

About the Authors

Andreas Spillner is emeritus professor of computer science at the University
of Applied Sciences Bremen. During the 1990s and early 2000s he spent
10 years as spokesman for the TAV (Test, Analysis, and Verification) group at
the Gesellschaft für Informatik (German Computer Science Society) that he
also helped to found. He is a founder member of the German Testing Board
and was made an honorary member in 2009. He was made a fellow of the
Gesellschaft für Informatik in 2007. His software specialty areas are technology,
quality assurance, and testing.

Tilo Linz is co-founder and a board member of imbus AG, a leading software
testing solution provider. He has been deeply involved in software testing
and quality assurance for more than 25 years. As a founding member and
chairman of the German Testing Board and a founding member of the
International Software Testing Qualifications Board, he has played a major
role in shaping and advancing education and training in this specialist area
both nationally and internationally. Tilo is the author of Testing in Scrum
(published by Rocky Nook), which covers testing in agile projects based on
the foundations presented in this book.

Andreas Spillner · Tilo Linz

Software Testing
Foundations

A Study Guide for the Certified Tester Exam

 � Foundation Level

 � ISTQB® Compliant

5th, revised and updated Edition

Andreas Spillner · andreas.spillner@hs-bremen.de
Tilo Linz · tilo.linz@imbus.de

Editor: Dr. Michael Barabas / Christa Preisendanz
Translation and Copyediting: Jeremy Cloot
Layout and Type: Josef Hegele
Production Editor: Stefanie Weidner
Cover Design: Helmut Kraus, www.exclam.de
Printing and Binding: mediaprint solutions GmbH, 33100 Paderborn, and Lightning Source®,
Ingram Content Group.

Bibliographic information published by the Deutsche Nationalbibliothek (DNB)
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data can be found on the Internet at http://dnb.dnb.de.

ISBN dpunkt.verlag:
Print 978-3-86490-834-7
PDF 978-3-96910-298-5
ePUB 978-3-96910-299-2
mobi 978-3-96910-300-5

ISBN Rocky Nook:
Print 978-1-68198-853-5
PDF 978-1-68198-854-2
ePUB 978-1-68198-855-9
mobi 978-1-68198-856-6

5th, revised and updated edition 2021 Copyright © 2021 dpunkt.verlag GmbH
Wieblinger Weg 17
69123 Heidelberg

Title of the German Original: Basiswissen Softwaretest
Aus- und Weiterbildung zum Certified Tester – Foundation Level nach ISTQB®-Standard
6., überarbeitete und aktualisierte Auflage 2019
ISBN 978-3-86490-583-4

Distributed in the UK and Europe by Publishers Group UK and dpunkt.verlag GmbH.
Distributed in the U.S. and all other territories by Ingram Publisher Services and Rocky Nook, Inc.

Many of the designations in this book used by manufacturers and sellers to distinguish their
products are claimed as trademarks of their respective companies. Where those designations
appear in this book, and dpunkt.verlag was aware of a trademark claim, the designations have
been printed in caps or initial caps. They are used in editorial fashion only and for the benefit of
such companies, they are not intended to convey endorsement or other affiliation with this book.
No part of the material protected by this copyright notice may be reproduced or utilized in any
form, electronic or mechanical, including photocopying, recording, or by any information storage
and retrieval system, without written permission of the copyright owner. While reasonable
care has been exercised in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.
This book is printed on acid-free paper.
Printed in Germany and in the United States.

5 4 3 2 1 0

mailto:tilo.linz@imbus.de
http://www.exclam.de

v

Preface to the 5th Edition

The first edition of the book was published in German at the end of 2002.
Since then, Basiswissen Softwaretest has been the best-selling book on soft-
ware testing in the German-speaking world.

This 5th edition in English has been comprehensively revised and
updated. It is based on the latest (6th) edition of the German-language book
and the current 2018 ISTQB® Certified Tester – Foundation Level syllabus.

The Certified Tester qualification scheme is extremely successful and is
widely recognized and accepted within the IT industry. It has become the
de facto global standard for software testing and quality assurance educa-
tion. By the end of 2020 there were over 955,000 exams taken and more
than 721,000 certifications issued in 129 countries around the world [URL:
ISTQB]. Many IT employment ads for beginners and experienced workers
reflect this, and certified training is often an obligatory requirement. The
Certified Tester scheme is also part of the curriculum at many universities
and technical colleges.

In spite of this rapid development, there is a lot of the grass-roots
knowledge in the field of computer science that doesn’t change very much
over the years. We take the Foundations part of our book title seriously
and don’t discuss topics that have yet to be proven in everyday practice.
Specialist topics such as web app or embedded system testing are not part
of these foundations.

This 5th edition of Software Testing Foundations has been comprehen-
sively revised and extended, and its content brought completely up to date.

The latest revision of the ISTQB® syllabus has seen some test tech-
niques shifted to higher training levels, so these are no longer part of the
Foundations syllabus. However, we have kept the corresponding sections
in the book and have highlighted them as side notes. If you are using the
book exclusively for exam preparation you can simply skip the side note
sections.

Bestseller

The Certified Tester

training scheme

Grass-roots knowledge

required in the IT world

What’s new?

Side notes are not part

of the official syllabus

vi Preface to the 5th Edition

Many readers have told us that they use the book for reference in
their everyday work scenarios. This is why we have included a number of
additional test techniques that do not appear in the Foundations syllabus.
These include techniques such as pair-wise testing that weren’t covered in
previous editions.

The case study that illustrates the implementation of the test tech-
niques has been adapted and comprehensively updated.

We have revised the lists of standards to reflect the changes made by
the introduction of ISO 29119, and all the URLs referenced in the text
have been updated too.

Any future changes to the syllabus and the glossary that affect the
book text can be found on our website [URL: Softwaretest Knowledge],
where you will also find exercises that relate to the individual chapters in
the book. Any necessary corrections or additions to the book text are also
made available at the website.

For a book like this, success is rarely down to the authors alone, and
we would like to thank all our colleagues at the German Testing Board and
the International Software Testing Qualifications Board, without whom
the Certified Tester program would never have achieved the global success
that it enjoys. Many thanks also to Hans Schaefer, our co-author of the
previous four editions of the book, for his constructive cooperation.

We would further like to thank our readers for their many comments
and reviews, which have encouraged us during our work and motivated
us to keep getting better. Heartfelt thanks also go to our editor Christa
Preisendanz and the entire team at dpunkt.verlag for years of successful
cooperation.

We wish all our readers success in the practical implementation of the
testing approaches described in the book and—if you are using the book
to prepare for the Certified Tester Foundation Level exam—we wish you
every success in answering the exam questions.

Andreas Spillner and Tilo Linz
May 2021

New test techniques

included

Online resources

Thanks

vii

1.1 Die Anfänge – Ein Biotop entsteht und
erste organisatorische AusdifferenzierungForeword by Yaron Tsubery

The software systems industry continues to grow rapidly and, especial-
ly over the last two decades, exponentially. Market requirements and a
growing appetite for exciting new challenges have fuelled the develop-
ment of new software technologies. These new opportunities affect almost
everyone on our planet and reach us primarily via the internet and, sub-
sequently, via smart devices and technologies.

The need for software that is easy to create and maintain has caused
many key industries—such as health, automotive, defense, and finance—
to open up and become visible to the world via applications and/or web
interfaces. Alongside these traditional domains, new types of services
(such as social media and e-commerce) have appeared and thrived on
the global market. The rapid growth and enormous demands involved
in introducing new software-based products that greatly impact our life-
styles and our wellbeing require new and faster ways of producing soft-
ware solutions.

This situation has created a market in which multiple companies
compete for market share with extremely similar products. Such com-
petition is beneficial to consumers (i.e., software users) and, as a result,
software-based products have started to become commoditized. Soft-
ware manufacturers have begun to think more economically, generating
increased revenues using fewer resources (i.e., doing more with less).
Continual introduction of new products into our daily lives has given
rise to the “agile” design and production ethos—driving a cultural change
in the tradition software development life cycle, as well as pushing for-
ward the necessity of more and early automatic tests (e.g. as driven by the
DevOps movement)—that is increasingly commonplace in today’s soft-
ware industry, while the business leaders behind software-based products
have understood that the world is becoming smaller and that competi-
tion is getting fiercer all the time. An increasingly short time to market
is essential not only for generating revenue, but also simply to survive in
today’s market. Successful and innovative companies understand that they
need to put the customer first if they want to maintain product quality,

viii Foreword by Yaron Tsubery

generate brand loyalty, and increase their market share. In other words,
the software industry has understood the importance of the customer to
the overall product life cycle.

We in the software testing business have always known the importance
of quality to the customer, because part of our job is to represent the cus-
tomer’s point of view. The challenges we face have grown with the com-
plexity of software products, and we sometimes still find ourselves having
to justify the necessity for software testing, even if it has become a largely
standard practice within the software industry. Recently, the rise of soft-
ware-based artificial intelligence (AI)—such as software enhancement in
robots and autonomous devices—has created a whole new set of challenges.

Software testing is an extremely important factor in the industry.
Alongside controlling costs and quality, the main issue is customer focus.
Preserving a healthy balance between cost and quality is an essential cus-
tomer requirement, making it critical to have well-trained and highly pro-
fessional people assigned to quality and software testing roles. Recruiting
skilled professionals is the key to success. The primary factors we look for
when recruiting are related to a person’s knowledge and skills. We look at
the degree to which a person is aligned with the software testing profes-
sion, and with the required technology and industry domain (such as web,
mobile, medical devices, finance, automotive, and so on). We also have to
ask ourselves whether a person is suited to work in the product domain
itself (for example, when candidates come from competitors). Communi-
cations and soft skills that fit in with the team/group/company are import-
ant too. In the case of industry newcomers, we have to consider how much
potential a person has. This book teaches the fundamentals of software
testing and provides a solid basis for enhancing your knowledge and expe-
rience through constant learning from external sources, your own per-
sonal experience, and from others.

When reading an educational book, I expect it to be sequentially
structured and easy to understand. This book is based on the Certified
Tester Foundation Level (CTFL) syllabus, which is part of the ISTQB®
(International Software Testing Qualifications Board) education program.
The ISTQB® has created a well-organized and systematic training program
that is designed to teach and qualify software testers in a variety of roles
and domains. One of the primary objectives of the ISTQB® program is
to create professional and internationally accepted terminology based on
knowledge and experience. The chapters in the book are designed to take
you on that journey and provide you with the established and cutting-edge

ixForeword by Yaron Tsubery

fundamentals necessary to becoming a successful tester. They combine
comprehensive theory with detailed practical examples and side notes that
will enhance and broaden your view of software systems and how to test
them. This book provides a great way to learn more about software testing
for anyone who is studying the subject, thinking about joining the soft-
ware testing profession, or for newcomers to the field.

For those who already have a role in software testing, the practical
examples provided (based on a case study and corresponding side notes)
are sure to help you learn. They provide a great basis for comparison with
and application to your own real-world projects. This book contains a
wealth of great ideas that will help you to build and improve your own
software testing skills. The new, revised edition is based on the latest (2018)
ISTQB® CTFL, which has been updated to cover agile processes and expe-
rience gained from changes that have taken place within the industry over
the last few years. It also includes references to the other syllabi and profes-
sional content upon which it is based, and an updated version of the case
study introduced in earlier editions. The case study is based on a multi-
layer solution that includes both specific and general technical aspects of
software system architecture. The case study in this edition is based on a
new-generation version of the system detailed in previous editions, thus
enabling you to learn from a practical, project-based viewpoint.

The world is changing fast every day. Some of the technologies that
we use today will become obsolete within a few years and the products
we build will probably become obsolete even sooner. Software is an inte-
gral and essential part of virtually all the technology that surrounds us.
Along with growth and expansion in the artificial intelligence (AI) arena
and other new technologies that have yet to be introduced, this continual
change offers new and exciting opportunities for the software testing pro-
fession. We are sure to find ourselves tuning our knowledge and experience
in various ways, and we may even find ourselves teaching and coaching
not only humans but also machines and systems that test products for us.

The fundamental knowledge, grass-roots experience, and practical
examples provided by this book will prepare you for the ever-changing
world and will shape your knowledge to enable you to test better and, in
the future, perhaps pass on your knowledge to others.

I wish you satisfying and fruitful reading.
Yaron Tsubery
Former ISTQB® President
President ITCB®

xi

Overview

1 Introduction 1

2 Software Testing Basics 7

3 Testing Throughout the Software Development Lifecycle 49

4 Static Testing 95

5 Dynamic Testing 121

6 Test Management 201

7 Test Tools 251

Appendices 277

A Important Notes on the Syllabus and the Certified Tester Exam 279

B Glossary 281

C References 309

Index 317

xiii

Contents

1 Introduction 1

2 Software Testing Basics 7

2.1 Concepts and Motivations . 7
2.1.1 Defect and Fault Terminology . 9
2.1.2 Testing Terminology . 12
2.1.3 Test Artifacts and the Relationships Between Them 14
2.1.4 Testing Effort . 16
2.1.5 Applying Testing Skills Early Ensures Success 19
2.1.6 The Basic Principles of Testing . 20

2.2 Software Quality . 22
2.2.1 Software Quality according to ISO 25010 22
2.2.2 Quality Management and Quality Assurance 26

2.3 The Testing Process . 27
2.3.1 Test Planning . 29
2.3.2 Test Monitoring and Control . 30
2.3.3 Test Analysis . 31
2.3.4 Test Design . 34
2.3.5 Test Implementation . 36
2.3.6 Test Execution . 37
2.3.7 Test Completion . 40
2.3.8 Traceability . 41
2.3.9 The Influence of Context on the Test Process 42

2.4 The Effects of Human Psychology on Testing 43
2.4.1 How Testers and Developers Think 46

2.5 Summary . 47

xiv Contents

3 Testing Throughout the Software Development Lifecycle 49

3.1 Sequential Development Models . 49
3.1.1 The Waterfall Model . 50
3.1.2 The V-Model . 51

3.2 Iterative and Incremental Development Models 54

3.3 Software Development in Project and Product Contexts 56

3.4 Testing Levels . 58
3.4.1 Component Testing . 58
3.4.2 Integration Testing . 66
3.4.3 System Testing . 74
3.4.4 Acceptance Testing . 76

3.5 Test Types . 80
3.5.1 Functional Tests .80
3.5.2 Non-Functional Tests . 83
3.5.3 Requirements-Based and Structure-Based Testing 85

3.6 Testing New Product Versions . 86
3.6.1 Testing Following Software Maintenance 88
3.6.2 Testing Following Release Development 90
3.6.3 Regression Testing . 91

3.7 Summary . 93

4 Static Testing 95

4.1 What Can We Analyze and Test? . 96

4.2 Static Test Techniques . 97

4.3 The Review Process . 98
4.3.1 Review Process Activities . 99
4.3.2 Different Individual Review Techniques 102
4.3.3 Roles and Responsibilities within the Review Process 106

4.4 Types of Review . 108

4.5 Critical Factors, Benefits, and Limits . 114

4.6 The Differences Between Static and Dynamic Testing 117

4.7 Summary . 119

xvContents

5 Dynamic Testing 121

5.1 Black-Box Test Techniques . 126
5.1.1 Equivalence Partitioning . 126
5.1.2 Boundary Value Analysis . 137
5.1.3 State Transition Testing . 145
5.1.4 Decision Table Testing . 153
5.1.5 Pair-Wise Testing . 159
5.1.6 Use-Case Testing . 168
5.1.7 Evaluation of Black-Box Testing 171

5.2 White-Box Test Techniques . 172
5.2.1 Statement Testing and Coverage 173
5.2.2 Decision Testing and Coverage 175
5.2.3 Testing Conditions . 179
5.2.4 Evaluation of White-Box Testing 188

5.3 Experience-Based Test Techniques . 189

5.4 Selecting the Right Technique . 195

5.5 Summary . 199

6 Test Management 201

6.1 Test Organization . 201
6.1.1 Independent Testing . 201
6.1.2 Roles, Tasks, and Qualifications 205

6.2 Testing Strategies . 210
6.2.1 Test Planning . 210
6.2.2 Selecting a Testing Strategy . 213
6.2.3 Concrete Strategies . 215
6.2.4 Testing and Risk . 217
6.2.5 Testing Effort and Costs . 220
6.2.6 Estimating Testing Effort . 222
6.2.7 The Cost of Testing vs. The Cost of Defects 223

6.3 Test Planning, Control, and Monitoring 225
6.3.1 Test Execution Planning . 226
6.3.2 Test Control . 232
6.3.3 Test Cycle Monitoring . 232
6.3.4 Test Reports . 233

xvi Contents

6.4 Defect Management . 235
6.4.1 Evaluating Test Reports . 236
6.4.2 Creating a Defect Report . 238
6.4.3 Classifying Failures and Defects 241
6.4.4 Defect Status Tracking . 242
6.4.5 Evaluation and Reporting . 245

6.5 Configuration Management . 246

6.6 Relevant Standards and Norms . 248

6.7 Summary . 249

7 Test Tools 251

7.1 Types of Test Tools . 252
7.1.1 Test Management Tools . 252
7.1.2 Test Specification Tools . 256
7.1.3 Static Test Tools . 257
7.1.4 Tools for Automating Dynamic Tests. 260
7.1.5 Load and Performance Testing Tools 266
7.1.6 Tool-Based Support for Other Kinds of Tests 267

7.2 Benefits and Risks of Test Automation 268

7.3 Using Test Tools Effectively . 271
7.3.1 Basic Considerations and Principles 271
7.3.2 Tool Selection . 272
7.3.3 Pilot Project . 273
7.3.4 Success Factors During Rollout and Use 274

7.4 Summary . 275

Appendices 277

A Important Notes on the Syllabus and the Certified Tester Exam 279

B Glossary 281

C References 309

C.1 Literature . 309
C.2 Norms and Standards . 311
C.3 URLs . 313

Index 317

1

1 Introduction

Software is everywhere! Nowadays there are virtually no devices, machines,
or systems that are not partially or entirely controlled by software. Import-
ant functionality in cars—such as engine or gear control—have long been
software-based, and these are now being complemented by increasingly
smart software-based driver assist systems, anti-lock brake systems, park-
ing aids, lane departure systems and, perhaps most importantly, autono-
mous driving systems. Software and software quality therefore not only
govern how large parts of our lives function, they are also increasingly
important factors in our everyday safety and wellbeing.

Equally, the smooth running of countless companies today relies
largely on the reliability of the software systems that control major pro-
cesses or individual activities. Software therefore determines future com-
petitiveness. For example, the speed at which an insurance company can
introduce a new product, or even just a new tariff, depends on the speed at
which the corresponding IT systems can be adapted or expanded.

Quality has therefore become a crucial factor for the success of
 products and companies in the fields of both technical and commercial
software.

Most companies have recognized their dependence on software,
whether relying on the functionality of existing systems or the introduc-
tion of new and better ones. Companies therefore constantly invest in their
own development skills and improved system quality. One way to achieve
these objectives is to introduce systematic software evaluation and test-
ing procedures. Some companies already have comprehensive and strict
testing procedures in place, but many projects still suffer from a lack of
basic knowledge regarding the capacity and usefulness of software testing
procedures.

This book aims to provide the basic knowledge necessary to set up
structured, systematic software evaluation and testing techniques that will
help you improve overall software quality.

This book does not presume previous knowledge of software quality
assurance. It is designed for reference but can also be used for self-study.

High dependency

on reliable software

Grass-roots knowledge

of structured evaluation

and testing

2 1 Introduction

The text includes a single, continuous case study that provides explana-
tions and practical solutions for each of the topics covered.

This book is aimed at all software testers in all types of companies
who want to develop a solid foundation for their work. It is also for pro-
grammers and developers who have taken over (or are about to take over)
existing test scenarios, and it is also aimed at project managers who are
responsible for budgeting and overall procedural improvement. Addition-
ally, it offers support for career changers in IT-related fields and people
involved in application approval, implementation, and development.

Especially in IT, lifelong learning is essential, and software testing
courses are offered by a broad range of companies and individuals. Univer-
sities, too, are increasingly offering testing courses, and this book is aimed
at teachers and students alike.

The ISTQB®

Certified Tester program is today seen as the worldwide

standard for software testing and quality assurance training. The ISTQB®

(International Software Testing Qualifications Board) [URL: ISTQB] coor-
dinates qualification activities in individual countries and ensures the
global consistency and comparability of the syllabi and exam papers.
National Testing Boards are responsible for publishing and maintaining
local content as well as the organization and supervision of exams. They
also approve courses and offer accreditation for training providers. Testing
Boards therefore guarantee that courses are of a consistently high standard
and that participants end up with an internationally recognized certificate.
Members of the Testing Boards include training providers, testing experts
from industrial and consulting firms, and university lecturers. They also
include representatives from trade associations.

The Certified Tester training scheme is made up of units with three lev-
els of qualification. For more details, see the ISTQB®

[URL: ISTQB] web-

site. The basics of software testing are described in the Foundation Level
syllabus. You can then move on to take the Advanced Level exam, which
offers a deeper understanding of evaluation and testing skills. The Expert
Level certificate is aimed at experienced software testing professionals, and
consists of a set of modules that cover various advanced topics (see also
section 6.1.2). In addition, there are syllabi for agile software development
(foundation and advanced level) as well as special topics from the testing
area (for example, Security Tester, Model-Based Tester, Automotive Soft-
ware Tester).

This book covers the contents of the Foundation Level syllabus. You
can use the book for self-study or in conjunction with an approved course.

Certification program

for software testers

Three-stage training scheme

31 Introduction

1 IntroductionThe topics covered in this book and the basic content of the Founda-
tion Certificate course are as follows:

Chapter 2 discusses the basics of software testing. Alongside the con-
cepts of when to test, the objectives to aim for, and the required testing
thoroughness, it also addresses the basic concepts of testing processes. We
also talk about the psychological difficulties that can arise when you are
looking for errors in your own work.

Chapter 3 introduces common development lifecycle models (sequen-
tial, iterative, incremental, agile) and explains the role that testing plays in
each. The various test types and test levels are explained, and we investi-
gate the difference between functional and non-functional testing. We also
look at regression testing.

Static testing (i.e., tests during which the test object is not executed)
are introduced in Chapter 4. Reviews and static tests are used successfully
by many organizations, and we go into detail on the various approaches
you can take.

Chapter 5 addresses testing in a stricter sense and discusses “black-
box” and “white-box” dynamic testing techniques. Various test techniques
and methods are explained in detail for both. We wrap up this chapter by
looking at when it makes sense to augment common testing techniques
using experience-based or intuitive testing techniques.

Chapter 6 discusses the organizational skills and tasks that you need to
consider when managing test processes. We also look at the requirements
for defect and configuration management, and wind up with a look at the
economics of testing.

Testing software without the use of dedicated tools is time-consuming
and extremely costly. Chapter 7 introduces various types of testing tools
and discusses how to choose and implement the right tools for the job you
are doing.

Most of the processes described in this book are illustrated using a
case study based on the following scenario:

A car manufacturer has been running an electronic sales system called
VirtualShowRoom (VSR) for over a decade. The system runs at all the com-
pany’s dealers worldwide:

	� Customers can configure their own vehicle (model, color, extras, and so
on) on a computer, either alone or assisted by a salesperson. The system
displays the available options and immediately calculates the correspond-
ing price. This functionality is performed by the DreamCar module.

Chapter overview

Software testing basics

Lifecycle testing

Static testing

Dynamic testing

Test management

Test tools

Case Study:
VirtualShowRoom
VSR-II

4 1 Introduction

	� Once the customer has selected a configuration, he can then select
optimal financing using the EasyFinance module, order the vehicle
using the JustInTime module, and select appropriate insurance using
the NoRisk module. The FactBook module manages all customer and
contract data.

The manufacturer’s sales and marketing department has decided to update
the system and has defined the following objectives:

	� VSR is a traditional client-server system. The new VSR-II system is to
be web-based and needs to be accessible via a browser window on any
type of device (desktop, tablet, or smartphone).
	� The DreamCar, EasyFinance, FactBook, JustInTime, and NoRisk mod-

ules will be ported to the new technology base and, during the process,
will be expanded to varying degrees.
	� The new ConnectedCar module is to be integrated into the system. This

module collects and manages status data for all vehicles sold, and com-
municates data relating to scheduled maintenance and repairs to the
driver as well as to the dealership and/or service partner. It also pro-
vides the driver with various additional bookable services, such as a
helpdesk and emergency services. Vehicle software can be updated and
activated “over the air”.
	� Each of the five existing modules will be ported and developed by a

dedicated team. An additional team will develop the new ConnectedCar
module. The project employs a total of 60 developers and other special-
ists from internal company departments as well as a number of external
software companies.
	� The teams will work using the Scrum principles of agile development.

This agile approach requires each module to be tested during each iter-
ation. The system is to be delivered incrementally.
	� In order to avoid complex repeat data comparisons between the old

and new systems, VSR-II will only go live once it is able to duplicate the
functionality provided by the original VSR system.

Within the scope of the project and the agile approach, most project par-
ticipants will be confronted or entrusted with test tasks to varying degrees.
This book provides the basic knowledge of the test techniques and pro-
cesses required to perform these tasks. Figure 1-1 shows an overview of
the planned VSR-II system.

51 Introduction

The appendices at the end of the book include references to the syllabus
and Certified Tester exam, a glossary, and a bibliography. Sections of the
text that go beyond the scope of the syllabus are marked as side notes.

The book’s website [URL: Softwaretest Knowledge] includes sample
exam questions relating to each chapter, updates and addenda to the text,
and references to other books by authors whose work supports the Certi-
fied Tester training scheme.

We have put a free implementation of VSR-II as a test object online
for training purposes1. It reproduces the VSR-II examples included in the
book on a realistic, executable system, so you can “test” live to find the
software bugs hidden in VSR-II by applying the test techniques presented
in the book. It takes just a few mouse clicks to get started:

1. Open your browser and load vsr.testbench.com
2. Create your personal VSR-II training workspace
3. Log into your VSR-II workspace and start

WAN

InternetInternet

WAN

Service partner
systems

VSR-II and CC (Browser frontends)

VSR-II
(backend)

ConnectedCar
(backend)

ConnectedCar (CC)

Factory PPSInhouse-IT

Fig. 1-1 VSR-II overview

Certified Tester syllabus

and exam

The book’s website

Web-based Training System

vsr.testbench.com

6 1 Introduction

Also included in your registration for a VSR-II training workspace is a free
basic license for the test management system TestBench CS, which includes
the VSR-II test specification as a demo project and several of the VSR-II
test cases presented in the book.

You can use TestBench CS not only for learning and training, but
also for efficient testing of your own “real” software. A description of all
 features can be found at [URL: TestBench CS].

Many thanks to our colleagues at imbus Academy, imbus JumpStart and
imbus TestBench CS Development Team for this awesome implementation
of the VSR-II Case Study as a web-based training system.

Fig. 1-2 VSR-II Training System Login-Screen

7

2 Software Testing Basics

This introductory chapter explains the basic concepts of software testing
that are applied in the chapters that follow. Important concepts included
in the syllabus are illustrated throughout the book using our practical
VSR-II case study. The seven fundamental principles of software testing
are introduced, and the bulk of the chapter is dedicated to explaining
the details of the testing process and the various activities it involves. To
conclude, we will discuss the psychological issues involved in testing, and
how to avoid or work around them.

2.1 Concepts and Motivations

Industrially manufactured products are usually spot-checked to make sure
they fulfill the planned requirements and perform the required task. Dif-
ferent products have varying quality requirements and, if the final product
is flawed or faulty, the production process or the design has to be modified
to remedy this.

What is generally true for industrial production processes is also true
for the development of software. However, checking parts of the product
or the finished product can be tricky because the product itself isn’t actu-
ally tangible, making “hands-on” testing impossible. Visual checks are lim-
ited and can only be performed by careful scrutiny of the development
documentation.

Software that is unreliable or that simply doesn’t perform the required
task can be highly problematic. Bad software costs time and money and
can ruin a company’s reputation. It can even endanger human life—for
example, when the “autopilot” software in a partially autonomous vehicle
reacts erroneously or too late.

It is therefore extremely important to check the quality of a software
product to minimize the risk of failures or crashes. Testing monitors soft-
ware quality and reduces risk by revealing faults at the development stage.
Software testing is therefore an essential but also highly complex task.

Quality requirements

Software is intangible

Faulty software is a serious

problem

Testing helps to assess

software quality

8 2 Software Testing Basics

Every release of the VSR-II system has to be suitably tested before it is delivered
and rolled out. This aims to identify and remedy faults before they can do any
damage. For example, if the system executes an order in a faulty way, this can cause
serious financial problems for the customer, the dealer and the manufacturer, as
well as damaging the manufacturer’s image. Undiscovered faults like this increase
the risk involved in running the software.

Testing is often understood as spot-check execution1

of the software in

question (the test object) on a computer. The test object is fed with test
data covering various test cases and is then executed. The evaluation that
follows checks whether the test object fulfills its planned requirements.2

However, testing involves much more than just performing a series of
test cases. The test process involves a range of separate activities, and per-
forming tests and checking the results are just two of these. Other testing
activities include test planning, test analysis, and the design and imple-
mentation of test cases. Additional activities include writing reports on
test progress and results, and risk analysis. Test activities are organized
differently depending on the stage in a product’s lifecycle. Test activities
and documentation are often contractually regulated between the cus-
tomer and the supplier, or are based on the company’s own internal guide-
lines. Detailed descriptions of the individual activities involved in software
 testing are included in sections 2.3 and 6.3.

Alongside the dynamic tests that are performed on a computer (see
Chapter 5), documents such as requirement specifications, user stories,
and source code also need to be tested as early as possible in the develop-
ment process. These are known as static tests (see Chapter 4). The sooner
faults in the documentation are discovered and remedied, the better it is
for the future development process, as you will no longer be working with
flawed source material.

Testing isn’t just about checking that a system fulfills its require-
ments, user stories, or other specifications; it is also about ensuring that
the product fulfills the wishes and expectations of its users in a real-
world environment. In other words, checking whether it is possible to
use the system as intended and making sure it fulfills its planned pur-
pose. Testing therefore also involves validation (see Principle #7 in sec-
tion 2.1.6—“Absence-of-errors is a fallacy”).

1. Here, we are referring to the dynamic testing processes discussed in Chapter 5. Static
testing (see Chapter 4) doesn’t require the software to be executed.

2. Testing alone cannot prove that all requirements have been fulfilled (see below).

Case Study:
The risks of using

 faulty software

Testing involves taking

 a spot-check approach

Testing involves more

 than just executing tests

 on a computer

Static and dynamic testing

Verification and validation

92.1 Concepts and Motivations

2.1 Concepts and MotivationsThere is currently no such thing as a fault-free software system, and
this situation is unlikely to change for systems above a given degree of
complexity or those with a large number of lines of code. Many faults are
caused by a failure to identify or test for exceptions during code devel-
opment—things like failing to account for leap years, or not considering
constraints when it comes to timing or resource allocation. It is there-
fore common—and sometimes unavoidable—that software systems go
live, even though faults still occur for certain combinations of input data.
However, other systems work perfectly day in day out in all manner of
industries.

With the exception of very small programs, even if every test you per-
form returns zero defects, you cannot be sure that additional tests won’t
reveal previously undiscovered faults. It is impossible to prove complete
freedom from faults by testing.

2.1.1 Defect and Fault Terminology

A situation can only be classed as faulty if you define in advance what
exactly is supposed to happen in that situation. In order to make such a
definition, you need to know the requirements made of the (sub)system
you are testing as well as other additional information. In this context, we
talk about the test basis against which tests are performed and that serves
as the basis for deciding whether a specific function is faulty.

A defect is therefore defined as a failure to fulfill a predefined require-
ment, or a discrepancy between the actual behavior (at run time or while
testing) and the expected behavior (as defined in the specifications, the
requirements, or the user stories). In other words, when does the system’s
behavior fail to conform to its actual requirements?

Unlike physical systems, software systems don’t fail due to age or wear.
Every defect that occurs is present from the moment the software is coded,
but only becomes apparent when the system is running.

System failures result from faults and only become apparent to the tes-
ter or the user during testing or at run-time. For example, when the system
produces erroneous output or crashes.

We need to distinguish between the effects of a fault and its causes. A
system failure is caused by a fault in the software, and the resulting condi-
tion is considered to be a defect. The word “bug” is also used to describe
defects that result from coding errors, such as an incorrectly programmed
or forgotten instruction in the code.

No large system is fault-free

Freedom from faults cannot

be achieved through testing

The test basis as a starting

point for testing

What counts as a defect?

Faults cause failures

10 2 Software Testing Basics

It is possible that a fault can be offset by one or more other faults in
other parts of the program. Under these circumstances, the fault in ques-
tion only becomes apparent when the others have been remedied. In other
words, correcting a fault in one place can lead to unexpected side effects
in others.

Not all faults cause system failures, and some failures occur never,
once, or constantly for all users. Some failures occur a long way from
where they are caused.

A fault is always the result of an error or a mistake made by a person—
for example, due to a programming error at the development stage.

Errors occur for various reasons. Some typical (root) causes are:

	� All humans make errors!
	� Time pressure is often present in software projects and is a regular

source of errors.
	� The complexity of the task at hand, the system architecture, the system

design, or the source code.
	� Misunderstandings between participants in the project—often in the

form of differing interpretations of the requirements or other docu-
ments.
	� Misunderstandings relating to system interaction via internal and

external interfaces. Large systems often have a huge number of inter-
faces.
	� The complexity of the technology in use, or of new technologies previ-

ously unknown to project participants that are introduced during the
project.
	� Project participants are not sufficiently experienced or do not have

appropriate training.

A human error causes a fault in part of the code, which then causes some
kind of visible system failure that, ideally, is revealed during testing (see
figure 2-1: Debugging, see below). Static tests (see Chapter 4) can directly
detect faults in the source code.

System failures can also be caused by environmental issues such as
radiation and magnetism, or by physical pollution that causes hardware
and firmware failures. We will not be addressing these types of failures
here.

Defect masking

People make errors

112.1 Concepts and Motivations

Not every unexpected test result equates to a failure. Often, a test will
indicate a failure even though the underlying fault (or its cause) isn’t part
of the test object. Such a result is known as a “false positive”. The oppo-
site effect can also occur—i.e., a failure doesn’t occur even though testing
should reveal its presence. This type of result is known as a “false negative”.
You have to bear both of these situations in mind when evaluating your
test results. Your result can also be a “correct positive” (failure revealed by
testing) or a “correct negative” (expected behavior confirmed by testing).
For more detail on these situations, see section 6.4.1.

If faults and the errors or mistakes that cause them are revealed by
testing it is worth taking a closer look at the causes in order to learn how
to avoid making the same (or similar) errors or mistakes in future. The
knowledge you gain this way can help you optimize your processes and
reduce or prevent the occurrence of additional faults.

Tests

Failure

comes into e�ect

Fault or bug

in the program

Error

made by a human

dynamic

static

Debugging

Fig. 2-1
The relationships between,
errors, faults, and failures

False positive and

false negative results

Learning from your mistakes

12 2 Software Testing Basics

Customers can use the VSR EasyFinance module to calculate various vehicle-
financing options. The interest rate the system uses is stored in a table, although
the purchase of vehicles involved in promotions and special offers can be subject
to differing interest rates.

VSR-II is to include the following additional requirement:

REQ: If the customer agrees to and passes an online credit check, the EasyFinance
module applies an interest rate from a special bonus interest rate table.

The author of this requirement unfortunately forgot to clarify that a reduction in
the interest rate is not permissible for vehicles sold as part of a special offer. This
resulted in this special case not being tested in the first release. In turn, this meant
that customers were offered low interest rates online but were charged higher rates
when billed, resulting in complaints.

2.1.2 Testing Terminology

In order to remedy a software fault it has to be located. To start with, we
only know the effect of the fault, but not its location within the code. The
process of finding and correcting faults is called debugging and is the
responsibility of the developer. Debugging is often confused with testing,
although these are two distinct and very different tasks. While debugging
pinpoints software faults, testing is used to reveal the effect a fault causes
(see figure 2-1).

Correcting a fault improves the quality of the product (assuming the
correction doesn’t cause additional, new faults). Tests used to check that
a fault has been successfully remedied are called confirmation tests. Tes-
ters are often responsible for confirmation testing, whereas developers
are more likely to be responsible for component testing (and debugging).
However, these roles can change in an agile development environment or
for other software lifecycle models.

Unfortunately, in real-world situations fault correction often leads
to the creation of new faults that are only revealed when completely new
input scenarios are used. Such unpredictable side effects make testing
trickier. Once a fault has been corrected you need to repeat your previous
tests to make sure the targeted failure has been remedied, and you also
need to write new tests that check for unwanted side effects of the correc-
tion process.

Case Study:
 Vague requirements as a

cause of software faults

Testing is not debugging

Confirmation testing

132.1 Concepts and Motivations

Static and dynamic tests are designed to achieve various objectives:

	� A qualitative evaluation of work products related to the requirements,
the specifications, user stories, program design, and code
	� Prove that all specific requirements have been completely implemented

and that the test object functions as expected for the users and other
stakeholders
	� Provide information that enables stakeholders to make a solid estimate

of the test object’s quality and thus generate confidence in the quality
provided3

	� The level of quality-related risk can be reduced through identification
and correction of software failures. The system will then contain fewer
undiscovered faults.
	� Analysis of the program and its documentation in order to avoid

unwanted faults, and to document and remedy known ones
	� Analyze and execute the program in order to reproduce known failures
	� Receive information about the test object in order to decide whether

the component in question can be committed for integration with
other components
	� Demonstrate that the test object adheres and/or conforms to the neces-

sary contractual, legal and regulatory requirements and standards

Test objectives can vary depending on the context. Furthermore, they can
vary according to the development model you use (agile or otherwise) and
the level of test you are performing—i.e., component, integration, system,
or acceptance tests (see section 3.4).

When you are testing a component, your main objective should be to
reveal as many failures as possible and to identify (i.e., debug) and remedy
the underlying faults as soon as possible. Another primary objective can
be to select tests that achieve the maximum possible level of code coverage
(see section 2.3.1).

One objective of acceptance testing is to confirm that the system
works and can be used as planned, and thus fulfills all of its functional
and non-functional requirements. Another is to provide information that
enables stakeholders to evaluate risk and make an informed decision about
whether (or not) to go live.

3. If comprehensive testing reveals few (or no) failures, this increases stakeholder
confidence in the product.

Objectives of testing

Objectives depend on context

14 2 Software Testing Basics

The various names used for different types of tests can be confusing. To understand
the naming of tests it is useful to differentiate between the following naming cate-
gories:

1. Test objective
 The naming of a test type is based on the test objective (for example, a “load test”).

2. Test method/technique
 A test is named according to the method or technique used to specify and/or per-

form the test (i.e., “state transition testing”, as described in section 5.1.3)

3. Test object
 A test is named according to the type of object to be tested (for example, “GUI test“

or “database test“)

4. Test level
 A test is named according to the corresponding level of the development model

being used (for example, a “system test“)

5. Test person
 A test is named after the person or group who perform the test (for example,

“developer test“, “user test“)

6. Test scope
 A test is named according to its scope (for example, a “partial regression test“)

As you can see, not all of these terms define a distinct type of test. Instead, the dif-
ferent names highlight different aspects of a test that are important or in focus in a
particular context or with regard to a particular testing objective.

2.1.3 Test Artifacts and the Relationships Between Them

The previous sections have already described some types of test artifacts.
The following sections provide an overview of the types of artifacts neces-
sary to perform dynamic testing.

The test basis is the cornerstone of the testing process. As previ-
ously noted, the test basis comprises all documents that help us to decide
whether a failure has occurred during testing. In other words, the test basis
defines the expected behavior of the test object. Common sense and spe-
cialist knowledge can also be seen as part of the test basis and can be used
to reach a decision. In most cases a requirements document, a specifica-
tion, or a user story is available, which serves as a test basis.

The test basis is used to define test cases, and a test run takes place
when the test object is fed with appropriate test data and executed on a
computer. The results of the test run are checked and the team decides

Side Note:
Scheme for naming

different types of testing

Test basis

Test cases and test runs

152.1 Concepts and Motivations

whether a failure has occurred—i.e., whether there is a discrepancy
between the test object’s expected and actual behaviors. Usually, certain
preconditions have to be met in order to run a test case—for example, the
corresponding database has to be available and filled with suitable data.

An individual test cannot be used to test the entire test basis, so it
has to focus on a specific aspect. Test conditions

are therefore extrapolated

from the test basis in order to pursue specific test objectives (see above). A
test condition can be checked using one or more tests and can be a func-
tion, a transaction, a quality attribute, or a structural element of a com-
ponent or system. Examples of test conditions in our case study VSR-II
system are vehicle configuration permutations (see section 5.1.5), the look
and feel of the user interface, or the system’s response time.

By the same token, a test object can rarely be tested as a complete
object in its own right. Usually, we need to identify separate items that
are then tested using individual test cases. For example, the test item for
VSR-II’s price calculation test condition is the calculate_price() method
(see section 5.1.1). The corresponding test cases are specified using appro-
priate testing techniques (see Chapter 5).

It makes little sense to perform test cases individually. Test cases are
usually combined in test suites that are executed in a test cycle. The timing
of test cycles is defined in the test execution schedule.

Test suites are automated using scripts that contain the test sequence
and all of the actions required to create the necessary preconditions for
testing, and to clean up once testing is completed. If you execute tests man-
ually, the same information has to be made available for the manual tester.

Test runs are logged and recorded in a test summary report.
For every test object, you need to create a test plan that defines every-

thing you need to conduct your tests (see section 6.2.1). This includes
your choice of test objects and testing techniques, the definition of the test
objectives and reporting scheme, and the coordination of all test-related
activities.

Figure 2-2 shows the relationships between the various artifacts
involved. Defining the individual activities involved in the testing process
(see section 2.3) helps to clarify when each artifact is created.

Test conditions

Test item

Test suites and test execution

schedules

Test scripts

Test logs

Test plan

16 2 Software Testing Basics

2.1.4 Testing Effort

Testing takes up a large portion of the development effort, even if only a
part of all conceivable tests—or, more precisely, all conceivable test cases—
can be considered. It is difficult to say just how much effort you should
spend testing, as this depends very much on the nature of the project at
hand.4

The importance of testing—and thus the amount of effort required
for testing—is often made clear by the ratio of testers to developers. In
practice, the following ratios can be found: from one tester for every ten
developers to three testers per developer. Testing effort and budget vary
massively in real-world situations.

VSR-II enables potential customers to configure their own vehicle on a computer
screen. The extras available for specific models and the possible combinations of
options and preconfigured models are subject to a complex set of rules. The old
VSR System allowed customers to select combinations that were not actually deliv-
erable. As a consequence of the VSR-II QA/Test planning requirement Functional
suitability/DreamCar = high (see below) customers should no longer be able to
select non-deliverable combinations.

4. Section 6.2.5 goes into more detail on this topic.

Test Object

Test Plan

Test Item

Test creation &
execution

Test analysis &
design

Test Suite

Test Script

Test Case

■ Required
preconditions

■ Input data

■ Expected
 postconditions

 Test Execution Schedule
Test planning &

management

Test Log

Test Conditions

Test Basis The test basis de�nes the expected behavior of the test object

■ Expected results

Fig. 2-2 The relationships between test artifacts

Testing effort depends

on the project (environment)

Case Study:
 Testing effort

 and vehicle variants

172.1 Concepts and Motivations

The product owner responsible for the DreamCar module wants to know how
much testing effort will be required to test this aspect of the module as compre-
hensively as possible. To do this, he makes an estimate of the maximum number of
vehicle configuration options available. The results are as follows:

There are 10 vehicle models, each with 5 different engine options; 10 types
of wheel rims with summer or winter tires; 10 colors, each with matt, glossy, or
pearl effect options; and 5 different entertainment systems. These options result in
10×5×10×2×10×3×5=150.000 different variants, so testing one variant every sec-
ond would take a total of 1.7 days.

A further 50 extras (each of which is selectable or not) produce a total of
150.000×250 = 168.884.986.026.393.600.000 variations.

The product owner intuitively knows that he doesn’t have to test for every
possible combination, but rather for the rules that define which combinations of
options are not deliverable. Nevertheless, possible software faults create the risk
that the DreamCar module wrongly classifies some configurations as deliverable
(or permissible combinations as non-deliverable).

How much testing effort is required here and how much can it effectively cost?
The product owner decides to ask the QA/testing lead for advice. One possible
solution to the issue is to use pairwise testing (see the side note in section 5.1.5).

Is a high testing effort affordable and justifiable? Jerry Weinberg’s response to this
question is: “Compared with what?” [DeMarco 93]. This response points out the risks
of using a faulty software system. Risk is calculated from the likelihood of a certain
situation arising and the expected costs when it does. Potential faults that are not
discovered during testing can later generate significant costs.

In March 2016, a concatenation of software faults destroyed the space telescope
Hitomi, which was built at a cost of several hundred million dollars. The satellite’s
software wrongly assumed that it was rotating too slowly and tried to compensate
using countermeasures. The signals from the redundant control systems were then
wrongly interpreted and the speed of rotation increased continuously until the
centrifugal force became too much and Hitomi disintegrated (from [URL: Error
Costs]).

In 2018 and 2019 two Boeing 737 MAX 8 airplanes crashed due to design flaws
in the airplane’s MCAS flight control software [URL: MAX-groundings]. Here
too, the software—misdirected by incorrect sensor information—generated fatal
countermeasures.

Side Note:
When is increased testing
effort justifiable?

Example:
The cost of failure

18 2 Software Testing Basics

Testing effort has to remain in reasonable proportion to the results testing can achieve.
“Testing makes economic sense as long as the cost of finding and remedying faults is
lower than the costs produced by the corresponding failure occurring when the system
is live.”5

[Pol 00]. Reasonable testing effort therefore always depends on the degree of risk

involved in failure and an evaluation of the danger this incurs. The price of the destroyed
space telescope Hitomi could have paid for an awful lot of testing.

The DreamCar module constantly updates and displays the price of the current
configuration. Registered customers with validated ID can order a vehicle online.

Once a customer clicks the Order button and enters their PIN, the vehicle
is ordered and the purchase committed. Once the statutory revocation deadline
has passed, the chosen configuration is automatically passed on to the production
management system that initiates the build process.

Because the online purchase process is binding, if the system calculates and
displays an incorrect price the customer has the right to insist on the paying that
price. This means that wrongly calculated prices could lead to the manufacturer
selling thousands of cars at prices that are too low. Depending on the degree of
miscalculation, this could lead to millions of dollars in losses. Having each pur-
chase order checked manually is not an option, as the whole point of the VSR-II
system is that vehicles can be ordered completely automatically online.

Systems or system parts with a high risk have to be tested more exten-
sively than those that do not cause major damage in case of failure.6 Risk
assessment has to be carried out for the individual system parts or even for
individual failure modes. If there is a high risk of a system or subsystem
malfunctioning, the test requires more effort than for less critical (sub)
systems. These procedures are defined through international standards
for the production of safety-critical systems. For example, the [RTC-DO
178B] Airborne Systems and Equipment Certification standard prescribes
complex testing procedures for aviation systems.

Although there are no material risks involved, a computer game that
saves scores incorrectly can be costly for its manufacturer, as such faults
affect the public acceptance of a game and its parent company’s other
 products, and can lead to lost sales and damage to the company’s reputa-
tion.

5. These costs include not only software repair, renewed testing, and replacement of the faulty
software, but also immaterial costs such as bad publicity and legal issues.

6. Section 6.2.4 goes into detail on this topic.

Case Study:
 Risks and losses when

failures occur

Defining test thoroughness

and scope depending

 on risk factors

