Benedikt Mues

Hyperthermie und Bildgebung von hybriden Polymerfasern und Stents mit inkorporierten magnetischen Nanopartikeln für den medizinischen Einsatz

Hyperthermie und Bildgebung von hybriden Polymerfasern und Stents mit inkorporierten magnetischen Nanopartikeln für den medizinischen Einsatz

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Master of Science Benedikt Mues

aus

Schmallenberg

Berichter: Univ.-Prof. Dr.rer.nat. Dipl.-Phys. Jörg Fitter Priv.-Doz. Dr.rer.nat. Dipl.-Phys. Ioana Slabu

Tag der mündlichen Prüfung: 13.09.2022

Hyperthermie und Bildgebung von hybriden Polymerfasern und Stents mit inkorporierten magnetischen Nanopartikeln für den medizinischen Einsatz

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2022

Zugl.: D 82 (Diss. RWTH Aachen University, 2022)

© CUVILLIER VERLAG, Göttingen 2022 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2022

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-7690-0 eISBN 978-3-7369-6690-1

Zusammenfassung

Magnetische Nanopartikel (MNP) werden als Additive in Polymeren bei der Entwicklung von Hybridstents eingesetzt, um eine lokale Hyperthermie-Behandlung, z. B. bei Hohlorgan-Tumoren, zu ermöglichen. Durch Anregung in einem magnetischen Wechselfeld (AMF) kann eine kontrollierte Temperaturerhöhung im Bereich von (42-46) °C erzielt und damit das Tumorgewebe in unmittelbarer Nähe des Stents zerstört werden. Zusätzlich können die MNP auch als Kontrastmittel in der Magnetresonanztomografie (MRT) oder als Tracer in der Magnetpartikel-Bildgebung (MPI) eingesetzt werden, was die postoperative Visualisierung des implantierten Stents und somit eine Überwachung seiner Funktion ermöglicht. Bei der Herstellung der Hybridstents werden die MNP in eine Polymer-Matrix eingebettet. Durch Immobilisierung und auftretende Agglomeration der MNP wird eine signifikante Änderung ihrer Eigenschaften, insbesondere ihrer magnetischen Relaxationseigenschaften, verglichen mit denen frei dispergierter MNP, erwartet. Da Néel'sche und Brown'sche Relaxationen die Leistung der MNP in magnetischer Hyperthermie und Bildgebung beeinflussen, ist es notwendig, die durch die Einbettung der MNP in das Polymer hervorgerufenen Eigenschaftsänderungen zu guantifizieren. In dieser Arbeit wird der Einfluss der MNP-Polymer-Matrix-Wechselwirkung auf die Eigenschaften der eingebetteten MNP untersucht und die Eignung der Hybridstents in Hyperthermie und medizinischer Bildgebung durch experimentelle Studien beurteilt. Dazu werden Hybridstents aus schmelzgesponnenen Polypropylen-Fasern (Hybridfasern) hergestellt, in die unterschiedliche MNP-Sorten (mit Kerndurchmessern von 10 nm, 100 nm und 400 nm) mit verschiedenen MNP-Konzentrationen von bis zu 12%(m/m)eingebettet sind. Die physikochemischen Eigenschaften, wie die Verteilung und der Agglomerationszustand der MNP, sowie ihr statisches und dynamisches magnetisches Verhalten werden mittels Transmissionselektronenmikroskopie (TEM), Supraleitende Quanteninterferenzeinheit (SQUID)-Magnetometrie und Magnetpartikel-Spektroskopie (MPS) erfasst. Kalorimetrische Messungen sowie Untersuchungen in MRT und MPI geben Aufschluss über Aufheizleistung und Qualität der Bildgebung von Hybridstents. Im Vergleich zu den frei dispergierten MNP liegen alle eingebetteten MNP agglomeriert in der Polymer-Matrix vor und zeigen durch magnetische Dipol-Dipol-Wechselwirkungen höhere Anisotropieenergien und kleinere Magnetisierungswerte. Weiterhin führt die Einbettung der MNP in das Polymer zu einer Abnahme der Aufheizleistung von bis zu 80% für Brown-dominierte MNP (400 nm) und 40% für Néel-dominierte MNP (10 nm) bei gleichen AMF-Parametern (270 kHz, 20 kA m⁻¹). Die Ergebnisse demonstrieren die Abhängigkeit der Aufheizleistung und der Sättigungstemperatur von den gewählten AMF-Parametern (Frequenz, Amplitude), der MNP-Konzentration und der MNP-Sorte. Die MPI-Messungen zeigen hochauflösende Bilder für alle Hybridfasern, auch für solche mit hoher MNP-Konzentration, jedoch gelingt die Darstellung komplexer Faser-Strukturen, wie die der Hybridstents, nicht. Die MRT-Messungen liefern akkurate Bilder der Hybridstents, insbesondere bei niedrigen MNP-Konzentrationen. Für zukünftige klinische Anwendungen der Hybridstents muss die Aufheizleistung in bereits verfügbaren Hyperthermie-Applikatoren getestet und die Wirksamkeit der Hyperthermie in in-vitro und in in-vivo-Versuchen validiert werden.

Abstract

Translation of the german title: *Hyperthermia and imaging of hybrid polymer fibers and stents with incorporated magnetic nanoparticles for medical applications.*

Magnetic nanoparticles (MNP) are used as additives in polymers for the development of hybrid stents in order to enable local hyperthermia treatment e.g. for hollow organ tumors. By application of an alternating magnetic field (AMF) a controlled temperature rise in the range of (42-46) °C can be reached, destroying the tumor tissue in close vicinity to the stent. Additionally, the MNP can also be used as contrast agents in magnetic resonance imaging (MRI) or as tracers in magnetic particle imaging, which makes the postoperative visualization of the implanted stent and a monitoring of its function possible. In the manufacturing process of the hybrid stents, the MNP are incorporated in the polymer-matrix. Due to MNP immobilization and occurring MNP agglomerations, a significant impact on the properties of the MNP especially on their magnetic relaxation properties is expected. Since Néel and Brown relaxation influence the performance of the MNP in hyperthermia and imaging, it is necessary to quantify these incorporationinduced property changes of the MNP. In this thesis, the influence of the MNP-polymer-matrix interaction on the properties of the incorporated MNP is investigated and the suitability of the hybrid stents in hyperthermia and medical imaging is assessed by means of experimental studies. For that, hybrid stents are made of hybrid melt-spun polypropylene fibers incorporated with different MNP types (core diameters of 10 nm, 100 nm and 400 nm) and different MNP concentrations up to 12%(m/m). The physicochemical properties, such as distribution and agglomeration state of MNP as well as the static and dynamic magnetic behavior are detected by transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) magnetometry and magnetic particle spectroscopy (MPS). Calorimetric heating measurements as well as MRI and MPI measurements provide insight into the heating power and the imaging performance of the hybrid stents. Compared to the freely dispersed MNP, all MNP incorporated in the polymer-matrix are agglomerated and show higher anisotropy energies and smaller magnetization values caused by interparticle magnetic dipole-dipole interactions. Furthermore, the incorporation of MNP into the polymer leads to a decrease of heating power of up to 80% for Brown-dominated MNP (400 nm) and up to 40% for Néel-dominated MNP (10 nm) at the same AMF parameters (270 kHz, 20 kA m^{-1}). The results demonstrate the dependence of the heating power and saturation temperature on AMF parameters (frequency, amplitude), MNP concentration and MNP type. The MPI measurements show high-resolution images for all hybrid fibers, even for those with high MNP concentrations, but the MPI imaging of complex fiber structures such as stents is not possible. MRI measurements produce accurate images of the hybrid stents, especially at the low MNP concentrations. Towards future clinical applications of the hybrid stents, the heating power needs to be tested in already available hyperthermia applicators and the efficacy of hyperthermia needs to be validated in in vitro and in vivo experiments.

Inhaltsverzeichnis

Ab	Abkürzungsverzeichnis xii				
Sy	Symbolverzeichnis				
1.	Einle	eitung		1	
2.	The	oretisch	er Hintergrund	5	
	2.1.	Magne	tismus	5	
		2.1.1.	Grundlegende Arten von Magnetismus	5	
		2.1.2.	Magnetismus in Materie	7	
		2.1.3.	Magnetische Anisotropie	12	
		2.1.4.	Superparamagnetismus	14	
		2.1.5.	Interpartikuläre Wechselwirkungen	18	
	2.2.	Kolloid	lale magnetische Nanopartikel	21	
		2.2.1.	Chemische Synthese von Magnetit-Nanopartikeln	21	
		2.2.2.	Kolloidale Eigenschaften dispergierter magnetischer Nanopartikel	22	
	2.3.	Anwen	dungen magnetischer Nanopartikel	24	
		2.3.1.	Antwortverhalten magnetischer Nanopartikel auf magnetische Wechsel-		
			felder	24	
		2.3.2.	Physikalische Grundlagen der magnetischen Hyperthermie	27	
		2.3.3.	Physikalische Grundlagen der Magnetpartikelbildgebung	30	
		2.3.4.	Physikalische Grundlagen der Magnetresonanztomografie	36	
	2.4.	Übertr	agungsmechanismen von Wärme	41	
		2.4.1.	Wärmetransport	41	
		2.4.2.	Biowärmetransport	42	
	2.5.	Stenos	ierende Hohlorgan-Tumore	43	
		2.5.1.	Implantation von Stents in stenosierende Hohlorgan-Tumore	43	
		2.5.2.	Lokale Hyperthermie-Behandlung vermittelt durch einen aufheizbaren		
			Hybridstent	44	
	2.6.	Stand	der Forschung zur Entwicklung aufheizbarer Implantate	45	
		2.6.1.	Implantate aus Metall	46	
		2.6.2.	Nanokomposit-Implantate mit eingebetteten magnetischen Nanopartikeln	47	
		2.6.3.	Zusammenfassende Bemerkungen	49	
3.	Entv	vicklun	g von magnetischen Hybridstents	51	
	3.1.	Herste	llung von Magnetit-Nanopartikel	51	
	3.2.	Herste	llung von Hybridcompounds, Hybridfasern und Hybridstents	54	
	3.3.	Synthe	se von magnetischen Hydrogelen als Modellsysteme	56	
	3.4.	Übersi	cht über die verwendeten Nanopartikel und Polymer-Nanopartikel-Hybride	59	

ix

4.	Met	hoden	zur Charakterisierung der physikochemischen und biologischen	
	Eige	enschaft	ten	61
	4.1.	Bestim	nmung der Eisen-/ Nanopartikel-Konzentration und thermische Analyse $% \mathcal{L}_{\mathcal{A}}$.	61
		4.1.1.	Photometrische Absorption (PA)	61
		4.1.2.	Gravimetrie (GM)	63
		4.1.3.	Thermogravimetrische Analyse (TGA)	64
		4.1.4.	Dynamische Differenzkalorimetrie (DDK)	65
	4.2.	Größer	n- und Strukturanalyse	66
		4.2.1.	Dynamische Lichtstreuung (DLS)	66
		4.2.2.	Zeta-Potential	68
		4.2.3.	Transmissionselektronenmikroskopie (TEM)	69
		4.2.4.	Lichtmikroskopie	71
		4.2.5.	Röntgendiffraktometrie (XRD)	72
	4.3.	Statisc	che und dynamische magnetische Messungen	75
		4.3.1.	$Supraleitende \ Quanten interferenze inheit \ (SQUID)-Magnetometrie \ . \ . \ .$	75
		4.3.2.	Magnetpartikel-Spektroskopie (MPS)	80
		4.3.3.	AC-Suszeptibilität-Spektroskopie (ACS)	81
5.	Met	hoden	zur Beurteilung der Leistungsfähigkeit für den medizinischen Einsatz	z 83
	5.1.	Magne	etfluidhyperthermie (MFH)	83
	5.2.	Magne	etpartikelbildgebung (MPI)	90
		5.2.1.	Bildrekonstruktion im Frequenzraum	90
		5.2.2.	Bildrekonstruktion im Zeitraum	91
	5.3.	Magne	etresonanztomografie (MRT)	93
6.	Eige	enschaft	ten der magnetischen Nanopartikel und Hybridstents	97
	6.1.	Physik	ochemische Eigenschaften	97
		6.1.1.	Konzentrationen	97
		6.1.2.	Thermische Analyse	99
		6.1.3.	Größenverteilungen, Morphologie und Kristallstruktur von magnetischen	
			Nanopartikeln	103
		6.1.4.	Durchmesser und Oberflächenbeschaffenheit der Hybridfasern	114
	6.2.	Magne	etische Eigenschaften der magnetischen Nanopartikel und Hybridfasern .	116
		6.2.1.	Statische $M(H)$ -Abhängigkeit	116
		6.2.2.	Temperaturabhängige Magnetisierung	123
		6.2.3.	Frequenzabhängigkeiten	128
	6.3.	Mecha	nische und biologische Eigenschaften der Hybridfasern und Hybridstents .	133
		6.3.1.	E-Modul und Bruchdehnung der Hybridfasern	133
		6.3.2.	Radialkräfte der Hybridstents	133
		6.3.3.	Zytotoxizität der Hybridfasern	134
	6.4.	Zusam	ımenfassende Bemerkungen	134

7.	Aufh	eizverhalten der magnetischen Nanopartikel und Hybridstents im magne-		
	tisch	nen Wechselfeld 13		
	7.1.	Einfluss von verschiedenen magnetischen Nanopartikel Sorten auf die Aufheiz-		
		leistun	g	137
		7.1.1.	Spezifisches Aufheizverhalten der magnetischen Nanopartikel	137
		7.1.2.	Änderungen des Relaxationsverhaltens infolge der MNP-Immobilisierung	140
	7.2.	Bestim	mung der Einflussfaktoren für eine kontrollierte Aufheizung	143
		7.2.1.	Abhängigkeit der Aufheizleistung von der Partikelkonzentration	143
		7.2.2.	Abhängigkeit der Aufheizleistung vom magnetischen Wechselfeld	146
		7.2.3.	Zusammenfassende Bemerkungen	150
	7.3.	Wärme	edissipation der Hybridstents in die Umgebung	153
		7.3.1.	Temperaturprofil der Hybridstents	153
		7.3.2.	Wärmeverteilung in die Umgebung	155
		7.3.3.	Biologische Effekte von Wärme auf Zellen	161
8.	МРІ	- und N	MRT-Bildgebung der magnetischen Nanopartikel und Hybridstents	163
-	8.1.	Magne	tpartikelbildgebung	163
		8.1.1.	Bildrekonstruktion im Frequenzraum	163
		8.1.2.	Bildrekonstruktion im Zeitraum	169
	8.2.	Magne	tresonanztomografie	172
	8.3.	3. Zusammenfassende Bemerkungen		176
a	7.052	mmon	fassung und Aushlick	177
5.	Q 1	Zusammenfassung		177
	9.2	Ausblick		179
	5.2.	, 1000110		1.1.5
Α.	Anh	ang		181
	A.1.	Anhan	g zu Kapitel 5	181
		A.1.1.	Partikel- und Eisenkonzentrationen	181
		A.1.2.	Thermoanalytik	182
		A.1.3.	Kristallstrukturanalyse	183
		A.1.4.	Agglomeratgrößen	185
		A.1.5.	Zugversuche an Hybridfasern	186
		A.1.6.	Radialkraft der Hybridstents	188
		A.1.7.	Expansions- und Hyperthermie-Versuche von Hybridstents in nativem	
			Schweinegewebe	194
		A.1.8.	Zytotoxizitätstest	196
	A.2.	Anhang	g zu Kapitel б	198
		A.2.1.	Abhängigkeit der Aufheizleistung von der MNP-Konzentration \ldots .	198
		A.2.2.	Relative SLP-Differenzen	199
		A.2.3.	Temperaturprofil einer Hybridfaser	200
				200

xi

	A.2.5.	Wärmeverteilung von Tracheastents	201	
A.3. Anhang zu Kapitel 7			203	
	A.3.1.	Frequenzspektren mit und ohne eingebauter MircoCoil	203	
	A.3.2.	Frequenzspektren von langer und kurzer Systemmatrix	203	
Abbildungsverzeichnis			205	
Tabellenverzeichnis				
Literaturverzeichnis				
B. Danksagung				
C. Eidesstattliche Erklärung				

Abkürzungsverzeichnis

AAM	Acrylamid		
AC	Wechselstrom (alternating current)		
ACS	Wechselstrom-Suszeptibilität-Spektroskopie		
AMF	Alternierendes Magnetfeld (alternating magnetic field)		
APS	Ammoniumperoxodisulfat		
ASTM	American Society for Testing and Materials		
ATP	Adenosintriphosphat		
BF	Bayferrox 318-Partikel		
BIS	N,N'-Methylenbisacrylamid		
BNF	Bionisierte NanoFerrit-Partikel		
CCD	charge coupled device		
CDF	Wahrscheinlichkeitsdichtefunktion (cumulative distribution function)		
СР	Compound		
DDK	Dynamische Differenzkalorimetrie		
DLS	Dynamische Lichtstreuung		
DMSO	Dimethylsulfoxid		
DSE	Doppelschneckenextruder KETSE 20/40		
eCCC	Extrahepatisches cholangiozelluläres Karzinom		
EELS	Elektronenenergieverlustspektroskopie		
FC	Field-Cooled		
FCS	fetales Kälberserum (<i>fetal calf serum</i>)		
FDA	Food and Drug Administration		
FEM	Finite-Elemente-Methode		
FFLS	Ferrofluid mit Laurinsäurestabilisation		
FFLS-G	Gefriergetrocknete FFLS-Nanopartikel		
FFR	Feldfreier Raum field free region		
FID	free induction decay		
FOV	Sichtfeld (field of view)		
FS	Faser		
FWHM	Halbwärtsbreite (full width at half maximum)		
GM	Gravimetrie		
HE	Hämatoxylin-Eosin		
HF	Hochfrequenz		
ICDD	International Centre for Diffraction Data		
IEC	International Electrotechnical Commission		
ITA	Institut für Textiltechnik Aachen		
LDPE	Polyethylen niedriger Dichte		
LRT	Modell der linearen Verlustleistung (linear response theory)		
МС	MC 15 Micro Compounder		

MFH	Magnetfluidhyperthermie		
MNP	Magnetische Nanopartikel		
MPI	Magnetpartikelbildgebung		
MPS	Magnetpartikel-Spektroskopie		
MRT	Magnetresonanztomografie		
PA	Photometrische Absorption		
PAM	Polyacrylamid		
PC	Polycarbonat		
PCL	Polycaprolacton		
PDF	Wahrscheinlichkeitsdichtefunktion (probability density function)		
PDI	Polydispersionsindex		
PDT	Photodynamische Therapie		
PGM	Phasengradienten-Mapping		
PLA	Polylactid		
PLGA	Poly(lactid-co-glycolid)		
PLLA	Poly(L-lactid)		
PMMA	Polymethylmethacrylat		
PP	Polypropylen		
PSBMSP	Pilot Scale Bicomponent Melt Spinning Plant		
PSF	Punktstreufunktion (point spread function)		
РТВ	Physikalisch-Technischen Bundesanstalt		
PU	Polyurethan		
PVDF	F Polyvinylidenfluorid		
QSM	Quantitatives Suszeptibilitäts-Mapping		
RF	Radiofrequenz		
RFA	Radiofrequenzablation		
ROI	Untersuchungsregion (region of interest)		
RPMI	Roswell Park Memorial Institute		
SGM	Suszeptibilitätsgradienten-Mapping		
SLP	Spezifische Verlustleistung (specific loss power)		
SM	Systemmatrix		
SNR	Signal-zu-Rausch-Verhältnis (signal to noise ratio)		
SQUID	Supraleitende Quanteninterferenzeinheit		
ТЕМ	Transmissionselektronenmikroskopie		
TEMED	N,N,N',N'-Tetramethylethylendiamin		
TGA	Thermogravimetrische Analyse		
TSE	Turbo-Spin-Echo		
UHMWPE	Ultrahochmolekulargewichtiges Polyethylen		
UKA	Universitätsklinikum Aachen		
XRD	Röntgendiffraktometrie		
ZFC	Zero-Field-Cooled		

xiv Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Symbolverzeichnis

Symbol	Einheit	Beschreibung
Α	${ m Vsm^{-1}}$	Vektorpotential
В	Т	Magnetische Flussdichte
\mathbf{B}_0	Т	Statisches Magnetfeld (MRT)
\mathbf{E}	${\rm V}{\rm m}^{-1}$	Elektrische Feldstärke
н	$A m^{-1}$	Magnetische Feldstärke
\mathbf{H}_{K}	$\mathrm{A}\mathrm{m}^{-1}$	Anisotropiefeld
\mathbf{H}_{C}	$\mathrm{A}\mathrm{m}^{-1}$	Koerzitivfeldstärke
\mathbf{H}_{D}	$\mathrm{A}\mathrm{m}^{-1}$	Entmagnetisierungsfeld
\mathbf{H}_{S}	$\mathrm{A}\mathrm{m}^{-1}$	Magnetisches Streufeld
I	\hbar	Proton-Spin
J	\hbar	Elektron-Gesamtdrehimpuls eines Atoms
\mathbf{J}_{D}	$\mathrm{A}\mathrm{m}^{-2}$	Stromdichte
L	\hbar	Elektron-Gesamtbahndrehimpuls eines Atoms
м	${\sf A}{\sf m}^2{\sf kg}^{-1}$	Magnetisierung
\mathbf{M}_{0}	$\mathrm{A}\mathrm{m}^{-1}$	Gleichgewichtsmagnetisierung (MRT)
\mathbf{M}_{R}	${\sf A}{\sf m}^2{\sf kg}^{-1}$	Remanenzmagnetisierung
\mathbf{M}_{S}	${\rm A~m^2~kg^{-1}}$	Sättigungsmagnetisierung
\mathbf{S}	m ²	Fläche
Ŝ		Systemmatrix (MPI)
\mathbf{S}	\hbar	Elektron-Gesamtspin eines Atoms
Т	Nm	Drehmoment
$\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z$		Einheitsvektoren in x-,y-,z-Richtung
m	$A m^2$	Magnetisches Moment
m	A m ²	Mittleres magnetisches Moment
q	m^{-1}	Streuvektor
ģ	$\mathrm{W}\mathrm{m}^{-2}$	Auf Fläche bezogene Wärmestromdichte
r, x	m	Ortsvektor
A_{Ex}	au	Extinktion
A_{H}		Fläche der magnetischen Hysteresekurve
A_k		Amplitude der k-ten Harmonischen (MPS)
C	F	Elektrische Kapazität
C_{S}	au	Löslichkeitsgrenze
C_{krit}	au	Übersättigungsschwelle
$C_{\sf wk}$	$ m JK^{-1}$	Wärmekapazität
D_{T}	$\mathrm{m}^2\mathrm{s}^{-1}$	Translationaler Diffusionskoeffizient
E	Pa	Elastizitätsmodul
$\mathbf{E}(x)$		Erwartungswert
E ₀	J	Ruheenergie des Elektrons

xv

Symbol	Einheit	Beschreibung
E_{Ani}	J	Anisotropieenergie
E_{A}	J	Austauschenergie
E_{B}	J	Energiebarriere
$E_{Dipol-Dipol}$	J	Energie durch magnetische Dipol-Wechselwirkung
E_{γ}	J	Energie eines Photons
E_{kin}	J	Kinetische Energie
E_{MS}	J	Magnetostatische Selbstenergie
E_{Obfl}	J	Oberflächenanisotropieenergie
$E_{\sf Zeeman}$	J	Zeeman-Energie
F	Ν	Kraft
$F_{R,max}$	Ν	Maximale radiale Widerstandskraft
G(x)		Gauss-Funktion
G_x, G_y, G_z	${\rm T}{\rm m}^{-1}$	Gradientenstärke in x-,y-,z-Richtung
G_2	au	Intensitäts-Zeit-Korrelationsfunktion
H(x)		Relative kumulierte Häufigkeit
H ₀ , H	$\mathrm{A}\mathrm{m}^{-1}$	Magnetfeldamplitude
H^{D}	Т	Magnetisches Anregungsfeld (MPI)
H_{Hys}	$\rm kAm^{-1}$	Hysteresebreite
HS	Т	Magnetisches Selektionsfeld (MPI)
Ι	au	Intensität
Ι	А	Stromstärke
I ₀	А	Kritische Stromstärke (SQUID)
Iww	au	Stärke magnetischer Dipol-Wechselwirkungen
J^{A}	J	Austauschkonstante
K		Strukturfaktor (XRD)
$K_{\rm eff}$	J m ³	Effektive Anisotropiekonstante
K_{mat}	J m ³	Materialspezifische Anisotropiekonstante
K_{Obfl}	J m ³	Oberflächenanisotropiekonstante
Ku	$\mathrm{J}\mathrm{m}^{-3}$	Uniaxiale Anisotropiekonstante
L	Н	Induktivität
L(x)		Lorentz-Funktion
$M_{\rm Fe},~M_{\rm Fe3O4}$	$ m gmol^{-1}$	Molare Massen von Eisen und Magnetit
$M_{x,y}$	${\rm A}{\rm m}^{-1}$	Transversalkomponente der Magnetisierung (MRT)
$M_{\rm ZFC}$, $M_{\rm FC}$	${\sf A}{\sf m}^2{\sf kg}^{-1}$	Magnetisierung der ZFC-/FC-Kurve (SQUID)
M_z	${\rm A}{\rm m}^{-1}$	z-Komponente der Magnetisierung
N		Anzahl
N_{A}		Numerische Apertur
$N_{\sf d}$		Entmagnetisierungsfaktor
Р	W	Leistung
Q	J	Wärme

Symbolverzeichnis

Symbol	Einheit	Beschreibung
R_1	s^{-1}	Longitudinale Relaxationsrate
R_2	s^{-1}	Transversale Relaxationsrate
R^2_{bst}		Bestimmungsmaß für Anpassungen
T	°C	Temperatur
T_0	°C	Umgebungstemperatur
T_1	S	Longitudinale Relaxationszeit
T_2	S	Transversale Relaxationszeit
T_i^0	S	Intrinsische Relaxationszeit, ($i=1,2$)
T_2^*	S	Effektive transversale Relaxationszeit
T_{B}	°C	Blocking-Temperatur
T_{C}	К	Curie-Temperatur
$T_{\sf c}$	К	Sprungtemperatur (Supraleiter)
T_{E}	S	Echozeit
T_{Ex}	°C	Extrusionstemperatur
T_{koll}	°C	Temperatur für kollektives magnetisches Verhalten
T_{M}	°C	Peak-Temperatur der ZFC-Kurve
$T_{\sf N}$	К	Néel-Temperatur
T_{p}	S	Periodendauer
T_{R}	S	Repetitionszeit
T_{Sd}	°C	Siedetemperatur
T_{Sp}	°C	Schmelztemperatur
T_{Z}	°C	Zersetzungstemperatur
U	V	Spannung
$\operatorname{Var}(x)$		Varianz
V	m ³	Volumen
V_{Hydro}	m ³	Hydrodynamisches Volumen
V_{Mag}	m ³	Magnetisches Volumen
$V_{p}(x)$		Pseudo-Voigt-Funktion
W	J	Arbeit
a	m	Gitterkonstante (XRD)
с	$\mathrm{g}\mathrm{ml}^{-1},\mathrm{mol}\mathrm{l}^{-1}$	Konzentration
<i>c</i> ₀	${ m ms^{-1}}$	Lichtgeschwindigkeit
C _{Fe}	${\sf mg}({\sf Fe}){\sf ml}^{-1}$	Eisenkonzentration
CFe3O4	$mg(Fe_3O_4)ml^{-1}$	Magnetit(Kern-)konzentration
CH2O	$ m JK^{-1}kg^{-1}$	Spezifische Wärmekapazität von Wasser
c _{MNP}	${\sf mg}({\sf MNP}){\sf ml}^{-1}$	Partikelkonzentration
c _{wk}	$ m JK^{-1}kg^{-1}$	Spezifische Wärmekapazität
ĉ		Faltung der MNP-Konzentration (MPI)
d_{A}	m	Stent-Außendurchmesser
d_{Aggl}	m	Agglomeratdurchmesser

Symbol	Einheit	Beschreibung
d_{Hydro}	m	Hydrodynamischer Durchmesser
d_{hkl}	m	Netzebenenabstand
d_{Kern}	m	Kerndurchmesser
d_{krist}	m	Kristalldurchmesser
$d_{Maschen}$	m	Maschengröße eines Hydrogels
d_{Mag}	m	Magnetischer Durchmesser
e	С	Ladung des Elektrons
f	Hz	Frequenz
f_{B}	Hz	Basisfrequenz (MPI)
g		Landé-Faktor des Elektrons
g_1	au	Amplituden-Korrelationsfunktion
g_2	au	Normierte Intensitäts-Zeit-Korrelationsfunktion
g_I		g-Faktor des Protons
h	Js	Planck'sches Wirkungsquantum
h(x)		Punktstreufunktion (MPI)
ħ	Js	Reduziertes Planck'sches Wirkungsquantum
k_x, k_y, k_z	m^{-1}	Koordinaten des k-Raums (MRT)
kB	$ m JK^{-1}$	Boltzmann-Konstante
$\langle l angle, \langle b angle, \langle m angle$	m	Agglomeratgrößen (Erwartungswerte aus TEM)
m_{CP}	kg	Masse der Hybridcompounds
m_{Fe}	kg	Eisenmasse
m_{FS}	kg	Masse der Hybridfasern
m_{ges}	kg	Gesamtmasse einer Probe
m_{Kern}	kg	Masse des MNP-Kernmaterials
m_{MO}		Mixing Order
m_{MNP}	kg	Masse der MNP
m_{Probe}	kg	Probenmasse
m_{Stab}	kg	Masse des MNP-Stabilisierungsmaterials
m_{Stent}	kg	Stentmasse
m_e	kg	Masse des Elektrons
m_p	kg	Masse des Protons
<i>n</i> ₀		Brechungsindex
n	mol	Stoffmenge
p	Pa	Druck
q	С	Elektrische Ladung
r_1	$\mathrm{m}\mathrm{M}^{-1}\mathrm{s}^{-1}$	Longitudinale Relaxivität
r_2	$\mathrm{m}\mathrm{M}^{-1}\mathrm{s}^{-1}$	Transversale Relaxivität
$s(\mathbf{r},t)$		Systemfunktion im Zeitraum (MPI)
$\hat{s}_k(\mathbf{r})$		Systemfunktion im Frequenzraum (MPI)
t	S	Zeit

xviii

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Symbolverzeichnis

Symbol	Einheit	Beschreibung
t_{M}	S	Messperiode
u(t)	V	Induzierte Spannung (Signal)
\hat{u}_k	V	Fourier-Koeffizienten der induzierten Spannung
Γ	s ⁻¹	Abklingrate der Amplituden-Korrelationsfunktion (DLS)
$\Delta d_{\sf min}$	m	Auflösung (Lichtmikroskopie)
ΔE	J	Energiedifferenz
$\Delta E_{\sf N}$	J	Energiedifferenz zur Drehung der Spins um 180°
Δ_{ref}		Absolute Abweichungen von XRD-Peakposition
ΔT	°C	Temperaturdifferenz
ΔT_{\max}	°C	Maximale Temperaturdifferenz
Φ	T m ²	Magnetischer Fluss
Φ_0	T m ²	Magnetisches Flussquantum
α_1 , α_2		Anpassungsparameter
α	%	Quervernetzungsgrad eines Hydrogels
α_{Flip}	0	Flipwinkel (MRT)
$\alpha_{\sf gd}$		Gilbert-Dämpfungsparameter
α_{k}		Magnetischer Kopplungsfaktor
$2\alpha_{oe}$	0	Öffnungswinkel (Lichtmikroskopie)
β_1 , β_2		Anpassungsparameter
γ	$\mathrm{Hz}\mathrm{T}^{-1}$	Gyromagnetisches Verhältnis des Protons
δ	nm,°	Gangunterschied, Phasenänderung
ϵ		Emissionskoeffizient
ε	%	Dehnung
ε_0	$AsV^{-1}m^{-1}$	Elektrische Feldkonstante
ε_{A}	$\mathrm{Jm^{-3}}$	Austauschenergiedichte
ε_{Ani}	$\mathrm{J}\mathrm{m}^{-3}$	Anisotropieenergiedichte
ε_{B}	%	Bruchdehnung
ε_{el}	$\mathrm{AsV^{-1}m^{-1}}$	Dielektrizitätskonstante
ε_{MS}	$\mathrm{J}\mathrm{m}^{-3}$	Dichte der magnetostatischen Selbstenergie
ϵ_{λ}	${\sf m}^2{\sf mol}^{-1}$	Extinktionsmodul
ε_{MC}	$\mathrm{J}\mathrm{m}^{-3}$	Magnetokristalline Anisotropieenergiedichte
ε_{tot}	$\mathrm{Jm^{-3}}$	Magnetische freie Energiedichte
ε Wand	$\mathrm{Jm^{-3}}$	Domänenwandenergiedichte
$\varepsilon_{\sf Zeeman}$	$\mathrm{J}\mathrm{m}^{-3}$	Zeeman-Ergiedichte
ζ	V	Zeta-Potential
η	Pas	Viskosität
η_{Ferro}		Rayleigh-Konstante
θ_{B}	0	Bragg-Winkel
θ_{St}	0	Streuwinkel

Symbol	Einheit	Beschreibung
κ_{H}		Hückel-Parameter
λ	m	Wellenlänge
λ_e	m	De Broglie Wellenlänge des Elektrons
λ_{I}		Wechselwirkungsparameter
$\lambda_{K_{lpha}}$	m	Wellenlänge der K_{lpha} -Linie
λ_{R}		Regularisierungsparameter (MPI)
λ_{T}	$\mathrm{m}^2\mathrm{s}^{-1}$	Temperaturleitzahl
λ_{tl}	$\mathrm{W}\mathrm{m}^{-1}\mathrm{K}^{-1}$	Thermische Leitfähigkeit
μ		Parameter der Log-Normal-Verteilung
μ_0	$\rm VsA^{-1}m^{-1}$	Magnetische Feldkonstante
μ_{B}	$A m^2$	Bohr'sches Magneton
μ_{el}	${ m m}^2{ m V}^{-1}{ m s}^{-1}$	Elektrophoretische Mobilität
μ_l	$A m^2$	Dipolmoment aus Elektron-Bahndrehimpuls
μ_p	$A m^2$	Dipolmoment aus Proton-Spin
μ_{r}	$V s A^{-1} m^{-1}$	Relative Permeabilität
μ_s	$A m^2$	Dipolmoment aus Elektron-Spin
$\mu_{ m vrd}$		Verdünnungsfaktor
$\nu_{ m vol}$	%	Polymervolumenanteil eines Hydrogels
ξ		Langevin-Parameter
ρ	${\rm kg}{\rm m}^{-3}$	Dichte
ρ	Asm^{-3}	Raumladungsdichte
$ ho_0$	$\operatorname{mol} I^{-1}$	Protonendichte (MRT)
$ ho_{ m el}$	Ωm	Spezifischer elektrischer Widerstand
hoFe3O4	${ m kg}{ m m}^{-3}$	Dichte Magnetit
σ		Parameter der Log-Normal-Verteilung
σ	Pa	Zugspannung
$\sigma(\mathbf{r})$		Sensitivität der Empfangsspule (MPI)
$\sigma_{\sf S}$	Pa	Streckspannung
$\sigma_{\rm SB}$	$\mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}$	Stefan-Boltzmann-Konstante
au	S	Relaxationszeit
$ au_0$	S	Zeitkonstante
τ_{Beob}	S	Beobachtungszeit
$\tau_{\rm c}$	S	Mittelwert der Relaxationszeiten (Cole-Cole)
$ au_{\mathrm{eff}}$	S	Effektive Relaxationszeit
$ au_{N}$	S	Néel'sche Relaxationszeit
$ au_{B}$	S	Brown'sche Relaxationszeit
ϕ_1,ϕ_2	0	Phasenwinkel
φ_x , φ_y , φ_z	0	Phasenwinkel in x-,y-z-Richtung (MPI)
χ		Magnetische Suszeptibilität
χ0		Initiale (Massen-) Suszeptibilität

Symbolverzeichnis

Symbol	Einheit	Beschreibung
χ' , χ''		Real- und Imaginärteil der komplexen Suszeptibilität
ψ		Quantenmechanische Wellenfunktion
ω	Hz	Kreisfrequenz
ω_0	Hz	Larmorfrequenz (MRT)
ω_{e}	0	Einfallswinkel Röntgenstrahlung (XRD)
$\mathcal{L}(x)$		Langevin-Funktion

1. Einleitung

Krebserkrankungen stellen weltweit immer noch eine der häufigsten Todesursachen dar und belegen in Deutschland mit 23.5 % (im Jahr 2020) nach den Herzkreislauferkrankungen Platz zwei [1]. Tumore an Hohlorganen, wie z. B. an der Luft- und Speiseröhre oder dem Gallengang, liefern dabei aufgrund einer hohen Mortalität und geringen Überlebensraten besonders schlechte Prognosen. Neben den Gefahren des Tumors selbst erleiden die Patienten oft lebensbedrohliche Situationen durch den Verschluss des Hohlorgans infolge von einwachsendem Tumorgewebe [2-5]. Um den verschlossenen Durchgang des Organs (Lumen) wieder zu öffnen und zu stabilisieren, werden meist Stützstrukturen aus Metall (sogenannte Stents) in das Hohlorgan implantiert [6-8]. Diese Stents haben jedoch den entscheidenden Nachteil, dass das Tumorgewebe durch die Maschen eines Stents hindurch wächst und sie das verschlossene Lumen nicht langfristig offen halten können, was zu einem erneuten Verschluss, einer sogenannten Restenose, führen kann [9, 10]. Eine lokal vermittelte Hyperthermie, also eine kontrollierte Temperaturerhöhung in unmittelbarer Nähe des Stents, könnte diesen im Sinne einer Selbstreinigung von einwachsendem Tumorgewebe befreien und ihn in seiner stabilisierenden Funktion unterstützen. Durch die höhere Wärme-Empfindlichkeit von Tumorzellen reicht eine Temperaturerhöhung im Bereich von (42-46) °C aus, um bei ihnen den induzierten Zelltod (Apoptose) auszulösen, während Zellen des Normalgewebes unbeeinflusst bleiben [11-13].

Um dieses Ziel zu erreichen, besteht der Ansatz darin, einen Stent zu entwickeln, der die benötigte Wärme kontrolliert abgeben kann. Dazu werden hybride Polymerfasern mit eingebetteten magnetischen Nanopartikeln (MNP) hergestellt und anschließend zu Stents (sogenannte Hybridstents) weiterverarbeitet. Wie in Abbildung 1.1 schematisch gezeigt, erfolgt die Aufheizung nach Einsetzen des Hybridstents durch Anregung der MNP in einem magnetischen Wechselfeld (alternating magnetic field, AMF). MNP sind in der Forschung bereits als vielversprechende Wärmequellen für die hyperthermische Aufheizung bekannt [14, 15] und werden bereits in der klinischen Krebstherapie eingesetzt [16]. Dazu werden bei der sogenannten Magnetfluidhyperthermie (MFH) frei in einer Flüssigkeit dispergierte MNP entweder direkt in den Tumor injiziert [16] oder über die Blutbahn mittels Magnetfallen dort angereichert [17]. Die am Zielort befindlichen MNP sind dann in der Lage, die von Licht oder von einem AMF stammende Energie in Wärme umzuwandeln [18-20]. Die Verabreichung dispergierter MNP birgt jedoch einige Herausforderungen, wie z. B. eine unkontrollierte MNP-Agglomeration, eine schnelle Ausscheidung der MNP aus dem Körper oder eine unzureichende MNP-Konzentration am Zielort. Diese Herausforderungen erschweren es in der Praxis, durch die Wahl geeigneter AMF-Parameter (Frequenz, Magnetfeldstärke, Expositionsdauer) eine definierte Temperatur zu erreichen und somit eine individuelle Therapie zu planen [21–23]. Durch die direkte Einbettung der MNP in die Polymer-Matrix der Hybridstents können verglichen mit der intravenösen Verabreichung lokal höhere Konzentrationen erzielt und die Größe der MNP-Agglomeration kontrolliert werden [24, 25].

Abbildung 1.1.: Ein nanomodifizierter Polymerstent (*Hybridstent*) innerhalb eines Hohlorgans kann durch magnetische Anregung aufgeheizt werden und somit einwachsendes Tumorgewebe zerstören. Modifizierte Abbildung aus [26].

Die genaue Position des Hybridstents im Körper lässt sich durch Bildgebungsmodalitäten nachverfolgen, indem die eingebetteten MNP als Kontrastmittel in der Magnetresonanztomografie (MRT) [27, 28] bzw. als *Tracer* in der Magnetpartikelbildgebung (MPI) [29] verwendet werden. In der MRT beeinflussen die MNP die Relaxationszeiten der Protonen im Wasser und Weichgewebe und können somit indirekt über das detektierbare Signal der Protonen als negativer Kontrast wahrgenommen werden. Im Gegenzug dazu generieren die MNP in der neuartigen Modalität MPI selbst ein Signal und erzeugen einen positiven Kontrast.

Für die Fähigkeit der Wärmegeneration, MPI-Signalerzeugung sowie der MRT-Visualisierung ist das magnetische Antwortverhalten der MNP als Reaktion auf ein appliziertes AMF entscheidend. Das magnetische Antwortverhalten der MNP ist abhängig von ihren intrinsischen Eigenschaften wie Größe. Form und Magnetisierung sowie den Parametern der applizierten magnetischen Wechselfelder. Zustände, wie MNP-Agglomeration und -Immobilisierung, die bei MNP-Einbettung in die Polymer-Matrix der Hybridstents erwartet werden, beeinflussen durch magnetische Wechselwirkungen zusätzlich ihre magnetischen Eigenschaften. In der vorliegenden Arbeit werden die makroskopisch magnetischen Eigenschaften verschiedener Polymer-MNP-Hybridstents, welche sich in Anteil und Sorte der eingebetteten MNP unterscheiden, im Hinblick auf ihre Eignung in MFH, MRT und MPI untersucht. Es werden Zusammenhänge der ermittelten Effektivität der Hybridstents in MFH, MRT und MPI mit den veränderten mikroskopischen Strukturen und physikochemischen Eigenschaften der MNP infolge ihrer Einbettung in die Polymer-Matrix herausgestellt. Die ermittelten Effektivitäten werden mit denen von Modellsystemen bestehend aus MNP in definierten Zuständen verglichen und somit die Einflüsse von durch MNP-Agglomeration und -Immobilisierung induzierten magnetischen Wechselwirkungen quantifiziert.

Im Folgenden werden zunächst die theoretischen Hintergründe zu magnetischen Materialien im Nanometer-Bereich, die physikalischen Grundlagen zur MFH, MPI und MRT sowie der Forschungsstand aufheizbarer Implantate beschrieben (Kapitel 2). In Kapitel 3 wird dann auf die Entwicklung der Hybridstents eingegangen. Dazu werden sowohl die Synthese der MNP als auch ihre Einbettung in die Polymerfasern beschrieben. In Kapitel 4 werden die verwendeten Methoden zur Charakterisierung der physikochemischen Eigenschaften und anschließend in Kapitel 5 die Methoden zur Beurteilung der Effektivitäten in MFH, MPI und MRT vorgestellt. Zur

Q

Entwicklung eines kontrolliert aufheizbaren und in der Bildgebung visualisierbaren Hybridstents werden in den Kapiteln 6, 7 und 8 folgende grundlegende Themenbereiche diskutiert:

- Beeinflussung des Materialverhaltens durch eine MNP-Polymer-Matrix-Wechselwirkung Durch die Interaktion der MNP mit der Polymer-Matrix werden einerseits Änderungen des MNP-Agglomerationszustands erwartet. Diese verändern das magnetische Antwortverhalten auf statische und dynamischen Magnetfelder und nehmen Einfluss auf die Aufheizung und Bildgebung. Andererseits werden auch Änderungen der Polymer-Eigenschaften (z. B. Zersetzungs- und Schmelzpunkt sowie mechanische Eigenschaften der Polymerfasern) infolge der Einbettung untersucht. Dies geschieht im Hinblick darauf, dass die Hybridstents in der Lage sein müssen, die nötige Radialkraft im Lumen aufzubringen.
- 2. Experimentelle Untersuchung des Materialverhaltens im magnetischen Wechselfeld Anhängig von der MNP-Sorte und ihren magnetischen Eigenschaften vor und nach ihrer Einbettung in die Polymer-Matrix werden unterschiedliche Aufheizcharakteristika unter Applikation eines AMF erwartet. Es gilt herauszufinden, welche Veränderungen durch Variation der inneren Struktur der MNP-Polymer-Matrix und des von außen angelegten magnetischen Wechselfeldes in der magnetischen Hyperthermie hervorgerufen werden. Der Vergleich der Ergebnisse mit Modellsystemen, gängigen mathematischen Theorien und den zuvor untersuchten physikochemischen Eigenschaften lässt den Schluss zu, welche Mechanismen bei der Aufheizung maßgeblich beteiligt sind. Bei der Untersuchung der Hybridstents wird der Fokus darauf gesetzt, inwieweit ihre dreidimensionale Struktur die Wärmedissipation in das Umfeld beeinflusst.
- 3. Möglichkeiten für den Einsatz der Hybridstents in der medizinischen Bildgebung Da sich die Physik von MPI- und MRT-Bildgebung grundsätzlich voneinander unterscheidet wird die Effektivität zur Visualisierung der Hybridstents in der jeweiligen Modalität ermittelt. Im Hinblick auf die MPI-Bildgebung ist in erster Linie entscheidend, ob die MNP innerhalb der Hybridstents ein ausreichendes Signal generieren und die Struktur der einzelnen Fasern eines Stents abgebildet werden kann. In der MRT muss die magnetische Beeinflussung des Proton-Signals durch die MNP in den Hybridstents ausreichend sein, darf jedoch nicht zu Artefakten führen. Vor- und Nachteile beider Modalitäten hinsichtlich einer Visualisierung der Stentfunktion werden gegenüber gestellt.

2. Theoretischer Hintergrund

In diesem Kapitel werden zunächst Magnetische Nanopartikel (MNP) motiviert und ihre zentralen Eigenschaften sowie das in dieser Arbeit verwendete Herstellungsverfahren erläutert. Anschließend wird die zu Grunde liegende Physik für die Anwendung der MNP in den Bereichen der Magnetfluidhyperthermie (MFH), Magnetpartikelbildgebung (MPI) und Magnetresonanztomografie (MRT) diskutiert. Abschließend wird der aktuelle Stand der Forschung zur Entwicklung aufheizbarer Implantate für medizinische Anwendungen vorgestellt.

2.1. Magnetismus

Dieser Abschnitt erläutert die grundlegenden Arten von Magnetismus, um nachfolgend auf den Sonderfall des *Superparamagnetismus'* der MNP einzugehen. Sofern nicht anders angegeben, bezieht sich dieser Abschnitt auf das Fachbuch *Fundamentals and Applications of Magnetic Materials* [30].

2.1.1. Grundlegende Arten von Magnetismus

Nach der klassischen Elektrodynamik erzeugen bewegte Ladungen, sei es auf atomarer Ebene oder in einem mit elektrischem Strom durchflossenen Leiter, ein Magnetfeld. Die Kopplung zwischen elektrischen und magnetischen Feldern wird durch die Maxwell-Gleichungen beschrieben. Im Vakuum sind diese gegeben durch:

$$\nabla \cdot \mathbf{E} = \frac{\varrho}{\varepsilon_0} \tag{2.1}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{2.2}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{2.3}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}_{\mathsf{D}} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
(2.4)

mit der Raumladungsdichte ϱ , der elektrischen Feldstärke \mathbf{E}^1 , der magnetischen Flussdichte \mathbf{B} und der Stromdichte \mathbf{J}_D . Weiterhin beschreiben $\varepsilon_0 = 8,854 \cdot 10^{-12} \,\mathrm{A\,s\,V^{-1}\,m^{-1}}$ und $\mu_0 = 4\pi \cdot 10^{-7} \,\mathrm{V\,s\,A^{-1}\,m^{-1}}$ die elektrischen und magnetischen Feldkonstanten. Die magnetische Flussdichte \mathbf{B} hängt mit der Magnetfeldstärke \mathbf{H} über $\mathbf{B} = \mu_0 \mathbf{H}$ zusammen. Aus der zweiten Maxwell-Gleichung 2.2 lässt sich ableiten, dass \mathbf{B} die Flächendichte des magnetischen Flusses Φ durch die orientierte Fläche \mathbf{S} beschreibt:

¹Vektoren werden in dieser Arbeit fett gedruckt dargestellt, wobei gilt: $|\mathbf{A}| = A$.

$$\Phi = \int \mathbf{B} \cdot \mathbf{dS}.$$
(2.5)

Mit Hilfe des magnetischen Flusses, lässt sich die dritte Maxwell-Gleichung 2.3 zu

$$U = -\frac{\partial}{\partial t} \int_{\mathbf{S}} \mathbf{B} \cdot \mathbf{dS} = -\frac{\partial}{\partial t} \Phi$$
(2.6)

formulieren. Diese als Faraday'sches Induktionsgesetz bekannte Gleichung beschreibt die induzierte Spannung U in einer Leiterschleife, die sich durch die magnetische Flussänderung ergibt. Dieses Prinzip bildet die Grundlage zur Detektion der veränderlichen Magnetfelder in den Abschnitten 2.3.3 und 2.3.4. Aus der vierten Maxwell-Gleichung 2.4 lässt sich das Ampère'sche Gesetz in integraler Form darstellen als

$$\oint_{\partial \mathbf{S}} \mathbf{H} \cdot \mathbf{ds} = I, \tag{2.7}$$

welches besagt, dass eine mit Strom durchflossene geschlossene Leiterschleife ∂S ein Magnetfeld im Rechtsdrehsinn erzeugt. Aus diesem lässt sich das Magnetfeld im Innern einer lang gestreckten Zylinderspule mit N Windungen und der Länge l zu

$$H = \frac{N}{l} \cdot I \tag{2.8}$$

berechnen. Bei dieser Betrachtung ist das magnetische Feld im Spuleninneren homogen [31]. Dieses Prinzip findet in Abschnitt 2.3.2 bei der Erzeugung von magnetischen Wechselfeldern Anwendung, indem ein Wechselstrom durch die Spule geleitet wird. Die Leiterschleife erzeugt ein magnetisches Dipolmoment \mathbf{m} ähnlich zu dem eines Stabmagneten. Ein solcher magnetischer Dipol erfährt in einem externen Magnetfeld ein Drehmoment $\mathbf{T} = \mu_0 \mathbf{m} \times \mathbf{H}$. Seine potentielle Energie ist die sogenannte Zeeman-Energie

$$E_{\text{Zeeman}} = -\mu_0 \mathbf{m} \cdot \mathbf{H}. \tag{2.9}$$

Ein magnetischer Dipol erzeugt ein Magnetfeld, welches in einem Abstand \mathbf{r} gegeben ist durch:

$$\mathbf{H}(\mathbf{m},\mathbf{r}) = \frac{1}{4\pi} \left(3 \frac{(\mathbf{m} \cdot \mathbf{r})\mathbf{r}}{r^5} - \frac{\mathbf{m}}{r^3} \right).$$
(2.10)

Weiterhin ist die Energie, die durch Dipol-Dipol-Wechselwirkungen zweier in einem Abstand von \mathbf{r}_{ij} getrennter magnetischer Momente \mathbf{m}_i und \mathbf{m}_j hervorgerufen wird, folgendermaßen definiert:

$$E_{\mathsf{Dipol-Dipol}}(\mathbf{m}_i, \mathbf{m}_j, \mathbf{r}_{ij}) = \frac{\mu_0}{4\pi} \left(\frac{\mathbf{m}_i \cdot \mathbf{m}_j}{\mathbf{r}_{ij}^3} - 3 \frac{(\mathbf{m}_i \cdot \mathbf{r}_{ij})(\mathbf{m}_j \cdot \mathbf{r}_{ij})}{\mathbf{r}_{ij}^5} \right).$$
(2.11)