Alexander Egeberg

Pyridin-vermittelte Synthese nanopartikulärer Nitride und unedler Metalle

Pyridin-vermittelte Synthese nanopartikulärer Nitride und unedler Metalle

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Pyridin-vermittelte Synthese nanopartikulärer Nitride und unedler Metalle

Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN

(Dr. rer. nat.)

Fakultät für Chemie und Biowissenschaften

Karlsruher Institut für Technologie (KIT) - Universitätsbereich

vorgelegte

DISSERTATION

von

Alexander Egeberg

aus

Kopenhagen

KIT-Dekan: Prof. Dr. Reinhard Fischer Referent: Prof. Dr. Claus Feldmann Koreferent: Prof. Dr. Dagmar Gerthsen Tag der mündlichen Prüfung: 06.02.2019 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen: Cuvillier, 2019 Zugl.: Karlsruhe (KIT), Univ., Diss., 2019

© CUVILLIER VERLAG, Göttingen 2019 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen.

1. Auflage, 2019 Gedruckt auf umweltfreundlichem, säurefreiem Papier aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-7008-3 eISBN 978-3-7369-6008-4

Die vorliegende Arbeit wurde von September 2015 bis Januar 2019 am Institut für Anorganische Chemie des Karlsruher Instituts für Technologie (KIT) unter Anleitung von *Prof. Dr. Claus Feldmann* angefertigt.

Verwendete Abkürzungen

Å	Ångström; 1 Ångström $=10^{-10}$ Meter					
BF	Hellfeld (engl.: "bright-field")					
Cp^*	Pentamethylcyclopentadien					
DF	Dunkelfeld (engl.: "dark-field")					
D	Diffusionskoeffizient					
DLS	Dynamische Lichtstreuung					
ΔE	Energiedifferenz					
EDXS	Energiedisperse Röntgenspektroskopie (engl.: "Energy dispersive X-ray spectroscopy")					
η	Dynamische Viskosität					
FEG	Feldemsissionskathode (engl.: "field emission gun")					
\mathbf{FT}	Fourier-Transformation					
FT-IR	Fourier-Transformations Infrarot					
γ	Gyromagnetisches Verhältnis					
h	Stunde(n)					
h	Planck'sches Wirkungsquantum					
HAADF	High-Angle-Annular-Dark-Field					
HRTEM	hochauflösende Transmissionselektronenmikroskopie (engl.: "high resolution transmission electron microscopy")					
ICCD	International Centre for Diffraction Data					
IR	Infrarot					

J	Joule					
Κ	Kelvin					
k_B	Boltzmann-Konstante					
KIT	Karlsruher Institut für Technologie					
kV	Kilovolt; 1 Kilovolt= 10^3 Volt					
λ	Wellenlänge					
LEM	Laboratorium für Elektronenmikroskopie					
LiBipy	Pyridinyllithium					
LiNaph	Lithiumnaphtalenid					
LiPy	Pyridinyllithium					
m	Meter					
m_0	Ruhemasse					
mg	Milligramm; 1 Milligramm= 10^{-3} Gramm					
min.	Minute(n)					
mL	Milliliter; 1 Milliliter= 10^{-3} Liter					
nm	Nanometer; 1 Nanometer= 10^{-9} Meter					
N	Newton					
OA	Ölsäure					
p	Impuls					
pm	Picometer; 1 Picometer= 10^{-12} Meter					
Ру	Pyridin					
R_H	Hydrodynamischer Radius					
S	Sekunde(n)					
SAED	Feinbereichsbeugung (engl.: "Selected area electron diffraction")					
REM	Rasterelektronenmikroskope (engl.: "Scanning electron microskopy/microscope")					

N

STEM	Rastertransmissionselektronenmikroskop (engl.: "Scanning transmission electron microscopy/microscope")				
Т	Temperatur				
TEM	Transmissionselektronenmikroskop (engl.: "Transmission electron microscopy/microscope")				
THF	Tetrahydrofuran				
U	Elektrisches Potential				
U/min.	Umdrehungen pro Minute				
UV	Ultraviolett				
V	Volt				
W	Watt				
XRD	Röntgen-Pulverdiffraktometrie (engl.: "X-ray powder diffraction")				
°C	Grad Celsius				

Inhaltsverzeichnis

1	Einle	eitung		1					
2	Analytische Methoden								
	2.1	Elektro	onenmikroskopie	4					
	2.2	Energi	edispersive Röntgenspektroskopie (EDXS)	10					
	2.3	Röntge	endiffraktometrie	11					
	2.4	Dynan	nische Lichtstreuung (DLS)	14					
	2.5	Fourie	r-Transform-Infrarot-Spektroskopie	15					
	2.6	UV/V	is-Spektroskopie	16					
	2.7	Photol	umineszenzspektroskopie	16					
	2.8	Elemen	ntaranalyse	17					
	2.9	Mößba	uer-Spektroskopie	18					
	2.10	Masser	nspektrometrie	19					
	2.11	1 Kernspinresonanzspektroskopie 1							
3	Erge	bnisse	und Diskussion	21					
	3.1	Überga	angsmetallnitride: CoN, Ni ₃ N, Cu ₃ N und TiN	21					
		3.1.1	CoN	22					
		3.1.2	Ni_3N	27					
		3.1.3	Cu_3N	31					
		3.1.4	TiN	35					
		3.1.5	Zusammenfassung	39					
3.2 ZnSiN ₂ durch Einkomponentenvorläufer									
3.3 Pyridin-vermittelte Synthese von Zn^0 , Sn^0 , V^0 und Mn^0									
		3.3.1	Zweistufen-Synthese von Zn^0	45					
		3.3.2	Einstufen-Synthese von Zn^0	53					
		3.3.3	Sn^0	56					
		3.3.4	V^0	59					
		3.3.5	Mn^0	62					
		3.3.6	Zusammenfassung	65					

	3.4	Reduktionen durch Pyridinyl-Radikale: Fe^0 und Nb^0	66	
		3.4.1 Bipyridinyl-vermittelte Reduktion: Fe^0 (Zweistufen-Synthese) 6	67	
		3.4.2 Pyridinyl-vermittelte Reduktion: Fe^0 (Einstufen-Synthese)	74	
		$3.4.3 \text{ Nb}^0$	78	
	3.5	Folgereaktionen 8	81	
		3.5.1 FeS	81	
		3.5.2 FeCp_2^*	85	
4	Expo	rimenteller Teil	37	
	4.1	Arbeitstechnik 8	87	
	4.2	Reagenzien und Lösungsmittel 8	87	
	4.3	Eigene Synthesevorschriften 8	88	
5	Zusa	mmenfassung9)3	
6	Ausl	lick)5	
7	Anh	ng 9)7	
	Liter	aturverzeichnis	97	
Abbildungsverzeichnis Tabellen zur Strukturbestimmung				
	Kon	erenzen	16	
	Lebe	nslauf	17	

1 Einleitung

"for the invention of efficient blue light-emitting diodes, which has enabled bright and energy-saving white light sources" ^[1]

Mit dieser Begründung verlieh das Nobelpreiskomitee 2014 den Nobelpreis für Physik an zwei Physiker und einen Elektroingenieur.^[1] Diesen war die Entwicklung der ersten hellen blauen Leuchtdiode (LED) gelungen. Möglich war dies durch die optimierte Darstellung von hochkristallinem, defektfreiem Galliumnitrid (GaN).^[2–4] Die stetige Weiterentwicklung ermöglichte ebenso die Herstellung der ersten weißen LED. Neben GaN kommen in diesen auch weitere Nitride zum Einsatz. Viele dieser, aus Metall-Kationen und Nitrid (N³⁻)-Anionen zusammengesetzten Verbindungen sind erst seit kurzem zugänglich. Nichtsdestotrotz sind sie bereits jetzt essentielle Bestandteile vieler moderner, optoelektronischer Geräte.^[5,6] Neben dem Bereich der Optoelektronik gewinnen Nitride derzeit zum Beispiel in der Katalyse^[7,8] und Mikroelektronik^[9] zunehmend an Bedeutung. Weiterhin kommen sie in Oberflächenhärtung zum Einsatz und dienen als Hartstoffe, Hochtemperatur- und feuerfeste Keramikwerkstoffe. Weiter gelten sie als potentielle Materialien für Hochleistungsbatterien^[10,11] sowie Gasspeicherung.^[12]

Konventionelle Syntheserouten für Metallnitride sind Hochtemperatur-Synthesen wie die Ammonolyse von Oxiden (1), die direkte Nitridierung von Metallen (2) und die Metathesereaktion zwischen Metallhalogeniden und Li₃N (3) (Abb. 1.1). Die beiden ersten Ansätze benötigen zur kompletten Ammonolyse (1) beziehungsweise zur Aktivierung des stabilen N₂-Moleküls hohe Temperaturen von 450 bis über 1000 °C.^[13] Die Reaktion eines Metallhalogenids mit Li₃N zur Darstellung von Nitriden wird thermisch initiiert und ist selbst oft so exotherm, dass Temperaturen über 600 °C entstehen, und die Reaktion gar explosiv ablaufen kann. Ein generelles Problem bei der Synthese von Metallnitriden sind bislang mögliche Kontaminationen durch leichte Elemente wie Kohlenstoff, Wasserstoff oder Sauerstoff.

Neben der industriellen Bedeutung der Metallnitride in Form des Volumenmaterials gewinnen diese auch zunehmend in Form von Nanopartikeln (NP) an Interesse. Die etablierte Definition von Nanopartikeln, abgeleitet vom griechischen "Nanos" für Zwerg, bezeichnet in der heuti-

Ammonolyse:	M_2O_3	+	2 NH ₃	<u>Δ</u> Τ	2 MN	+	3 H ₂ O	(1)
Nitridierung:	Μ	+	n/2 N ₂	ΔT	MN _n			(2)
Metathese:	MX_3	+	Li ₃ N	ΔT	MN	+	3 LiX	(3)

Abbildung 1.1: Standartsynthesen für Nitride: Ammonolyse (1), Nitridierung (2) sowie Metathesereaktion (3).

gen wissenschaftlichen Literatur Partikel, welche eine Abmessung kleiner 100 nm $(1 \text{ nm}=10^{-9} \text{ m})$ aufweisen. Diese "Nanowelt" stellt den Übergang zwischen einzelnen Atomen (Größenordnung von Å=10⁻¹⁰ m) und dem dreidimensional-unendlichen Festkörper dar. Hierdurch grenzen sich auch die physikalisch-chemischen Eigenschaften dieser NP vom entsprechenden Volumenmaterial ab.^[14]

Die einleitend erwähnten optischen Eigenschaften von Nitriden können solch ein Beispiel darstellen. Voraussetzung hierfür ist ein hohes Maß an Kristallinität. Möglich ist schließlich die Verwendung als sogenannte Quantenpunkte (engl.: "Quantum Dots", QDs). Hierbei handelt es sich um nanoskopische, im Idealfall nulldimensionale Halbleiterstrukturen. Die geringe Größe solcher Partikel führt zur Einschränkung der Elektronenbewegung innerhalb der Nanopartikel. Dadurch lassen sich elektronische und optische Eigenschaften von Quantenpunkten über die Partikelgröße quasi maßschneidern.^[15] So kann über die Partikelgröße beispielsweise die Farbe solcher Materialien definiert werden.^[14]

Durch ein erhöhtes Oberfläche-zu-Volumen-Verhältnis kann die Darstellung von Nitridnanopartikel in der Katalyse ebenfalls unter dem Augenmerk der Material- und Kostenersparnis erfolgen.^[16,17] Viele potentielle Anwendungen setzen ohnehin das Vorliegen nanostrukturierter Nitride von vornherein voraus. Hierzu zählen beispielsweise die Verwendung als Kondensatorschichten oder als Materialien für die Oberflächenveredelung.^[18,19] Weiter werden sie als potentielle Kandidaten für Elektrodenmaterialien in Batterien und Brennstoffzellen sowie für die Entwicklung neuer Permanentmagneten diskutiert.^[20–22]

Trotz des häufig diskutierten Potentials solcher nanoskaliger Nitride liefern bisweilen nur wenige Zugänge qualitativ hochwertige, entsprechend kleine, kristalline und phasenreine Partikel. Die oben aufgeführten Standartsynthesen sind aufgrund der hohen Temperaturen für die Darstellung von Nanostrukturen ungeeignet. Werden diese dennoch eingesetzt, sind ein unkontrolliertes Partikelwachstum und ein hoher Grad an Partikelagglomeration zu erwarten. Weiterhin sind, bedingt durch die Verwendung von sauerstoffhaltigen Vorstufen, häufig Oxidverunreinigungen in den Nitridpartikeln nachweisbar. Zur Darstellung kleiner, nicht-agglomerierter und phasenreiner Nitridnanopartikel müssen somit alternativer Syntheseansätze entwickelt werden.

Werden anstelle von Oxiden (Hochtemperatur-Ammonolyse) Metallhalogenide verwendet, kann statt gasförmigem Ammoniak flüssiger Ammoniak eingesetzt werden.^[23] Hierbei erfordert der Siedepunkt von Ammoniak von -33 °C jedoch das Arbeiten bei niedrigen Temperaturen oder

den Umgang mit hohen Drücken. Tiefe Temperaturen führen zudem selten zu kristallinen Produkten. Eine weitere Möglichkeit bietet die thermische Zersetzung stickstoffreicher Vorstufen in hochsiedenden Lösungsmitteln wie Oleylamin oder Ionischen Flüssigkeiten. Geeignete Vorstufen wie Silazane und Azide sind häufig toxisch, explosiv und aufwendig in ihrer Herstellung. Ferner sind verwendete Lösungsmittel stark koordinierend. Diese lassen sich nach erfolgreicher Synthese schwer abtrennen oder von der Partikeloberfläche entfernen und führen so zu einem hohen Kohlenstoffgehalt der Produktpartikel.

Eine weitere Herausforderung ist die Vermeidung der bereits erwähnten Oxidverunreinigungen, da diese einen massiven Einfluss auf die Materialeigenschaften ausüben können. Für die Synthese von Metallnitriden sind meist hydrolyse- oder oxidationsempfindliche Vor- oder Zwischenstufen erforderlich. Auch die Nitridnanopartikel selbst sind häufig äußerst hydrolyseempfindlich.

Um eine Darstellung ohne Oxidationsprodukte zu realisieren, muss schließlich der Ausschluss von Umgebungsluft während der gesamten Handhabung gewährleistet werden. So kommen Schutzgastechniken zum Einsatz, welche einen hohen präparativen Aufwand mit sich führen. Dies ist nicht nur auf die Partikelsynthese beschränkt, sondern setzt auch die Verwendung spezieller Techniken zur Charakterisierung unter inerten Bedingungen voraus. Weiter betrifft dies die verwendeten Ausgangssubstanzen sowie Lösungsmittel, welche mit Sorgfalt ausgewählt und/oder aufwendig von Wasser und Sauerstoff befreit werden müssen. So führen die Verwendung von sauerstoffhaltigen Edukte wie Metallhydroxiden oder -nitraten und sauerstoffhaltige Lösungsmittel wie Alkohole und Ether zu solchen Verunreinigen.

Motiviert durch die oben beschriebenen Herausforderungen war die Darstellung von kristallinen Nitridnanopartikeln mit geringen Kohlenstoff- und ohne Oxidverunreinigungen Ziel dieser Arbeit. Als Edukte wurden einfache, kommerziell erhältliche Metallhalogenide und als Lösungsmittel Pyridin ausgewählt. Pyridin ist selbst nicht sauerstoffhaltig und bietet über seine schwach koordinierenden Eigenschaften zum einen die Möglichkeit der Kontrolle über die Partikelnukleation. Zum anderen ist ein leichteres Entfernen von der Partikeloberfläche nach erfolgreicher Synthese möglich. Weiterhin ermöglicht Pyridin mit einem Siedepunkt von 115 °C ebenfalls einen Einfluss auf die Partikelkristallinität.

Neben der Synthese solcher Nitridnanopartikel ist die Charakterisierung der dargestellten Partikel, maßgeblich die Partikelgröße und Kristallinität Schwerpunkt dieser Arbeit. Hierzu dienen im Besonderen die Elektronenmikroskopie und Pulverdiffraktometrie sowie mit Kooperationen durchgeführte magnetische Analysen.