sum of this matrix will be equal to the support or number of true class labels for each class. The diagonal element will show the TP count the (i, j) the entry of the matrix, where i ≠ j represents number of misclassifications of the ith class as jth class. Confusion matrix for the example is captured in Figure 1.13:

[image:]

Figure 1.13: Confusion matrix

The best desired confusion matrix is one which has large diagonal elements and small entries in the rest of the matrix.

Based on the classification problem we are solving, some of these metrices may have more importance than others. For example, if we are detecting whether a transaction is fraudulent, it’s more important to detect a fraud. We need high recall in this case at the cost of precision. As most of the models output some score for a prediction, these adjustments in predictions can be done by putting some thresholds. For this fraud detection case, suppose our model outputs a score between [0, 1]. We may predict a transaction as fraud even if score > 0.3 and non-fraud otherwise. Thus, increasing recall and compromising on precision. Varying the prediction thresholds, we can come up with the following metrics and get the best out of our model:

	Specificity or True Negative Rate (TNR): The ratio of number of negative classes, that is, not A, which are correctly being classified as not A.
TNR = [image:]

	False Positive Rate (FPR): The ratio of number of negative classes, that is, not A, which are inaccurately being classified as A.
FPR = [image:], thus FPR = 1 – TNR

We can also compare two different prediction models using these rates. For that, we need another metric called Receiver Operating Characteristics (ROC).

	Receiver Operating Characteristic (ROC) curve: ROC plots the True Positive Rate (TPR) vs False Positive Rate (FPR), as shown in Figure 1.14. The area under the curve is used as a measure. For a perfect classifier, the area under the ROC curve is 1, and hence, the closer the area under the ROC curve is to 1, the better the classifier. It’s generally used to compare two different prediction models. Refer to the following figure:

[image:]

Figure 1.14: ROC curve

Next, let’s look at the metric used for regression tasks.

Metrices for evaluating regression model

For discussing the regression metrices, let’s take a simple linear regression example. Suppose we want to predict the weight gain based upon calories consumed only, and we have a sample data collected as shown in Table 1.2:

	
id

	
calories

	
weight_gain

	
0

	
1489

	
5.167585591

	
1

	
1446

	
6.172757721

	
2

	
1222

	
6.38994428

	
3

	
1141

	
3.915110902

	
4

	
206

	
4.047348025

	
5

	
1247

	
3.285284391

	
6

	
1338

	
4.404260107

	
7

	
196

	
3.160958623

	
8

	
213

	
6.701951781

	
9

	
738

	
3.64042916

Table 1.2: Calories intake and resulting weight gain

Here, we have only one independent variable, which is the calories consumed (x). We have plotted this data in Figure 1.15. Suppose our mathematical model for regression is a straight line y = 0.0004 x + 4.2, as shown in Figure 1.15. Then, for calorie consumed = 1222 (2nd sample above), the predicted weight gain is 4.7 but the actual wight gain is 6.38 kg. Refer to the following figure:

[image:]

Figure 1.15: Plot of calories and resulting weight gain

Following are the metrics for evaluating a regression model:

	Mean Absolute Error (MAE): MAE is a very simple metric that calculates the average absolute difference between actual and predicted values. In the previous example, the predicted value by our model is point on the line corresponding to each value of the calories in the x-axis; thus:
MAE = [image:] (|5.18 – 4.79|+|6.17 – 4.78|+ … +|3.64 – 4.49|) = 1.075

 This indicates that, on an average, the weight gain estimate by our model above is going to have an error of ±1.075 kg error. This error has the same unit as the target variable.

	Mean Squared Error (MSE): MSE finds the average squared difference between actual and predicted value.
MSE = [image:] ((5.18 – 4.79)2 + (6.17 – 4.78)2 + … + (3.64 – 4.49)2) = 1.536

 The squared error is more for points far away from the predicted value compared to MAE. But the error is now a squared quantity and does not have the same unit as the predicted value.

	Root Mean Squared Error (RMSE): RMSE is a simple square root of mean squared error. This has the same unit as the target.

There are few other metrics for measuring regression like R-squared and adjusted R-squared for measuring regression error. We will be revisiting these metrices in the subsequent chapters.

For comparing various models of regression, there are few statistical measures. Models are scored both on their performance on the training dataset and based on the number of model parameters or the complexity of the model.

	Akaike Information Criterion (AIC): AIC penalizes models that use more parameters.
AIC = 2k – 2ln(L)

 k is the number of model parameters. L log of the probability that the model could have produced your observed target values. Lower the AIC, better is the model. Calculation of these log probabilities will be discussed in the later chapters.

	Bayesian Information Criterion (BIC): Another similar metric that also takes the number of examples into consideration for scoring the models is called BIC. Lower BIC values indicate better models. We will provide the mathematical formula for this later as it requires some more theoretical foundations of regressions to be introduced.

AIC, BIC can be also calculated for classification models and compare them.

In all the above types of ML algorithms, supervised, unsupervised and RL, one important step is feature engineering. This is a manual step that involves handcrafting features from the observations using domain knowledge. To understand the complexity of this step, let’s take another example of feature engineering for a slightly complex classification problem: face recognition. Given a query face image and a database of known faces, the task is to find the closest match of the query image with images in the database. The first logical step to solve this problem is to extract features from face images and represent the faces in the database numerically. The query image can be also converted to a set of numeric observations, and then we can compare query image observations with numeric representation of all the images in the database. In order to come up with this representation of the image, we have used domain knowledge – what are the most distinguishing features of a face: eyes, eyebrows, nose, jawline, mouth, and relative distance between these. Then, we have to design algorithms to find these points from a face image.

Thus, we see that the feature engineering step is the most time consuming and difficult in ML. Is there a way we can automate the feature engineering process? A subclass of ML algorithms discussed in following section addresses this.

Deep learning

Deep learning is a subfield of machine learning, where a hierarchical representation of the data is created. Higher levels of the hierarchy are formed by the composition of lower-level representations. More importantly, this hierarchy of representation is learned automatically from data by completely automating feature engineering. Automatically learning features at multiple levels of abstraction allows a system to learn complex representations of the input to the output directly from data, without depending on human-crafted features. Models used in deep learning are generically called neural networks.

Neural networks consist of small computation units called neurons (inspired by the biological neurons in human brain), which are basically parametric functions of the input. The output of a neuron is a single real number. Thus, having N neurons, we can get a set of N real numbers or set of N features. Changing the parameter values gives different feature vectors for the same input. For the face recognition example, we can design a neural network which takes a raw digital image as input. The input image is a n × n array or matrix of pixels. We define a parametric function that computes the weighted average of every set of consecutive 3 × 3 pixels in the image and outputs a single value. The weights, used in computing the weighted average, are the parameters of the neuron. These parameters are learned from data. We can have many such neurons with different sets of weights and thus have a layer of neurons representing various image features like edges, color, and texture. Putting multiple hierarchy of layers like this, we can have a network of neurons called deep neural network. The depth of the network is defined by the number of layers of neurons. A comparison between deep learning’s approach and classic machine learning’s approach is depicted in Figure 1.16:

[image:]

Figure 1.16: Deep learning vs classic machine learning

We will discuss neural networks in greater detail in Chapter 6, Neural Networks, but most of the mathematical tools required to understand the theory of neural networks is covered in Chapters 2 to 5. We will cover various applications of neural networks Chapter 9 onward. The success of neural networks depends on the availability of large volumes of data and immense computing power of present day.

Dataset preparation

Neural networks need large volumes of data for computing features automatically. How much data is sufficient for the algorithm to learn? The rule of thumb is that the dataset size must increase with an increase in learnable parameters and dimensions of the data.

Tip: We must make sure that samples in the dataset are not repeated or the number of samples of a category is higher as compared to others. This will push a model to learn better representation for the skewed category/samples, leading to lower performance for other categories or samples.

In practice, the entire dataset is not used for training the neural network model. After cleaning of the data, it is divided into three sets: training, validation, and test. Dividing should be such that variation of the data is captured in all three sets. The neural network learning algorithm and many other machine learning algorithm is an iterative algorithm.

Most learning algorithms generally start with a random initialization of parameters and iteratively improve the parameter values by taking feedback from training data. As learning algorithm learns parameter values during training phase, it needs to validate whether it is moving in the right direction. For this, validation dataset is used. After few iterations of learning parameters from the training data, partially trained model is run on validation set with recently run parameters. Performance on the validation set gives direction for the model to search for better parameter’s values. The need for model validation is to restrict the model to only work on the training examples and fail miserably on any data outside training examples. Such a model is of no use, and it’s called overfitted model. The performance evaluation of the model on validation data makes sure that the model is learning general patterns in the data and not memorising the training examples.

Another scenario can also arise. We see that the model is not even able to learn the training data well, and thus, the performance on validation is also not improving. Such a scenario is called an underfitted model. This generally indicates that our model needs more parameters or more capacity to learn the pattens in the data. After completion of training, trained model is evaluated on test set, and these numbers are reported as model performance.

Note: The test set is never used in training or validation. The model performance must always be reported on the test set.

For reasonable size dataset, we can split the dataset into training: 80%, and test: 20%. Out of the training set, 5% can be used as validation dataset. If dataset size if over million samples, then we can split the dataset into training: 98% and test: 2%. The validation set can be 2% of the training examples. Divided sets should reflect similar patterns (statistical distribution) when analysed. Skewed data towards any pattern or class in any of the sets would lead to degradation of the learning algorithm’s performance.

Tip: To obtain similar statistical distribution or patterns among all three sets, we can randomly shuffle the dataset and select the samples for each set. If it is classification dataset, then make sure that samples from each class are proportionally represented in each set.

While selecting the validation set out of the training set, we can take either a fixed validation set or randomly take out few examples from the training set in each training iteration and use these examples as validation. The latter technique is called cross-validation and is considered more robust in situations when the dataset size is small. Few popular cross-validation strategies are mentioned below:

	K-fold cross validation: Training samples are randomly partitioned into k equal-sized sets. In an iteration of training, one set is selected as validation set and remaining k-1 sets are considered for training. This is repeated k times where a set is considered as validation set only one. These k results are then averaged to produce single estimation. k can be any value, usually k=10 which is depicted in Figure 1.17. In the figure, represents the cost or error associated with the iteration. ‘E’ represents single estimation obtained by averaging all ’s. Refer to the following figure:

[image:]

Figure 1.17: 10-fold cross-validation

	Leave-p-out cross validation: Out of n training set samples, this method uses p observation as validation set and remaining n-p observations as training set for one iteration of training. This is repeated on all possible [image:] sets. p can be any value. The most popular value is p=1, which is called Leave-one-out cross validation.

	Repeated random sub-sampling method: This method is also known as Monte-Carlo cross-validation. Here, sample set is randomly split into training and validation set. Split set is used for one iteration of training. For each iteration of training, sample set is randomly split every time. Results are then averaged to produce single estimation. Number of iterations will not depend on sample set size. In this method, it may happen that a few samples may never be selected for validation set, and a few samples may end up being selected more than once.

In many situations, the dataset is not exhaustive enough to capture all variations of the real data. This leads to high performance on training and cross-validation dataset and does good even on test set, but it will perform poorly when deployed in a real environment. We should collect more samples that would reflect statistical distribution of real data.

Data augmentation is one of the techniques to make a dataset robust. Data augmentation technique adds more samples to the dataset by imparting slight modification to the existing dataset or synthesize new samples from the existing dataset. Modification or synthesis should be performed such a way that the label of original sample and its corresponding modified or synthesized sample should remain the same.

Techniques to augment the data depends on the nature of the data and desired output.

Consider dataset of images to recognize dog or cat. For this dataset, we can apply rotation, translation, shear, flipping techniques on the existing images. Do note that, these techniques don’t change the label from original sample to transformed sample. Image containing cat will still be recognized as cat after these transformations. Few of these image augmentation techniques will be discussed in Chapter 9, Computer Vision.

Application of AI

AI is being used across industries for better decision-making, increasing efficiency, and eliminating repetitive work. AI is augmenting human capacity in all fields, including healthcare, education, agriculture, automobile, finance, gamming, ecommerce, fashion design, and advanced scientific research like space exploration and particle physics. Figure 1.18 depicts one application in each of these fields:

[image:]

Figure 1.18: Applications of ML

All these applications of AI fall under the category of ANI or specialized AI. These AI systems rely largely on human-generated data and excel at mimicking human behaviour on well-known tasks. They also incorporate human biases as the bias is in the training data itself. These systems lack robustness, that is, the ability to perform consistently under changing circumstances. Moreover, these systems often have the problem of explainability, that is, we are unable to explain why a decision is taken by the system under a given circumstance. These problems open up new frontiers for research, the ultimate goal being AGI, which experts agree is far in the future.

Role of Mathematics in AI

The goal of AI is to design algorithms that can perform data-based automated decision-making under uncertainty. Data is the starting point, and this data is always insufficient. It’s never possible to capture all possible scenarios in any dataset, and if we can, then there is no need for AI. We don’t need AI for writing an algorithm that can compute the sum of any two numbers, as we know all possible scenarios that can come and have rules for all of them. Insufficiency in data is a primary source of uncertainty, that is, working with imperfect or incomplete information.

Other sources of uncertainty are noise in data, errors while collecting data, and assumptions made while modelling. We can represent this uncertainty qualitatively with the mathematical theory of probability and statistics. Probability provides the foundation and tools for quantifying, handling, and harnessing uncertainty. Statistics deals with the methods of collecting, presenting, analysing, interpreting, and inferencing from data. Data is represented numerically as a point in high-dimensional space called vector space. However, beyond three dimensions, we cannot visualize data; thus, every observation collected is an abstract numerical object. Linear algebra provides us with all the tools to operate with these abstract objects called vectors and also define concepts of similarity, distance, and angle between these vectors.

With all these tools, we are equipped to mathematically define decision-making, which is required to automate decision-making from data, that is, to achieve the final goal of AI. These decisions can be of two types: discrete or continuous. Discrete decisions are like classification or deciding an action in a RL scenario, and continuous decisions are like regression.

Mathematically, discrete decisions can be represented as a way of partitioning the high dimensional space where the data points lie and assigning a category to each partition. Continuous decisions, on the other hand, are some functions mapping a point in high dimensional space to a real number. In both cases, a set of parametric mathematical functions must be found that can output the best possible decisions. To do this, we need tools for function optimization in high-dimensional space, and this is given by the theory of vector calculus. These four mathematical tools, i.e., Linear algebra, Vector calculus, Probability, and Statistics, are the four pillars of AI, depicted in Figure 1.19. Each of these topics are vast, and it is not necessary to gain completer mastery on these topics to understand the theory of AI. In this book, we have presented the essential concepts from these topics required to get a good in-depth understanding of AI. Refer to the following figure:

[image:]

Figure 1.19: Pillars of AI

As the era of AI is still in the initial stages, there is a huge scope for all of us to contribute to this field. These mathematical tools are the foundation of the technology that is already in use and all that is yet to come. Having a deeper understanding of these mathematical basics will help the reader become a successful contributor to the next generation AI technologies and appropriately use the existing technology.

Conclusion

In this chapter, we provided a high-level overview of AI and discussed various types of algorithms and the challenges in AI. The next four chapters will be on the four foundational mathematical pillars of AI. Chapter 6, Neural Networks will discuss about deep learning – the core of most of the state-of-the-art ANI components. After that, various ANI topics will be covered in the remaining chapters. These chapters will be based on the theory discussed in first six chapters. We strongly encourage the reader to go through chapters 1-6 first, and the remaining chapters can be read in any order.

OEBPS/images/Image38541.jpg
e -

A
F

+2

Standing

OEBPS/images/line.jpg

OEBPS/images/Image38533.jpg
f2

Al

f1

OEBPS/images/Image38734.jpg
’ Training Set
Validati Trainir
e e] e
- i..mr - £

z"mmlm7 l | B =) £,

9™ iteration . =) £

10

0 =1

10"
teration l =) o

OEBPS/images/Image38616.jpg
precision recall fl-score support

setosa 1.00 0.75 0.86 4
virginica 0.50 0.67 .57 3
virsicolor 0.33 0.33 0.33 3
accuracy 9.60 10
macro avg 0.61 0.58 0.59 10

weighted avg 0.65 0.60 0.61 10

OEBPS/images/Image38470.jpg
Computer
Vision

Speech
Recognition,
Generation

"

Artificial Intelligence

Robotics

Machine
Learning

Deep
Learning

Natural
Language
Understanding

\

Expert
Systems

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Authors

		About the Reviewer

		Acknowledgements

		Preface

		Errata

		Table of Contents

		1. Overview of AI

		Structure

		Objectives

		AI systems

		Machine Learning

		How are ML Models created?

		Data types

		Learning From data

		Types of ML algorithm

		Unsupervised learning

		Reinforcement learning

		Supervised learning

		Metrices for evaluating classification model

		Metrices for evaluating regression model

		Deep learning

		Dataset preparation

		Application of AI

		Role of Mathematics in AI

		Conclusion

		2. Linear Algebra

		Structure

		Objectives

		Linear equations

		Solving system of equations analytically

		Infinitely many solutions

		Inconsistent system

		Introducing matrix

		Augmented matrix

		Pseudocode forward substitution

		Pseudocode back substitution

		Basic matrix operations

		Euclidean space

		Vectors and basic properties

		Representing vector

		Norm

		Direction

		Scalar multiplication

		Addition/subtraction of vectors

		Distance between vectors

		Dot product and orthogonality

		Linear Combination of Vectors

		Dimension and basis of the space

		Orthogonal and orthonormal basis

		Natural orthonormal basis of ℝn

		Subspaces

		Dimension of subspace

		Hyperplanes and Halfspaces

		Defining vector space

		Vector spaces

		Normed vector space

		Norm of real numbers

		lp Norm

		Maximum norm

		Matrix norm

		Inner product

		Application on real dataset

		K-nearest neighbor

		Representing vectors in matrix

		Matrix rank

		Matrices types

		Identity matrix

		Symmetric matrix

		Skew symmetric matrix

		Invertible matrices

		Properties of Matrix Inverse

		Permutation matrix

		Orthogonal matrix

		Matrices in ML problem formulation

		Feature/data matrix

		One hot encoding

		Distance matrix

		Gram matrix

		Covariance matrix

		Correlation matrix

		Jacobian and Hessian matrix

		Subspaces of matrix and orthogonality

		Null space

		Orthogonality among subspaces

		Determinant

		Inverse of Matrix

		Orthonormalization

		Applications of Orthonormalization

		Linear transformation

		Matrix associated with linear map

		Composition of linear transformation

		Eigenvalues and vectors

		Eigen properties

		Geometric analysis

		Existence of zero eigenvalue

		Eigen properties of symmetric matrices

		Positive definite

		Matrix decomposition

		LU decomposition

		By-product of Gauss-Jordan elimination

		QR decomposition

		Eigen decomposition

		Real symmetric matrix

		Singular value decomposition

		Conclusion

		Points to remember

		Further Reading

		3. Vector Calculus

		Structure

		Objectives

		Analysis of real functions

		Limit of a function

		Continuous functions

		Derivative of a function

		Higher Order derivatives

		Taylor series expansion

		Scalar and vector fields

		Limits and continuity

		Derivative of scalar fields w.r.t. vector

		Directional derivative and partial derivatives

		Total derivative

		Geometry of gradient vector

		Derivative of vector fields w.r.t. vector

		Chain rule for derivatives of vector fields

		Matrix form of the chain rule

		Tensors

		Einstein notation

		Dot product of tensors

		Tensor calculus

		Total derivative of tensor

		Mathematical optimization

		Maxima, minima, and saddle point

		Decent methods

		Function optimization with constraints: Lagrange multipliers

		Optimization with inequality constraints

		The Lagrange dual function

		Convex functions

		Properties of convex functions

		Convex optimization

		Karush-Kuhn-Tucker conditions (KKT)

		Conclusion

		Points to remember

		Further readings

		4. Basic Statistics and Probability Theory

		Structure

		Objectives

		Basic statistics

		Measures of central tendency

		Mean

		Median

		Mode

		Partition Values

		Measures of dispersion

		Range

		Interquartile Range

		Mean deviation

		Standard deviation

		Coefficients of dispersion

		Moments

		Skewness and kurtosis

		Correlation

		Probability and odds

		Random experiment

		Events as sets

		Conditional probability

		Independent Events

		Conditional independence

		Total probability theorem

		Bayes theorem

		Bayesian Decision Theory

		Random variable

		Discrete probability distributions

		Bernoulli and categorical distribution

		Binomial distribution

		Poisson distribution

		Continuous probability distributions

		Cumulative Probability Distribution Function (C.D.F)

		Uniform distribution

		Gaussian distribution or normal distribution

		Exponential Distribution

		Mathematical expectation of a random variable

		Joint Probability Distributions

		Transformation of a random variable

		Multivariate distributions

		Multinomial distribution

		Multivariate gaussian distribution

		Information theory

		Entropy

		Relative entropy or KL divergence

		Mutual information

		Decision tree

		Conclusion

		Points to remember

		Further reading

		5. Statistical Inference and Applications

		Structure

		Objectives

		Large Sample Theory

		Sample statistics

		Sampling from known distributions

		Hypothesis testing

		Statistical inference

		Estimator properties

		Minimum Variance Unbiased (M.V.U) estimators

		Likelihood function

		Cramer-Rao inequality

		Method of Maximum Likelihood Estimation (MLE)

		Bias-variance decomposition of estimator

		Applications – Formulating ML problems as statistical inferencing

		Data distribution

		Classification

		Naive Bayes classifier

		Regression

		Linear and curvilinear regression

		Estimating model parameters

		Iterative estimation of model parameters

		Overfitting and underfitting

		Bias variance trade-off

		Logistic Regression

		Multiclass logistic regression

		Poisson regression

		Interpretability of linear models

		Conclusion

		Points to remember

		Further Reading

		6. Neural Networks

		Structure

		Objectives

		Artificial neuron: An adaptive basis function

		Feed Forward neural network

		Training neural network

		Stochastic Gradient Descent

		Computing error derivatives

		Backpropagation algorithm

		Challenges of training neural networks

		Modifications of SGD

		Momentum methods

		Adaptive learning rate

		Bias-variance trade-off in neural networks

		Regularization of neural nets

		Sensitivity of neural networks to small perturbations

		Neural Network Architectures

		Conclusion

		Points to remember

		Further Reading

		7. Clustering

		Structure

		Objectives

		Forming clusters

		Distance and similarity

		Cluster quality

		Internal evaluation

		Davies-Bouldin indicator

		Dunn indicator

		Silhouette coefficient

		External evaluation

		Rand index

		F-measure

		Fowlkes–Mallows index

		Jaccard index

		Clustering algorithms

		Partition-based clustering

		K-means

		K-medoids

		Density-based clustering

		DBSCAN

		Distribution-based clustering

		Gaussian Mixture Model

		Hierarchical-based clustering

		Agglomerative clustering

		Distance between clusters

		BIRCH

		Graph-based clustering

		Fuzzy theory-based clustering

		Fuzzy c-means

		Conclusion

		References

		8. Dimensionality Reduction

		Structure

		Objectives

		Reducing dimensionality

		Principal Component Analysis

		Loading Iris dataset

		Calculating covariance matrix

		Decomposition of covariance matrix

		Reducing with principal components

		Variance retention

		When to use PCA

		Autoencoder

		Iris autoencoder

		t-SNE

		Choosing σi

		PCA vs t-SNE

		t-SNE on Iris Dataset

		Conclusion

		Further reading

		References

		9. Computer Vision

		Structure

		Objectives

		Digital Image Formation

		Capture the light

		Sampling and quantization

		Pixels

		Accessing pixels

		Spatial filtering

		Geometric spatial transformation

		Neighbor pixel operation

		Convolution properties

		Separable kernels

		Convolution with separable kernels

		Gaussian kernel

		Discrete approximation of Gaussian function

		Application of Gaussian filter

		Image derivative-based kernels

		Laplacian kernel – Second order derivative

		Sobel kernel: First order derivative

		Non-linear filters

		Learning filters

		Convolution Neural Networks

		Convolution layer

		Pooling layer

		Spatially separable convolution

		Depthwise separable convolution

		Depthwise convolution

		Pointwise convolution

		Optimization

		Upsampling: Transposed convolution

		Development of CNN

		AlexNet

		TensorFlow Model

		Counting trainable parameters

		Inception

		VGG

		ResNet

		Xception

		Application of CNN models

		Image classification

		Object detection

		R-CNN – Regions with CNN features

		YOLO – You Only Look Once

		Image segmentation

		U-Net

		Summary

		Further reading

		Points to remember

		References

		10. Sequence Learning Models

		Structure

		Objectives

		Time series models

		Decomposition of time series

		Differencing

		Time series forecasting

		OLS model

		Exponential smoothing

		Autoregressive Integrated Moving Average

		Probabilistic sequence models

		Markov chain

		Hidden Markov model

		Recurrent neural networks

		Training RNN

		Long Short-Term Memory (LSTM)

		Gated Recurrent Unit (GRU)

		Stacked LSTM/RNN

		Generative models for sequence

		Handwriting generation

		Mixture Density Network

		Sequence classification

		Bi-directional RNN

		Sequence to Sequence

		Connectionist Temporal Classification

		Training CTC network: Maximum likelihood

		DP formulation for CTC loss

		Inferencing from CTC network

		Encoder-Decoder architecture

		Attention mechanism

		Key-value-query formulation of attention

		Language translation model

		Speech recognition model

		Self-attention and transformers

		Computing self-attention

		Transformer architecture

		Conclusion

		Points to remember

		Further Reading

		11. Natural Language Processing

		Structure

		Objectives

		Natural language

		Syntactic structure of language

		Parts of Speech (POS)

		Phrases

		Clause

		Sentence

		Document and Text corpus

		Semantic structure of language

		Wordnet

		Text preprocessing

		Models for text

		Bag of Words (BoW) model

		Vector Space Model

		Count based or Boolean

		Term Frequency (TF)-Inverted Document Frequency (IDF)

		Latent Semantic Indexing (LSI) model

		Probabilistic models of text

		Topic models

		Probabilistic generative models: Latent Dirichlet allocation

		Neural language models

		Contextual models

		ELMo model

		BERT

		Position encoding

		Pre-training BERT

		Input representation for pre-training tasks of BERT

		WordPiece tokenization

		ERNIE

		Generative Pre-Training by OpenAI

		Conclusion

		Points to remember

		Further reading

		12. Generative Models

		Structure

		Objectives

		A simple generative model

		Variational Autoencoders (VAE)

		Generative Adversarial Nets

		Equilibrium state for GAN training

		Implementing GAN

		GAN training challenges

		Solutions for mitigating GAN training issues

		Wasserstein GAN (WGAN)

		Some properties of EM distance

		WGAN training

		Ensuring Lipschitz Constraint in Discriminator

		Conditional GAN (cGAN)

		Cycle GAN (CycleGAN)

		Autoregressive generative models

		Applying generative models

		Conclusion

		Points to remember

		Further Reading

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Overview of AI

OEBPS/images/Image38551.jpg
s [m)]
fallen Slow

Standing Fast
Moving Fast

[= [me]

fallen

standing

moving

Slow

Slow

slow

fallen Slow

standing Slow
moving fast

OEBPS/images/Image38673.jpg
1400

1000

%0

Caleries Consumed

(63) uieS WM

OEBPS/images/Image38630.jpg
Ture Positive Rate

1.0 —w< Perfect Classifier

o
®

°
&
|

o
2
|

0.2 —|

0.2 0.4 06 0.8 1.0
False Positive Rate

OEBPS/images/Image38477.jpg
Rules

Classical

A Answers
Programming

Data

Data

Machine —>» Rules
Answers learning

OEBPS/images/Image38623.jpg
virginica

virsicolor

setosa virginica wvirsicolor
Predicted label

OEBPS/images/Image38745.jpg
M Il
BN Surveillance Health

Visualization of
aatior data Diagnosis and
Multidimensional Object
i
data COMPESSION. recognition & "E:""e"'“
- tracking e
 Dimensionality
Reduction pgricuiture Classification ealth
| Gene editing Drug discovery
unsup-rvlud supervised
Learning
Recommender
Netflix movie 7
recommender . Machine
Clustering Learning Regression
Finance
. - Factory
Credit card fraud dentifing Forecasting Growth
Weather popylation

detection commerce detect
Trgeted equipment
advertisements
for customer Gaming
Categoreis planning Robotics
strategieslike puromobpile PErTOrMing tasks
human based on s ytonomous like human, crop
environment el ke harvest

report,
Stock price

OEBPS/images/Image38506.jpg
Y
Collect Prepare Extract Train Evaluate
pata [Data Features Model [*] Model
) t T
L === =g

OEBPS/images/Image38680.jpg
ML

Classic

Machine Ez;aatu;e | Classifier = Banana
. | :
Learning raction Algorithm
| e S— (2)

O
AN

Deep Banana

Learning

Neural Networks: Automatic Feature
extroction along with classification

OEBPS/images/Image38485.jpg
s V 4 4
Iris Versicolor Iris Setosa Irls Vlrglnlca

OEBPS/images/logo1.jpg
ToView Complte
BPB Publications Catalogue

Scan the QR Code:

OEBPS/images/logo.jpg

OEBPS/images/cover.jpg
Practical
Mathematics

for————

Al and Deep Learning

A Concise yet In-Depth Guide on Fundamentals of Computer Vision,
NLP, Complex Deep Neural Networks and Machine Learning

Tamoghna Ghosh
Shravan Kumar Belagal Math '%I

OEBPS/images/569C1eqg12.jpg

OEBPS/images/Image38514.jpg
Ethoicity Proentaxomic
Gender AL Colour pgon pmerican StudentRank Student Grade Sats
Womanman BondeBack, L FintSecond AWABGF Foor, Midde, High

" Nominal Dawa Original Data
(unordered) (orderec)
| Qualitative ‘
R Data -
Structured- i ey
Instructur
Data Data Types Data
9 7 Text:
Quantitative pined,handuriten
Data image:
Trtic uman acee
Discrte Data
Video:
o e -,
spoccs

Sdents wotkers Souts Human peech, Anmal

Nomberol Wamberol Namberof it s Soeed “okes

wwdenisin amployeesin goisina Weghtol squreox spedol

o} company | soccer match peole weacomred vawdes

D bidng

OEBPS/images/Image38757.jpg
ARTIFICAL INTELLIGENCE

MECHEmNE=On

L OMCR = =

>EUROX U<SUDSD®

m=ZECXE <SRRI

FOUR PILLARS

OEBPS/images/569C1eqg2.jpg
TP+TN
TP+TN +FP+FN

OEBPS/images/Image38492.jpg
‘Sample Observations

Feapures

Clqss/Target

r
sepallength (cm) sepal widh (cm) _petallength (cm) _petal width cm) | type

1

7.1
62
56
54
50

30
29
30
34
36

Independent Variables

59
43
a1
17
14

24 virginica
13 versicolor
13 versicolor
02 setosa

02 setosa
Dependent Variable

OEBPS/images/569C1eqg3.jpg
10

OEBPS/images/569C1eqg1.jpg

OEBPS/images/569C1eqg6.jpg
TP
TP+FP

OEBPS/images/569C1eqg7.jpg
(i

TP+EN

OEBPS/images/569C1eqg4.jpg
10

OEBPS/images/569C1eqg10.jpg

OEBPS/images/569C1eqg5.jpg
10

OEBPS/images/Image38499.jpg
H
g
H
H
g

OEBPS/images/569C1eqg8.jpg
FP+IN

OEBPS/images/569C1eqg9.jpg
(i

FP+IN

OEBPS/images/Image38522.jpg
Unsupervised Reinforcement suputiad
Learning Learning Learning

= o= o= o e e Increase offecdback information on predicted result e e o

v &0

SO
Delayed or Partial feedback from

Complete feedback from the
‘the data during training abelied data during raining.

Nofeedback from the unlabelled
data during raining

