Lena Steeb

Verbrückte Bis(pyrazolyl)(pyridinyl)methan-Kupfer-Komplexe als Tyrosinase-Modell-Komplexe

Verbrückte Bis(pyrazolyl)(pyridinyl)methan-Kupfer-Komplexe als Tyrosinase-Modell-Komplexe

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Lena Steeb, geb. Ebert

Master of Science

aus

Dinkelsbühl

Berichter: Universitätsprofessorin Dr. rer. nat. Sonja Herres-Pawlis Universitätsprofessor Dr. rer. nat Jun Okuda

Tag der mündlichen Prüfung: 09.12.2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2021

D 82 (Diss. RWTH Aachen University, 2020)

© CUVILLIER VERLAG, Göttingen 2021 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2021

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-7482-1 eISBN 978-3-7369-6482-2

" Was wir wissen, ist ein Tropfen, was wir nicht wissen, ist ein Ozean."

Isaac Newton

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Kurzzusammenfassung

Peroxodikupfer-Komplexe mit Bis(pyrazolyl)methan-Liganden haben sich in den letzten Jahren als effiziente Tyrosinase-Modell-Komplexe erwiesen. Deshalb wurde in dieser Arbeit ein neuartiger Bis(pyrazolyl)(pyridinyl)methan-Ligand (1,2-Bis(6-(bis(3-*tert*-butyl)-1*H*-pyrazol-1-yl)methyl)pyridin-2-yl)ethan) entwickelt. Die Besonderheit dieses Liganden ist der Ethylenlinker zwischen den beiden Pyridinyleinheiten. Dadurch ist der entstandene Ligand im Gegensatz zu den früheren Pyridinylsystemen hexadentat. Durch die Reaktion mit molekularem Sauerstoff konnte ein Peroxodikupfer(II)-Komplex erhalten werden, der als hervorragendes Tyrosinase-Modell fungiert. Charakterisiert wurde der erhaltene Komplex durch UV/Vis-Spektroskopie, Resonanz-Raman-Spektroskopie und Massenspektrometrie.

Der synthetisierte Peroxo-Komplex zeigt eine enorme Stabilität, da er für einige Tage bei Raumtemperatur stabil ist. Zudem ist er auch bei Zugabe von Wasser stabil. Damit ist dieser Peroxo-Komplex das stabilste bisher bekannte Tyrosinase-Modell-System auf der Basis von Bis(pyrazolyl)methan-Liganden. Eine weitere Besonderheit dieses Systems ist neben der Raumtemperaturstabilität die katalytische Aktivität der Hydroxylierung gegenüber diversen externen phenolischen Substraten, da raumtemperaturstabile Peroxodikupfer(II)-Komplexe bekannt sind, die allerdings keine katalytische Aktivität aufweisen. Der Peroxo-Komplex ist in der Lage, das Substrat 2-Naphthol selektiv zum Produkt 1,2-Naphthochinon zu hydroxylieren. Möglich wäre neben diesem Produkt ebenfalls die Entstehung des 2,3-Naphthochinons. Die selektive Hydroxlierung konnte nach Zugabe von *ortho*-Phenylendiamin-Lösung durch die Entstehung des Benzo[*a*]phenazins und dessen Nachweis durch ¹H-NMR-Spektroskopie gezeigt werden.

Mit diesem Liganden ist es ebenfalls gelungen, einen Kupfer(I)-Komplex zu synthetisieren und strukturell zu charakterisieren.

Ebenfalls konnte der Ligand 1,2-Bis(6-(di(1*H*-pyrazol-1-yl)methyl)pyridin-2-yl)ethan erfolgreich synthetisiert werden, wobei mit diesem keine Sauerstoffaktivierung und somit keine Bildung einer Peroxo-Spezies beobachtet werden konnte.

Neben der Synthese des ethylenverbrückten Liganden wurde versucht, einen über eine 1,3-Propandiyl-Brücke verbrückten Bis(pyrazolyl)methan-Liganden darzustellen. Dies konnte jedoch im Rahmen dieser Arbeit nicht realisiert werden, da zum einen die Ausbeuten der verbrückten Vorstufe 1,3-Bis(6-bromopyridin-2-yl)propan mit 2 % äußerst gering waren. Zum anderen konnten die Reaktionsprodukte bei der Darstellung des 1,3-Bis(6-bromopyridin-2-yl)propans auf einer zweiten Syntheseroute nicht aufgereinigt werden und die Bromo-Substituenten wurden dabei unter den verwendeten Synthesebedingungen abgespalten.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Abstract

Peroxodicopper complexes with bis(pyrazolyl)methane ligands have proven to be efficient tyrosinase model complexes in recent years. Therefore, a novel bis(pyrazolyl)methane ligand (1,2-bis(6-(bis(3-tert-butyl)-1H-pyrazol-1-yl)methyl)pyridin-2-yl)ethane) was developed in this work. The peculiarity of this ligand is the ethylene linker between the two pyridinyl units. So, the novel ligand is in contrast to the earlier pyridinyl systems a hexadentate ligand. By reaction with molecular dioxygen a peroxodicopper complex was obtained that acts as an excellent tyrosinase model. The synthesised complex was characterised by UV/Vis spectroscopy, resonance Raman spectroscopy and mass spectrometry.

The obtained peroxo complex shows enormous stability due to its stability for several days at room temperature and it is also stable when water is added. This makes this peroxo species the most stable tyrosinase model system known up to date based on bis(pyrazolyl)methane ligands. Another special feature of this system, in addition to the room temperature stability, is that the system shows catalytic activity in the hydroxylation of various external phenolic substrates, because the known temperature stable tyrosinase models are not catalytically active. Moreover, the synthesised peroxo complex is able to hydroxylate the substrate 2-naphthol selectively to the product 1,2-naphthoquinone. The formation of the product 2,3-naphthoquinone would also be possible by using this substrate. The selective reaction could be shown by adding *ortho*-phenylendiamine solution after the hydroxylation reaction. Here, benzo[*a*]phenazine was formed and detected in the ¹H-NMR spectrum.

It was also possible to synthesise and to structurally characterise a copper(I) complex with the novel ligand.

The ligand 1,2-bis(6-(di(1*H*-pyrazol-1-yl)methyl)pyridin-2-yl)ethane was also successfully synthesised but no oxygen activation and thus no formation of the peroxo complex could be achieved.

In addition to the synthesis of the ethylene-bridged ligand an attempt was made to prepare a bis(pyrazolyl)methane ligand which is linked via a propylene bridge. However, this could not be realised in this work, because on the one hand the yields of the bridged precursor 1,3-bis(6-bromopyridin-2-yl)propane were extremely low with 2 %. On the other hand, it was not possible to purify the reaction products in the preparation of 1,3-bis(6-bromopyridin-2-yl)propane in a second synthesis pathway and the bromo substituents were split off under the synthesis conditions used.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Inhaltsverzeichnis

Kurzz	usammenfassung	5
Abstract7		
Inhalts	sverzeichnis	I
Abbilo	dungsverzeichnis	v
Tabell	lenverzeichnis	IX
Schen	nataverzeichnis	XI
Abkür	zungsverzeichnis	XIII
1	Einleitung	1
1.1	Kupferenzyme in der Natur	1
1.2	Typ III Kupferenzym Tyrosinase	2
1.3	Mögliche Kupfer-Sauerstoff-Spezies	5
1.4	Tyrosinase-Modell-Komplexe	6
1.4.1	Katalytisch aktive Tyrosinase-Modell-Komplexe	6
1.4.2	Hydroxylierungsreaktionen	8
1.4.2.1	Stöchiometrische Substratreaktionen	9
1.4.2.2	Ratalytische Hydroxylierung phenolischer Substrate	
1.4.3	Raumtemperaturstabile Peroxo-Komplexe	11
1.5	Bis(pyrazolyl)methan-Liganden	12
2	Zielsetzung und Gliederung	15
2.1	Zielsetzung	15
2.2	Gliederung	16
3	Ergebnisse und Diskussion	19
3.1	Ligandensynthese des Bis(pyrazolyl)(pyridinyl)methan-Liganden L1	19
3.1.1	Optimierung der Synthesebedingungen des 6,6'-Dibromo-2,2'-[ethan- 1,2-diyl]dipyridins	20
3.1.2	Optimierung der Synthesebedingungen für die Darstellung von 1,2-Bis- (2-formyl-6-pyridinyl)ethan	23
3.1.3	Synthese von 1,2-Bis(6-(bis(3- <i>tert</i> -butyl)-1 <i>H</i> -pyrazol-1-yl)methyl)-pyridin- 2-yl)ethan (Ligand L1)	25
3.1.4	Charakterisierung von L1	26
3.2	Komplexsynthese und Charakterisierung mit Kupfer(I)iodid und Ligand L1	26
3.3	Synthese und Charakterisierung des Peroxo-Komplexes P1	29
3.3.1	Synthese des Precursor-Komplexes	29

I

3.3.2	Synthese des Peroxo-Komplexes P1	30
3.3.3	Synthese des Peroxo-Komplexes P1 bei unterschiedlichen	20
3.3.4	Theoretische Betrachtungen.	35
3.3.4.1	Geometrieoptimierung des Peroxo-Komplexes P1 mit DFT	35
3.3.4.2	2Simuliertes UV/Vis-Spektrum und Natural Transition Orbital-Analyse	37
3.3.5	Synthese des Peroxo-Komplexes P1 in unterschiedlichen Lösungsmitteln	38
3.3.6	Charakterisierung des Peroxo-Komplexes P1	39
3.3.6.1	Massenspektrometrie	39
3.3.6.2	2Resonanz-Raman-Spektroskopie	41
3.4	Stabilität des Peroxo-Komplexes P1	43
3.4.1	Stabilität bei Raumtemperatur	43
3.4.2	Stabilität des Peroxo-Komplexes P1 gegenüber verschiedenen Basen	44
3.5	Katalytische Hydroxylierung von phenolischen Substraten mit dem Peroxo-Komplex P1	47
3.5.1	Hydroxylierung von 8-Hydroxychinolin	49
3.5.1.1	Verwendung von unterschiedlichen Lösungsmitteln zur Hydroxylierung von 8-Hydroxychinolin mit dem Peroxo-Komplex P1	51
3.5.1.2	Einfluss von Licht auf die katalytische Hydroxylierung von 8-Hydroxychinolin	52
3.5.1.3	Hydroxylierung von 8-Hydroxychinolin unter Einfluss von Wasser	54
3.5.2	Hydroxylierung von 2-Hydroxychinolin	55
3.5.3	Hydroxylierung von 3-Hydroxychinolin	56
3.5.4	Hydroxylierung von 4-Hydroxychinolin	57
3.5.5	Hydroxylierung von 6-Hydroxychinolin	58
3.5.6	Hydroxylierung von 2-Methyl-8-hydroxychinolin	59
3.5.7	Hydroxylierung von 2,8-Dihydroxychinolin	61
3.5.8	Hydroxylierung von N-Acetyltyrosinethylester-Monohydrat	62
3.5.9	Hydroxylierung von Phenol	64
3.5.10	Hydroxylierung von para-Fluorophenol	65
3.5.11	Hydroxylierung von Methyl-4-hydroxybenzoat	66
3.5.12	Hydroxylierung von para-Methoxyphenol	67
3.5.13	Hydroxylierung von para-Nitrophenol	68
3.5.14	Hydroxylierung von 1-Naphthol	69
3.5.15	Hydroxylierung von 2-Naphthol	70
3.6	Abfangreaktionen	73
3.6.1	Kupplungsreaktionen mit 2-Acetylcylopentanon	73
3.6.2	Zugabe von ortho-Phenylendiamin-Lösung	74
3.6.3	Theoretische Betrachtungen	75

3.7	Stöchiometrische Umsetzung von Phenolaten mit dem Peroxo-Komplex P1	77
3.8	Synthese des Bispyrazolylmethan-Liganden L2 und Synthese des Peroxo-Komplexes P2	85
3.9	Synthesestrategien für den mittels einer 1,3-Propandiyl-Brücke verbrückten Liganden L3	87
3.9.1	Variante 1: Tosylat-Ansatz	87
3.9.2	Variante 2: 2,6-Dibromopyridin-Ansatz	89
4	Zusammenfassung und Ausblick	91
4.1	Zusammenfassung	91
4.2	Ausblick	93
5	Experimenteller Teil	95
5.1	Allgemeines	95
5.2	Instrumentelle Analytik	95
5.3	Quantenchemische Berechnungen	97
5.4	Verwendete Chemikalien	99
5.5	Eduktsynthesen	103
5.5.1	Resynthese von 3(5)-tert-Butylpyrazol	103
5.5.2	Resynthese von 2-Bromo-6-methylpyridin	103
5.5.3	Resynthese von 6,6'-Dibromo-2,2'-[ethan-1,2-diyl]dipyridin	104
5.5.4	Resynthese von 1,2-Bis(2-formyl-6-pyridinyl)ethan	105
5.5.5	Resynthese von 2-(6-Bromopyridinyl)ethanol	107
5.5.6	Synthese von 2-(6-Bromopyridin-2-yl)ethyl-4-methylbenzolsulfonat	108
5.5.7	Resynthese von 1-(6-Bromopyridin-2yl)ethanol	109
5.5.8	Resynthese von 2-Bromo-6-vinylpyridin	110
5.5.9	Synthese von 1,3-Bis(6-bromopyridin-2-yl)propan	110
5.6	Ligandensynthesen	113
5.6.1	Synthese von 1,2-Bis(6-(bis(3- <i>tert</i> -butyl)-1 <i>H</i> -pyrazol-1-yl)methyl)-pyridin- 2-yl)ethan (L1)	113
5.6.2	Synthese von 1,2-Bis(6-(di(1 <i>H</i> -pyrazol-1-yl)methyl)pyridin-2-yl)ethan (L2).	114
5.7	Peroxosynthese und katalytische Studien	117
5.7.1	Synthese des Precursor-Komplexes	117
5.7.2	Synthese des Peroxo-Komplexes P1	117
5.7.3	Umsetzung des Peroxo-Komplexes P1 mit Me6Tren	118
5.7.4	Stabilität des Peroxo-Komplexes P1 gegenüber Basen	118
5.7.5	Synthese Precursor-Komplex für P2	118
5.7.6	Synthese des Peroxo-Komplexes P2	119
5.7.7	Katalytische Hydroxylierung von phenolischen Substraten mit Peroxo- Komplex P1 (50 eq. Phenol, 100 eq. NEt ₃)	119

5.7.7.1	Weiterreaktion mit ortho-Phenylendiamin	121
5.7.7.2	Kupplungreaktionen mit 2-Acetylcylopentanon	122
5.7.8	Stöchiometrische Phenolatumsetzung	123
5.8	Synthese von $[Cu_2\{HC(3^{-t}BuPz)_2(CH_2Py)\}_2I_2]$ (K1)	125
6	Literaturverzeichnis	127
7	Anhang	
	5	
7.1	Kalibriergeraden des Peroxo-Komplexes P1	135

Abbildungsverzeichnis

Abbildung 1	: Aktive Zentren kupferbasierter Metalloenzyme des Typs I-III. Typ I: Plastocyanin, Typ II: Galaktoseoxidase, Typ III: Oxy- Hämocyanin. ^[9]	1
Abbildung 2	: Katalytisch aktives Zentrum der Tyrosinase in der Oxy-Form. ^[22]	2
Abbildung 3	: Tris(3,5-isopropylpyrazolyl)borat nach Kitajima et al. ^[32]	6
Abbildung 4	Hexadentater m-Xylyl-Ligand nach Karlin et al. ^[37]	6
Abbildung 5	Liganden, die in der Lage sind, katalytisch aktive Tyrosinase- Modell-Komplexe zu bilden	8
Abbildung 6	Für stöchiometrische Reaktionen von Itoh <i>et al.</i> verwendeter Bis(pyridinyl)benzylamin-Ligand. ^[51]	9
Abbildung 7	Vorgeschlagener Katalysezyklus der Phenolhydroxylierung. ^[46]	10
Abbildung 8	Liganden für die Bildung von raumtemperaturstabilen Peroxo- Komplexen. Links oben: Ligand nach Kodera <i>et al.</i> ^[52] , links unten: Ligand nach Scarborough <i>et al.</i> ^[54] , rechts: Ligand nach Gorun <i>et al.</i> ^[53]	11
Abbildung 9	Bis(pyrazolyl)methan-Liganden mit unterschiedlichen dritten Donorfunktionen und <i>tert</i> -Butylpyrazolen. ^[46-49]	14
Abbildung 1	D: Übersicht der in dieser Arbeit zu synthetisierenden Liganden	16
Abbildung 1	 Molekülstruktur von [Cu₂{HC(3-ⁱBuPz)₂(CH₂Py)₂I₂] (K1). Die Wasserstoffatome sind zur besseren Übersicht nicht gezeigt. 	27
Abbildung 1	2: UV/Vis-Spektrum der Bildung des Peroxo-Komplexes P1 bei -78 °C.	
Abbildung 1	3: UV/Vis-Spektrum von P1 nach Aufwärmen auf Raumtemperatur von -78 °C.	31
Abbildung 1	4: UV/Vis-Spektrum der Bildung von P1 bei -60 °C	32
Abbildung 1	5: UV/Vis-Spektrum des Peroxo-Komplexes P1 während des Aufwärmens von -60 °C auf Raumtemperatur	32
Abbildung 1	6: UV/Vis-Spektrum der Bildung von μ-η ² :η ² -[Cu ₂ (HC(3- ^t BuPz) ₂ (CH ₂ Py)) ₂ O ₂][SbF ₆] ₂ (P1)	33
Abbildung 1	7: MO-Schema eines μ-η ² :η ² side-on Peroxo-Komplexes nach Stack <i>et al</i> ^[23]	34
Abbildung 18	8: UV/Vis-Spektrum der Zugabe von Me ₆ Tren zum gebildeten Peroxo-Komplex P1	35
Abbildung 1	 Optimierte Struktur des Peroxo-Komplexes P1 mittels DFT (closed shell). H-Atome sind f ür eine bessere Übersichtlichkeit entfernt. 	
Abbildung 20	D: Mittels DFT berechnetes UV/Vis-Spektrum und NTOs des Peroxo-Komplexes P1 in der Gasphase. Gezeigt sind die im UV/Vis-Spektrum sichtbaren HONTO-LUNTO-Übergänge. (H-Atome wurden für eine bessere Übersicht entfernt)	37
Abbildung 2	1: UV/Vis-Spektren der Synthese des Peroxo-Komplexes P1 in THF (links) und Aceton (rechts).	38

V

Abbildungsverzeichnis

Abbildung 22:	Experimentelles (oben) und theoretisches (unten) HR-ESI+-MS-Spektrum von $P1$ SbF ₆ +	.40
Abbildung 23:	Resonanz-Raman-Spektrum von P1 in THF mit ¹⁶ O ₂	.41
Abbildung 24:	UV/Vis-Spektrum des Zerfalls der Peroxo-Spezies in Abhängigkeit der Zeit	.43
Abbildung 25:	Verwendete Hilfsbasen	.44
Abbildung 26:	UV/Vis-Spektren der Messreihen bei Zugabe von NEt ₃ (oben links), Diethylamin (oben rechts), DBU (Mitte links), Diisopropylamin (Mitte rechts), DABCO (unten links) und Pyridin (unten rechts).	.45
Abbildung 27:	Zur Hydroxylierung mit dem Peroxo-Komplex P1 verwendete phenolische Substrate.	.47
Abbildung 28:	Vorgeschlagener Katalysezyklus der Phenolhydroxylierung. ^[46]	.48
Abbildung 29:	UV/Vis-Spektrum der Hydroxylierung von 50 eq. 8-Hydroxychinolin mit dem Peroxo-Komplex P1	.49
Abbildung 30:	UV/VVis-Spektren der Hydroxylierung von 25 eq. 8-Hydroxychinolin in THF (links) und Aceton (rechts).	.51
Abbildung 31:	UV/Vis-Spektrum der Hydroxylierung von 50 Äquivalenten 8-Hydroxychinolin mit P1 (rot) zuerst in der Dunkelheit (grün) und anschließend bei Tageslicht (lila)	.52
Abbildung 32:	UV/Vis-Spektrum der katalytischen Hydroxylierung von 8-Hydroxychinolin mittels des Peroxo-Komplexes P1 unter Verwendung von Tageslicht (links) und durch Bestrahlung mit UV-Licht der Intensität von 366 nm (rechts)	.53
Abbildung 33:	UV/Vis-Spektrum der katalytischen Hydroxylierung von 8-Hydroxychinolin in wässriger Lösung bei Raumtemperatur	.54
Abbildung 34:	UV/Vis-Spektrum der katalytischen Hydroxylierung von 2-Hydroxychinolin bei Raumtemperatur.	.55
Abbildung 35:	UV/Vis-Spektrum des Versuchs der katalytischen Hydroxylierung von 3-Hydroxychinolin bei Raumtemperatur.	.56
Abbildung 36:	UV/Vis-Spektrum des Versuchs der katalytischen Hydroxylierung von 4-Hydroxychinolin bei Raumtemperatur.	.57
Abbildung 37:	UV/Vis-Spektrum des Versuchs der katalytischen Hydroxylierung von 6-Hydroxychinolin.	.59
Abbildung 38:	UV/Vis-Spektrum der Hydroxylierung von 2-Methyl-8- hydroxychinolin mit P1	.60
Abbildung 39:	UV/Vis-Spektrum der Hydroxylierung von 2,8-Dihydroxychinolin	.61
Abbildung 40:	Strukturformeln von Tyrosin, <i>N</i> -Acetyltyrosin und <i>N</i> -Acetyltyrosinethylester (von links nach rechts)	.62
Abbildung 41:	UV/Vis-Spektrum der Hydroxylierung von N-Acetyltyrosinethylester mit Peroxo-Komplex P1 bei Raumtemperatur.	.63
Abbildung 42:	UV/Vis-Spektrum der Hydroxylierung von Phenol	.64
Abbildung 43:	UV/Vis-Spektrum der Hydroxylierung von 25 Äquivalenten (links) und 50 Äquivalenten (rechts) <i>para</i> -Fluorophenol mit Peroxo- Komplex P1 bei Raumtemperatur.	.65

Abbildung 44: I	Mögliche Produkte der katalytischen Hydroxylierung von 4-Fluorophenol, die ein Absorptionsmaximum bei 420 nm aufweisen. ^[101]	66
Abbildung 45:	UV/Vis-Spektrum der katalytischen Hydroxylierung von Methyl-4- hydroxybenzoat.	67
Abbildung 46:	UV/Vis-Spektrum der Hydroxylierung von para-Methoxyphenol	68
Abbildung 47:	UV/Vis-Spektrum der Hydroxylierung von para-Nitrophenol	69
Abbildung 48:	UV/Vis-Spektrum der Hydroxylierung von 1-Naphthol	70
Abbildung 49:	UV/Vis-Spektrum der Hydroxylierung von 2-Naphthol	71
Abbildung 50:	Geometrieoptimierung und NBO-Ladung von 1-Naphthol und 2-Naphthol mittels DFT	72
Abbildung 51:	UV/Vis-Spektrum der Reaktion des Peroxo-Komplexes P1 mit dem Substrat 2-Naphthol (links) und Weiterreaktion des entstandenen Naphthochinons nach <i>ortho</i> -Phenylendiamin- Zugabe (rechts).	74
Abbildung 52:	DFT-optimierte Struktur nach Koordination des Phenols an den Peroxo-Komplex P1	75
Abbildung 53: /	Auftragung der Absorption gegen die Zeit bei einer Zugabe von 20 Äquivalenten <i>para</i> -Methoxyphenolat. Der exponentielle Fit ist rot dargestellt	78
Abbildung 54:	Zerfallsgraphen für die stöchiometrische Umsetzung des Peroxo- Komplexes P1 mit 5 (oben links), 10 (oben rechts), 15 (unten links) und 20 (unten rechts) Äquivalenten <i>para</i> -Methoxyphenolat	80
Abbildung 55:	UV/Vis-Spektrum nach der stöchiometrischen Umsetzung des Peroxo-Komplexes P1 mit 5 Äquivalenten <i>para</i> -Methoxyphenolat	81
Abbildung 56:	UV/Vis-Spektrum der stöchiometrischen Umsetzung von 20 Äquivalenten <i>para</i> -Methoxyphenol bei -80 °C mit dem Peroxo- Komplex P1	82
Abbildung 57: 2	Zerfallsgraphen für die stöchiometrische Umsetzung des Peroxo- Komplexes P1 mit 5 (oben links), 15 (oben rechts) und 20 (unten) Äquivalenten <i>para</i> -Fluorophenolat	82
Abbildung 58: /	Ausbleibende Bildung des Peroxo-Komplexes P2.	85
Abbildung 59:	¹ H-NMR-Spektrum von 1,3-Bis(6-bromopyridin-2-yl)propan	88
Abbildung 60:	Übersicht der Substrate, die durch den Peroxo-Komplex P1 hydroxyliert werden	92
Abbildung 61:	3(5)- <i>tert</i> -Butylpyrazol.	103
Abbildung 62:	2-Bromo-6-methylpyridin	103
Abbildung 63:	6,6'-Dibromo-2,2'-[ethan-1,2-diyl]dipyridin	104
Abbildung 64:	1,2-Bis(2-formyl-6-pyridinyl)ethan.	105
Abbildung 65:	2-(6-Bromopyridinyl)ethanol	107
Abbildung 66:	2-(6-Bromopyridin-2-yl)ethyl-4-methylbenzolsulfonat.	108
Abbildung 67:	1-(6-Bromopyridn-2-yl)ethanol.	109
Abbildung 68: 2	2-Bromo-6-vinylpyridin	110

VIII

Abbildung 69: 1,3-Bis(6-bromopyridin-2-yl)propan	110
Abbildung 70: 1,2-Bis(6-(bis(3- <i>tert</i> -butyl)-1 <i>H</i> -pyrazol-1-yl)methyl)pyridin-2- yl)ethan L1.	113
Abbildung 71: 1,2-Bis(6-(di(1 <i>H</i> -pyrazol-1-yl)methl)pyridin-2-yl)ethan L2	114
Abbildung 72: Peroxo-Komplex P1	117
Abbildung 73: Peroxo-Komplex P2	119
Abbildung 74: Hydroxylierung von Phenolen	119
Abbildung 75: Benzo[<i>a</i>]phenazin	122
Abbildung 76: Syntheseschema der Kupplungsreaktion mit 2-Acetylcyclopentanon	
Abbildung 77: Dikupfer(I)iodkomplex [Cu ₂ {HC(3- ^{<i>i</i>} BuPz) ₂ (CH ₂ Py) ₂ I ₂] (K1)	125
Abbildung 78: Bestimmung des Extinktionskoeffizienten der Absorption von P1 bei 360 nm mittels UV/Vis-Spektroskopie (Raumtemperatur)	135
Abbildung 79: Bestimmung des Extinktionskoeffizienten der Absorption von P1 bei 560 nm mittels UV/Vis-Spektroskopie (Raumtemperatur)	135
Abbildung 80: Molekülstruktur von [Cu ₂ {HC(3-'BuPz) ₂ (CH ₂ Py)} ₂ I ₂] (K1)	136

Tabellenverzeichnis

Tabelle 1:	Optimierung der Synthesebedingungen	24
Tabelle 2:	Bindungslängen ausgewählter Bindungen	28
Tabelle 3:	Ausgewählte Bindungswinkel	28
Tabelle 4:	Bildungszeiten der Peroxo-Spezies P1 in Abhängigkeit der Temperatur.	33
Tabelle 5:	Berechnete Bindungslängen für P1	36
Tabelle 6:	Gefundene und theoretische Peaks des HR-ESI ⁺ -MS-Spektrums von $P1$ SbF ₆ ⁺ mit Zuordnung der Fragmente.	41
Tabelle 7:	Farbänderung der Peroxo-Komplex-Lösung nach Basenzugabe	46
Tabelle 8:	Erhaltene TON in Abhängigkeit der Lichtverhältnisse.	53
Tabelle 9:	Per DFT berechnete Bindungslängen des Peroxo-Komplexes P1 nach Anlagerung des Phenolats.	76
Tabelle 10:	Variierte Versuchsparameter einer Versuchsreihe zur Synthese von 1,3-Bis(6-bromopyridin-2-yl)propan	90
Tabelle 11:	Verwendete Chemikalien	99
Tabelle 12:	Volumina der verwendeten Basen.	118
Tabelle 13:	Reaktionszeiten, Einwaagen und verwendete Lösungsmittel zur Hydroxylierung der jeweiligen externen phenolischen Substrate	120
Tabelle 14:	Zusammensetzung der Phenolat-Lösungen <i>para</i> -substituierter Phenolate für je 1 mL Lösung in THF. Um die gewünschte Zahl an Äquivalenten zu erhalten, wurden jeweils 200 µL der Lösung zur Peroxo-Komplex-Lösung gegeben	123
Tabelle 15:	Kristallstrukturdaten und Strukturverfeinerung von [Cu ₂ {HC(3- $^{t}BuPz)_{2}(CH_{2}Py)_{2}I_{2}]$ (K1).	136

IX