

Band 20

Zhu Fan

FUELS JOINT

RESEARCH GROUP

Fluoreszenzspektroskopische Charakterisierung und Identifizierung von Kraftstoffgemischen zur Entwicklung eines Kraftstoffsensors

Herausgeber: Jürgen Krahl, Axel Munack, Peter Eilts, Jürgen Bünger

Cuvillier Verlag Göttingen

Fluoreszenzspektroskopische Charakterisierung und Identifizierung von Kraftstoffgemischen zur Entwicklung eines Kraftstoffsensors

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Fluoreszenzspektroskopische Charakterisierung und Identifizierung von Kraftstoffgemischen zur Entwicklung eines Kraftstoffsensors

Von der Fakultät für Lebenswissenschaften

der Technischen Universität Carolo-Wilhelmina

zu Braunschweig

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

genemigte

Dissertation

von Zhu Fan aus GuangXi, China

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2016

Zugl.: (TU) Braunschweig, Univ., Diss., 2016

- 1. Referent:
- 2. Referent:

Prof. Dr. rer. nat. habil. Jürgen Krahl Prof. Dr. rer. nat. habil. Uwe Schröder

eingereicht am: 18.04.2016 mündliche Prüfung (Disputation) am: 01.07.2016

Druckjahr 2016 Dissertation an der Technischen Universität Braunschweig, Fakultät für Lebenswissenschaften

© CUVILLIER VERLAG, Göttingen 2016 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2016

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-9301-3 eISBN 978-3-7369-8301-4

Vorveröffentlichungen

Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit in folgenden Beiträgen vorab veröffentlicht:

Publikationen

- Fan, Z., Schröder, O., Bär, F., Eskiner, M., Schaper, K. & Krahl, J.: Fluoreszenzspektroskopische Charakterisierung und Identifizierung von Kraftstoffgemischen zur Entwicklung eines Kraftstoffsensors (TRLFS). Abschlussbericht aus TAC der Hochschule Coburg, Coburg. FNR-Förderkennzeichen: 22004710 (2013).
- Fan, Z., Schröder, O. & Krahl, J.: Analysis of diesel fuels/biodiesel blends and identification of biodiesel using time-resolved laser-induced fluorescence spectroscopy (TRLFS). Landbauforsch · Appl Agric Forestry Res · 65(1):1-14 (2015).
- Götz K., Zickmann S., Fey B., Bünger J., Stapf W., Fan Z., Garbe T., Munack A. & Krahl J.: Diesel R33. Abschlussbericht aus TAC der Hochschule Coburg. Hrsg.: Krahl, J., Munack, A., Eilts, P., Bünger, J., Band 15; Cuviller Verlag, Göttingen (2015).

Tagungsbeiträge

- Fan, Z., Krahl, J.: Characterization and identification of diesel fuels, biodiesel and their blends by time-resolved laser-induced fluorescence Spectroscopy (TRLFS). (Poster) im Tagungsband: IMCS 2012 – The 14th International Meeting on Chemical Sensors, 20.05.-23.05.2012, Nürnberg, 1483-1485 (2012).
- Fan, Z. & Krahl J.: Characterization and Identification of Diesel Fuels, Biodiesel and their Blends by Time-Resolved Laser-Induced Fluorescence Spectroscopy. im Tagungsband: AMA Conferences 2013, Proceedings SENSOR 2013, Nürnberg, 432-436 (2013).
- Fan, Z., Bär, F. & Krahl, J.: KFZ-Kraftstoffsensor: Unterscheidung von Kraftstoffsorten mittels laserinduzierter Fluoreszenz- (LIF-) oder zeitaufgelöster laserinduzierter Fluoreszenz- (ZLIF-) Messungen im Einfüllstutzen. Tagungsbeitrag; Bayerischer Patentkongress, 22.10. 2013, München (2013).
- Bär, F., Eskiner, M., Fan, Z. & Krahl, J.: Onlinemessung von Kraftstoffeigenschaften aus Biodieselblends mittels dielektrischer Spektroskopie und Fluoreszenzspektroskopie. im Tagungsband: 12. FAD-Konferenz, 05.11.-06.11.2014, Dresden, 219-230 (2014).
- Fan, Z., Gross, V. & Krahl, J.: Fluoreszenzsensor zur Charakterisierung und Identifizierung von Dieselkraftstoffgemischen. im Tagungsband: 7. Biokraftstoffsymposium, 26.02.-27.02.2015, Coburg, Hrsg.: Krahl, J., Munack, A., Eilts, P., Bünger, J. Band 14; Cuviller Verlag, Göttingen, 94-102 (2015).

Fan, Z., Gross, V. & Krahl, J.: Laser induced fluorescence spectroscopic sensor for realtime identification of fossil diesel fuel, biodiesel and their blends. im Tagungsband: AMA Conferences 2015 – SENSOR 2015 and IRS2 2015, Nürnberg, 596-601 (2015).

Patente

- Fan, Z., Bär, F. & Krahl, J. Anordnung und Verfahren für ein Kraftfahrzeug zum Erfassen einer Kraftstoffsorte und/oder Kraftstoffcharakteristik, Patent DE102012020913A1 (WO2014063823 (A1)) (2012).
- Fan, Z., Bär, F., Eskiner, M. & Krahl, J. Sensor zur berührungslosen Messung der Oxidationsstabilität von Biokraftstoffen durch Erfassung mono- und oligomerer Alterungsprodukte mittels statischer Fluoreszenz, laserinduzierter Fluoreszenz oder zeitaufgelöster laserinduzierter Fluoreszenz. DE102014222331.8, Anmeldung im 10.2014, noch im Prüfverfahren (2014).
- Eskiner, M., Fan, Z., Bär, F. & Krahl, J. Sensor zur Erfassung der Kraftstoffqualität in Tank-/Fahrzeugtanksystemen mittels dielektrischer Relaxationsspektroskopie. DE102014016169.2, Anmeldung im 11.2014, noch im Prüfverfahren (2014)

Danksagung

Ich möchte mich an dieser Stelle bei vielen Personen bedanken, die mich bei der Erstellung dieser Arbeit sehr unterstützt haben.

Mein größter Dank gilt Prof. Dr. Jürgen Krahl für die freundliche Überlassung des hochinteressanten Themas und die Bereitstellung des Arbeitsplatzes. Er hat mich während meiner ganzen Promotionsphase intensiv, professionell und warmherzig begleitet, stand mir immer mit Rat und Tat bei inhaltlichen sowie methodischen Fragen zu Seite, wusste mich in den richtigen Momenten zu motivieren und gewährte mir die Freiheit während der gesamten Forschung, was maßgeblich zum Gelingen dieser Arbeit beitrugen.

Prof. Dr. Uwe Schröder und Prof. Dr. Henning Hopf danke ich für die Betreuung und Begutachtung meiner Arbeit. Ihre Anregungen und kritischen Kommentare haben zum guten Gelingen dieser Arbeit beigetragen. Außerdem danke ich Dr. Olaf Schröder, nicht nur für die Korrektur, sondern auch für den Freiraum, den er mir für die Fertigstellung der Arbeit in den letzten Monaten eingeräumt hat.

Bei meinen Kollegen Alexander Mäder, Ferdinand Bär, Anja Singer, Mustafa Eskiner, Kristin Götz, Markus Knorr, Jerome Kpan und Jens Staufenbiel möchte ich mich für die nette Zusammenarbeit bedanken. Sie waren mir eine sehr große Hilfe bei allen Methodenfragen und unsere Zusammenarbeit bei Publikation der Patente und Artikel ist eine unvergessliche Erfahrung. Ein großes Dankeschön gilt außerdem Dr. Klaus Horbaschek, Irene Jacob sowie Martin Holzhaus, die für mich da waren und immer an mich geglaubt haben. Jianqi Zhu, Marco Rauschert, Johannes Schlecht, Fabian Max-Philipp Ammer, Sascha Braun und Mira Mogalle danke ich für die tapfere Durchführung der Untersuchungen, die zum Teil bis tief in die Nacht stattfanden. Ein besonderer Dank gilt Viktor Gross für seinen atemberaubenden Erfolg zum Aufbau eines Kraftstoffsensors, der bei vielen Gelegenheiten vorgestellt wurde. Ines Brauer, Caroline Rahn und Olga Ehlers danke ich für die begeisterte Unterstützung und die hervorragende Organisation aller Termine. Frau Dr. Regina Graßmann danke ich für das effektive Schreibtraining und die linguistisch Schreibberatung zum professionellen Schreiben.

Meinen Betreuern und der ganzen Arbeitsgruppe danke ich für die harmonische und fröhliche Stimmung, durch die die langen Tage am Technologietransferzentrum Automotive der Hochschule Coburg (TAC) immer wieder ein bisschen leichter und angenehmer wurden.

Des Weiteren danke ich der Fachagentur Nachwachsende Rohstoffe e.V. (FNR), ohne deren finanzielle Unterstützung eine Untersuchung in dieser Größenordnung nicht möglich gewesen wäre.

Außerdem möchte ich mich ganz herzlich bei dem Thünen Institut für Agrartechnologie bedanken. Prof. Dr. Axel Munack, Kevin Schaper und Barbara Fey danke ich für ihre liebe Unterstützung sowie für die gute und erfreuliche Zusammenarbeit.

Den Studentinnen, Studenten und Professoren an der Technischen Universität Braunschweig und der Hochschule Coburg möchte ich für die freundliche Bereitschaft zur Teilnahme an meinen Untersuchungen danken.

Ich bedanke mich an dieser Stelle auch bei vielen Freunden für ihre Aufmunterungen sowie für die entgegengebrachte Nachsicht.

Mein besonderer Dank gilt meinen Eltern, meiner Frau Yue und meinem Son Ziyi für ihre Unterstützung und ihr vorbehaltloses Vertrauen.

Inhaltsverzeichnis

	VorveröffentlichungenI			I
	Danksagung			I
	Abbildungsverzeichnis			V
	Tabelleverzeichnis			. XIV
	Verwe	endet	e Abkürzungen	. XVI
	Verwe	endet	e mathematische Symbole	(VIII
1		Einl	eitung	1
	1.1	Ziels	setzung	1
	1.2	Auft	bau der Arbeit	3
2		Star	nd der Forschung	4
3		The	oretische Grundlagen	6
	3.1	Fluo	preszenz	6
	3.2	Kraf	tstoffe	10
	3.2.	1	Kraftstoffalterung	12
	3.2.	1.1	Autooxidation	12
	3.2.	1.2	Thermische Zersetzung	. 15
4		Mat	terialien und Messmethoden	. 17
	4.1	Mat	erialien	17
	4.1.	1	Kraftstoffe	17
	4.1.	2	Chemikalien	21
	4.2	Ana	lytische Geräte	22
	4.2.	1	Fluoreszenzspektroskopie	. 23
	4.2.	1.1	Statische Fluoreszenzspektroskopie	. 23
	4.2.	1.2	Zeitaufgelöste laserinduzierte Fluoreszenzspektroskopie	. 25
	4.2.	2	UV-Vis-Spektroskopie	. 30
	4.2.	3	Gaschromatographie Massenspektroskopie (GC-MS)	. 30
	4.2.	4	Gelpermeations-Chromatographie (GPC)	. 31
	4.2.	5	Rancimat-Methode	. 32
	4.2.	6	Permittivität und Verlustfaktor	. 32
	4.2.	7	Fourier-Transform-Infrarotspektrometer (FTIR-Spektrometer)	. 33
	4.2.	8	Stabinger-Viskosimeter	. 34
5		Che	mometrische Methoden zur Analyse der Messdaten	. 35
	5.1	Einfa	ache Datenreduktion durch Fensterzerlegung der 3D-Spektren der ZLIF-Messung	35

	5.2	Spek	trale Ähnlichkeit	. 36
	5.3	Explorativen Datenanalyse mit der Hauptkomponentenanalyse (PCA, engl. Principal Component Analysis)		
	5.4	Linea nicht Mac	are Klassifikation (PartiellekleinsteQuadrate-Diskriminanzanalyse, PLS-DA) und tlineare Klassifikation (Stützvektormaschine-Diskriminanzanalyse, engl. Support Vect hines, SVMs)	tor . 40
	5.5	Clust	teranalyse mit "k-Means"-Modell	. 42
	5.6	Para	llele Faktorenanalyse (PARAFAC-Analyse)	. 42
	5.7	Mult	tiple lineare Regression (OLS)	. 45
6		Erge	bnisse	.47
	6.1	Valid	lierung der ZLIF-Messung	. 47
	6.2	Best	immung der Fluorophore in Kraftstoffen	. 50
	6.2.	1	Bestimmung der Fluorophore im fossilen Dieselkraftstoff	. 50
	6.2.	2	Bestimmung der Fluorophore in Biodiesel	. 54
	6.2.	3	Bestimmung der Fluorophore im HVO	. 61
	6.2.4	4	Zusammenfassung von Teilkapitel 6.2	. 65
	6.3	Char Fluo	akterisierung und Identifizierung von Kraftstoffen anhand ihrer reszenzeigenschaften	. 68
	6.3.	1	Unterscheidung der Kraftstoffe mittels ZLIF	. 68
	6.3.	1.1	Unterscheidung der kommerziellen Dieselkraftstoffe	. 68
	6.3.1.2		Unterscheidung von Kraftstoffen und Ölen	. 72
	6.3.1.3		PCA der ZLIF-Messungen von Kraftstoffen	. 77
	6.3.2		Unterscheidung der Kraftstoffe mit der Fluorimeter-Methode	. 88
	6.3.	3	Unterscheidung der Dieselkraftstoffe mittels PCA der physikalischen Eigenschaften	. 90
	6.3.4 Fluoresze		Klassifizierung der Kraftstoffe und Öle mittels PLS-DA und SVMs nach den statischer enzeigenschaften	n . 92
	6.3.	5	Clusteranalyse der Kraftstoffe und Öle nach der Fluoreszenzeigenschaften	. 94
	6.3.	6	Zusammenfassung von Teilkapitel 6.3	. 96
	6.4	Einfl	uss des Biodieselanteils von Kraftstoffgemischen auf die Fluoreszenzeigenschaften	. 97
	6.4. Fluo	1 oresze	Einfluß des Biodieselanteils auf die Fluoreszenzintensität (statische enzlöschung)	. 97
	6.4.1.1		Diskussion und Zusammenfassung des statischen Fluoreszenzlöschungseffekts	108
	6.4.2 Fluoresz		Einfluss des Bioanteils auf die Fluoreszenzlebensdauer (dynamische enzlöschung)	110
	6.4.	3	Zusammenfassung von Teilkapitel 6.4	119
	6.5	Iden	tifizierung und Quantifizierung der Biodieselsorte in Biodieselblends	120

7

9	Zusammenfassung und Ausblick	220
Literatur	rverzeichnis	224
Anhang.		238

Abbildungsverzeichnis

Abbildung 3-1: Jablonski-Diagramm der unterschiedlichen Deaktivierungsprozesse vom angeregten
Schwingungszustand S $_1$ zum Grundzustand S $_0$ (Jabłoński, 1933)7
Abbildung 3-2 Zusammensetzungen von verschieden Biodieselkraftstoffen
Abbildung 3-3: Reaktion der Pflanzenölumesterung 11
Abbildung 3-4: Zeitlicher Verlauf der Oxidation von Fettsäuremethylestern (Baltes und Matissek,
2011)
Abbildung 3-5: Epoxid-Bildung aus einer Peroxycarbonsäure und einem Alken (Vollhardt et al., 2005)
Abbildung 2 6: Hydroporovide aus Zersetzung von Linelegt Methylester (Magalhães et al. 2014) 15
Abbildung 3-0. Hydroperoxide aus Zersetzung von Einoleat Methylester (Magainaes et al., 2014) 15
Abbildung 2-7. Diels Alder Reaktion für thermische Zersetzung von 7.7. 0.12 Octadoson
söuromothulostor (C19:2)
Abbildung 4.1: Schamatische Darstellung eines Eluerimeters zur statischen Elueroszonzemessung 22
Abbildung 4-1: Schematische Darstellung eines Fluorimeters zur statischen Fluoreszenzsmessung 23
Abbildung 4-2: 3D-Darstellung der EEM (anschauliches 3D-Diagramm) am Beispiel vom
Abbildung 4.2:20 Devetallung der EEM (Kenturdiagramme mit Liähenlinien) em Deieniel vom
Abbildung 4-3: 3D-Darstellung der EEM (Konturdiagramm mit Honenlinien) am Beispiel vom
Referenzaleseikraftstoff
Abbildung 4-4: Schematische Aufbau des ZLIF-Gerats (OPTIMOS-System)
Abbildung 4-5: Kuvettennalterung mit Abdeckung, Kuvette und Sensorkopt
Abbildung 4-6: 3D-Darstellung der zeitaufgelosten Fluoreszenz für den Referenz CEC fossilen
Kraftstoff bei einer Anregungswellenlänge von 266 nm
Abbildung 4-7: Das typische zeitliche Profil des Laserpulses (266 nm) und der maximalen emittierten
Fluoreszenz (338 nm) von DK _{Ref}
Abbildung 4-8: 3D-ZLIF-Spektren für den Referenzdieselkraftstoff bei Anregungswellenlängen von
266 nm (oben) und 355 nm (unten)
Abbildung 5-1: Fluoreszenzspektren von DK _{Ref} (links: 2D-LIF-Spektrum; rechts: ZLIF-Spektrum
aufgeteilt in 10 Zeitzonen)
Abbildung 5-2 Blockdiagramm über die Identifizierung der zu testenden Kraftstoffe mit PCA
Abbildung 5-3 Graphische Zerlegung des Datentensors X (aus EEMs) in ein Drei-Komponenten-Drei-
Wege PARAFAC Modell (F = 3)
Abbildung 5-4 Blockdiagramm eines Kalibrations-Validations-Zyklusses
Abbildung 6-1: Einfluss der Pulsdauer auf die Berechnung der Fluoreszenzlebensdauer
Abbildung 6-2: Frequenz-/Abklingverhalten für DK _{Ref} an verschiedenen Tagen aus ZLIF-Messung bei
einer Anregungswellenlänge von 266 nm
Abbildung 6-3: Normiertes Frequenz- und Abklingverhalten für DK _{Ref} an verschiedenen Tagen aus
ZLIF-Messung bei einer Anregungswellenlänge von 266 nm
Abbildung 6-4: Schematische Zeichnung des Lichtleitersystems zur Validierung der ZLIF-Messungen50
Abbildung 6-5: Gaschromatogramm für Referenz-Dieselkraftstoff DK _{Ref}
Abbildung 6-6: GC-MS-Messungen für Referenz Dieselkraftstoff bei den Retentionszeiten von 5 bis 10
Minuten (oben), 10 bis 20 Minuten (mitte), 20 bis 28 Minuten (unten); die möglich fluoreszierenden
Inhaltsstoffe werden gezeichnet
Abbildung 6-7: Vergleich des Frequenzverhaltens von DK9 und möglichen Fluorophoren, aus ZLIF-
Messung bei einer Anregungswellenlänge von 266 nm 53

und Dimethyl-Naphthalin (links: Frequenzverhalten, rechts: Abklingverhalten bei einer	
Emissionswellenlänge von 338 nm)	
Abbildung 6-9: ZLIF-Spektren bei einer Anregungswellenlänge von 266 nm (oben links: RME, oben	
rechts: BHT in Hexan (1000 ppm), unten: RME mit BHT)55	
Abbildung 6-10: Die EEM-Fluoreszenzspektren (links: frischer RME von ASG; rechts: destillierter RME	
von ASG)	
Abbildung 6-11: ZLIF-Spektren bei einer Anregungswellenlänge von 266 nm (oben links: RME, oben	
rechts: gealtertes RME 100 h, unten: Oligomer in Diethylether(1000 ppm))57	
Abbildung 6-12: EEM-Fluoreszenzspektrum von separierten Oligomeren aus gealtertem RME 100 h57	
Abbildung 6-13: 3D ZLIF-Fluoreszenzspektren bei einer Anregungswellenlänge von 266 nm von sechs	
verschiedenen Biokraftstoffen	
Abbildung 6-14: 3D ZLIF-Fluoreszenzspektren bei einer Anregungswellenlänge von 355 nm von sechs	
verschiedenen Biokraftstoffen	
Abbildung 6-15: EEM-Fluoreszenzspektren von sechs verschiedenen Biodieselsorten	
Abbildung 6-16: Emissionsspektren aus der Fluorimeter-Messung bei einer Anregungswellenlänge	
von 370 nm von verschiedenen Biodieselsorten 60	
Abbildung 6-17: Verfärbung des Silikagels 60 nach Kontakt mit HVO	
Abbildung 6-18: GC-MS-Messungen für frisches HVO, vier gereinigte Fraktionen von HVO und	
restliches HVO	
Abbildung 6-19: ZLIF-Messungen bei einer Anregungswellenlänge von 266 nm für: frisches HVO,	
restliches HVO und die vier gereinigten HVO-Fraktionen63	
Abbildung 6-20: UV-Vis-Messungen für: frisches HVO, vier gereinigte Fraktionen von HVO und	
restliches HVO	
restliches HVO64Abbildung 6-21: GPC-Messungen mit UV-Detektor (bei einer Wellenlänge von 240 nm) für das frischeHVO, die erste gereinigte HVO-Fraktion und das restliche HVO65Abbildung 6-22: ZLIF-Spektren bei einer Anregungswellenlänge von 266 nm für die verschiedenen,marktüblichen Dieselkraftstoffe (oben von links nach rechts: Agip Diesel, Aral Diesel und AralUltimate; mitte von links nach rechts: ESSO Diesel, OMV Diesel, Pinoil Diesel; unten von links nachrechts: Shell Fuel Save, Shell V-Power, Walther Diesel)69Abbildung 6-23: LIF-Spektren aus ZLIF-Messung bei einer Anregungswellenlänge von 266 nm beimarktüblichen Dieselkraftstoffen, die ähnliche Fluoreszenzeigenschaften haben70Abbildung 6-24: Abklingverhalten aus ZLIF-Messung bei einer Anregungswellenlänge von 266 nm vondrei marktüblichen Dieselkraftstoffen bei einer Emissionswellenlänge von 343 nm71	
restliches HVO64Abbildung 6-21: GPC-Messungen mit UV-Detektor (bei einer Wellenlänge von 240 nm) für das frischeHVO, die erste gereinigte HVO-Fraktion und das restliche HVOMabbildung 6-22: ZLIF-Spektren bei einer Anregungswellenlänge von 266 nm für die verschiedenen,marktüblichen Dieselkraftstoffe (oben von links nach rechts: Agip Diesel, Aral Diesel und AralUltimate; mitte von links nach rechts: ESSO Diesel, OMV Diesel, Pinoil Diesel; unten von links nachrechts: Shell Fuel Save, Shell V-Power, Walther Diesel)69Abbildung 6-23: LIF-Spektren aus ZLIF-Messung bei einer Anregungswellenlänge von 266 nm beimarktüblichen Dieselkraftstoffen, die ähnliche Fluoreszenzeigenschaften haben70Abbildung 6-24: Abklingverhalten aus ZLIF-Messung bei einer Anregungswellenlänge von 266 nm vondrei marktüblichen Dieselkraftstoffen bei einer Emissionswellenlänge von 343 nm71Abbildung 6-25: Gaschromatogramme für Aral Diesel (schwarz), OMV Diesel (rot) und Shell Fuel Save	
restliches HVO	
restliches HVO64Abbildung 6-21: GPC-Messungen mit UV-Detektor (bei einer Wellenlänge von 240 nm) für das frischeHVO, die erste gereinigte HVO-Fraktion und das restliche HVO65Abbildung 6-22: ZLIF-Spektren bei einer Anregungswellenlänge von 266 nm für die verschiedenen, marktüblichen Dieselkraftstoffe (oben von links nach rechts: Agip Diesel, Aral Diesel und Aral Ultimate; mitte von links nach rechts: ESSO Diesel, OMV Diesel, Pinoil Diesel; unten von links nach rechts: Shell Fuel Save, Shell V-Power, Walther Diesel)69Abbildung 6-23: LIF-Spektren aus ZLIF-Messung bei einer Anregungswellenlänge von 266 nm bei marktüblichen Dieselkraftstoffen, die ähnliche Fluoreszenzeigenschaften haben70Abbildung 6-24: Abklingverhalten aus ZLIF-Messung bei einer Anregungswellenlänge von 266 nm von drei marktüblichen Dieselkraftstoffen bei einer Emissionswellenlänge von 343 nm71Abbildung 6-25: Gaschromatogramme für Aral Diesel (schwarz), OMV Diesel (rot) und Shell Fuel Save (blau)72Abbildung 6-26: ZLIF-Spektren bei einer Anregungswellenlänge von 266 nm für verschiedene72	
restliches HVO64Abbildung 6-21: GPC-Messungen mit UV-Detektor (bei einer Wellenlänge von 240 nm) für das frischeHVO, die erste gereinigte HVO-Fraktion und das restliche HVOMolidung 6-22: ZLIF-Spektren bei einer Anregungswellenlänge von 266 nm für die verschiedenen,marktüblichen Dieselkraftstoffe (oben von links nach rechts: Agip Diesel, Aral Diesel und AralUltimate; mitte von links nach rechts: ESSO Diesel, OMV Diesel, Pinoil Diesel; unten von links nachrechts: Shell Fuel Save, Shell V-Power, Walther Diesel)69Abbildung 6-23: LIF-Spektren aus ZLIF-Messung bei einer Anregungswellenlänge von 266 nm beimarktüblichen Dieselkraftstoffen, die ähnliche Fluoreszenzeigenschaften haben70Abbildung 6-24: Abklingverhalten aus ZLIF-Messung bei einer Anregungswellenlänge von 266 nm vondrei marktüblichen Dieselkraftstoffen bei einer Emissionswellenlänge von 343 nm71Abbildung 6-25: Gaschromatogramme für Aral Diesel (schwarz), OMV Diesel (rot) und Shell Fuel Save(blau)72Abbildung 6-26: ZLIF-Spektren bei einer Anregungswellenlänge von 266 nm für verschiedeneDieselkraftstoffe, Ottokraftstoff, Motoröl und Hydrauliköl73	
restliches HVO	

Abbildung 6-30: Vergleichen eines originalen Diagramms (oben) und eines mit drei
Hauptkomponenten zurückgeführten ZLIF-Spektrums (unten) (bei einer Anregungswellenlänge von
266 nm)
Abbildung 6-31: Score-Plot für die zwei Hauptkomponenten (PC1: $p_1 = 73$ % und PC2: $p_2 = 21$ %) in
der PCA-Analyse der Fluoreszenzlebensdauer (aus ZLIF-Messung bei einer Anregungswellenlänge von
266 nm) von 9 verschiedenen Dieselkraftstoffen und Biodieselblends
Abbildung 6-32: Ladungs-Plot für die zwei Hauptkomponenten (PC1 und PC2) in der PCA-Analyse der
Fluoreszenzlebensdauer (aus ZLIF-Messung bei einer Anregungswellenlänge von 266 nm)von neun
verschiedenen fossilen und biogenen Dieselkraftstoffgemischen
Abbildung 6-33: EEM-Spektren für verschiedene Dieselkraftstoffe, Ottokraftstoff, Motoröl und
Hydrauliköl; EX = 250 nm - 600 nm, EM = 250 nm - 900 nm
Abbildung 6-34: Score-Biplot für die zwei Hauptkomponenten (PC1: $p_1 = 62,9 \%$ und PC2: $p_2 = 14,3 \%$)
in der U-PCA von der (15 x 4716) Zwei-Wege-Matrix aus Fluorimeter-Messungen
Abbildung 6-35: Score-Plot für die zwei Hauptkomponenten (PC1 und PC2) in der PCA-Analyse für die
Datenbank der physikalischen Eigenschaften von 13 biogenen TI-Blends (1,5. Generation)
Abbildung 6-36: Score-Plot für die zwei Hauptkomponenten (PC1 und PC2) in der PCA-Analyse für die
Datenbank der Lebensdauer von 13 TI-Blends (1,5. Generation) aus ZLIF-Messung bei einer
Anregungswellenlänge von 266 nm 92
Abbildung 6-37: Spektren für die Clusteranalyse (8 Clusters) der 151 Kraftstoff und Öle mittels k-
means von EM-Spektren (bei EX = 370 nm)
Abbildung 6-38: spektren für die Clusteranalyse (16 Clusters) der 151 Kraftstoff und Öle mittels k-
means von EM-Spektren (bei EX = 370 nm)95
Abbildung 6-39: LIF-Spektren bei einer Anregungswellenlänge von 266 nm für DK _{Ref} und RME
Abbildung 6-40: Abhängigkeit zwischen maximaler Fluoreszenzintensität ($\lambda_{ ext{EM}}$ = 338 nm) aus ZLIF-
Messung bei einer Anregungswellenlänge von 266 nm und Anteil von RME
Abbildung 6-41: Anpassung der Fluoreszenzlöschungseffekte der ZLIF-Messung bei einer
Anregungswellenlänge von 266 nm mit Stern-Volmer-Modell
Abbildung 6-42: Prüfung der Linearität zwischen I ₀ /I aus ZLIF-Meesung bei einer
Anregungswellenlänge von 266 nm und Biodieselanteil 100
Abbildung 6-43: LIF-Spektren aus ZLIF-Messung bei einer Anregungswellenlänge von 355 nm für RME,
SME und DK _{Ref} 101
Abbildung 6-44: Anpassung der Abhängigkeit zwischen maximaler Fluoreszenzintensität und
Biodieselanteil, bei $\lambda_{\scriptscriptstyle { m EM}}$ = 422 nm (Oben), 438 nm (Mitte) und 525 nm (Unten) aus ZLIF-Messung bei
einer Anregungswellenlänge von 355 nm 102
Abbildung 6-45: 3D Diagramm der Fluoreszenzintensität bei drei Emissionswellenlängen (aus ZLIF-
Messung bei einer Anregungswellenlänge von 355 nm) für Biodieselblends 104
Abbildung 6-46: Anpassung der Stern-Volmer-Modell mit Fluoreszenzintensität bei EX/EM = 370
nm/422 nm (aus Fluorimeter-Messungen) von den Gemische aus Referenz-Dieselkraftstoff und
unterschiedlichen Biodieseln
Abbildung 6-47: Anpassung der Stern-Volmer-Modell mit Fluoreszenzintensität bei EX/EM = 370
nm/422 nm (aus Fluorimeter-Messungen) von Gemischen aus verschiedenen fossilen
Dieselkraftstoffen und Biodieseln 107
Abbildung 6-48: UV-Vis-Absorptionsspektren (350-450 nm) für DK _{Ref} , JME, KME, LME, PME, RME,
RME6, RMEalt und SME

Abbildung 6-49: Abhängigkeit zwischen Fluoreszenzlöschungseffekt (K _{sv}) aus Fluorimeter-Messung und Extinktion-Produkt (E(λ_{Ex}) * E(λ_{EM})) aus UV-Vis-Messung
Abbildung 6-51: ZLIF-Messergebnisse bei einer Anregungswellenlänge von 266 nm von Biodieselblends B10 (oben) und B50 (unten) aus DK9 mit verschiedenen Biodieselsorten
Abbildung 6-54: Vergleich der Lebensdauer bei EM = 525 nm für die Gemische (B10 - B100) aus dem fossilen Referenz-Dieselkraftstoff mit verschiedenen Biokraftstoffen, Anregungswellenlänge = 355 nm
Abbildung 6-55: Prüfung der Linearität zwischen $ au_0/ au$ aus ZLIF-Meesung bei einer
Emissionswellenlänge von 422 nm (links) sowie von 525 nm (rechts) und Biodieselanteil,
Anregungswellenlänge = 355 nm 119
Abbildung 6-56: Vorhergesagte vs. reale Konzentration für DK _{Ref} in Biodieselblends mit ZLIF bei einer
Anregungswellenlänge von 355 nm 121
Abbildung 6-57: Vorhergesagte vs. reale Konzentration für RME in Biodieselblends mit ZLIF bei einer
Anregungswellenlänge von 355 nm 121
Abbildung 6-58: Vorhergesagte vs. reale Konzentration für SME in Biodieselblends mit ZLIF bei einer
Anregungsweilenlange von 355 nm
Abbildung 6-59: Ladungs-Plot für PC1, PC2 und PC3 aus der PCA der Emissionsspektren (aus
Fluorimeter-Messung bei einer Anregungsweilenlange von 370 nm) von Kraftstoffbiends aus
Abbildung 6. 60: Score Diet für die drei Hauntkomponenten (DC1: $n = 62.5\%$ DC2: $n = 20.5\%$ und
Abbildung 6-60: Score-Piot für die drei Hauptkomponenten (PC1: $p_1 = 63,5\%$, PC2: $p_2 = 20,5\%$ und PC2: $p_1 = 10.6\%$) in der PCA. Applyce der Emissionssnektron (aus Eluerimeter Messung hei einer
Apregungswellenlänge von 270 nm) von Kraftstoffblends aus zwei fossilen Dieselkraftstoffen und
verschieden Biodieselsorten
Abbildung 6-61: Vorbergesagte vs. reale Konzentration für DK12 und CEC-RE-06-99 in Biodieselblends
mit Eluorimeter bei einer Anregungswellenlänge von 370 nm.
Abbildung 6-62: Vorhergesagte vs. reale Konzentration für RMF. RMFalt. SMF und PMF in
Biodieselblends mit Fluorimeter bei einer Anregungswellenlänge von 370 nm
Abbildung 6-63 Vergleich der Anregungs- (links) und Emissionsladungen (rechts) durch PARAFAC-
Analyse (durchgezogen) der Gemische aus DK_{Ref} und HVO mit den gemessenen Spektren der reinen
Kraftstoffe (gestrichelt)
Abbildung 6-64 Vergleich der vorhergesagten (PARAFAC) und tatsächlichen (Referenzwerte)
Konzentrationen (Volumenanteile) von DK _{Ref} und HVO
Abbildung 6-65: Vergleich der Anregungs- (links) u. Emissionsladungen (rechts) durch PARAFAC-
Analyse (durchgezogen) der Gemische aus DK _{Ref} und RME mit den gemessenen Spektren der reinen
Kraftstoffe (gestrichelt)
Abbildung 6-66: Vergleich der vorhergesagten (PARAFAC) und tatsächlichen Konzentrationen von
DK _{Ref} und RME

Abbildung 6-67: Vergleich der Anregungs- (links) u. Emissionsladungen (rechts) durch PARAFAC-
Analyse (durchgezogen) der Gemische aus HVO und RME mit den von gemessenen Spektren der
reinen Kraftstoffe (gestrichelt)
Abbildung 6-68: Vergleich der vorhergesagten (PARAFAC) und tatsächlichen Konzentrationen von
HVO und RME
Abbildung 6-69: Vergleich von Emissions- (links) und Abklingzeitsladungen (rechts) durch PARAFAC-
Analyse der Gemische aus DK _{Ref} und HVO mit den von gemessenen ZLIF-Spektren der reinen
Kraftstoffe
Abbildung 6-70 Vergleich der vorhergesagten (PARAFAC) und tatsächlichen (Referenzwerte)
Konzentrationen von DK _{Ref} und HVO
Abbildung 6-71: Vergleich der vorhergesagten (PARAFAC) und tatsächlichen Konzentrationen von
DK _{Ref} , HVO und RME
Abbildung 6-72: Aufbau der Alterungsexperiment
Abbildung 6-73: Fotos der gealterten Kraftstoffe von verschiedenen Alterungszeitpunkten (links nach
rechts: 0 h. 1 h. 2 h. 3 h. 4 h. 5 h. 6 h. 7 h. 8 h. 9 h. 10 h. 11h. 12 h. 16 h. 20 h. 24 h. 28 h. 32 h. 36 h.
40 h. 48 h. 56 h und 64 h). (Alterung analog zur Rancimat Methode: 110 °C. 350 mL Kraftstoffe. 350
mL/min Luft)
Abbildung 6-74: UV-Vis-Messungen von RME nach 0, 3, 20 und 40 Stunden Alterung (Alterung analog
zur Rancimat Methode: 110 °C. 350 mL RMF. 350 mL/min Luft)
Abbildung 6-75: Rancimat-Tests zur Bestimmung der Oxidationsstabilität der verschiedenen
Kraftstoffe (DKpor, HVO, RMF, B10 und HVO-26-RMF-7)
Abbildung 6-76: FEM-Eluoreszenzspektren von gealtertem RME (0 h. 10 h. 20 h und 64 h). (Alterung
analog zur Rancimat Methode: 110 °C 350 ml RMF 350 ml /min Luft)
Abhildung 6-77: Emissionssnektren von den RME hei den Alterungszeitnunkten von 0 h. 5 h. 10 h. 20
h 40 h und 64 h (Alterung analog zur Bancimat Methode: 110 °C 350 ml RMF 350 ml /min Luft)
aus Eluorimeter-Messung hei einer Anregungswellenlänge von 370 nm
Abhildung 6-78: Anregunssnektren von frischem RME aus Eluorimeter-Messung bei einer
Emissionswellenlänge von 670 nm
Abbildung 6-79: Vergleich von Messsignalen aus Pancimat- und aus Eluorimeter-Messungen von
applicating 0-7.5. Vergleich von Messsignalen aus Kancinat- und aus Fidorineter-Messungen von
Abbildung 6.80: Leitfähigkeit (Pancimat) vs. Elueroszonzintensität (Eluerimator) von Hydronoroviden
Abbildung 0-80. Leitiningkeit (Kancinat) vs. Fidoreszenzintensität (Fidorinieter) von Hydroperoxiden
Und Oligomeren gealterten Rive-Proben (Alterung analog zur Kancimat Methode, 110°C, 550 mil
RIVIE, 350 mL/min Luπ)
Abbildung 6-81: Vergieich von Messsignalen aus Rancimat-, Fluoreszenz (EX/EM = 440 nm/505 nm)
und ZLIF-Messungen (EX/EM = 355 nm/444 nm) von gealterten RME-Proben (Alterung analog zur
Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft)
Abbildung 6-82: Leitfahigkeit von zwei Alterung-Serien von RME aus Rancimat-Tests
Abbildung 6-83: Alterungszeitabhängige Fluoreszenzintensität (Fluorimeter) von Hydroperoxiden und
Chlorophyllen in RME
Abbildung 6-84: Kalibration-Biplot der Fluoreszenzintensität (Fluorimeter) von Hydroperoxiden und
Chlorophyllen
Abbildung 6-85: Vergleich der Oxidationsstabilität nach Fluorimeter- und mit Rancimat-Methode für
unbekannte RME-Proben
Abbildung 6-86: Vergleich der Oxidationsstabilität nach Fluorimeter- und mit Rancimat-Methode für
unbekannte PME-Proben
IX

Abbildung 6-87: Vergleich der Oxidationsstabilität nach Fluorimeter- und mit Rancimat-Methode für
unbekannte SME-Proben
Abbildung 6-88: Gaschromatogramme für frischen und gealterten RME bei 64 Stunden (Alterung
analog zur Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft)
Abbildung 6-89: Zeitliche Messungen von C18:1, C18:2,C18:3 und Epoxiden von gealtertem RME
mittels der GC-Methode (Alterung analog zur Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min
Luft)
Abbildung 6-90: Logarithmierte Werte der GC-MS-Signale über der Alterungsdauer für RME (Alterung
analog zur Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft)
Abbildung 6-91: Auswertung der GPC-Messungen von frischem und gealtertem RME (0 h, 5 h, 20 h
und 40 h), (Alterung analog zur Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft) 171
Abbildung 6-92: Massenverteilung vom gealterten RME 40 h und Epoxide (Alterung analog zur
Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft)172
Abbildung 6-93: Vergrößerung der Massenverteilung von gealtertem RME 40 h und Epoxide
(Alterung analog zur Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft) 173
Abbildung 6-94: Massenverteilung von frischem RME und einem Standard bestehend aus Mono-, Di-
und Triglyceriden
Abbildung 6-95: Massenverteilung von gealtertem RME, von Mono-/Oligomer und von einem
Standard aus Mono-, Di- und Triglyceriden (Alterung analog zur Rancimat Methode: 110 °C, 350 mL
RME, 350 mL/min Luft)
Abbildung 6-96: Vergleich der alterungszeitabhängigen GPC- und Fluoreszenz-Signale von
Hydroperoxiden
Abbildung 6-97: FTIR-Spektren für die frischen und gealterten RME bei Alterungsdauern von 0 h und
64 h (Alterung analog zur Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft)176
Abbildung 6-98: Vergleich der alterungszeitabhängigen FTIR-Absorptionen von Alkenyl C-H- und OH-
Gruppen (bei den 3010 cm ⁻¹ und 3460 cm ⁻¹), (Alterung analog zur Rancimat Methode: 110 °C, 350 mL
RME, 350 mL/min Luft)
Abbildung 6-99: Fluoreszenz-Messungen vs. FTIR-Messungen für RMEalt (Alterung analog zur
Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft) 177
Abbildung 6-100: Kinematische Viskosität (links) und Dichte (links) von RME zu den verschiedenen
Alterungszeitpunkten (Alterung analog zur Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft)
Abbildung 6-101: Vergleich von kinematischer Viskosität, Dichte und der Fluoreszenz-Messung von
Oligomeren (Alterung analog zur Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft) 179
Abbildung 6-102: Korrelation zwischen der kinematischen Viskosität/Dichte und den Fluoreszenz-
Messungen von Oligomeren (Alterung analog zur Rancimat Methode: 110 °C, 350 mL RME, 350
mL/min Luft)
Abbildung 6-103: 3D EEM-Fluoreszenzspektren von gealtertem DK _{Ref} bei 0 h, 10 h, 20 h und 64 h
(Alterung analog zur Rancimat Methode: 110 °C, 350 mL DK _{Ref} , 350 mL/min Luft)180
Abbildung 6-104: 3D EEM-Fluoreszenzspektren von gealtertem HVO bei 0 h, 10 h, 20 h und 64 h
(Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO, 350 mL/min Luft)181
Abbildung 6-105: Emissionsspektren von den DK _{Ref} (EX = 370 nm, links) und HVO (EX = 340 nm, rechts)
bei den Alterungszeitpunkten von 0 h, 5 h, 10 h, 20 h, 40 h und 64 h (Alterung analog zur Rancimat
Methode: 110 °C, 350 mL DK _{Ref} und HVO, 350 mL/min Luft)182
Abbildung 6-106: Alterungszeitabhängige Fluoreszenzintensität von DK _{Ref} (links) und HVO (rechts)
(Alterung analog zur Rancimat Methode: 110 °C, 350 mL DK _{Ref} und HVO, 350 mL/min Luft)183
Х

Abbildung 6-107: Gaschromatogramme für den frischen DK _{Ref} und für den gealterten DK _{Ref} bei 64 h Alterung analog zur Rancimat Methode: 110 °C, 350 mL DK _{Ref} und HVO, 350 mL/min Luft)
Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO, 350 mL/min Luft)
Abbildung 6-111: FTIR-Spektren für die frischen und gealterten DK _{Ref} (oben) und HVO (unten) in den Alterungsdauern von 0 h und 64 h (Alterung analog zur Rancimat Methode: 110 °C, 350 mL DK _{Ref} und HVO, 350 mL/min Luft)
Abbildung 6-112: Kinematische Viskosität (links) und Dichte (rechts) von DK _{Ref} zu den verschiedenen Alterungszeitpunkten (Alterung analog zur Rancimat Methode: 110 °C, 350 mL DK _{Ref} , 350 mL/min Luft)
Abbildung 6-113: Korrelation zwischen der kinematischen Viskosität und den Fluoreszenz-Messungen von PAK in gealtertem DK _{Ref} (Alterung analog zur Rancimat Methode: 110 °C, 350 mL DK _{Ref} , 350 ml /min Luft).
Abbildung 6-114: Kinematische Viskosität (links) und Dichte (rechts) von HVO zu den verschiedenen Alterungszeitpunkten (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO, 350 mL/min Luft) 190
Abbildung 6-115: 3D EEM-Fluoreszenzspektren von gealtertem B10 bei 0 h, 10 h, 20 h und 64 h (Alterung analog zur Rancimat Methode: 110 °C, 350 mL B10, 350 mL/min Luft)
Abbildung 6-117: Alterungszeitabhängige Fluoreszenzintensität von B10 bei EX/EM von 380 nm/405 nm (DK _{Ref} dominierte, oben links), 370 nm/670 nm (Chlorophylle dominieren, oben rechts), 400 nm/450 nm (Hydroperoxide dominieren, unten links) und 440 nm/505 nm (Oligomere dominieren, unten rechts), (Alterung analog zur Rancimat Methode: 110 °C, 350 mL B10, 350 mL/min Luft) 193 Abbildung 6-118: Score-Biplot für die zwei Hauptkomponenten (PC1: p1 = 54,2 % und PC2: p2 = 18,2 %) in der U-PCA der EEM von B10alt (Alterung analog zur Rancimat Methode: 110 °C, 350 mL
310, 350 mL/min Luft)
mittels der GC-Methode (Alterung analog zur Rancimat Methode: 110 °C, 350 mL B10, 350 mL/min _uft)
Abbildung 6-121: Massenverteilung von frischem und gealtertem B10 bei 0 h, 5 h, 10 h, 20 h, 40 h und 64 h (Alterung analog zur Rancimat Methode: 110 °C, 350 mL B10, 350 mL/min Luft)
Abbildung 6-123: Alterungszeitabhängige FTIR-Messungen für B10 (Alterung analog zur Rancimat Methode: 110 °C, 350 mL B10, 350 mL/min Luft)199

Abbildung 6-124: Kinematische Viskosität (links) und Dichte (rechts) von B10 zu den verschiedenen Alterungszeitpunkten (Alterung analog zur Rancimat Methode: 110 °C, 350 mL B10, 350 mL/min Luft) Abbildung 6-125: 3D EEM-Fluoreszenzspektren von gealtertem HVO-26-RME-7 bei 0 h, 10 h, 20 h und 64 h (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-26-RME-7, 350 mL/min Luft)... 200 Abbildung 6-126: Emissionsspektren von HVO-26-RME-7 (EX = 380 nm) bei den Alterungszeitpunkten von 0 h, 5 h, 10 h, 20 h, 28 h, 36 h, 40 h und 64 h (Alterung analog zur Rancimat Methode: 110 °C, Abbildung 6-127: Alterungszeitabhängige Fluoreszenzintensität von HVO-26-RME-7 bei EX/EM von 380 nm/415 nm (oben links), 370 nm/670 nm (oben rechts), 400 nm/450 nm (mitten links), 440 nm/505 nm (mitten rechts) und 340 nm/380 nm (unten links), (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-26-RME-7, 350 mL/min Luft) 202 Abbildung 6-128: Score-Biplot für die zwei Hauptkomponenten (PC1: p1 = 54,2 % und PC2: p2 = 22,4 %) in der U-PCA von EEMs (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-26-Abbildung 6-129: Gaschromatogramme für frischen und gealterten HVO-26-RME-7 (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-26-RME-7, 350 mL/min Luft) 203 Abbildung 6-130: Zeitliche Messungen der C18:1, C18:2, C18:3 und Epoxide von gealtertem HVO-26-RME-7 mittels der GC-Methode (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-26-Abbildung 6-131: Massenverteilung von frischem und gealtertem HVO-26-RME-7 bei 0 h, 5 h, 10 h, 20 h, 40 h und 64 h (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-26-RME-7, 350 Abbildung 6-132: FTIR-Spektren für die frischen und gealterten HVO-26-RME-7 (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-26-RME-7, 350 mL/min Luft) 206 Abbildung 6-133: FTIR-Spektren für die frischen undgealterten HVO-26-RME-7 (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-26-RME-7, 350 mL/min Luft) 206 Abbildung 6-134: Kinematische Viskosität (links) und Dichte (rechts) von HVO-26-RME-7 zu den verschiedenen Alterungszeitpunkten (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-Abbildung 6-135: Korrelation zwischen der kinematischen Viskosität und der Fluoreszenz-Messung (links) sowie zwischen Dichte und Fluoreszenz-Messung (rechts) (Alterung analog zur Rancimat Methode: 110 °C, 350 mL HVO-26-RME-7, 350 mL/min Luft) 208 Abbildung 6-136: Vergleich des normierten Messsignals mit zunehmender Alterung von RME6 mittels Permittivität- und der LIF-/ZLIF-Methode (Alterung analog zur Rancimat-Methode: 110 °C, 5000 mL Abbildung 6-137: Korrelation zwischen Permittivität und Fluoreszenz-Messung (Alterung analog zur Rancimat-Methode: 110 °C, 5000 mL RME6, 2.500 mL/min Luft) 210 Abbildung 7-1: Varianten mit innen (oben) und außen (unten) sitzender Laserdioden und Quarzglasfenster im Tankeinfüllstutzen von Kraftfahrzeugen zum Erfassen der Kraftstoffsorte Abbildung 8-2: Fluoreszenzspektren der Kraftstoffe mittels des LIF-Sensors (Fan et al., 2015a) 217 Abbildung 8-3: Emissionsspektren aus der LIF-Messung von Biodieselblends (DK_{Ref} und RME) bei

Abbildung 8-4: Vergleich der Abhängigkeit zwischen Fluoreszenzintensität aus der LIF-Messung be	2i
den Emissionswellenlänge von 432 nm/673 nm und Biodieselanteil in Biodieselblends, EX = 405 nr	m
(Fan et al., 2015a)	218
Abbildung 8-5: Vergleich von frischem RME und gemaäß DIN EN 14112 gealtertem RME mittels de	25
LIF-Sensors, EX = 405 nm (Gross, 2014)	219

Tabellenverzeichnis

Tabelle 4-1: Im Rahmen der Forschungsarbeit verwendete Dieselkraftstoffe und Öle	17
Tabelle 4-2: Im Rahmen der Forschungsarbeit verwendete Chemikalien	21
Tabelle 4-3: GC-MS-Parameter für die Analyse der Dieselkraftstoffe	31
Tabelle 4-4: Schwingungsdaten von wichtigen Molekülgruppen in Kraftstoffen (Atkins und de Paul	a,
2005)	34
Tabelle 6-1: Übersicht der möglicher Komponenten in Dieselkraftstoffen	66
Tabelle 6-2: Die charakteristischen Anregungs-/Emissionswellenlängen der Fluorophore	67
Tabelle 6-3: Lebensdauern in ns und Fluoreszenzintensität von drei marktüblichen Dieselkraftstoff	en
bei einer Emissionswellenlänge von 343 nm und einer Anregungswellenlänge von 266 nm	71
Tabelle 6-4: Lebensdauern in ns von 15 Kraftstoffen und Ölen bei zehn charakteristischen	
Emissionswellenlängen, bei einer Anregungswellenlänge von 266 nm	75
Tabelle 6-5: Lebensdauern in ns von 15 Kraftstoffen und Ölen bei zehn charakteristischen	
Emissionswellenlängen, bei einer Anregungswellenlänge von 355 nm	76
Tabelle 6-6: Identifizierung der gemessenen Kraftstoffe und Öle durch Vergleich mit der PCA-	
Datenbank aus ZLIF-Messungen bei einer Anregungs-wellenlänge von 266 nm (1)	84
Tabelle 6-7: Identifizierung der gemessenen Kraftstoffe und Öle durch Vergleich mit der PCA-	
Datenbank aus ZLIF-Messungen bei einer Anregungswellenlänge von 266 nm (2)	86
Tabelle 6-8: Dichte, Viskosität und Cetanindex von den 13 biogenen TI-Dieselkraftstoffblends 1,5.	
Generation	90
Tabelle 6-9: Datensätze für Kraftstoffe und Öle in acht Klassen zur Kalibration und Validation	93
Tabelle 6-10: Kalibration der Klassifikation der Kraftstoffe und Öle mit der SVMs-Methode	93
Tabelle 6-11: Konstante der Stern-Volmer Gleichung zur Anpassung der Abhängigkeit zwischen	
Fluoreszenzintensität bei charakteristischen Emissionswellenlängen (aus ZLIF-Messung bei einer	
Anregungswellenlänge von 355 nm) und dem Biodieselanteil	103
Tabelle 6-12: Stern-Volmer-Konstanten für die Biodieselgemischen aus den verschiedenen Biodies	el
(aus Fluorimeter-Messung bei EX/EM = 370 nm/422 nm)	106
Tabelle 6-13: Stern-Volmer-Konstanten für Biodieselgemischen aus verschiedenen	
Biodieselherkünften, Fluorimeter-Messung bei EX/EM = 370 nm/422 nm	108
Tabelle 6-14: Lebensdauern in ns von Biodieselblends aus DK9 und verschiedenen Biodieselsorten	bei
einer Anregungswellenlänge von 266 nm	112
Tabelle 6-15: Lebensdauern in ns von Biodielblends bei charakteristischen Emissions-wellenlängen	bei
einer Anregungswellenlänge von 355 nm	114
Tabelle 6-16: Vorhersagefähigkeit für die Identifizierung der Biodieselsorte in Biodieselblends mit	ZLIF
bei einer Anregungswellenlänge von 355 nm	122
Tabelle 6-17: Maximale absolute und mittlere quadratische Abweichung bei der Quantifizierung d	er
fossilen Dieselkraftstoffe und der Biodieselsorte mit Fluorimeter bei einer Anregungswellenlänge	von
370 nm	128
Tabelle 6-18: Zusammensetzungen der kalibrierten und zu testenden Gemische aus DK _{Ref} und HVC)130
Tabelle 6-19: Vergleich der tatsächlichen und vorhergesagten Volumenanteile von DK _{Ref} und HVO.	132
Tabelle 6-20: Zusammensetzungen der kalibrierten und zu testenden Gemische aus DK _{Ref} und RME	133
Tabelle 6-21: Vergleich der tatsächlichen und vorhergesagten Volumenanteile von DK_{Ref} und RME.	134
Tabelle 6-22: Zusammensetzungen der kalibrierten und zu testenden Gemische aus HVO und RME	136
Tabelle 6-23: Vergleich der tatsächlichen und vorhergesagten Volumenanteile von HVO und RME	137
Tabelle 6-24: Zusammensetzungen der kalibrierten und zu testenden Gemische aus DK _{Ref} und HVC	139

Tabelle 6-25: Vergleich der tatsächlichen und vorhergesagten Volumenanteile von DK _{Ref} und HVO. 14	41
Tabelle 6-26: Zusammensetzungen der kalibrierten und zu testenden Gemische aus DK _{Ref} , HVO und	
RME14	42
Tabelle 6-27: Vergleich der tatsächlichen und vorhergesagten Volumenanteile von DK _{Ref} , HVO und	
RME14	43
Tabelle 6-28: Vergleich der Farbänderung bei UV-Vis- und Fluoreszenz-Messungen vom gealterten	
RME (Alterung analog zur Rancimat Methode: 110 °C, 350 mL RME, 350 mL/min Luft)	50
Tabelle 6-29: Induktionszeit von frischen DK _{Ref} , HVO, RME, B10 und HVO-26-RME-7 (Rancimat-Tests))
	51
Tabelle 6-30: Referenzproben von RME aus dem Rancimat-Test bei verschiedenen	
Alterungszeitpunkten	60
Tabelle 6-31: Reale Oxidationsstabilität (Rancimat) sowie die vorhergesagten Alterungsgrade und	
Oxidationsstabilitäten (Fluorimeter) der unbekannten RME-Proben	63
Tabelle 6-32: Die charakteritischen Anregungs-/Emissionswellenlängen für PME und SME16	65
Tabelle 6-33: Reale Oxidationsstabilität (Rancimat) sowie die vorhergesagten Alterungsgrade und	
Oxidationsstabilitäten (Fluorimeter) von den zu testenden PME- und SME-Proben	66
Tabelle 6-34: Vergleich der Induktionszeit-Bestimmung mit den verschiedenen Methoden	12

Q/

Verwendete Abkürzungen

AK	Aromatische Kohlenwasserstoffe
API	American Petroleum Institute
BHT	Butylhydroxytoluol
BX	Bioanteil von "X" Volumenprozent
CEC	Coordinating European Council
CCD	Charge-Coupled Device
CO ₂	Kohlenstoffdioxid
CNPC	China National Petroleum Corporation
Ср	Kapazität
DK	Dieselkraftstoff
DK _{Ref}	CEC Referenz-Dieselkraftstoff
EEM	Anregungs-Emissions-Matrix (engl. Excitation-Emission-Matrix)
EM	Emissionswellenlänge (engl. Emission Wavelength)
EX	Anregungswellenlänge (engl. Excitation Wavelength)
EU	Europäische Union
FAME	Fettsäuremethylester (engl. Fatty Acid Methyl Ester)
FFT	Schnelle Fourier-Transformation (engl. Fast Fourier Transform)
FTIR	Fourier-Transform-Infrarotspektrometer (engl. Fourier Transform
	Infrared Spectroscopy)
GC-MS	Gaschromatograph mit Massenspektrometer
GtL	Gas-to-Liquid Kraftstoff
HC	Kohlenwasserstoffe
HPLC	Hochleistungsflüssigkeitschromatographie (engl. High
	Performance Liquid Chromatography)
HVO	Hydriertes Pflanzenöl (engl. Hydrotreated Vegetable Oil)
IC	Innere Umwandlung (engl. Internal Conversion)
ICCD	Intensivierte ladungsgekoppelte Vorrichtung (engl. Intensified
	Charge-Coupled Device)
iFFT	Inverse schenlle Fourier-Transformation
ISC	Intersystem Crossing
JME	Jatrophaölmethylesther
KME	Kokosnussölmethylester
LDA	Lineare Diskriminanzanalyse (engl. linear discriminant analysis)
LIF	Laserinduzierte Fluoreszenzspektroskopie
LME	Leinölmethylester
LMM	Lineares Mischungsmodell (engl. Linear-Mixture-Model)
MK1	Schwedischer "Miljöklass 1" Dieselkraftstoff
Nd:YAG Laser	Neodym-dotierter Yttrium-Aluminium-Granat-Laser
NOx	Stickoxide
OLS	Multiple lineare Regression (engl. Ordinary Least Squares)
РАК	Polyzyklische aromatische Kohlenwasserstoffe
PCA	Hauptkomponentenanalyse (engl. Principal Component Analysis)
PLS-DA	Partielle kleinste Quadrate-Diskriminanzanalyse (engl. Partial
	Least Squares Discriminant Analysis)
PME	Palmölmethylester

PMT	Photomultiplier
PTFE	Polytetrafluorethylen
RI	Refractive Index
RME	Rapsölmethylester
RME _{alt}	gealterter Rapsölmethylester
RME_Dest	Destillierter RME
So	Singulett-Grundzustand
S _i	Angeregter Sigulettzustand
SMA	Sub-Miniature-A (engl. SubMiniature version A)
SME	Sojaölmethylester
T ₁	Triplettzustand
TBC	Tributylcitrat
TI	Thünen-Institut für Agrartechnologie, Braunschweig
TRLFS	Zeitaufgelöste laserinduzierte Fluoreszenzspektroskopie (engl. Time-Resolved Laser-Induced Fluorescence Spectroscopy)
UCOME	Altspeiseölmethylester (engl. Used Cooking Oil Methylester)
ULSD	(engl. Ultra-Low-Sulfur Diesel)
UV-Vis	Ultraviolette und sichtbare-Spektroskopie (engl. Ultraviolet and Visible Spectroscopy)
VR	Schwingungsrelaxation (engl. Vibrational Relaxation)
ZLIF	siehe TRLFS
L	Liter
g	Gramm
h	Stunde/Stunden
min	Minute/Minuten
mL	Milliliter
ppb	Teile von einer Milliarde (engl. Parts per billion)
ppm	Teile von einer Million (engl. Parts per million)

Verwendete mathematische Symbole

A	Absorption
<u>A</u>	Erste Zwei-Wege-Ladungs-Matrix vom PARAFAC-Modell
<u>B</u>	Zweite Zwei-Wege-Ladungs-Matrix vom PARAFAC-Modell
<u>C</u>	Dritte Zwei-Wege-Ladungs-Matrix vom PARAFAC-Modell
Ē	Residuen-Matrix
L	Faktorladung von PCA
M	Fluoreszenzspektrum von Fluorophorgemische im LMM
S	Score-Matrix von PCA
X	Zwei-Wege-Matrix in der PCA oder Drei-Wege-Matrix im PARAFAC
X [†]	Pseudoinverse von X
X _{gemessen}	Gemessene Datenmatrix der 2D-Spektren
Y	Konzentration-Matrix in OLS-Regression
Yvorhergesagt	Konzentrationen von den zu testenden Proben
Z	Koeffizientenmatrix in OLS-Regression
	Leerkapazität des Plattenkondensators ohne Dielektrikum
Č _i	Konzentration des i-ten Analytes (Fluorophors)
C(@.T)	Kapazität mit Dielektrikum
F	Extinktion
F	Anzahl der Modellkomponenten (Analyte oder Fluorophoren) im
	PARAFAC-Modell
1	Anzahl der Spalten von Drei-Wege-Matrix im PARAFAC-Modell/
	Fluoreszenzintensität
l(t)	Fluoreszenz-Exponentialfunktion
	Ursprüngliche Fluoreszenzintensität/Fluoreszenzintensität ohne
-0	Fluoreszenzlöschung
J	Anzahl der Reihen von Drei-Wege-Matrix im PARAFAC-Modell
К	Anzahl der Stufen von Drei-Wege-Matrix im PARAFAC-Modell
K _{SV}	Stern-Volmer-Konstante in der Fluoreszenzlöschung-Gelichung
K _d	Stern-Volmer-Konstante für dynamische Fluoreszenzlöschung
K _s	Stern-Volmer-Konstante für statische Fluoreszenzlöschung
P	Kumulative Anteile der Varianzen an der Gesamtvarianz von PCA
P(t)	Laserpulsfunktion
R(t)	Gemessenes Fluoreszenzsignal
W	Anzahl der Emissionswellenlängen für ZLIF-Messung
Z	Anzahl der Abklingzeiten für ZLIF-Messung
a _f	Elemente des f-ten A-Ladungsvektors im PARAFAC-Modell
a _{if}	i-tes Element des f-ten <u>A</u> -Ladungsvektors im PARAFAC-Modell
b _f	Elemente des f-ten B-Ladungsvektors im PARAFAC-Modell
b _{if}	j-tes Element des f-ten B-Ladungsvektors im PARAFAC-Modell
C.	Analytenkonzentration
C _f	Elemente des f-ten C-Ladungsvektors im PARAFAC-Modell
C _{kf}	k-tes Element des f-ten C-Ladungsvektors im PARAFAC-Modell
d	Schichtdicke des Analyen in der Küvette
h	, Plancksches Wirkungsquantum
Р	Prozentuale Anteile der Varianzen an der Gesamtvarianz von PCA

t	Abklingzeit für ZLIF-Spektrum; Retentionszeit für GC-MS-Analyse;
	Induktionszeit für Rancimat-Messung; Alterungsdauer für
	Alterungsexperiment
Т	Transmission
Φ_{F}	Fluoreszenzquantenausbeute
3	Extinktionskoeffizient
$\epsilon'_{\rm r}(\omega, T)$	Relative Permittivität
$\epsilon_r^*(\omega, T)$	Permittivität
$\epsilon'_{\rm r}(\omega, T)$	Realanteil der Permittivität
$\epsilon_{\rm r}^{\prime\prime}(\omega,{\rm T})$	Imaginäranteil der Permittivität
λ	Wellenlänge/Eigenwerte
λ_{Ex}	Anregungswellenlänge
λ_{Em}	Emissionswellenlänge
V	Frequenz
τ	Fluoreszenzlebensdauer
tan δ	Verlustfaktor

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

1 Einleitung

Die begrenzten Erdölressourcen und die bei der Verbrennung von fossilen Kraftstoffen freigesetzten Treibhausgase sind Ursache für den Klimawandel. In Anbetracht der negativen Folgen des Klimawandels ist die Suche nach alternativen, erneuerbaren und CO₂-neutralen Kraftstoffen, insbesondere biogene Kraftstoffen, von großer Bedeutung. Deshalb ist es absehbar, dass es in Zukunft zu einer Vielfalt an neuen Kraftstoffen auf dem Kraftstoffmarkt kommen wird. Auf dem Markt spielen Biodieselkraftstoffblends, Gemische aus fossilen Dieselkraftstoffen mit Biodiesel, bereits heute eine wichtige Rolle. Zudem sind neue Dieselkraftstoffe in Entwicklung, wie z. B. hydrierte Pflanzenöle (HVO) und Gas-to-Liquid-Kraftstoffe (GtL), die als reine Kraftstoffe oder als Teil eines Kraftstoffgemisches in den Markt eingeführt werden. Folglich ist das wirtschaftliche Interesse an biogenen Kraftstoffen aus pflanzlichen und tierischen Rohstoffen groß.

Da sich die unterschiedlichen Kraftstoffe in ihrem Brenn-, Alterungs- und Emissionsverhalten stark voneinander unterscheiden können, ist es notwendig, einen Kraftstoffsensor zu entwickeln, der dem Motorsteuerungssystem die Informationen über die aktuellen Kraftstoffgemische online liefern kann.

Gleichzeitig muss sichergestellt werden, dass Verbrennungsmotoren auch bei Verwendung biogener Kraftstoffe die strengen Abgasnormen erfüllen, keinen erhöhten Verschleiß zeigen und bezüglich ihres Kraftstoffverbrauchs optimiert sind. Dies stellt bei biogenen Kraftstoffen aufgrund der Vielzahl der verwendeten Rohstoffquellen und der natürlichen Schwankungen der Rohstoffe, bezüglich des Gehalts an Inhaltsstoffen, eine besondere Herausforderung dar. Zudem unterliegen auch die biogenen Kraftstoffe Schwankungen, was deren Eigenschaften und Güte betrifft.

Die verwendeten Kraftstoffe und deren Qualität haben einen maßgeblichen Einfluss auf die Verbrennungscharakteristik moderner Verbrennungsmotoren im Hinblick auf Wirkungsgrad, Motorverschleiß und Schadstoffausstoß. Es ist deshalb von großer ökonomischer und ökologischer Bedeutung, die jeweiligen Kraftstoffgemische mittels eines Kraftstoffsensors zu identifizieren und den Verbrennungsprozess softwareseitig zu optimieren. Für Kraftstoffsensoren ist nicht nur die Messgenauigkeit, sondern auch die Messgeschwindigkeit von Bedeutung. Ferner muss zur Online-Überwachung ein solcher Sensor den Kraftstoff ohne Probenvorbereitung (z. B. Verdünung) analysieren können.

1.1 Zielsetzung

Ziel der hier vorliegenden Arbeit ist es, die Grundlagen für die Entwicklung eines Kraftstoffsensors auf Basis der zeitaufgelösten laserinduzierten Fluoreszenzspektroskopie (ZLIF, engl. Time-Resolved Laser-induced Fluorescence Spectroscopy) zu legen. Die zeitaufgelöste Fluoreszenzspektroskopie besitzt eine hohe Empfindlichkeit mit Nachweisgrenzen im ppm- und ppb-Bereich. Im Vergleich mit der statischen

Fluoreszenzspektroskopie ermöglicht sie die Charakterisierung von Fluorophoren bezüglich ihrer spektralen Eigenschaften sowie des zeitlichen Fluoreszenzverlaufs (Frequenzdomäne und Zeitdomäne). Die Fluorophore, die in Kraftstoffgemischen existieren und durch deren zeitabhängige Fluoreszenzeigenschaft identifiziert werden können, können als Leitsubstanzen zur Identifizierung und Charakterisierung der Kraftstoffgemische verwendet werden.

In dieser Arbeit werden zuerst Dieselkraftstoffe und Biodieselkraftstoffgemische anhand ihrer Fluoreszenzeigenschaften charakterisiert und klassifiziert. Zweitens werden einzelne Fluorophore identifiziert, die maßgeblich für die Fluoreszenzeigenschaften der Kraftstoffe sind und die somit Rückschlüsse auf den Anteil der entsprechenden Kraftstoffkomponenten in Kraftstoffgemischen zulassen. Drittens wird der Zusammenhang von Fluoreszenzeigenschaften und Kraftstoffgüte erkannt.

Es wurde festgestellt, dass die oxidative Alterung von Dieselkraftstoff zu einer deutlichen Änderung der Dieselkraftstoffgüte führt (Terry et al., 2006; Krahl et al., 2008; Fang und McCormick, 2006). Diese Änderungen der Kraftstoffeigenschaften werden vermutlich durch die Bildung von Oligomeren und die Zunahme der Säurezahl bei der thermischen und oxidierten Alterung verursacht. Mögliche Schäden und Probleme durch diesen gealterten Kraftstoff können z.B. an Kraftstoffpumpen, Einspritzsystemen, dem Motorölkreislauf und der Abgasnachbehandlung entstehen. Der stetige Eintrag von Kraftstoff in das Motoröl wird durch Biodieselbeimengung zunehmend zum Problem. Während herkömmlicher fossiler Dieselkraftstoff aus dem Motoröl destilliert, verbleibt der Biodiesel aufgrund seiner höheren Siedelage im Öl. Auch hier kann der Biodiesel Oligomere bilden, welche zu Ablagerungen und Schäden führen. Ein verkürztes Ölwechselintervall ist die Folge. Gealterter Biodiesel kann aber auch in der Abgasnachbehandlung für Probleme sorgen. Die erhöhte Viskosität bei gealtertem Biodiesel führt zu einer schlechteren Zerstäubung beim Einspritzen, wodurch es zu einer Zunahme von Ruß bzw. unverbranntem Kraftstoff im Abgasnachbehandlungssystem kommen kann (National Biodiesel Board 2007). Ein wichtiges Ziel dieser Forschungsarbeit ist es, mittels der ZLIF und der statischen Fluoreszenzspektroskopie über die Messung von alterungsbedingten Oxidationsprodukten Aussagen über die Güte von Kraftstoffen und Kraftstoffgemischen treffen zu können. Ferner soll ein Kraftstoffsensorprototyp ausgelegt, aufgebaut und erprobt werden, der in Zukunft als Handgerät die Kraftstoffgüte im Feld ermitteln kann.

Neben den auf dem Markt befindlichen Reinkraftstoffen und Kraftstoffblends sollten auch mögliche neue (Bio-)Kraftstoffgenerationen in die Betrachtung einbezogen werden. Auf diesem Hintergrund entstand eine Zusammenarbeit mit dem Projekt "Parametrierung der physikalisch-chemischen Eigenschaften von Biokraftstoffen der 1,5. Generation" (Förderkennzeichen: 22004810) am Thünen-Institut für Agrartechnologie (TI) in Braunschweig (Schaper et al., 2014). Diese Zusammenarbeit ermöglichte die Einbeziehung neu entwickelter Kraftstoffe in das Konzept des Kraftstoffsensors. Unter Biokraftstoffen der 1,5. Generation werden hier Mischungen aus fossilen und biogenen Kraftstoffen mit Anteilen

von Fettsäuremethylestern (engl. Fatty Acid Methyl Ester, FAME) und hydriertem Pflanzenöl (engl. Hydrotreated Vegetable Oil, HVO) sowie Alkoholen verstanden.

1.2 Aufbau der Arbeit

Nach der Darstellung der Zielsetzung der hier vorliegenden Forschungsarbeit wird der Forschungsstand zur Bestimmung von Kraftstoffen mittels der Fluoreszenz-Methoden aufgezeigt (Kapitel 2). Kapitel 3 enthält die theoretischen Grundlagen für die Fluoreszenz und beschreibt die Eigenschaften aktueller Kraftstoffe. Die im Rahmen dieser Arbeit benutzten Kraftstoffe, Chemikalien, analytischen Geräte sowie chemometrischen Methoden zur Auswertung der Messdaten werden in Kapitel 4 und 5 beschrieben. Kapitel 6 stellt die Ergebnisse, die angewandten Mess- und Auswertungsmethoden zur Charakterisierung und zur Quantifizierung der Kraftstoffe sowie zur Bestimmung der Oxidationsstabilität der Kraftstoffe dar. Kapitel 7 erläutert die auf den in dieser Forschungsarbeit gewonnenen Erkenntnissen basierenden Grundlagen zur Auslegung eines Kraftstoffsensors. Anschließend werden in Kapitel 8 der Aufbau und die Anwendung eines im Rahmen der Forschungsarbeit entwickelten Kraftstoffsensors vorgestellt. Eine Zusammenfassung der Forschungsarbeit sowie ein Ausblick zur Weiterentwicklung des Kraftstoffsensors (Kapitel 9) runden die hier vorliegende Dissertation ab.

2 Stand der Forschung

In einem bereits erfolgreich abgeschlossenen Projekt der Hochschule Coburg und des Thünen-Instituts für Agrartechnologie wurde ein kommerzieller Biodieselsensor entwickelt, der den Anteil von Biodiesel in Kraftstoffgemischen über die Dielektrizitätszahl, d. h. über einen globalen Parameter misst (Munack und Krahl, 2003).

Die auf der Fluoreszenzspektroskopie basierenden Methoden zur Analyse von Fluorophoren sind einfach und können schnell genaue Messergebnisse liefern (Hengstermann und Reuter, 1980; Barbini et al., 1992; Camagni et al., 1992; Ralston et al., 1996; Patsayeva et al., 2000; Zawadzki et al., 2007; Kulkarni et al., 2008; Steffens et al., 2011; Scherer et al., 2011). Allerdings sind diese Verfahren nicht geeignet, um auf eine längere Distanz zu messen, da ein einstellbarer Laser erforderlich ist, der in der Regel zu schwache Intensitäten liefert (Quinn et al., 1994; Ryder et al., 2002).

Die laserinduzierte Fluoreszenzspektroskopie (LIF) und die zeitaufgelöste laserinduzierte Fluoreszenzspektroskopie (ZLIF) sind etablierte analytische Messmethoden. Sie werden beispielsweise verwendet, um die Verschmutzung von Luft, Wasser und Boden zu untersuchen (Bublitz et al., 1996; Schade und Bublitz, 1996; Lemke et al., 2005; Hawthorne et al., 2008; Hottle et al., 2009) oder um biologische Proben, klinische Proben oder Lebensmittel zu untersuchen (Kuckenberg et al., 2009; Noh und Lu, 2007). In der Kraftstoffforschung wurde die LIF verwendet, um im Verbrennungsprozess die räumliche Mischung von Kraftstoff und Luft zu analysieren (Schulz und Sick, 2005; Smith und Sick, 2007). Die genaue Kontrolle des Mischungsprozesses von Kraftstoff und Luft ist Voraussetzung für einen schadstoffarmen, sicheren und zuverlässigen Verbrennungsprozess. Eine weitere Anwendung der LIF bei Verbrennungsprozessen war die Messung der während des Verbrennungsprozesses entstehenden Stickoxide (Verbiezen et al., 2007). In der strukturellen Forschung zur Charakterisierung der Fluorophore in Gasölen und ihren entschwefelten Ölen wurden zuerst einzelne Fluorophore durch Hochleistungsflüssigkeitschromatographie (HPLC) getrennt und dann durch Gaschromatographie mit Massenspektroskopie (GC-MS) identifiziert. Anschließend wurden ihre Fluoreszenzemissionsspektren mit denen von bekannten polyzyklischen aromatischen Kohlenwasserstoffen (PAK) verglichen (Ma et al., 1996).

Bei der Fluoreszenzspektroskopie handelt es sich um eine sehr empfindliche, aber im Allgemeinen wenig spezifische Messmethode. So erzeugen Fluorophore mit einer sehr ähnlichen chemischen Struktur Fluoreszenzspektren mit nur geringen Unterschieden. Um strukturell ähnliche Fluorophore unterscheiden und Gemische von Fluorophoren im Hinblick auf einzelne Komponenten untersuchen zu können, wurden deshalb verschiedene Messtechniken und Auswertemethoden entwickelt:

Die Variation der Anregungswellenlänge ermöglicht anhand ihrer Anregungs-Emissions-Matrix (engl. Excitation-Emission-Matrix, EEM) eine Unterscheidung von einzelnen