Schriftenreihe des Lehrstuhls Kraftfahrzeugtechnik

Herausgeber Prof. Dr.-Ing. Günther Prokop

Band 15

Schriftenreihe des Lehrstuhls Kraftfahrzeugtechnik Herausgeber Prof. Dr.-Ing. Günther Prokop Band 15 ISSN 2509-694X

Fakultät Verkehrswissenschaften "Friedrich List"

Institut für Automobiltechnik Dresden – IAD Lehrstuhl Kraftfahrzeugtechnik

WIRKKETTENANALYSE DES SCHWINGUNGSPHÄNOMENS ANFAHRSTEMPELN

Linda Senger Geboren am: 9. April 1989 in Pirna

DISSERTATION

zur Erlangung des akademischen Grades

DOKTOR-INGENIEURIN (DR.-ING.)

Erstgutachter Prof. Dr.-Ing. Günther Prokop

Zweitgutachter Prof. Dr.-Ing. habil. Michael Scheffler

Eingereicht am: 14. September 2020 Verteidigt am: 9. November 2020

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2020

Zugl.: (TU) Dresden, Univ., Diss., 2020

© CUVILLIER VERLAG, Göttingen 2020 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2020

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-7331-2 eISBN 978-3-7369-6331-3

DANKSAGUNG

Die vorliegende Arbeit entstand von Juni 2015 bis Februar 2018 und wurde im XXX 2020 von der Fakultät Verkehrswissenschaften "Friedrich List" der Technischen Universität Dresden als Dissertation angenommen.

Mein besonderer Dank gilt meinem Doktorvater Prof. Dr.-Ing. Günther Prokop, der meine Arbeit betreut und begutachtet hat. Für die hilfreichen Wissenschaftsbesprechungen und die gemeinsamen Diskussionen möchte ich mich bei Prof. Dr.-Ing. Günther Prokop und Prof. Dr.-Ing. Christoph Erhard herzlich bedanken. Für konstruktive Anregungen danke ich Prof. Dr.-Ing. habil. Michael Scheffler, der meine Doktorarbeit als zweiter Gutachter betreut hat.

Mein ebenso besonderer Dank gilt der BMW Group für die Unterstützung und die gegebenen Freiräume im "ProMotion-Programm". Für die finanzielle Unterstützung und den reibungslosen Zugang zu Prüfständen und Messequipment, sowie der Unterstützung meiner Themen durch das ganze Betriebsfestigkeitsteam, danke ich meinem Abteilungsleiter Dr. Kurt Pötter.

Für die Betreuung dieser Arbeit, die Anregungen und den Rückhalt danke ich Dr. Michael Wegscheider. Als Wegbegleiter hast Du den Weg zum Erfolg dieser Arbeit geebnet und mich stets als Mentor vorangetrieben.

Hinter dem Erfolg stehen Know-How-Träger ohne die das Betreten von wissenschaftlichem Neuland zur Mammutaufgabe wird.

Lieber Hans-Jürgen Rosenheimer,

wir beide haben als Team dem FDFP alles abverlangt und jede Krise bewältigt. Unsere "Sissi" wird wird uns für immer an dieses spannende und herausfordernde Projekt erinnern. Ich schätze deine ehrliche Art und danke dir für die gemeinsame Zeit.

Lieber Stephan Petersdorff,

ich danke dir für dein Engagement und deine Hilfsbereitschaft auf dem Gebiet der Mehrkörpersimulation und der Fahrwerkskunde. Unsere gemeinsamen Diskussionen haben mir den Blick geschärft und diese Arbeit vorangetrieben.

Für die offenen Diskussionen und fachlichen Anregungen danke ich ebenso Alexander Zech, Steven Ernst, Remo Grexa, Rüdiger Hehl, Thomas Ribbe, Werner Wastl und Micheal Richard Huber. Danken möchte ich ebenfalls Christian Krösser, Herbert Haas, Bernhard Edlinger, Peter Fischer, Stefan Hagl und Herbert Mair für die Unterstützung bei allen Messaufgaben.

Danksagung

Für das Korrekturlesen dieser Arbeit danke ich meiner Mutter, meinem Bruder Benno und Max Krumbholz. An dieser Stelle danke ich meiner ganze Familie, die mir meinen Lebensweg erst ermöglicht haben. Danke für die Unterstützung und Motivation während meiner Ausbildung. Ohne die von euch gegebenen Freiräume und den stets vorhandenen Rückhalt könnte ich nicht auf eine solch intensive Bildungsreise und persönliche Entwicklung zurückblicken.

Mein besonderer Dank gilt schließlich meinem Freund Danilo.

Lieber Danilo,

du hast mich animiert, diesen Weg zu gehen und hast mir immer das Gefühl gegeben, das Richtige zu tun. Du stehst mir als Sparringspartner bei fachlichen Fragen zur Seite und motivierst mich, wenn die Kraft mich verlassen hat. Ich danke dir für deine Geduld, deine Ehrlichkeit und dein Verständnis, nicht nur in der Promotionszeit sondern seit unserem Kennenlernen vor 11 Jahren.

Linda Senger München, den 14. November 2020

> "Es ist sehr simpel. Schere schneidet Papier. Papier bedeckt den Stein. Der Stein zerquetscht die Echse. Die Echse vergiftet Spock. Spock zerschlägt die Schere. Die Schere enthauptet die Echse. Die Echse isst das Papier. Das Papier widerlegt Spock. Spock verdampft den Stein. Und so wie es schon immer war, zerschmettert der Stein die Schere."

> > (Sheldon Cooper)

ZUSAMMENFASSUNG

Bei frontgetriebenen Fahrzeugen kann es bei niedrigem Reibwertniveau der Fahrbahnoberfläche zum Haftungsabriss am Reifen und zum Aufschwingen des Antriebsstrangs kommen. Dieses Schwingungsphänomen wird aufgrund der einhergehenden Beeinträchtigungen von Akustik und Fahrkomfort als Anfahrstempeln bezeichnet. Damit verbunden sind in der Regel unkontrolliert ansteigende Bauteilkräfte in den Aggregatelagern, die zur Reduzierung der Lebensdauer führen können. Ziel der Untersuchungen ist die Wirkkettenanalyse des mechanischen Schwingungssystems, die Ableitung der Entstehungsmechanismen, sowie die Ermittlung der vorherrschenden Bewegungsform.

Anhand von Fahr- und Prüfstandsversuchen werden virtuelle mechanische Ersatzmodelle validiert. Diese sind zum einen ein virtuelles Prüfstandsmodell und zum anderen ein davon abgeleitetes mechanisches Modell eines virtuellen, freien Fahrzeuges. Durch die Kombination dieser vier Methoden werden die Haupteinflussgrößen auf eine Lastminderung, das Aufklingverhalten der Schwingung, die Schwingfrequenz und die Auftretenswahrscheinlichkeit eines Stempelvorganges identifiziert. Untersuchungsgegenstand sind dabei alle mechanischen Einflussparameter von Antriebsstrang, Fahrwerk, Reifen, Aggregatelagerung und Gesamtfahrzeugeigenschaften, sowie Fremderregungen als Folge von Straßenunebenheiten.

Die Einflussgrößenanalyse und die Modellierung des mechanischen Ersatzsystems beweisen, dass es sich beim Anfahrstempeln um eine reiberregte Torsionsschwingung des Rades um die Abtriebswelle handelt. Die Rotationsträgheit des Rades und die torsionale Abtriebswellensteifigkeit bestimmen maßgeblich die Schwingfrequenz des Systems. Die Ursache der selbsterregten Schwingung ist das nichtlineare Reibverhalten des Fahrbahn-Reifen-Kontaktes bei hohem Schlupf des Rades. Die Torsionsschwingung des Rades führt aufgrund der Elastokinematik des Fahrwerkes zu zwangsläufig überlagerten Radlängsschwingungen bezüglich der Karosserie. Es wird gezeigt, dass sich bei ausgeprägter Translationsbewegung des Rades in Längsrichtung des Fahrzeuges das Aufklingen der Stempelschwingung zunimmt. Zudem können weitere Parameter, die das Aufschwingen beeinflussen, identifiziert werden. Die beim Anfahrstempeln auftretenden zyklischen Lasten im Antriebsstrang regen bei Fahrzeugen mit quer eingebautem Motor das Aggregat zu Nickschwingungen an. Der progressive Steifigkeitsverlauf führt in den Aggregatelagern in überwiegend Längsrichtung zu hohen zyklischen Lasten. Es wird aufgezeigt, welche Einflussgrößen zur Lastminderung führen und wie ein ideales 3-Punkt-Lagerungskonzept mit minimalen Bauteillasten gefunden wird.

Die Auftretenswahrscheinlichkeit von Anfahrstempeln im Kundenbetrieb hängt von den dynamischen Radaufstandskräften ab. Je geringer die Radlasten beim Beschleunigen des Fahrzeuges sind, desto häufiger wird das Fahrzeug stempeln. Welche Einflussgrößen zu geringen Radlasten führen, wurde eingehend untersucht. Auf Basis der Ergebnisse der Einflussgrößenanalyse werden technische Lösungen vorgeschlagen und diskutiert.

Ш

ABSTRACT

Low friction road surfaces can cause a loss of tyre grip in front wheel drive vehicles. Simultaneously, it potentially causes an excitation of the engine. This phenomenon is known as power hop due to the cyclic loss of contact to the drive surface, which occurrs during high engine acceleration. Also associated with this are usually uncontrolled rising forces acting on the engine mounts, which reduce the mechanical durability.

The objective of the investigation is to understand the mechanical excitation mechanism, its origin and the predominant form of motion. Simple virtual models were validated on the basis of driving and test bench tests. One of these is a virtual test bench model, the other a mechanical model derived from a virtual free vehicle. The four methods are used in combination to identify the main factors influencing load reduction, vibration decay, vibration frequency and the probability of occurrence of power hop. All influences deriving from the powertrain, chassis, tyres, engine mounts and the complete vehicle, as well as external excitations as a result of road unevenness, are investigated.

The variable influence analysis and the virtual modelling of the mechanical system allow for the conclusion, that the power hop is a friction-induced torsional vibration of the wheel around the drive shaft. The rotational inertia of the wheel and the torsional stiffness of the output shaft significantly determine the vibration frequency of the system. The cause of the self-induced vibration is the non-linear friction behaviour of the road-tyre contact at high wheel slip. Due to the elasto-kinematics of the chassis, superimposed longitudinal wheel oscillations inevitably occur. The more pronounced this translational movement is, the less the power hop oscillation increases.

There are also other parameters which influence engine excitation. The cyclic loads in the drive train that occur during power hop result in pitch oscillations of the engine. The inherent progressive stiffness leads to high cyclic longitudinal loading of the engine mounts. Relevant variables leading to load reduction, as well as a method define an ideal 3-point mounting concept with minimum component loads, are identified. The occurrence probability of power hop during customer operation depends on the dynamic wheel contact forces. The lower the wheel loads when accelerating the vehicle, the more frequently the vehicle will power hop. Which relevant variables lead to low wheel loads is investigated in detail. Based on the results of the variable analysis, technical solutions are proposed and discussed.

INHALTSVERZEICHNIS

Da	anksagung	I
Zu	isammenfassung	П
Inł	haltsverzeichnis	IX
Ab	okürzungsverzeichnis	XI
No	omenklatur und Indices	XIII
1.	Einleitung 1.1. Problemstellung und Relevanz 1.2. Stand der Technik 1.2.1. Entstehung einer Stempelschwingung 1.2.2. Rückkopplungseffekte auf das Gesamtfahrzeug 1.2.3. Einflussgrößen auf die Stempelschwingung 1.3. Forschungsfragen 1.4. Methodik	1 . 2 . 3 . 3 . 7 . 8 . 11 . 12
2.	Theoretische Grundlagen 2.1. Selbsterregte Schwingungen 2.1.1. Klassifikation von Schwingungen 2.1.2. Selbsterregte Reibschwingungen 2.1.3. Selbsterregeter zweidimensionaler Reibschwinger 2.1.4. Sonderfall: Reibschwinger ohne fallende Reibkennlinie 2.2. Fahrbahn-Reifen-Kontakt 2.2.1. Aufbau und Funktion eines Pkw-Luftreifens 2.2.2. Gummireibung und Schlupfverhalten	15 15 15 17 20 22 23 23 23 23 24
3.	Hardwarebasierte Analysemethoden 3.1. Fahrversuch 3.2. Fahrdynamischer Fahrwerksprüfstand 3.2.1. Prüfstandskonzept 3.2.2. Versuchsträger und Messtechnik 3.2.3. Manöverdefinition 3.2.4. Versuchsergebnisse	33 . 33 . 35 . 35 . 36 . 38 . 39

VII

4.1.1. Modellau/bau 45 4.1.2. Aktuatorik 47 4.1.3. Modellbedatung 48 4.1.4. Simulationsergebnisse 50 4.2. Mehrkörpersimulation Prüfstand mit MATLAB/Simulink 54 4.2.1. Modellaufbau 54 4.2.1. Modellaufbau 54 4.2.1. Modellaufbau 54 4.2.2. Aktuatorik 60 4.2.3. Modellbedatung 60 4.2.4. Simulationsergebnisse 63 4.3. Mehrkörpersimulation freies Fahrzeug 67 4.3.1. Modelleweiterungen 70 4.3.2. Modellbedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1.1. Radmasse und -trägheit 73 5.1.2. Reifenfülfdruck 78 5.1.3. Schlupfkrurve 80 5.2.4. Aktiverve 80 5.3. Longitudinale Elastokinematik 110 5.3. Inorgitudinale Elastokinematik 110 5.3. Longitudinale Elastokinematik 110 5.3. Longitudinale Elastokinematik 110 5.3. Longitudinale Elastokinematik 110 5.3. Lagersteifrigikeiten	4.	Virtu	/irtuelle Analysemethoden 45		
4.1.2. Aktuatorik 47 4.1.3. Modellbedatung 48 4.1.4. Simulationsergebnisse 50 4.2. Mehrkörpersimulation Prüfstand mit MATLAB/Simulink 54 4.2 Aktuatorik 60 4.2.1. Modellaufbau 54 4.2.2. Aktuatorik 60 4.2.3. Modellbedatung 60 4.2.4. Simulationsergebnisse 63 4.3. Mohrkörpersimulation freies Fahrzeug 67 4.3.2. Modellbedatung 70 4.3.2. Modellbedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanelyse 73 5.1.1. Rader/Reifen 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radior/Reifen 79 5.2.1. Abtriebsvellen 89 5.2.2. Motor und Getriebe 97 5.3. Schrägfederungswinkel 110 5.3.2. vertikele Elastokinematik 110 <		4.1.		45	
4.1.2 Akuatom 49 4.1.4 Simulationsergebnisse 50 4.2. Mehrkörpersimulation Prüfstand mit MATLAB/Simulink 54 4.2.1. Modellaufbau 54 4.2.2. Aktuatorik 60 4.2.3. Modellbedatung 60 4.2.4. Simulationsergebnisse 63 4.3.1. Modelleveiterungen 67 4.3.2. Modellbedatung 67 4.3.3. Modellbedatung 70 4.3.4. Modellbedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanelyse 73 5.1.1. Rader/Reifen 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkrurve 80 5.2.4. Antriebsstrang 89 5.2.2. Motor und Getriebe 97 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 136 5.5.1. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136			4.1.1. Mouellaulbau	43	
4.1.3. Modellaudhau 40 4.2. Mehrkörpersimulation Prüfstand mit MATLAB/Simulink 50 4.2. Mehrkörpersimulation freies Fahrzeug 60 4.2.1. Modellaufbau 60 4.2.2. Aktuatorik 60 4.2.3. Modellbedatung 60 4.2.4. Simulationsergebnisse 63 4.3. Mehrkörpersimulation freies Fahrzeug 67 4.3.1. Modellerweiterungen 67 4.3.2. Modellbedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Rader/Reifen 73 5.1.1. Reifenfülldruck 78 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 89 5.2.1. Abtriebsstrang 89 5.2.1. Abtriebsstrang 89 5.2.1. Abtriebsstrang 89 5.3. Fahrwerk 109 5.3. Schrägfederungswinkel 116 5.3. Schrägfederungswinkel 127 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagergositionen 132 5.5.4. Gesamtfahrzeug 136			4.1.2. Madallhadatung	47	
4.1.4. Simulationsergenisse 50 4.2. Mehrkörpersimulation Prüfstand mit MATLAB/Simulink 54 4.2.1. Modellaufbau 54 4.2.2. Aktuatorik 60 4.2.3. Modellibedatung 60 4.2.4. Simulationsergebnisse 63 4.3. Mehrkörpersimulation freies Fahrzeug 67 4.3.1. Modellerweiterungen 67 4.3.2. Modellibedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1.1. Rader/Reifen 73 5.1.2. Reifenfüldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radeur/Reifen 78 5.2.1. Abtriebsstrag 89 5.2.1. Abtriebsstrag 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3. Schrägfederungswinkel 119 5.4. Lagerositionen 129 5.4.1. Motor-Getriebe-Verband 127 5.4.1. Motor-Getriebe-Verband 127 5.4.1. Aggregatellagerung 136 5.5. Gesamtfahrzeug 136 5.6.1. Gesamtfahrzeug 136			4.1.5. Modelibeuaturig	40	
4.2.1. Modellaudton rulestand mit (whit LAp)similarity 54 4.2.2. Aktuatorik. 60 4.2.3. Modellbedatung 60 4.2.4. Simulationsergebnisse 63 4.3. Mehrkörpersimulation freies Fahrzeug 67 4.3.1. Modellerweiterungen 67 4.3.2. Modellbedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Rader/Reifen 73 5.1.1. Radmässe und -trägheit 73 5.1.2. Reifenfüldruck 78 5.1.3. Schlupfkurve 80 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3. Zuwertkale Elastokinematik 110 5.3.2. wertkale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.2. usertafitykeiten 129 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagergositionen 136 5.5.4.4. Lagerdämpfung 136 5.5.3. Schwerpunktslage 14		10	4.1.4. Simulationsergebnisse	50	
4.2.1. Modellaufbau 54 4.2.2. Aktuatorik 60 4.2.3. Modellbedatung 60 4.2.4. Simulationsergebnisse 63 4.3. Mehrkörpersimulation freise Fahrzeug 67 4.3.1. Modellerweiterungen 67 4.3.2. Modellbedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Räder/Reifen 73 5.1. Räder/Reifen 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radumwucht 87 5.2. Antriebsstrang 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.2. vertikale Elastokinematik 116 5.3.3. Schrägfederungswinkel 127 5.4.1. Lagersteifigkeiten 122 5.4.2 Lagersteifigkeiten 122 5.4.3. Lagergositionen 132 5.4.4. Lagerdämpfung 135 5.5.1. Gesamtfahrzeug 136 5.6.1. Gesamt		4.Z.		54	
4.2.2. Aktuatorik. 60 4.2.4. Simulationsergebnisse 63 4.3. Mehrkörpersimulation freies Fahrzeug 67 4.3.1. Modellivervietrungen 67 4.3.2. Modellibedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Räder/Reifen 73 5.1.1. Radmasse und -trägheit 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.2.4. Atriebsstrag 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. Workiale Elastokinematik 110 5.3.3. Schrägfederungswinkel 127 5.4.1. Aggregatilagerung 122 5.4.3. Lagerpositionen 122 5.4.4. Lagerdämpfung 132 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 141 5.5.4. Lagerdämpfung 136 5.5.5. Gesamtfahrzeug 136				54	
4.2.3. Modellbedatung 60 4.3. Mehrkörpersimulation freies Fahrzeug 67 4.3.1. Modellerweiterungen 67 4.3.2. Modellbedatung 67 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Räder/Reifen 73 5.1. Räder/Reifen 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radunwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 132 5.4.3. Lagerpositionen 132 5.5.4. Gesamtfahrzeug 136 5.5.5. Gesamtfahrzeug 136 5.5.6. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 140 5.5.4. Radstand 142			4.2.2. Aktuatorik	60	
4.2.4. Simulationsergebnisse 63 4.3. Mehnkörpersimulation freise Fahrzeug 67 4.3.1. Modellerweiterungen 67 4.3.2. Modellbedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Råder/Reifen 73 5.1.1. Radmasse und -trägheit 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radunwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 119 5.4. Aggergastilagerung 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5.6. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 130 5.5.3. Schwerpunktslage 141			4.2.3. Modellbedatung	60	
4.3. Mehrkörpersimulation freies Fahrzeug 67 4.3.1. Modellevæiterungen 67 4.3.2. Modellevæiterungen 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Räder/Reifen 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radunwucht 87 5.2. Abtriebssvellen 89 5.2.1. Abtriebssvellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 100 5.3.2. Schrägfederungswinkel 110 5.3.2. Schrägfederungswinkel 110 5.3.3. Schrägfederungswinkel 110 5.3.4. Lagersteifigkeiten 127 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagersteifigkeiten 129 5.4.4. Lagersteifigkeiten 129 5.5.2. Nickträgheit der Aufbaumasse 1			4.2.4. Simulationsergebnisse	63	
4.3.1. Modellerweiterungen 67 4.3.2. Modellbedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Räder/Reifen 73 5.1.1. Radmasse und -trägheit 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radunwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 122 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 136 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 141 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6.5.3. Schwer		4.3.	Mehrkörpersimulation freies Fahrzeug	67	
4.3.2. Modellbedatung 70 4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Räder/Reifen 73 5.1.1. Radmasse und -trägheit 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radunwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 140 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6			4.3.1. Modellerweiterungen	67	
4.3.3. Simulationsergebnisse 71 5. Einflussgrößenanalyse 73 5.1. Räder/Reifen 73 5.1.1. Radmasse und -trägheit 73 5.1.2. Reifenfuldruck 73 5.1.3. Schlupfkurve 80 5.1.4. Radumwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 122 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagergöstionen 132 5.5.6. Gesamtfahrzeug 136 5.5.7. Gesamtfahrzeug 136 5.5.8. Schwerpunktslage 140 5.5.4. lagerdänpfung 132 5.5.5.4. Radstand 142 5.6.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. Nickträgheit der Aufbaumasse 140 5.5			4.3.2. Modellbedatung	70	
5. Einflussgrößenanalyse 73 5.1. Räder/Reifen 73 5.1.1. Radmasse und -trägheit 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radunwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3. Fahrwerk 109 5.3. Schrägfederungswinkel 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagergositionen 132 5.4.4. Lagerdämpfung 135 5.5.5. Gesamtfahrzeug 136 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 143 5.6.3. urregelmäßigs Straßenunebenheiten 143 5.6.4. Einzelhindernis 147 5.7.1.			4.3.3. Simulationsergebnisse	71	
5.1. Rader/Reifen 73 5.1.1. Radmasse und -trägheit 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radunwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 141 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 <th>5</th> <th>Finf</th> <th>flussarößenanalvse</th> <th>73</th>	5	Finf	flussarößenanalvse	73	
5.1.1. Radmasse und -trägheit 73 5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radunwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 119 5.4.1. Motor-Getriebe-Verband 127 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.1. gleichphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 143 5.6.4. Einzelhindernis<	5.	5 1	Bäder/Beifen	73	
5.1.2. Reifenfülldruck 78 5.1.3. Schlupfkurve 80 5.1.4. Radunwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 116 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagersteifigkeiten 132 5.4.4. Lagersteifigkeiten 132 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.6.4. Fahrbahn 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten <		0.1.	5.1.1. Badmasse und -trächeit	73	
5.1.2. hereformutock 70 5.1.3. Schlupfkurve 80 5.2. Antriebsstrang 89 5.2. Antriebsswellen 89 5.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 119 5.4.1. Motor-Getriebe-Verband 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. Schwerpunktslage 141 5.6.4. Einzelhindernis 147 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 <th></th> <th></th> <th>5.1.1. Haumasse und Hagnen</th> <th>78</th>			5.1.1. Haumasse und Hagnen	78	
5.1.3. Schlight Ve 80 5.2. Antriebsstrang 89 5.2. Antriebsstrang 89 5.2. Abtriebsswellen 89 5.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 136 5.5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.6.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. Schwerpunktslage 141 5.6.4. Einzelhindernis 147 5.7.5. Phasen einer Stempelschwingung 150 6. Diskussion 155 <tr< th=""><th></th><th></th><th>5.1.2. Soblupfkurvo</th><th>00</th></tr<>			5.1.2. Soblupfkurvo	00	
5.1.4. Haduhwucht 87 5.2. Antriebsstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 116 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerdämpfung 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln? und was ist es nicht. 148 5.7.2. Phasen einer			5.1.5. Schlupikul ve	00	
5.2. Antricesstrang 89 5.2.1. Abtriebswellen 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 110 5.3.3. Schrägfederungswinkel 111 5.4.4. Motor-Getriebe-Verband 127 5.4.5. Lagersteifigkeiten 129 5.4.4. Lagerdämpfung 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165		F 0		87	
5.2.1. Abtriepsweiten 89 5.2.2. Motor und Getriebe 97 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 116 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 140 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.1. gleichphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausu		5.Z.		89	
5.2.2. Motor und Getriebe 9/ 5.3. Fahrwerk 109 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 116 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausublic			5.2.1. Abtriebsweilen	89	
5.3. Fahrwerk 100 5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 116 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165		F 0	5.2.2. Motor und Getriebe	97	
5.3.1. longitudinale Elastokinematik 110 5.3.2. vertikale Elastokinematik 116 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.6.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7.4. Wirkkette 147 5.7.5. Wirkkette 147 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 <td< th=""><th></th><th>5.3.</th><th></th><th>109</th></td<>		5.3.		109	
5.3.2. vertikale Elastokinematik 116 5.3.3. Schrägfederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165				110	
5.3.3. Schragtederungswinkel 119 5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 143 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.3.2. vertikale Elastokinematik	116	
5.4. Aggregatelagerung 121 5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeug 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 143 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7.1. Wvas ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.3.3. Schragfederungswinkel	119	
5.4.1. Motor-Getriebe-Verband 127 5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165		5.4.	Aggregatelagerung	121	
5.4.2. Lagersteifigkeiten 129 5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 147 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.4.1. Motor-Getriebe-Verband	127	
5.4.3. Lagerpositionen 132 5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugnasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 143 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 147 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.4.2. Lagersteifigkeiten	129	
5.4.4. Lagerdämpfung 135 5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 143 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7.7 Wirkkette 147 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.4.3. Lagerpositionen	132	
5.5. Gesamtfahrzeug 136 5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7.7. Wirkkette 147 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.4.4. Lagerdämpfung	135	
5.5.1. Gesamtfahrzeugmasse 136 5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165		5.5.	Gesamtfahrzeug	136	
5.5.2. Nickträgheit der Aufbaumasse 140 5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 147 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.5.1. Gesamtfahrzeugmasse	136	
5.5.3. Schwerpunktslage 141 5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 143 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7. Wirkkette 147 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.5.2. Nickträgheit der Aufbaumasse	140	
5.5.4. Radstand 142 5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 144 5.7.1. Was ist Anfahrstempeln? 147 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.5.3. Schwerpunktslage	141	
5.6. Fahrbahn 143 5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 144 5.6.4. Einzelhindernis 147 5.7.7 Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.5.4. Radstand	142	
5.6.1. gleichphasige Straßenunebenheiten 143 5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 146 5.6.4. Einzelhindernis 147 5.7. Wirkkette 147 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165		5.6.	Fahrbahn	143	
5.6.2. gegenphasige Straßenunebenheiten 144 5.6.3. unregelmäßige Straßenunebenheiten 146 5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.6.1. gleichphasige Straßenunebenheiten	143	
5.6.3. unregelmäßige Straßenunebenheiten 146 5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.6.2. gegenphasige Straßenunebenheiten	144	
5.6.4. Einzelhindernis 147 5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.6.3. unregelmäßige Straßenunebenheiten	146	
5.7. Wirkkette 148 5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.6.4. Einzelhindernis	147	
5.7.1. Was ist Anfahrstempeln?und was ist es nicht. 148 5.7.2. Phasen einer Stempelschwingung 150 6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165		5.7.	Wirkkette	148	
5.7.2. Phasen einer Stempelschwingung			5.7.1 Was ist Anfahrstempeln? und was ist es nicht	148	
6. Diskussion 155 7. Zusammenfassung 163 8. Ausblick 165			5.7.2 Phasen einer Stempelschwingung	150	
6. Diskussion1557. Zusammenfassung1638. Ausblick165					
7. Zusammenfassung1638. Ausblick165	6.	Disk	kussion	155	
8. Ausblick 165	7.	Zusammenfassung 163			
	8.	Ausblick 165			

 \bigtriangledown

Inhaltsverzeichnis

XIII
XXVII
XXIX
XXXI

IX

ABKÜRZUNGSVERZEICHNIS

AGGL	Aggregatelager
ATW	Abtriebswelle
BMW	Bayerische Motorenwerke
DMS	Dehnmessstreifen
DOF	Degree of Freedom (Freiheitsgrad)
EV	Eigenvektor
FDFP	Fahrdynamischer Fahrwerksprüfstand
GAW	Getriebeausgangswelle
GEW	Getriebeeingangswelle
GL	Getriebelager
HA	Hinterachse
MF	Magic Formula
MGV	Motor-Getriebe-Verband
MKS	Mehrkörpersimulation
ML	Motorlager
MS	Motormomentenstütze
NTA	Neutral Torque Axis
Pkw	Personenkraftwagen
RUW	Radunwucht
SP	Schwerpunkt
SUV	Sports Utility Vehicle
UBS	Universal Bushing
UKP	Umkehrpunkt
VA	Vorderachse
VL	Vorderachse linke Seite
VR	Vorderachse rechte Seite
VW	Volkswagen
ZMS	Zweimassenschwungrad

NOMENKLATUR UND INDIZES

Größe	Schreibweise	Beispiel
Skalar	kleiner oder großer Buchstabe	α, r, A
Vektor	kleiner Buchstabe fett	x
Matrix	großer Buchstabe fett	м

NOMENKLATUR

Die aufgeführte Nomenklatur gilt, soweit im Text nicht anders bezeichnet.

LATEINISCHE BUCHSTABEN

Zeichen	Einheit	Bedeutung
а	m/s ²	Beschleunigung
A	m	Amplitude
Α	differierend	Matrix im Zustandsraum
В	differierend	Matrix im Zustandsraum
С	N/m, Nm/rad	Steifigkeit (translatorisch, rotatorisch)
С	<u>N</u> , <u>Nm</u> m, <u>rad</u>	Steifigkeitsmatrix (translatorisch, rotatorisch)
d	<u>kg</u> , <u>Nms</u> s , rad	Dämpfungskonstante (translatorisch, rotatorisch)
D	<u>kg</u> , <u>Nms</u> rad	Dämpfungsmatrix (translatorisch, rotatorisch)
е	m	Exzentrizität
E	-	Einheitsmatrix
E	J	Energie
f	Hz	Frequenz (Skalar)
f	Hz	Frequenz (Vektor)
F	Ν	Kraft
g	$\frac{m}{s^2}$	Erdbeschleunigung
h	m	Höhe

XIII

Inhaltsverzeichnis

i	-	Übersetzung
i	-	imaginäre Einheit
J	kgm ²	Rotationsträgheit
J	kgm ²	Rotationsträgheitsmatrix
1	m	Länge
т	kg	Masse
Μ	Nm	Moment
М	kg	Massenmatrix
MP	m	Momentanpol-Lage
n	-	Gesamtanzahl Freiheitsgrade im System
q	differierend	generalisierte Koordinate
q	differierend	generalisierter Koordinatenvektor
Q	differierend	äußere Last
a	differierend	äußere Last (Vektor)
r	m	Radius
R	-	Rotation
S	- oder %	Schlupf
t	S	Zeit
V	$\frac{m}{s}$	Geschwindigkeit
V	-	Verhältnis
X	m	Longitudinalweg bzw. Verschiebung
У	m	Lateralweg
ÿ	imaginär	Eigenvektor im Zustandsraum
Ζ	m	Vertikalweg

GRIECHISCHE BUCHSTABEN

Zeichen	Einheit	Bedeutung
α	0	Wankwinkel Motor-Getriebe-Verband
β	0	Nickwinkel Motor-Getriebe-Verband
γ	0	Gierwinkel Motor-Getriebe-Verband
δ	Nms rad	Vektor der modalen Dämpfungen
Δ	-	Differenz
ε	0	Schrägfederungswinkel
η	-	Wirkungsgrad
λ	komplex	Vektor der Eigenwerte
μ	-	Reibwert

Inhaltsverzeichnis

φ	rad	Verdrehung
$ar{arphi}$	imaginär	Eigenvektor
ψ	0	Verlustwinkel
ω	rad s	Vektor der Eigenkreisfrequenzen

INDIZES

Adhäsion	Adhäsionskomponente
asym	asymmetrisch
ATW	Abtriebswelle
Aufbau	gefederte Massen des Fahrzeugaufbaus
С	konstant
D	Differential
Dämpfer	Dämpferanteil
Diss	dissipierte Energie
Drive	Getriebeausgang
dyn	dynamisch
Eigen	Eigenfrequenz
ex	Exzentrizität
Fahrbahn	Fahrbahn
FB	Federbein
Feder	Federanteil
Felge	Felge
FZG	Fahrzeug
G	Getriebe
GAW	Getriebeausgangswelle
GEW	Getriebeeingangswelle
GH	Gelenk hinten
GL	Getriebelager
Gleit	Gleiten
GV	Gelenk vorn
Н	Rad hinten
НА	Hinterachse
Haft	Haften
Hysterese	Hysteresekomponente
k	Laufindex

XV

Inhaltsverzeichnis

Kohäsion	Kohäsionskomponente
Karo	Karosserie
konv	konventionell
KT	Kurbeltrieb
Kuppl	Kupplung
Lauffl	Lauffläche
1	links
max	Maximalwert
MGV	Motor-Getriebe-Verband
ML	Motorlager
Motor	Motor
MS	Motormomentenstütze
Ν	Normalrichtung
Nomin	nominal
r	rechts
Rad	Rad
Reibung	Reibung
rel	relativ
RL	Radlatsch
RM	Radmitte
rot	rotatorisch
RUW	Radunwucht
SP	Schwerpunkt
stat	statisch
trans	translatorisch
V	Rad vorn
VA	Vorderachse
vertikal	Vertikalrichtung
Viskose	Viskosekomponente
X	Longitudinalrichtung
У	Lateralrichtung
Ζ	Vertikalrichtung
Zugef	zugeführte Energie
ZMS, p	Primärseite des Zweimassenschwungrades
ZMS, s	Sekundärseite des Zweimassenschwungrades

1. EINLEITUNG

Die Komplexität von Personenkraftwagen (Pkw) wird bestimmt über die spezifischen Kundenanforderungen. Umfragen zu Kaufkriterien von Kunden ergeben, dass neben der Sicherheit (95 %) und Zuverlässigkeit (93 %) auch das Fahrverhalten (81 %), sowie der Fahrkomfort (62 %), als besonders wichtig angesehen werden [BS11]. Aus den spezifischen Kundenanforderungen leiten sich die funktionalen Anforderungen an das Gesamtfahrzeug, deren Subsysteme und Komponenten, ab. Ein Teil dieser funktionalen Anforderungen beschäftigt sich mit Schwingungsphänomenen im Gesamtfahrzeug. Das Auftreten jener Schwingungsphänomene ist in der Regel das Resultat von Koppelschwingungen der Fahrzeugkomponenten. Diese können explizit erwünscht sein, wie z.B. Koppelschwingungen der Abgasanlage zum aktiven Sounddesign des Motors oder Anregung der Frontscheibe zur Verbesserung des Hörerlebnisses der Soundanlage). Ein Großteil aller Schwingungsphänomene ist allerdings unerwünscht und beeinflusst unter anderem den Fahrkomfort, die Fahrdynamik und die Betriebsfestigkeit des Fahrzeuges. In Abbildung 1.1 werden die wichtigsten Schwingungsphänomene anhand des Frequenzbereiches nach [EG17], [Ang17], [MW14], [SHB10] und [Zel12] mit der Einteilung in Gesamtfahrzeug/Karosserie, Fahrwerk und Antriebsstrang dargestellt.

Die gezeigten Schwingungsphänomene können je nach Ausprägung für die Insassen als unangenehm empfunden werden, da die angeregte niedrige Schwingfrequenz im Bereich der Kopf-, Gliedmaßenund Magenresonanz von 5-10 Hz [BS11] liegt. Beispiele hierfür sind das Karosseriezittern und Sitzreiten. Für den Menschen resultiert daraus ein Unwohlsein bis hin zu Übelkeit. Ebenso unangenehm werden Vibrationen empfunden, die durch Körperschallübertragung vom Fahrzeug zu den Berührungspunkten mit den Insassen (z.B. Lenkrad) geleitet werden. Bekannte Vertreter dieser körperschallinduzierten Störschwingungen sind Lenkraddrehschwingungen und Leerlaufvibrationen des Aggregates. Besonders kundenrelevant ist die Minimierung von hörbaren Schwingungen. So können Abrollgeräusche des Reifens und Geräusche der Abgasanlage als störend empfunden werden.

Neben dem durch den Insassen wahrnehmbaren Anteil der Schwingungen gibt es bei einigen Phänomenen auch massive zyklische Belastungen von Bauteilen als Folge der Schwingungserregung. Diese führen zur Minderung der Lebensdauer und können bei mangelnder Ursachenbekämpfung zum frühzeitigen Versagen der Bauteile führen. Im Fahrwerk entstehen, z.B. beim Bremsen auf unebener Fahrbahn (sog. Bremsstempeln), hohe Lasten in den Fahrwerkslenkern und Hinterachsträgerlagern. Deren Auswirkungen können neben Verformung und Bruch von Fahrwerksbauteilen auch Verformungen an der Karosserie sein. Ein damit verwandtes Phänomen ist das Anfahrstempeln. Charakteristisch sind hierbei zyklische Lastschwankungen der Abtriebswellenmomente und hohe Lasten in den Aggregatelagern. Die folgenden Abschnitte beschreiben das Phänomen Anfahrstempeln anhand der Kundenwahrnehmung und geben einen Überblick zum Stand der Technik. Ausgehend davon werden offene Forschungsschwerpunkte identifiziert und in Form von Forschungsfragen und methodischen Lösungsansätzen beschrieben.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.