

SPE-Schriftenreihe

Herausgegeben von Prof. Dr.-Ing. habil. Dr. h.c. Stefan Heinrich

16

Eduard Eichner

Herstellung von hochgefüllten Kupfer-Polymer-Kompositen mittels eines Strahlschicht-Beschichtungsverfahrens und ihre Analyse

 $\langle \! \! \! \! \! \rangle$

Herstellung von hochgefüllten Kupfer-Polymer-Kompositen mittels eines Strahlschicht-Beschichtungsverfahrens und ihre Analyse

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch. Q/

Herstellung von hochgefüllten Kupfer-Polymer-Kompositen mittels eines Strahlschicht-Beschichtungsverfahrens und ihre Analyse

Vom Promotionsausschuss der Technischen Universität Hamburg zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von Eduard Eichner

aus Rasdolnoe (Kasachstan)

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliographische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

- 1. Aufl. Göttingen: Cuvillier, 2019 Zugl.: (TU) Hamburg, Univ., Diss., 2019
- 1. Gutachter: Prof. Dr.-Ing. habil. Dr. h.c. Stefan Heinrich
- 2. Gutachter: Prof. Dr. Gerold A. Schneider

Tag der mündlichen Prüfung: 27.09.2019

© CUVILLIER VERLAG, Göttingen 2019 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2019

Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-7096-0 eISBN 978-3-7369-6096-1

Kurzfassung

Biologische Verbundwerkstoffe weisen sehr hohe Füllgrade an Verstärkermaterial und einen komplexen hierarchischen Aufbau auf. Durch die Kombination der beiden Merkmale werden ihre hervorragenden mechanischen Eigenschaften bestimmt. Seit Jahren wird versucht, die mechanischen Eigenschaften der natürlichen Komposite durch künstlich erzeugte Komposite zu erreichen. Doch die künstlich hergestellten Komposite haben nach wie vor geringere Füllgrade, und die Struktur konnte noch nicht identisch nachgebildet werden, deswegen erreichen die hergestellten Komposite die mechanischen Eigenschaften der biologischen Komposite nicht.

Einer der Strukturmerkmale, die biologische Komposite haben, ist das Aspektverhältnis. Komposite mit einem höheren Aspektverhältnis weisen bessere mechanische Eigenschaften auf. Deswegen wird in dieser Arbeit der Einfluss des Aspektverhältnisses auf die mechanischen Eigenschaften von Kompositen untersucht. Als Material wird in dieser Arbeit metallisches Kupfer als Verstärker zu einem Polymer, dem Polyvinylbutyral (PVB), verwendet. Kupfer ist ein relativ weiches Material und kann durch Krafteinwirkung verformt werden. Dadurch kann das Aspektverhältnis der Partikel erhöht werden. Bevor die Kupferpartikel verformt werden, werden sie in einer speziell für das Prozessieren von feinen Partikeln gebauten Strahlschichtanlage mit PVB beschichtet. Kupfer ist ein elektrisch leitendes Material und PVB ist ein Isolator, weshalb zur Analyse der Beschichtungsqualität der spezifische Widerstand der Komposite bestimmt wird. Neben dem elektrischen Widerstand wird für die potenzielle Anwendung der Komposite in der Elektronik auch die relative Permittivität bestimmt.

Als mechanischen Eigenschaften werden der Elastizitätsmodul, die Festigkeit und die Bruchzähigkeit der Komposite bestimmt. Dabei werden die Eigenschaften von Kompositen mit sphärischen Partikeln mit den Eigenschaften von Kompositen mit gewalzten Partikeln verglichen. Das Walzen wird genutzt, um das Aspektverhältnis der Partikel zu erhöhen. Für die Untersuchung werden Kupferpartikel unterschiedlicher Größen verwendet.

Neben der experimentellen Bestimmung der mechanischen Eigenschaften der Komposite wird die Struktur der Komposite mit feinen sphärischen Partikeln approximiert und mit Hilfe der deterministischen Diskreten-Elemente-Methode (DEM) modelliert. Anschließend werden der Elastizitätsmodul sowie die Festigkeit der modellierten Komposite simulativ mittels DEM bestimmt und mit den experimentell ermittelten Werten verglichen.

Inhaltsverzeichnis

	Kurzfassu	ng	i
	Inhaltsver	zeichnis	
	Abbildun	gsverzeichnis	V
	Tabellenv	erzeichnis	ix
	Symbolve	rzeichnis	xi
1	Einleit	ung	1
2	Verbur	dwerkstoffe, ihre Eigenschaften und Herstellungsmethoden	8
	2.1 Ein	nzelkomponenten der Verbundwerkstoffe	
	2.1.1	Keramiken	8
	2.1.2	Metalle	10
	2.1.3	Polymere	11
	2.2 Ty	pen von Kompositen	12
	2.2.1	Natürliche Komposite	12
	2.2.2	Keramik-Polymer-Komposite	14
	2.2.3	Metall-Polymer-Komposite	17
	2.2.4	Polymer-Komposite mit elongierten Partikeln	17
	2.2.5	Andere Typen der Komposite	19
	2.3 Eiş	genschaften der Komposite	
	2.3.1	Mechanische Eigenschaften	
	2.3.2	Elektrische Eigenschaften	
	2.4 Не	rstellungsmethoden der Komposite	
3	Wirbel	schicht- und Strahlschichttechnologien	30
	3.1 Wi	rbelschichttechnologie	
	3.2 Str	ahlschichttechnologie	
	3.3 Kl	assifizierung der Pulver	
	3.4 Be	schichten und Agglomerieren in Wirbel- und Strahlschichten	
	3.5 Mo	odellierung von Wirbel- und Strahlschichten	40
4	Materi	alien und Methoden	
	4.1 Ma	iterialien	41
	4.2 Be	schichtung in der Strahlschicht	
	4.2.1	Strahlschichtapparat	
	4.2.2	Beschichtung der Kupferpartikel	45
	4.2.3	Herstellung der Polymerlösung	47
	4.2.4	Sicherheitstechnische Betrachtung der Anlage	
	4.3 He	rstellung der Komposite	49
	4.3.1	Walzen	49
			 11

	4.3.	2 Pressen	50
	4.3.	3 Weitere Bearbeitungsschritte	51
	4.4	Charakterisierungsmethoden	52
	4.4.	1 Optische Messung der Partikelgröße	52
	4.4.	2 Lichtmikroskopie	53
	4.4.	3 Rasterelektronenmikroskopie (REM)	54
	4.4.	4 Thermogravimetrische Analyse (TGA)	54
	4.4.	5 Spezifischer Widerstand	55
	4.4.	6 Relative Permittivität	55
	4.4.	7 Elastizitätsmodul und Festigkeit	57
	4.4.	8 Bruchzähigkeit	58
5	Erg	gebnisse und Diskussion der experimentellen Untersuchungen	61
	5.1	Klassifizierung der Pulver	61
	5.2	Partikelaustrag	62
	5.3	Analyse der Granulatgröße	63
	5.4	Zusammensetzung der Komposite	67
	5.5	Elektrische Eigenschaften	68
	5.5.	1 Spezifischer Widerstand	68
	5.5.	2 Relative Permittivität	71
	5.6	Mechanische Eigenschaften	75
	5.6.	1 Elastizitätsmodul und Festigkeit	75
	5.6.	2 Bruchzähigkeit	89
	5.6.	3 Diskussion	94
6	Mo	dellierung der Belastung der Komposite mit der Diskreten-Elemente-M	fethode.97
	6.1	Die Diskrete Elemente Methode (DEM)	
	6.1.	1 Grundgleichungen und Kontaktmodelle	99
	6.1.	2 Kontaktgesetze	
	6.1.	3 Bonded-Particle-Modell (BPM)	
	6.1.	4 Elastisches Modell für die Feststoffbrücken	
	6.1.	5 MUltiscale Simulation ENvironment	
	6.2	Generierung der Proben für die DEM-Simulationen	
	6.2.	1 Probengenerierung und Simulationsparameter	
	6.2.	2 Voruntersuchungen	111
	6.2.	3 Materialeigenschaften für die Simulation	112
	6.3	Ergebnisse der simulativen Untersuchungen	113
	6.3.	1 Ergebnisse der Voruntersuchungen	113
	6.3.	2 Simulationen mit feinen Partikeln	114

	6	6.3.3 Zusammenfassung und Ausblick der Simulationen	
7	Z	Zusammenfassung	
8	A	Anhang	
	1.	. Messkorrekturen der Kraftwerte	
	2.	. Koeffizienten von $A_{ u\mu}$	
	3.	. Bruchzähigkeit	
9	L	Literatur	126

Q/

Abbildungsverzeichnis

Abbildung 1.1: Ansicht der inneren Perlmutt-Schicht der roten Abalone-Muschel (links oben);
Typischer Aufbau von Muscheln mit Perlmutt (links unten); Schematische Darstellung der
Anordnung von Plättchen in Perlmutt (rechts oben); REM-Bild der Bruchfläche in Perlmutt
(rechts unten) (aus Barthelat et al., 2007)2
Abbildung 1.2: Konzept des hierarchischen Aufbaus eines Smartphone-Gehäuses (SFB 986).
Von links nach rechts: beschichtetes Nanopartikel, Agglomerat der 1. Hierarchieebene,
Agglomerate der 2. Hierarchieebene aufgebaut aus den Agglomeraten der 1.
Hierarchieebene, Smartphone-Verkleidung aufgebaut aus den Agglomeraten der 2.
Hierarchieebene
Abbildung 1.3: Perfekt angeordnete keramische Plättchen in einer Polymermatrix (nach Gao,
2006). L ist die Länge und h die Höhe der Plättchen4
Abbildung 1.4: Schematische Darstellung einer Strahlschichtanlage5
Abbildung 1.5: Ausschnitt eines Biegebalkens zur Durchführung von DEM-Simulationen der
Biegeversuche mit MUSEN
Abbildung 2.1: Prozessschritte für den Aufbau von synthetischem Perlmutt (nach Mao et al.,
2016)15
Abbildung 2.2: Einfluss der Verstärkungsart auf die Festigkeit eines Kunststoffs (nach Lengsfeld
et al., 2015)
Abbildung 2.3: Eine typische Spannungs-Dehnungs-Kurve
Abbildung 2.4: Schematische Darstellung des Gefüges von Fasern bzw. Plättchen in der
Polymermatrix: a) senkrecht, b) parallel zur Richtung der Fasern bzw. Plättchen, c) durch
Partikel verstärktes Polymergefüge (nach Hornbogen et al., 2017)21
Abbildung 2.5: Spannungsverteilungen im idealen Körper (links), im Körper mit Kerbe mit
einem bestimmten Radius (Mitte) und im Körper mit einem Riss (rechts)24
Abbildung 3.1: Wirbelschichtanlage und unterschiedliche Zustände in einer Wirbelschicht31
Abbildung 3.2: Schematische Darstellung der Partikelbewegung in einer konisch-zylindrischen
Strahlschicht
Abbildung 3.3: Schematische Darstellung der Strömungszustände der Partikel in einer
prismatischen Strahlschicht. Links: dichter Strömungszustand, rechts: verdünnter
Strömungszustand
Abbildung 3.4: Diagramm für die Klassifizierung der Pulver bei der Fluidisation mit Luft
(Geldart, 1973)
v

Abbildungsverzeichnis

Abbildung 4.1: Strukturformel von Polyvinylbutyral-Molekül (Kuraray Europe GmbH)42
Abbildung 4.2: Fließschema der genutzten Strahlschichtanlage
Abbildung 4.3: Foto der genutzten Strahlschichtanlage44
Abbildung 4.4: Schematische Darstellung der Beschichtung von Kupferpartikeln in der
Strahlschicht
Abbildung 4.5: a) Zweistoffdüse Modell 970 der Firma Düsen-Schlick GmbH. b) Funktionsweise
einer Zweistoffdüse mit externer Tröpfchenerzeugung47
Abbildung 4.6: Schema und Foto der handbetriebenen Blechwalze W40, die zum Verformen der
Partikel eingesetzt wurde
Abbildung 4.7: Querschnitt der Pressmatrize zur Herstellung von Komposite-Tabletten50
Abbildung 4.8: Schritte der Herstellung der Kupfer-PVB-Verbundwerkstoffe. Von links nach
rechts: unbehandelte Kupferpartikel, beschichtete Partikel (Granulat), Pressling,
Biegestäbchen
Abbildung 4.9: Links: Eine Probe angekerbt mit Sägeblatt mit einem größeren Kerbradius; rechts:
Die Probe angeschnitten mit einem geschärften, geringeren Kerbradius (Single-Egded-V-
Notched-Beam)
Abbildung 4.10: Messprinzip der dynamischen Bildanalyse mit dem Camsizer XT (Retsch
Technology GmbH)53
Technology GmbH)
 Technology GmbH). 53 Abbildung 4.11: Schematische Darstellung einer Kupfer-PVB Tablette mit einer dünnen Schicht aus Silberpaste. 56 Abbildung 4.12: Schematischer Aufbau der Vier-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 57 Abbildung 4.13: Schematischer Aufbau der Drei-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 59 Abbildung 5.1: Klassifizierung nach Geldart (1973) der in der Arbeit verwendeten Pulver (Punkte 1 und 2) sowie der von Wolff et al. (2014) (Punkt 3) und Brandt et al. (2013a) (Punkt 4)
 Technology GmbH). 53 Abbildung 4.11: Schematische Darstellung einer Kupfer-PVB Tablette mit einer dünnen Schicht aus Silberpaste. 56 Abbildung 4.12: Schematischer Aufbau der Vier-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 57 Abbildung 4.13: Schematischer Aufbau der Drei-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 59 Abbildung 5.1: Klassifizierung nach Geldart (1973) der in der Arbeit verwendeten Pulver (Punkte 1 und 2) sowie der von Wolff et al. (2014) (Punkt 3) und Brandt et al. (2013a) (Punkt 4) verwendeten Pulver. Alle Pulver wurden in der in dieser Arbeit verwendeten Strahlschicht
 Technology GmbH). 53 Abbildung 4.11: Schematische Darstellung einer Kupfer-PVB Tablette mit einer dünnen Schicht aus Silberpaste. 56 Abbildung 4.12: Schematischer Aufbau der Vier-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 57 Abbildung 4.13: Schematischer Aufbau der Drei-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 59 Abbildung 5.1: Klassifizierung nach Geldart (1973) der in der Arbeit verwendeten Pulver (Punkte 1 und 2) sowie der von Wolff et al. (2014) (Punkt 3) und Brandt et al. (2013a) (Punkt 4) verwendeten Pulver. Alle Pulver wurden in der in dieser Arbeit verwendeten Strahlschicht beschichtet. Die graue Fläche zeigt den typischen Anwendungsbereich der
 Technology GmbH)
 Technology GmbH). 53 Abbildung 4.11: Schematische Darstellung einer Kupfer-PVB Tablette mit einer dünnen Schicht aus Silberpaste. 56 Abbildung 4.12: Schematischer Aufbau der Vier-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 57 Abbildung 4.13: Schematischer Aufbau der Drei-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 59 Abbildung 5.1: Klassifizierung nach Geldart (1973) der in der Arbeit verwendeten Pulver (Punkte 1 und 2) sowie der von Wolff et al. (2014) (Punkt 3) und Brandt et al. (2013a) (Punkt 4) verwendeten Pulver. Alle Pulver wurden in der in dieser Arbeit verwendeten Strahlschicht beschichtet. Die graue Fläche zeigt den typischen Anwendungsbereich der Strahlschichttechnologie. 61 Abbildung 5.2: Summenverteilung der feinen Kupferpartikel vor und nach dem Prozessieren bei
 Technology GmbH). 53 Abbildung 4.11: Schematische Darstellung einer Kupfer-PVB Tablette mit einer dünnen Schicht aus Silberpaste. 56 Abbildung 4.12: Schematischer Aufbau der Vier-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 57 Abbildung 4.13: Schematischer Aufbau der Drei-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 59 Abbildung 5.1: Klassifizierung nach Geldart (1973) der in der Arbeit verwendeten Pulver (Punkte 1 und 2) sowie der von Wolff et al. (2014) (Punkt 3) und Brandt et al. (2013a) (Punkt 4) verwendeten Pulver. Alle Pulver wurden in der in dieser Arbeit verwendeten Strahlschicht beschichtet. Die graue Fläche zeigt den typischen Anwendungsbereich der Strahlschichttechnologie. 61 Abbildung 5.2: Summenverteilung der feinen Kupferpartikel vor und nach dem Prozessieren bei 25 m³/h in der Strahlschicht.
 Technology GmbH). 53 Abbildung 4.11: Schematische Darstellung einer Kupfer-PVB Tablette mit einer dünnen Schicht aus Silberpaste. 56 Abbildung 4.12: Schematischer Aufbau der Vier-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 57 Abbildung 4.13: Schematischer Aufbau der Drei-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 59 Abbildung 5.1: Klassifizierung nach Geldart (1973) der in der Arbeit verwendeten Pulver (Punkte 1 und 2) sowie der von Wolff et al. (2014) (Punkt 3) und Brandt et al. (2013a) (Punkt 4) verwendeten Pulver. Alle Pulver wurden in der in dieser Arbeit verwendeten Strahlschicht beschichtet. Die graue Fläche zeigt den typischen Anwendungsbereich der Strahlschichttechnologie. 61 Abbildung 5.2: Summenverteilung der feinen Kupferpartikel vor und nach dem Prozessieren bei 25 m³/h in der Strahlschicht. 63 Abbildung 5.3: Summenverteilung der feinen Kupferpartikel im Anfangszustand und nach dem
 Technology GmbH). 53 Abbildung 4.11: Schematische Darstellung einer Kupfer-PVB Tablette mit einer dünnen Schicht aus Silberpaste. 56 Abbildung 4.12: Schematischer Aufbau der Vier-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 57 Abbildung 4.13: Schematischer Aufbau der Drei-Punkt-Biegung mit den Kräften auf die Auflagerrollen und Momentenverteilung in der Probe. 59 Abbildung 5.1: Klassifizierung nach Geldart (1973) der in der Arbeit verwendeten Pulver (Punkte 1 und 2) sowie der von Wolff et al. (2014) (Punkt 3) und Brandt et al. (2013a) (Punkt 4) verwendeten Pulver. Alle Pulver wurden in der in dieser Arbeit verwendeten Strahlschicht beschichtet. Die graue Fläche zeigt den typischen Anwendungsbereich der Strahlschichttechnologie. 61 Abbildung 5.2: Summenverteilung der feinen Kupferpartikel vor und nach dem Prozessieren bei 25 m³/h in der Strahlschicht. 63 Abbildung 5.3: Summenverteilung der feinen Kupferpartikel im Anfangszustand und nach dem Prozessieren bei 25 m³/h in der Strahlschicht. Und Summenverteilung des Granulats nach

Q

Abbildung 5.4: REM-Aufnahmen links von feinen Kupferpartikeln ($d_P=29,5 \ \mu m$) und rechts vom
Granulat nach der Beschichtung mit einem Kupferanteil von 62,3 Vol.%65
Abbildung 5.5: Summenverteilung der gröberen Kupferpartikel im Anfangszustand und
Summenverteilung des Granulats nach der Beschichtung in der Strahlschicht mit einem
Kupferanteil von 74,6 Vol.%
Abbildung 5.6: REM-Aufnahmen links von gröberen Kupferpartikeln ($d_P=260 \ \mu m$) und rechts
vom Granulat nach der Beschichtung mit einem Kupferanteil von 72,7 Vol.%66
Abbildung 5.7: Thermogravimetrische Analyse vom reinen Polymer PVB 30H und von zwei
Granulaten mit einem Volumenanteil an Kupfer von 60,6 % beziehungsweise 78,1 %67
Abbildung 5.8: Spezifischer Widerstand der Kupfer-Polymer-Komposite mit feinen
Kupferpartikeln (d _P =29,5 μ m) abhängig vom Volumenanteil des Kupfers. Bei 100 Vol.% an
Kupfer wurden reine Kupferpartikel zum Bulkmaterial gepresst
Abbildung 5.9: Relative Permittivität der Kupfer-Polymer-Komposite mit feinen Kupferpartikeln
$(d_P=29,5 \ \mu m)$ abhängig vom Volumenanteil des Kupfers71
Abbildung 5.10: Relative Permittivität der Metall-Polymer-Komposite abhängig vom
Volumenanteil des Metalls. Vergleich der Ergebnisse dieser Arbeit mit der Arbeit von Dang
et al. (2004) mit Kohlefasern (CF), Kupfer und Nickel in Polyethylen niedriger Dichte
(LDPE), der Arbeit von Dang et al. (2008) mit Silber in einem Polyimid, der Arbeit von Qi
et al. (2005) mit Silber in Epoxid, und der Arbeit von Li et al. (2006) mit Stahlfasern in
Polyvinylidenfluorid (PVDF)73
Abbildung 5.11: Elastizitätsmodul von Kupfer-Polymer-Kompositen mit feinen sphärischen
Partikeln abhängig vom Kupferanteil76
Abbildung 5.12: Biegefestigkeit von Kupfer-Polymer-Kompositen mit feinen sphärischen
Partikeln abhängig vom Kupferanteil77
Abbildung 5.13: REM-Aufnahme der Bruchfläche von Kompositen mit 60,6 Vol.% an Kupfer.79
Abbildung 5.14: Spannungs-Dehnungs-Diagramm von Kupfer-Polymer-Kompositen mit feinen
sphärischen und gewalzten Partikeln bei einem Kupferanteil im Granulat von 75,1 Vol.%80
Abbildung 5.15: Elastizitätsmodul von Kupfer-Polymer-Kompositen mit feinen sphärischen und
gewalzten Partikeln abhängig vom Kupfervolumenanteil
Abbildung 5.16: Biegefestigkeit von Kupfer-Polymer-Kompositen mit feinen sphärischen und
gewalzten Partikeln abhängig vom Kupfervolumenanteil82
Abbildung 5.17: Seitliche Lichtmikroskop-Aufnahme des Gefüges von Kupfer-Polymer-
Kompositen mit feinen gewalzten Partikeln und einem Kupferanteil von 62,4 Vol.%83

Abbildung 5.18: Spannungs-Dehnungs-Diagramm von Kupfer-Polymer-Kompositen mit
gröberen sphärischen und gewalzten Partikeln (d_P =260 µm) bei einem Kupferanteil im
Granulat von 71,1 Vol.%
Abbildung 5.19: Elastizitätsmodul von Kupfer-Polymer-Kompositen mit gröberen sphärischen
und gewalzten Partikeln abhängig vom Kupfervolumenanteil
Abbildung 5.20: Biegefestigkeit von Kupfer-Polymer-Kompositen mit gröberen sphärischen und
gewalzten Partikeln abhängig vom Kupfervolumenanteil86
Abbildung 5.21: a) Seitliche REM-Aufnahme der Bruchfläche des Komposites mit gröberen
gewalzten Partikeln, Aufnahmen mit Lichtmikroskop b) Parallel zur Pressrichtung und c)
senkrecht zur Pressrichtung (seitlich)
Abbildung 5.22: Bruchzähigkeit von Kupfer-Polymer-Kompositen mit gröberen sphärischen
Partikeln abhängig vom Pressdruck89
Abbildung 5.23: Risswachstum bei optischer Messung der Probe mit einem Kupferanteil von
82,3 Vol.% und gewalzten gröberen Kupferpartikeln; links: ohne Riss; rechts: nach dem
fortgeschrittenen Riss90
Abbildung 5.24: Bruchzähigkeit abhängig von der Rissverlängerung für eine Probe mit feinen
sphärischen Partikeln und einem Kupferanteil von 65,2 Vol.%91
Abbildung 5.25: Bruchzähigkeit abhängig vom Kupferanteil für Kupfer-PVB-Komposite mit
feinen sphärischen und gewalzten Partikeln92
Abbildung 5.26: Bruchzähigkeit abhängig vom Kupferanteil für Kupfer-PVB-Komposite mit
gröberen sphärischen und gewalzten Partikeln93
Abbildung 5.27: Bruchzähigkeit abhängig von der Rissverlängerung für Komposite mit gröberen
sphärischen und gewalzten Partikeln und einem Kupferanteil von 74,7 und 74,8 Vol.%94
Abbildung 5.28: Elastizitätsmodul und Biegefestigkeit von Kompositen mit feinen sphärischen
und gewalzten Partikeln. Bei der mit einem Dreieck dargestellten Probe mit gewalzten
Partikeln wurden E-Modul und Festigkeit seitlich, parallel zu den ausgerichteten Partikeln,
gemessen
Abbildung 6.1: Schematische Darstellung der Kräfte, die auf das Partikel i durch ein
kontaktierendes Partikel j und ein nicht kontaktierendes Partikel k (hier durch Kapillarkraft)
wirken (nach Zhu et al., 2007)100
Abbildung 6.2: Schaltplan eines elastischen Kontaktgesetzes (Jakob und Konietzky, 2012)101
Abbildung 6.3: Schematische Darstellung zweier Primärpartikel verbunden durch eine
Feststoffbrücke105

Q/

Tabellenverzeichnis

Abbildung 6.4: Anzahlgrößenverteilung der experimentell genutzten feinen Kupferpartikel und
zehn Fraktionen der Anzahlverteilung für die Simulationen108
Abbildung 6.5: Schematische Darstellung des Aufbaus der Drei-Punkt-Biegeversuche in den
Simulationen (Generierter Biegebalken aus feinen Partikeln und Feststoffbrücken sowie drei
Auflagern)110
Abbildung 6.6: Vergleich der experimentellen Werte für feine Partikel mit den Ergebnissen der
Simulationen mit groben Partikeln. Experimentelle Werte bei 66 Vol.% an Kupfer sind
interpoliert zwischen 62,4 und 69 Vol.%114
Abbildung 6.7: Kräfteverlauf in den Polymerbrücken eines Biegebalkens zu unterschiedlichen
Zeitpunkten der Simulation. Die Zeit steigt von oben nach unten an115
Abbildung 6.8: Vergleich der experimentellen Werte für feine Partikel mit den Ergebnissen der
Simulationen mit feinen Partikeln. Experimentelle Werte bei 66 Vol.% an Kupfer sind
interpoliert zwischen 62,4 und 69 Vol.%116
Abbildung 6.9: Verlauf der Bruchkriterien nach von Mises, Tresca, Drucker-Prager und Mohr-
Coulomb in zweidimensionalen Darstellung118
Abbildung 8.1: Auftragung der gemessenen Kraft nach der Zeit bei den Punkten vollständiger
Entlastung

Tabellenverzeichnis

Tabelle 2.1: Vergleich der typischen Eigenschaften von Keramiken, Metallen und Polymeren
(nach Pampuch, 2014)9
Tabelle 4.1: Eigenschaften von Polyvinylbutyral (Kuraray Europe GmbH)42
Tabelle 4.2: Eigenschaften von Ethanol (Carl Roth GmbH & Co. KG)42
Tabelle 5.1: Spezifische Widerstände der Kupfer-Polymer-Komposite mit feinen Kupferpartikeln
(d _P =29,5 μm) abhängig vom Volumenanteil des Kupfers70
Tabelle 5.2: Relative Permittivität und dielektrischer Verlust abhängig vom Kupfervolumenanteil
mit feinen Kupferpartikeln (d _P =29,5 μm)72
Tabelle 5.3: Elastizitätsmodul und Biegefestigkeit abhängig vom Kupfervolumenanteil in
Kompositen mit feinen sphärischen Kupferpartikeln78
Tabelle 5.4: Elastizitätsmodul und Biegefestigkeit abhängig vom Kupfervolumenanteil in Kupfer-
PVB-Kompositen mit gröberen sphärischen und gewalzten Kupferpartikeln (d _P =260 µm). 87
Tabelle 6.1: Simulationsparameter zu Untersuchung der mechanischen Eigenschaften110

Tabelle 6.2: Fünf Fraktionen der Anzahlverteilung für die in den Voruntersuchungen genutzten	
Kupferpartikel	
Tabelle 6.3: Eigenschaften der Komponenten.	113
Tabelle 6.4: Wechselwirkungsparameter.	113
Tabelle 8.1: Koeffizienten von $A_{\nu\mu}$ für die Gleichung 4.17 (Munz und Fett 2001)	124
Tabelle 8.2: Bruchzähigkeit in Abhängigkeit vom Kupferanteil, der Partikelgröße und	
Partikelform	125

Symbolverzeichnis

Abkürzungen

Ag	Silber
BaTiO ₃	Bariumtitanat
CaCO ₃	Calciumcarbonat
C_2H_4	Ethylen
CF	Kohlefasern
CFD	Computational fluid dynamics
CFPR	Verbundwerkstoffe mit Kohlenstofffasern
Cu	Kupfer
DEM	Diskrete-Elemente-Methode
FVW	Faserverbundwerkstoffe
Gew.%	Gewichtsprozent
IPMC	Verbundwerkstoffe aus ionischen Polymeren und Metallen
LDPE	Polyethylen mit niedriger Dichte
Ni	Nickel
PI	Polyimid
PVB	Polyvinylbutyral
PVDF	Polyvinylidenfluorid
SSF	Stahlfasern
TGA	Thermogravimetrische Analyse
UEG	Untere Explosionsgrenze
Vol.%	Volumenprozent

Lateinische Symbole

Α	Querschnittsfläche	m^2
$A_{\nu\mu}$	Koeffizienten	-

а	Risslänge, Abstand	m
b	Breite	m
С	Elektrische Kapazität	F
С	Dämpfungskoeffizient	-
d	Durchmesser	m
d ₃₂	Sauter-Durchmesser	m
d_m	Mittlerer Abstand zwischen Belastungs- und Auflagerrollen	m
d_P	Partikeldurchmesser	m
Ε	Elastizitätsmodul	GPa
е	Restitutionskoeffizient	-
F	Kraft	Ν
f	Gütefaktor	-
G	Schermodul	MPa
g	Erdbeschleunigung	m/s^2
Н	Höhe	m
h	Höhe, Dicke	m
Ι	Trägheitsmoment	kg·m ²
J	Polares Trägheitsmoment	m^4
K_I	Spannungsintensitätsfaktor	MPa m ^{1/2}
K _{Ic}	Kritischer Spannungsintensitätsfaktor für Modus I	MPa m ^{1/2}
K _{IR}	Bruchzähigkeit mit dem Belastungsmodus I	MPa m ^{1/2}
k	Sicherheitsfaktor	-
k	Relative Permittivität	-
k	Steifigkeit	N/m
L	Abstand zwischen Rollen	m