Effiziente Triplett-Emitter für Organische Leuchtdioden auf der Basis von Iridium(III)-Komplexen

Effiziente Triplett-Emitter für Organische Leuchtdioden auf der Basis von Iridium(III)-Komplexen

Von der Fakultät für Elektrotechnik, Informationstechnik, Physik der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr.rer.nat.) genehmigte Dissertation

> von Ute Jana Weinaug aus Rüdersdorf b. Berlin

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2009

Zugl.: (TU) Braunschweig, Univ., Diss., 2009

978-3-86955-207-1

Referent: Prof. Dr. A. Hangleiter
 Referent: Prof. Dr. W. Kowalsky
 eingereicht am 19. Juni 2009
 mündliche Prüfung (Disputation) am 07. August 2009

© CUVILLIER VERLAG, Göttingen 2009 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2009 Gedruckt auf säurefreiem Papier

978-3-86955-207-1

Vorveröffentlichungen

Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Elektrotechnik, Informationstechnik und Physik, vertreten durch den Betreuer der Arbeit, in folgenden Beiträgen vorab veröffentlicht.

Publikationen:

H.-H. Johannes, W. Kowalsky, S. Ammermann, M. Kröner, U. J. Weinaug: *Triplet emitter having condensed five-membered rings*. PCT WO 2007/028822 A1, (2005).

H.-H. Johannes, W. Kowalsky, S. Ammermann, M. Kröner, U. J. Weinaug: *Triplet emitter having condensed five-membered rings*. PCT WO 2007/028417 A1, (2005).

U. J. Weinaug, S. Ammermann, H. Gargouri, M. Hoping, P. Erk, K. Kahle, Ch. Lennartz, O. Molt, I. Münster, M. Tamm, W. Kowalsky, H.-H. Johannes: *Color Tuning by Changing the Substituent of Highly Luminescent Iridium(III) Complexes*. Proc. SPIE, 705108 (2008).

Tagungsbeiträge:

S. Ammermann, M. Debeaux, U. J. Weinaug, W. Kowalsky, H.-H. Johannes: *Color tuning of triplet emitters for OLED applications*. (Vortrag) SID Mid Europe Chapter Fall Meeting, Golm (2006).

U. J. Weinaug, S. Ammermann, M. Hoping, M. Tamm, W. Kowalsky, H.-H. Johannes: *Color Tuning by Changing the Substituent of Highly Luminescent Iridium(III) Complexes.* (Vortrag) 4th International Conference of Organic Electronics (ICOE), Eindhoven (2008).

M. Debeaux, S. Ammermann, H. Hopf, S. Janietz, W. Kowalsky, H. Krüger, M. Thesen, A. Wedel, U. J. Weinaug, H.-H. Johannes: *Novel Styrene Functionalized Materials For Phosphorescent Polymers*. (Vortrag) 7th International Conference on Electroluminescent of Molecular Materials and Related Phenomena (ICEL), Dresden (2008).

M. Debeaux, S. Ammermann, H. Hopf, W. Kowalsky, H. Krüger, M. Thesen, A.Wedel, U. J. Weinaug, H.-H. Johannes: *Novel Styrene Based Monomers for Application in PLEDs*. (Poster) 14th International Workshop on Inorganic and Organic Electroluminescence & 2008 International Conference on the Science and Technology of Emissive Displays and Lighting, Rom, (2008).

Inhaltsverzeichnis

Zusammenfassung

1	Ei	nleitung	7
1.1	M	otivation und Zielsetzung	9
1.2	Gl	iederung	11
2	G	rundlagen	13
2.1	Qı	uantenmechanische Beschreibung von Molekülen	13
	2.1.1	Die Schrödinger-Gleichung	13
	2.1.2	Atom- und Molekülorbitale	14
2.2	Be	schreibung von Elektronenübergängen in Molekülen	17
	2.2.1	Intensität von Elektronenübergängen	17
	2.2.2	Das FRANCK-CONDON-Prinzip	18
	2.2.3	Auswahlregeln	20
2.3	Da	as Phänomen Licht	24
	2.3.1	Absorption, Transmission, Reflexion	24
	2.3.2	Das JABLONSKI-Diagramm	25
 2.1 Quantenmechanische Beschreibung von Molekülen 2.1.1 Die SCHRÖDINGER-Gleichung 2.1.2 Atom- und Molekülorbitale 2.2 Beschreibung von Elektronenübergängen in Molekülen 2.2.1 Intensität von Elektronenübergängen 2.2.2 Das FRANCK-CONDON-Prinzip 2.2.3 Auswahlregeln 2.3 Das Phänomen Licht 2.3.1 Absorption, Transmission, Reflexion 2.3.2 Das JABLONSKI-Diagramm 2.4 Parameter der Emission 2.4.1 Quantenausbeute 2.4.2 Abklingzeit 2.4.3 Nicht-Strahlende Konkurrenzprozesse 2.4.4 Anregungsprozesse von Elektronen 2.5 OLEDs – Aufbau, Funktionsweise und Materialeigenschaften 2.5.1 Aufbau und Funktionsweise 2.5.2 Transport- und Matrixmaterialian 	28		
	2.4.1	Quantenausbeute	28
	2.4.2	Abklingzeit	31
	2.4.3	Nicht-Strahlende Konkurrenzprozesse	33
	2.4.4	Anregungsprozesse von Elektronen	35
2.5	Ol	LEDs – Aufbau, Funktionsweise und Materialeigenschaften	36
	2.5.1	Aufbau und Funktionsweise	36
	2.5.2	Transport- und Matrixmaterialien	39
	2.5.3	Emittermaterialien	41
3	Sy	nthese	45
0	Jy		

i

1

45

i			
	3.1.1	Einstufige Synthese homoleptischer Ir(III)-Komplexe	47
	3.1.2	Zweistufige Synthese homoleptischer Ir(III)-Komplexe	51
	3.1.3	Synthese von heteroleptischen Iridium(III)-Komplexen	53
3.2	Syr	nthese substituierter fac-Tris[2-(2-pyridyl-κN)phenyl]-iridium(III)-	
	Vei	rbindungen	58
	3.2.1	Synthese substituierter 2-Phenylpyridine	58
	3.2.2	Einstufige Synthese von substituierten homoleptischen Ir(ppy) ₃ -Deriv	vaten60
	3.2.3	Synthese der Chlorodimere	63
	3.2.4	Synthese heteroleptischer Ir(ppy) ₂ XY-Derivate	65
3.3	Syr	nthese der Heterofünfringsysteme	67
	3.3.1	Neuartiges Heterofünfring-Ligandensystem	67
	3.3.2	Variation von Heterofünfring-Derivaten: Synthese der Liganden	69
	3.3.3	Einstufige Synthese von Heterofünfring-Komplexen	75

3.3.3	Einstufige Synthese von Heterofünfring-Komplexen	75
3.3.4	Zweistufige Synthese dreifach substituierter facialer Iridium(III)-Kom	plexe
		77
3.3.5	Synthese heteroleptischer Heterofünfring-Komplexe	86
3.3.6	Vergleich verbrückter und unverbrückter Heterofünfring-Komplexe	91

77

86

91

93

155

4 Strukturmerkmale

5.1.3

4.1	Rör	ntgenstrukturanalysen	93
	4.1.1	Literaturbekannte Kristalldaten von Iridium(III)-Komplexen	95
	4.1.2	Methoxy-substituierter Heterofünfring-Ligand	97
	4.1.3	Heteroleptischer Heterofünfring-Komplex ohne Substituenten	99
	4.1.4	Einfluss einer Trifluormethylgruppe im Sättigungsliganden	102
	4.1.5	Einfluss der Methoxy-Gruppe im farbgebenden Liganden	104
	4.1.6	Isomere von Heterofünfring-Komplexen	108
	4.1.7	Unverbrückter <i>fac</i> -Tris[4-(2-methylthiazol-4-yl-κN)biphenyl-3-yl)-	
		iridium(III)-Komplex	110
	4.1.8	Vergleich der Bindungseigenschaften verbrückter und unverbrückter	
		Heterofünfring-Ligandsysteme	114
4.2	NM	R-Spektroskopische Untersuchungen	117
	4.2.1	Publizierte NMR-spektroskopische Untersuchungen an Iridium(III)-	
		Komplexen	117

	4.2.2	Untersuchungen substituierter Ir(ppy) ₃ -Derivate	
	4.2.3	Heterofünfring-Verbindungen	133
5	Gı	enzorbital-Betrachtung	151
5.1	Ele	ektrochemische Messungen – Cyclovoltammetrie	151
	5.1.1	Eine kurze Einführung zur Messtechnik der Cyclovoltammetrie	152
	5.1.2	Auswahl der Lösemittel	153

Substituierte Ir(ppy)₃-Komplexe

	5.1.4	Cyclovoltammetrische Untersuchungen an homoleptischen Heterofünt	fring-
	C 1 C	Komplexen	161
	5.1.5	Heteroleptische Iridium(III)-Komplexe	163
5.2	M	plecular Modelling	169
	5.2.1	Hintergründe	169
	5.2.2	Mechanistische Studien zum Reaktionsverlauf verbrückter Heterofühf Systeme	ring-
	5.2.3	Variation der Emission durch Substitution	177
6	Oj	otische Charakterisierung	185
6.1	Su	bstituierte Ir(ppy) ₃ -Komplexe	186
	6.1.1	Aspekte der Literatur am Beispiel Ir(ppy) ₃	186
	6.1.2	Absorptionseigenschaften substituierter Ir(ppy)3-Komplexe	189
	6.1.3	Emissionseigenschaften substituierter Ir(ppy)3-Komplexe	194
6.2	Su	bstituierte heteroleptische Ir(ppy) ₂ XY-Komplexe	204
	6.2.1	Absorptions eigenschaften substituierter heteroleptischer $Ir(ppy)_2XY$ -	
		Komplexe	204
	6.2.2	Emissionseigenschaften substituierter heteroleptischer Ir(ppy) ₂ XY-	
		Komplexe	209
6.3	He	eterofünfring-Ir(III)-Komplexe	217
	6.3.1	Homoleptische Heterofünfring-Komplexe	217
	6.3.2	Verbrückte, heteroleptische Heterofünfring-Komplexe	231
	6.3.3	Substitution am farbgebenden Heterofünfring-Liganden	238
7	O	rganische Leuchtdioden	245
7.1	M	esstechnik und Kenngrößen	245
7.2	Op	otimierte Devices	249
	7.2.1	Unverbrückter, unsubstituierter Heterfünfring-Komplex 73 als	
		Emittermaterial	249
	7.2.2	Phenylsubstituierter, unverbrückter Heterofünfring-Komplex 86	253
	7.2.3	Verbrückter, homoleptischer Heterofünfring-Komplex 72	256
	7.2.4	Einfluss der Fixierung des Liganden im Devicevergleich	258
7.3	W_{0}	eiβ-emittierende OLED	260
	7.3.1	Realisierung weißer Emission einer OLED	260
	7.3.2	Optimierte, weiß-emittierende OLED mit Ir(MNTZ) ₃ (72)	262
8	Ex	xperimenteller Teil	265
8.1	Al	lgemeine Angaben	265
	8.1.1	Allgemeine Angaben zur Arbeitstechnik	265
	8.1.2	Nomenklatur	266
	8.1.3	Allgemeine Angaben zur analytischen Messtechnik	267

8.2	Ver	rwendete Abkürzungen	272
8.3	All	gemeine Arbeitsvorschriften	273
	8.3.1	Synthesevorschrift zur einstufigen Herstellung homoleptischer Iridium(III)-
		Komplexe (AAV 1)	273
	8.3.2	Synthesevorschrift zur Herstellung von Chlorodimeren (AAV 2)	273
	8.3.3	Synthesevorschrift zur zweistufigen Herstellung homoleptischer	
		Iridium(III)-Komplexe über die Chlorodimer-Zwischenstufe (AAV 3)	274
	8.3.4	Synthesevorschrift zur Herstellung heteroleptischer Iridium(III)-Kompl	exe
		(AAV 4)	274
8.4	Syr	nthese substituierter 2-Phenylpyridin-Verbindungen	275
	8.4.1	Synthese substituierter 2-Phenylpyridin-Ligandsysteme	275
	8.4.2	Synthese substituierter Ir(ppy) ₃ -Derivate	283
	8.4.3	Synthese substituierter Tetrakis[2-(2-pyridyl- κN)phenyl]	
		bis(µ-chloro)diiridium(III)-Verbindungen	292
	8.4.4	Synthese substituierter heteroleptischer Bis(2-(2-pyridyl- κN)phenyl)-	
		iridium(III)-Komplexe	295
8.5	Syn	nthese von Heterofünfring-Verbindungen	307
	8.5.1	Synthese verbrückter Heterofünfring-Liganden	307
	8.5.2	Synthese unverbrückter Heterofünfring-Liganden	315
	8.5.3	Synthese von Chlorodimeren verbrückter Heterofünfring-Verbindunger	n 317
	8.5.4	Synthese von Chlorodimeren unverbrückter Heterofünfringsysteme	320
	8.5.5	Synthese homoleptischer Ir(III)-Komplexe mit verbrückten Heterofünfr	ing-
		Liganden	322
	8.5.6	Synthese homoleptischer Ir(III)-Komplexe mit unverbrückten	
		Heterofünfring-Liganden	323
	8.5.7	Synthese verbrückter und unsubstituierter Heterofünfring-Liganden zu	
		heteroleptischen Ir(III)-Komplexen	326
	8.5.8	Synthese verbrückter substituierter Heterofünfring-Liganden zu	
		heteroleptischen Ir(III)-Komplexen	339
	8.5.9	Synthese unverbrückter Heterofünfring-Liganden zu heteroleptischen	
		Ir(III)-Komplexen	347
Anh	ang A –	Transport- und Matrixmaterialien	355
Anhang B – Kristallstrukturdaten		357	
			254
Anhang C – NMR-spektroskopische Daten		5/4	
Danksagung		387	
Literaturverzeichnis		389	

Zusammenfassung

In organischen Leuchtdioden (OLED) werden aktuell bevorzugt Iridium(III)-Komplexe als Emittermaterialien eingesetzt. Das liegt an zwei grundlegenden Merkmalen dieser Verbindungsklasse. Zum einen kann mit diesen aus dem Triplett-Zustand emittierenden Materialien aufgrund der ausgeprägten Spin-Bahn-Kopplung die theoretisch mögliche Quantenausbeute von 100 % nahezu erreicht und so die Effizienz einer OLED gesteigert werden. Zum anderen sind durch strukturelle Änderungen der an das Metallzentrum koordinierenden Liganden Verschiebungen der Emissionsfarbe über einen großen Bereich des sichtbaren Spektrums realisierbar.

Im Mittelpunkt der vorliegenden Arbeit stehen Untersuchungen von Emittermaterialien für OLEDs auf der Basis von Iridium(III)-Komplexen mit dem Ziel, die Emissionseigenschaften wie Effizienz und Emissionsfarbe durch systematische Variation der Struktur dieser Materialien zu verändern bzw. zu optimieren.

Die Möglichkeiten der strukturellen Änderung von Emittermaterialien wurden nach drei unterschiedlichen Strategien verfolgt: (1) Substitution an den farbgebenden Liganden, (2) Austausch eines farbgebenden Liganden gegen einen sogenannten Sättigungsliganden (als XY abgekürzt) und (3) Modifizierung der Grundstruktur der farbgebenden Liganden.

Der erste Teil dieser Arbeit beschäftigt sich mit der Synthese. Im Zentrum der Untersuchungen stehen hierbei zum einen Derivate des effizienten, literaturbekannten Komplexes *fac*-Tris[2-(2-pyridyl- κN)phenyl]iridium(III) (Ir(ppy)₃, **2**) und zum anderen Derivate der neuartigen, als Heterofünfring-System bezeichneten Komplexe des *fac*-Tris(2-methylnaphtho[1,2-*d*]thiazol-9-yl- κN)iridium(III) (Ir(MNTZ)₃, **72**) (s. Schema 1).

Die Grundstruktur der Heterofünfring-Liganden (s. 72, Schema 1) unterscheidet sich von dem Liganden des literaturbekannten Ir(ppy)₃-Komplexes (2) in zwei Punkten. Er enthält

zum einen anstelle des sechs-gliedrigen Pyridyl-Rings (s. 2, Schema 1) einen fünfgliedrigen Thiazolyl-Ring, der zudem ein weiteres Heteroatom einschließt (s. *fac*-Tris(2methylthiazol-4-yl- κN)iridium(III) (73), Schema 1). Zum anderen werden die Iridiumkoordinierenden aromatischen Ringe durch die Überbrückung mit einer Etheno-Einheit fixiert. Diese Fixierung des resultierenden Komplexes 72 soll die Anzahl strahlungsloser Elektronenübergänge minimieren und so zu einer Effizienzsteigerung beitragen.

Schema 1 Struktur des literaturbekannten Komplexes Ir(ppy)₃ (2), des verbrückten, neuartigen Heterofünfring-Komplexes 72 und des unverbrückten Heterofünfring-Komplexes 73.

Substituierte, homoleptische Komplexe des $Ir(ppy)_3$ (2) mit Trifluormethyl- und Nitril-Gruppen jeweils in meta- und para-Position zum Iridium-koordinierenden C-Atom im Phenylring des farbgebenden Liganden wurden in Ausbeuten von bis zu 77 % synthetisiert. Heteroleptische para-Methoxy- bzw. para-Nitril-substituierte Ir(ppy)₂XY-Komplexe wurden mit jeweils drei verschiedenen Sättigungsliganden in Ausbeuten von bis zu 81 % dargestellt. Die anhand der Ir(ppy)₃-Derivate erfolgreich angewendeten und etablierten Reaktionswege zur Darstellung homoleptischer Komplexe konnten nicht auf die neuartigen Heterofünfring-Komplexe (vgl. 72, Schema 1) übertragen werden. Auch durch zahlreiche Variationen der Reaktionsführungen konnte die durchschnittliche Ausbeute nicht auf mehr als 3 % gesteigert werden. Die Ursache für die geringe Bildungstendenz von 72 wird in der durch die Verbrückung hervorgerufenen Fixierung vermutet. Dies wurde sowohl durch die erfolgreiche Synthese des analogen, unverbrückten, homoleptischen Derivats 73 als auch durch quantenchemische Berechnungen bestätigt. Demnach wird bei der Koordination von zwei der drei farbgebenden Heterofünfring-Liganden an das Metallzentrum eine Energie $12.8 \text{ kcal} \cdot \text{mol}^{-1}$ benötigt, wohingegen bei der Koordinierung von zwei von 2-Phenylpyridin-Liganden zur Synthese von 2 nur $0.8 \text{ kcal} \cdot \text{mol}^{-1}$ benötigt werden.

Zusätzlich wurden durch Röntgenstrukturanalysen von drei verbrückten, heteroleptischen Heterofünfring-Komplexen Änderungen von Bindungslängen und -winkeln im Vergleich zu denen unverbrückter, homoleptischer Komplexe beobachtet, die auf die verbrückende Struktur zurückzuführen sind.

Insgesamt wurden von den neuartigen Heterofünfring-Komplexen ein verbrückter, homoleptischer (vgl. 72, Schema 1) und zwei unverbrückte, homoleptische Komplexe (vgl. 73, Schema 1), sowie sieben verbrückte, unsubstituierte, heteroleptische Komplexe (vgl. 72, Schema 1), vier unverbrückte, heteroleptische Komplexe (vgl. 73, Schema 1) und fünf verbrückte, substituierte, heteroleptische Komplexe (vgl. 72, Schema 1) synthetisiert und vollständig charakterisiert.

Der zweite Teil der Arbeit beschäftigt sich mit den Struktur-Eigenschafts-Beziehungen der synthetisierten Materialien. Im Vordergrund der Untersuchungen standen vor allem die Parameter der Absorptions- und Emissionseigenschaften wie Absorptions- und Emissionsmaxima λ und λ_{max} , Abklingzeit τ und Quantenausbeute Φ_{PL} , die von den Materialien sowohl in Matrix als auch z.T. in Lösung bestimmt wurden. Daneben wurden die energetischen Lagen der am Elektronenübergang beteiligten Orbitale HOMO und LUMO anhand elektrochemischer Messungen (Cyclovoltammetrie) der ersten Redoxpotentiale E^0 (ox.) und E^0 (red.) abgeschätzt.

Die Emissionsspektren der synthetisierten Ir(ppy)₃-Komplexe mit den elektronenziehenden Gruppen Trifluormethyl und Nitril konnten sowohl mit denen des unsubstituierten Komplexes 2 als auch mit denen der mit elektronenschiebenden Methoxy-Gruppen substituierten Komplexe verglichen werden. Dabei wurden Veränderungen der Emissionsfarbe vom orange-roten bis türkis-blauen Bereich beobachtet, die einer Verschiebung des Emissionsmaximums von 85 nm (0.31 eV) entsprechen. Dabei beeinflusst die Substitution *para*-ständig zur Iridium-Kohlenstoff-Bindung das Emissionsspektrum stärker als die *meta*-ständige Substitution. Diese Substituentenabhängigkeit von λ_{max} steht im Einklang mit der variierenden Elektronendichte am Iridium-koordinierenden C-Atom, die durch NMR-spektroskopische Messungen untersucht wurde. Anhand der durch Resonanzstrukturen beschreibbaren induktiven und mesomeren Effekte der Substituenten ist diese Verteilung erklärbar.

Grundsätzlich wird die Emissionswellenlänge durch zwei Faktoren beeinflusst: die Stabilisierung/Destabilisierung des HOMO- oder des LUMO-Niveaus. Messungen der

ersten Redoxpotentiale $E^0(\text{ox.})$ und $E^0(\text{red.})$ ergaben, dass sich die Substituenteneinflüsse vornehmlich auf das LUMO-Niveau auswirken. Diese Beobachtung wurde mit der unterschiedlichen Ausdehnung der Grenzorbitale über den jeweiligen Komplex begründet, die Berechnungen zufolge im Fall der HOMO-Niveaus bevorzugt auf dem Metallzentrum und im Fall der LUMO-Niveaus bevorzugt auf dem Liganden lokalisiert sind. Demnach wird das LUMO stärker durch eine Substitution am Phenylring des farbgebenden Liganden beeinflusst als das HOMO.

Die Abklingzeiten τ der substituierten Ir(ppy)₃-Komplexe wurden im Bereich von ca. 1.7 µs gemessen. Die detektierten Quantenausbeuten Φ_{PL} liegen mit 86 – 100 % auf einem hohen Niveau. Änderungen von τ und Φ_{PL} , die auf die Substitution der Komplexe mit funktionellen Gruppen zurückgeführt werden können, wurden nicht beobachtet.

Einflüsse unterschiedlicher Sättigungsliganden in heteroleptischen $Ir(ppy)_2XY$ -Komplexen wurden sowohl an *para*-Methoxy- als auch an *para*-Nitril-substituierten Derivaten untersucht. Die Emissionsspektren wurden bei Methoxy-Substitution innerhalb eines Bereichs von ca. 72 nm und bei Nitril-Substitution innerhalb eines Bereichs von ca. 53 nm infolge der Variation von Sättigungsliganden verschoben. Die Abklingzeiten τ und die Quantenausbeuten Φ_{PL} wurden im Vergleich zu denen der jeweiligen homoleptischen Analoga nur geringfügig verändert.

Die Emissionen verbrückter, heteroleptischer Heterofünfring-Komplexe sowie des homoleptischen Komplexes 72 liegen im grünen Farbbereich. Das sogenannte "Fine-Tuning", das durch die Änderung der Sättigungsliganden hervorgerufen wird, war in einem Bereich von lediglich 14 nm (0.04 eV) möglich. Die verbrückten, heteroleptischen Komplexe emittierten nur bei Temperaturen von ca. 77 K. Daher wurden Abklingzeiten τ und Quantenausbeuten Φ_{PL} nur vom verbrückten, homoleptischen Komplex 72 und unverbrückten Komplexen, z.B. 73 bestimmt. Die Lage der HOMO-Niveaus innerhalb der heteroleptischen Heterofünfring-Komplexe variiert als Folge des Austauschs der Sättigungsliganden in einem Bereich von 0.29 eV. Dies ist vergleichbar mit den Änderungen, die bei heteroleptischen Ir(ppy)₂XY-Komplexen beobachtet wurden.

Auswirkungen von Substituenten an verbrückten, homoleptischen Heterofünfring-Komplexen auf die jeweilige Emissionswellenlänge λ_{max} wurden mit quantenchemischen Berechnungen der energetischen Lage der Triplett-Niveaus am Beispiel Nitril- und Methoxy-substituierter Komplexe abgeschätzt. Hierauf aufbauend wurde für die homoleptischen, *para*-Methoxy-substituierten Komplexe eine bathochrome Verschiebung um 46 nm (0.18 eV) vorhergesagt, die experimentell anhand von heteroleptischen Heterofünfring-Komplexen bestätigt wurde. Die berechnete hypsochrome Verschiebung infolge der Methoxy-Substitution an der verbrückenden Etheno-Einheit um 11 nm (0.05 eV) wurde ebenfalls experimentell bestätigt. Wie bei den verbrückten, unsubstituierten Heterofünfring-Komplexen konnten auch im Falle der substituierten Derivate keine Abklingzeiten τ und Quantenausbeuten Φ_{PL} gemessen werden.

Die Emissionseigenschaften homoleptischer Heterofünfring-Komplexe wurden von dem verbrückten Komplex 72 und von zwei unverbrückten Derivaten, darunter 73, erforscht. Dabei standen der Einfluss der verbrückenden Etheno-Einheit und deren Auswirkungen auf die Quantenausbeute Φ_{PL} im Mittelpunkt. Das Emissionsmaximum λ_{max} wird durch die Verbrückung bathochrom um 50 nm (0.22 eV) verschoben. Nach Untersuchungen der HOMO-Niveaus aus cyclovoltammetrischen Messungen liegt dieser Änderung vermutlich eine Stabilisierung des LUMO-Niveaus infolge der durch die Etheno-Brücke entstehenden Anellierung zugrunde.

Bemerkenswert sind die Abklingzeiten τ der Heterofünfring-Komplexe, die bei ca. 35 µs liegen. Diese drastische Erhöhung um mehr als eine Größenordnung im Vergleich zu den Ir(ppy)₃-Komplexen wird mit der vermutlich schwächeren Iridium-Ligand-Bindung begründet, die wiederum zu einer geringeren Ausbildung von MLCT-Übergängen führt. Daraus würde sich eine Steigerung sogenannter verbotener Übergänge ergeben, die zu einer Erhöhung der Abklingzeit führen.

Die Verbrückung der Iridium-koordinierenden aromatischen Ringsysteme durch die Etheno-Einheit wurde zur Fixierung des Liganden und der daraus resultierenden Verringerung nicht-strahlender Übergänge im Heterofünfring-Komplex, beispielsweise in 72, vorgenommen. Messungen der Quantenausbeuten Φ_{PL} der unverbrückten und verbrückten homoleptischen Heterofünfring-Komplexe in Matrix lagen für 73 bei 80 % und für 72 bei lediglich 46 %.

Die homoleptischen Heterofünfring-Komplexe (u.a. 72 und 73) wurden aufgrund ihrer akzeptablen Quantenausbeuten Φ_{PL} als Emittermaterialien in optimierten OLEDs getestet. Dabei wurden im Fall des unverbrückten Komplexes 73 Effizienzen von 7.8 cd \cdot A⁻¹ bzw. 5.0 lm \cdot W⁻¹ bei 500 cd \cdot m² gemessen. Im Fall des verbrückten Komplexes 72 wurden überraschenderweise bei 500 cd \cdot m² Effizienzen von 39.0 cd \cdot A⁻¹ bzw. 30.6 lm \cdot W⁻¹

detektiert. Diese Beobachtungen stehen im Gegensatz zur nur geringen Quantenausbeute Φ_{PL} . Der Steigerung der Effizient des verbrückten Komplexes 72 im Device könnte ein verbesserter Ladungstransport im Device im Vergleich zum unverbrückten Komplex 73 zugrunde liegen. Zusätzlich gelang mit dem verbrückten Heterofünfring-Komplex 72 die Realisierung einer weiß-emittierenden OLED mit Effizienzen von 10.3 cd \cdot A⁻¹ bzw. 5.8 lm \cdot W⁻¹ bei 500 cd \cdot m².

1 Einleitung

Das Sehen ist für die Orientierung des Menschen in seiner Umwelt, aber vor allem zur Wissensaufnahme und zur Kommunikation bedeutend. Mit der rasanten Entwicklung computergestützter Technologien, die elektrische Informationen visualisieren und so dem Benutzer Mensch sichtbar machen, nehmen Anzeigeelemente einen zunehmenden Stellenwert ein. Mit der Entwicklung der Kathodenstrahlröhre legte BRAUN 1897 den Grundstein für die elektrische Bilderzeugung [1,2]. Zur Jahrtausendwende bekam die Kathodenstrahlröhre durch LC-Displays (engl. liquid crystal) [3] und die Plasma-Technologie Konkurrenz [4]. Der technische Fortschritt eröffnete neue Arten der Informationsgestaltung, die vor allem in der Kommunikationstechnologie eine rasante Entwicklung erfuhren. Hohe Anforderungen, d.h. insbesondere geringes Gewicht und minimaler Stromverbrauch, werden besonders an tragbare Produkte wie Notebooks, PDAs (engl. Personal Digital Assistant), Mobiltelefone und mp3-Player gestellt. Displays sind in diesen Geräten eine der Hauptkomponenten. So umfassten vornehmlich eingesetzte LC-Displays im Jahre 2008 ein Marktvolumen von ca. 76 Mrd. Dollar [5]. LCDs basieren auf einer Flüssigkristallschicht und verschiedenen Farb- und Polarisationsfilterschichten. In Abhängigkeit der elektrischen Spannung richten sich die Flüssigkristalle entsprechend der Polarisationsrichtung des Lichtes aus, das durch eine Hintergrundbeleuchtung freigesetzt wird. Aufgrund dieses hinterleuchteten Aufbaus zeigen LC-Displays eine starke Blickwinkelabhängigkeit bei kostengünstigen Geräten sowie begrenzten Kontrast, der besonders bei direkter Sonneneinstrahlung auf das LC-Display die Anzeige trübt.

Als Alternative zu LC-Displays gelten Organische Leuchtdioden (*engl. organic light emitting diode* OLED), die aufgrund der selbstleuchtenden Eigenschaften der Emittermaterialien keiner Hintergrundbeleuchtung bedürfen. Ein zwischen zwei organischen Ladungstransportschichten positioniertes, organisches oder metallorganisches Material emittiert Photonen bei Anlegen einer Spannung. Dieses als Elektrolumineszenz bezeichnete Verhalten organischer Moleküle wurde erstmals 1962 von POPE et al. [6] an Anthracen-Kristallen beobachtet und 1987 von TANG und VAN SLYKE [7] in einem

zweischichtigen Aufbau mit Alq₃ (Tris(chinolin-8-yloxy- κN)aluminium(III) (1) als grünemittierendes Material in einer OLED wieder aufgegriffen. Ein großer Schritt in der Effizienzsteigerung kann durch den Einsatz von aus dem Triplett-Zustand emittierenden Organometallverbindungen, beispielsweise mit dem 1985 von KING et al. [8] vorgestellten grün-emittierenden Material Ir(ppy)₃ (*fac*-Tris[2-(2-pyridyl- κN)phenyl]iridium(III) **2**), gegangen werden. Seitdem strebt sowohl die Grundlagenforschung als auch die industrielle Entwicklung nach Verbesserungen bezüglich Farbreinheit, Verlängerung der Lebensdauer und weiterer Erhöhung der Effizienzen dieser Materialklasse.

Die Vorteile von OLEDs gegenüber etablierten LC-Displays liegen vor allem in der kontrastreichen, hellstrahlenden Bilddarstellung nahezu ohne Blickwinkelabhängigkeit. Zudem zeichnen sich OLEDs durch geringes Gewicht, dünnen Aufbau und energiesparenden Betrieb aus, so dass sie für tragbare Displayanwendungen hervorragend geeignet sind.

Und nicht nur das: Immer neue Einsatzgebiete von OLEDs zeigen sich auf. Angefangen von großflächigen, transparenten Signage-Anzeigeelementen über flexible Monitore, bis hin zu Beleuchtungsanwendungen in Möbelstücken, Tapeten oder Fensterscheiben, sind Produktentwicklern und Designern nahezu keine Grenzen gesetzt [9,10]. Unterschiedliche Anforderungen an die Spezifikationen der OLED im Display- und Beleuchtungsmarkt zeigen die Vielfalt dieser jungen Technologie auf. Während für hochauflösende Displayanwendungen bei einem Verhältnis von emittierter Strahlung zu aufgewendeter Lichtleistung 20 lm · W⁻¹ bei Lebensdauern bis zu 40000 h gefordert sind, liegen die Anforderungen im Beleuchtungsbereich bei der dreifachen Leuchtdichte und Effizienzen um 50 lm · W⁻¹ [11,12]. Im Jahre 2008 konnte mit OLED-Produkten bereits ein Umsatz von 591 Mio Dollar erzielt werden. Bis 2015 wird der Anstieg auf bis zu 6 Mrd. Dollar prognostiziert [13].

1.1 Motivation und Zielsetzung

Fortschritte bezüglich Farbreinheit, Effizienz und Lebensdauer einer OLED werden vor allem durch die Modifizierung der organischen Emitter- und Ladungstransportmaterialien sowie des Zusammenspiels dieser Komponenten im Device erreicht. Die Optimierung der Transportmaterialien durch molekulare Änderungen und die Synthese stabilerer Emittermaterialien mit für die Anwendung optimierten Eigenschaften ist Aufgabe von Synthesechemikern und Quantenphysikern. Die Verbesserung des Zusammenspiels der einzelnen Transport- und Emissionsschichten im Device obliegt dagegen Ingenieuren und Physikern, die ihrerseits zum Beispiel durch neue Verkapselungstechnologien die Lebensdauer einer OLED steigern können. So erfordert eine zielgerichtete Forschung das interdisziplinäre Arbeiten von Chemikern, Physikern und Ingenieurswissenschaftlern gleichermaßen, um die Entwicklung Organischer Leuchtdioden voran zu treiben.

Der Schwerpunkt dieser Arbeit liegt im Bereich der Emittermaterialien. Dabei geht es grundsätzlich um drei Fragestellungen:

- Wie kann die Emissionswellenlänge bestehender phosphoreszierender Iridium(III)-Komplexe durch Variation der Molekülstruktur beeinflusst werden?
- (2) Sind die Erkenntnisse aus (1) auf neuartige Ligandensysteme und daraus erhaltene Komplexe übertragbar?
- (3) Welche Auswirkungen haben die chemischen Modifikationen auf die Anwendbarkeit der Materialien in Organischen Leuchtdioden, insbesondere in Bezug auf die Effizienz?

Bezüglich der ersten Fragestellung werden anhand des literaturbekannten Emittermaterials $Ir(ppy)_3$ (2) die Möglichkeiten zur Veränderung des Emissionsspektrums geprüft (s. Schema 2). Dazu wird die Phenylgruppe des Liganden zum einen mit elektronenschiebenden und elektronenziehenden Substituenten funktionalisiert. Zum anderen wird die Abweichung durch den Übergang von sogenannten homoleptischen Komplexen mit drei identischen Liganden (s. 3 und 4, Schema 2) zu sogenannten heteroleptischen Komplexen mit zwei identischen Liganden und einem davon abweichenden, zweizähnigen Liganden (s. 5 und 6, Schema 2) untersucht.

Schema 2 Modifizierung des substituierten Emittermaterials Ir(ppy)₃ 3 zum verbrückten, homoleptischen Heterofünfring-Komplex 4 sowie deren heteroleptische Pendant 5 und 6.

Aufbauend auf diesen Ergebnissen werden zwei grundlegende Veränderungen an der Molekülstruktur von **3** vorgenommen. Erstens werden die aromatischen Ringe des Liganden durch eine Überbrückung sterisch fixiert und zweitens wird die Pyridyl-Gruppe gegen eine Heterofünfring-Gruppe ausgetauscht, die das neuartige Heterofünfring-Ligandensystem des Komplexes **4** hervorbringt (s. Schema 2) [14]. An diesem System werden entsprechend der zweiten Fragestellung die Einflüsse von funktionalisierten Gruppen auf die Emissionseigenschaften erforscht.

Die dritte Fragestellung wird durch die Herstellung von OLEDs ausgewählter neuartiger Komplexe des Heterofünfring-Ligandensystems bearbeitet. Die Auswirkung der sterischen Fixierung des Komplexes 4 auf die Effizienz des Bauteils steht dabei im Mittelpunkt der Betrachtungen.

1.2 Gliederung

Die Arbeit ist unterteilt in einen chemisch-synthetischen und einen physikalischanwendungsbezogenen Teil. Nach einem einleitenden Grundlagenkapitel (Kapitel 2) umfasst der erste Teil zunächst die Synthese von aus dem Triplett-Zustand emittierenden Materialien (Kapitel 3) sowie deren Ligandvorstufen. Dabei werden sowohl sechsgliedrige Ir(ppy)₃-analoge Verbindungen (s. Schema 2, 3) als auch fünfgliedrige Ligandstrukturen sowie deren homo- und heteroleptische Derivate hergestellt (s. Schema 2, 4 und 6). Auf die Charakterisierung der verschiedenen isomeren Komplexe wird anhand von Kristallstrukturdaten und NMR-spektroskopischen Messergebnissen in Kapitel 4 eingegangen.

Der zweite Teil umfasst die Struktur-Eigenschafts-Beziehungen der synthetisierten Materialien. In Kapitel 5 werden cyclovoltammetrische Messungen vorgestellt und mit quantenchemischen Berechnungen der HOMO- und LUMO-Energieniveaus korreliert. Im Mittelpunkt der Betrachtungen von Kapitel 6 stehen die Absorptions- und Emissionseigenschaften der synthetisierten Materialien. Die Bestimmung von Kenndaten von OLEDs, deren Aufbau für die synthetisierten, neuartigen Heterofünfring-Komplexe optimiert wurde, bildet den anwendungsbezogenen Teil der Arbeit (Kapitel 7).

2 Grundlagen

Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von Veränderungen des Emissionsspektrums von Iridium(III)-Komplexen in Hinblick auf die Anwendungen in Organischen Leuchtdioden (OLEDs). Grundlegende theoretische Aspekte von Elektronenübergängen werden in diesem Kapitel umrissen. Nach einer kurzen Einführung zum Aufbau von Molekülen aus quantenmechanischer Sicht werden die wichtigsten Parameter zur Beschreibung der photophysikalischen Eigenschaften der synthetisierten Moleküle definiert. Das zentrale Thema "OLED" wird in diesem Kapitel in Hinblick auf die Funktionsweise, den Aufbau und die Eigenschaften der Materialien behandelt.

2.1 Quantenmechanische Beschreibung von Molekülen

2.1.1 Die SCHRÖDINGER-Gleichung

Die Grundlage der Quantenmechanik bildet die SCHRÖDINGER-Gleichung (Gleichung (1)). Die Wellenfunktionen Ψ als Lösung der SCHRÖDINGER-Gleichung ist eine Funktion der Koordinaten eines Teilchens, die alle Informationen über dessen Ort und seine Bewegung enthält [15].

$$H\Psi = E\Psi \tag{1}$$

Der HAMILTON-Operator H (auch Energie-Operator genannt) wirkt auf die Wellenfunktion Ψ . E ist der Eigenwert der dazugehörigen (nun Eigenfunktion genannten) Wellenfunktion Ψ mit dem dazugehörigen HAMILTON-Operator [15,16]. In der in Gleichung (1) gezeigten,

als zeitunabhängig bezeichneten SCHRÖDINGER-Gleichung wird die Abhängigkeit des Teilchens von der Zeit vernachlässigt.

Eine weitere Vereinfachung der SCHRÖDINGER-Gleichung liegt in der BORN-OPPENHEIMER-Näherung. Sie erlaubt die Trennung von Elektronen- und Kernbewegungen. Die BORN-OPPENHEIMER-Näherung geht davon aus, dass sich die Elektronen aufgrund ihrer wesentlich geringeren Masse viel schneller bewegen als die Kerne. Die Kerne werden als ruhend betrachtet und die Energie des auf dieser Näherung beschriebenen Systems hängt nur von den Koordinaten der Elektronen ab [16].

Für einfache Systeme wie dem Wasserstoffatom lässt sich die SCHRÖDINGER-Gleichung lösen. Davon ausgehend können Fragestellungen wie die Gestalt der Orbitale, die Quantenzahlen und der Drehimpuls erklärt und veranschaulicht werden [15]. Auch für die Beschreibung weiterer einfacher Systeme ist die SCHRÖDINGER-Gleichung lösbar:

- das Teilchen im Kasten,
- das Teilchen im kugelsymmetrischen COULOMB-Potential am Beispiel des Wasserstoffatoms,
- die Potentialbarriere, die den Tunneleffekt beschreibt,
- das harmonische Potential (harmonischer Oszillator) und das MORSE-Potential.

Bezogen auf die Untersuchungen an OLEDs basieren beispielsweise Erklärungen zu Emissionseigenschaften und Ladungstransportphänomenen auf der SCHRÖDINGER-Gleichung.

2.1.2 Atom- und Molekülorbitale

Auf ein Atom angewendet beschreibt die Lösung der SCHRÖDINGER-Gleichung Ψ die Atomorbitale, die durch drei Quantenzahlen *n*, *l* und *m* charakterisiert sind. Die Hauptquantenzahl *n* bestimmt das Energieniveau des Elektrons im betrachteten Atomorbital, der Betrag des Drehimpulses ist durch die Drehimpulsquantenzahl *l* gegeben und die Orientierung des Drehimpulses im Raum gibt die Bahndrehimpulsquantenzahl *m* an. Die das Atomorbital beschreibende Wellenfunktion Ψ ist nur vom Abstand *r* des Elektrons zum Kern abhängig [16,17]. Neben den drei Quantenzahlen *n*, *l* und *m* wird ein Elektron durch seine Spinquantenzahl *m_s* bestimmt, die dessen inneren Drehimpuls beschreibt [15]. Auf ein zweiatomiges Molekül übertragen, müssen die Wechselwirkungen der Atomorbitale untereinander berücksichtigt werden. Die Voraussetzung für eine chemische Bindung zwischen zwei Atomen zur Bildung eines Moleküls ist die Überlappung ihrer Atomorbitale Ψ , die durch das Überlappungsintegral S_{ba} angegeben wird (Gleichung (2)).

$$S_{\rm ba} = \int \Psi_{\rm b}^* \Psi_{\rm a} dV \tag{2}$$

 S_{ba} beschreibt das Maß der gegenseitigen Durchdringung der beiden Wellenfunktionen Ψ_a und Ψ_b im Volumenelement dV und hängt vom Atomabstand r und der gegenseitigen Orientierung der beiden Atomorbitale ab [17,18].

Die Linearkombination von zwei Atomorbitalen ergibt zwei Molekülorbitale (MO), welche die Überlappungseigenschaften der Atomorbitale und die COULOMB-Anziehung der Elektronen berücksichtigen. Entsprechend der positiven bzw. negativen Überlappung ihrer Atomorbitale werden die Molekülorbitale als bindend bzw. antibindend bezeichnet [17]. Das bindende σ -MO wird energetisch um den Betrag der Bindungsenergie abgesenkt, während das antibindende σ^* -MO um denselben Energiebetrag angehoben wird (s. Abbildung 1). Die Besetzung mit Elektronen erfolgt immer zuerst in den energetisch tieferliegenden σ -MOs nach der HUNDschen Regel. So wird das höchste besetzte Molekülorbital als HOMO (*engl. highest occupied molecular orbital*) und das niedrigste unbesetzte Molekülorbital als LUMO (*engl. lowest unoccupied molecular orbital*) bezeichnet. Spricht man von einem Molekül im angeregten Zustand, so sind Elektronen aus bindenden, besetzten MOs heraus in energetisch höher liegende, antibindende MOs, die zuvor unbesetzt waren, angehoben worden [17].

Abbildung 1 Molekülorbitalschema des Wasserstoffmoleküls H₂.

Bei der Besetzung der MOs kann nach dem PAULI-Prinzip jede Verteilung der Elektronen eines Moleküls auf die möglichen, durch die Spindrehimpulsquantenzahl m_s beschriebenen Spinzustände jeweils nur einer bestimmten Konfiguration zugeordnet werden [18]. Unter Berücksichtigung der Spinfunktionen α und β der Elektronen entstehen durch Multiplikation mit dem Molekülorbital zwei Spinorbitale pro Molekülorbital. Die Orientierung der Spins kann gepaart oder parallel sein, wodurch sich der Gesamtspin *S* unterscheidet, aus dem nach Gleichung (3) die Multiplizität *M* des Zustands bestimmt wird [15,18].

$$M = 2S + 1 \tag{3}$$

Bei gepaarten Spins hebt sich der resultierende Gesamtspin *S* zu null auf [15]. Über die Multiplizität *M* wird diese Konfiguation als Singulett-Zustand beschrieben. Liegen die Spins parallel vor, so ist ihr resultierender Gesamtspin von null verschieden [15]. Bei einem Gesamtspin von S = 1 ergeben sich nach Gleichung (3) drei mögliche Konfigurationen, die dem Triplett-Zustand entsprechen. Unterschiede in den Triplett-Konfigurationen eines Moleküls werden durch verschiedene COULOMB-Wechselwirkungen sowie abweichende räumliche Verteilungen der Elektronen hervorgerufen, die zu Differenzen in der Energie der Konfigurationen führen [15,19,20].

2.2 Beschreibung von Elektronenübergängen in Molekülen

In dieser Arbeit wird der Begriff Elektronenübergang auf die Aufnahme und Abgabe von Photonen mit daraus resultierender Anregung und Relaxation von Elektronen in Molekülen und Komplexen bezogen. Die physikalischen Grundlagen zur Beschreibung von Elektronenübergängen stehen im Mittelpunkt dieses Kapitels.

2.2.1 Intensität von Elektronenübergängen

Die Voraussetzung für den Übergang eines Elektrons zwischen zwei Zuständen eines Atoms oder Moleküls infolge einer Absorption ist die Wechselwirkung des Lichtes mit dem sogenannten Übergangsmoment U_{ki} zwischen den durch die Wellenfunktion Ψ_i des Grundzustands und durch die Wellenfunktion Ψ_k des angeregten Zustands beschriebenen Zuständen i und k des Atoms oder Moleküls (Gleichung (4)) [18].

$$U_{\rm ki} = \langle \Psi_{\rm k} | \mathbf{U} | \Psi_{\rm i} \rangle \tag{4}$$

U ist ein Operator, der bei der Beschreibung von Elektronenübergängen dem elektrischen Dipolmoment entspricht. Da Dipolmomente Vektoreigenschaften besitzen, ist das Übergangsmoment U_{ki} richtungsabhängig [18]. Das elektrische Übergangsmoment U_{ki} beschreibt folglich die Intensität des Elektronenübergangs bei der Wechselwirkung mit Licht.

Zusätzlich zu den Elektronenübergängen sind sowohl im Grundzustand als auch im angeregten Zustand Schwingungszustände an den Übergängen beteiligt [18]. Im folgenden Kapitel werden die Faktoren, die der Verteilung der Intensität auf die einzelnen Schwingungszustände von Grundzustand und angeregten Zuständen zugrunde liegen, eingehender vorgestellt.

2.2.2 Das FRANCK-CONDON-Prinzip

Die Verteilung der gesamten Intensität des elektronischen Übergangs auf verschiedene vibronische Übergänge wird auf der Grundlage des FRANCK-CONDON-Prinzips beschrieben [21-23]. Der anschaulichen Beschreibung wird die BORN-OPPENHEIMER-Näherung zugrunde gelegt. Sie besagt, dass die Bewegung der Kerne im Vergleich zur Bewegung der Elektronen vernachlässigbar langsam ist (s. Abschnitt 2.1). Die Anregung der Elektronen erfolgt demnach viel schneller, als die Kerne der Richtungsänderung und somit der neuen Ladungsverteilung entsprechend der Geometrie des angeregten Zustands folgen können. Der wahrscheinlichste Übergang ist daher der, bei dem die Kernwellenfunktion des angeregten Zustands gegenüber der Kernwellenfunktion des Grundzustands die geringste Änderung erfährt (Schema 3) [18].

Schema 3 Darstellung der Absorptions- und Emissionsübergänge nach dem FRANCK-CONDON-Prinzip: Die Abzisse spiegelt den Gleichgewichtsabstand *R* der Kerne wieder, die Ordinate gibt die Energie *E* an [24].

Nach Schema 3 sind sogenannte "vertikale Übergänge" der Elektronen am wahrscheinlichsten. Breitbandige Elektronenspektren kommen demnach zustande, wenn sich die Kernabstände *R* im Grundzustand und im angeregten Zustand unterscheiden. Die Absorption findet dann aus dem Schwingungsgrundzustand (v'' = 0) des elektronischen Grundzustands in die entsprechend höher liegenden Schwingungszustände (Bsp. v' = 3) des elektronisch angeregten Zustands statt. Das Absorptionsspektrum wir dadurch breitbandiger. Bei der Emission herrschen ähnliche Verhältnisse vor: Aus dem Schwingungsgrundzustand des angeregten Zustands (v' = 0) findet ein vertikaler Übergang in einen der Schwingungszustände des Grundzustands statt (Bsp. v'' = 1).

Werden dagegen schmalbandige Elektronenspektren erhalten, so ist die Geometrieänderung zwischen Grundzustand und angeregtem Zustand gering. Anhand der Breite der Elektronenspektren, die als Halbwertsbreite (*engl. full width at half maximum*, FWHM) angegeben wird, ist somit eine Angabe zur Geometrieänderung der am Elektronenübergang beteiligten Zustände möglich.

Das FRANCK-CONDON-Prinzip erklärt folglich das Zusammenspiel zwischen elektronischen Übergängen und Schwingungsübergängen als Folge der verminderten Bewegung der Kerne. Zur quantitativen Beschreibung des Elektronenübergangs müssen die an diesem Übergang beteiligten Übergangsdipolmomente U des elektronischen Übergangs und des Schwingungsübergangs nach Gleichung (4) berücksichtigt werden. Die zweite Komponente zur Darstellung eines Schwingungsübergangs ist das Überlappungsintegral $S_{v'v}$ (Gleichung (2)) als Maß für die gegenseitige Wechselwirkung der an dem Schwingungsübergang beteiligten Wellenfunktionen Ψ_v und $\Psi_{v'}$ unter Berücksichtigung des Kernabstands R (Gleichung (5)) [15,18]:

$$S_{\nu'\nu} = \int \Psi_{\nu'}^*(R)\Psi_{\nu}(R)dV$$
(5)

Es kann als Maß für die Ähnlichkeit der Kernanordnung der beiden an dem Übergang zwischen dem elektronischen Grundzustand und dem elektronischen angeregten Zustand beteiligten Schwingungswellenfunktionen betrachtet werden.

Die Intensität des Übergangs nach dem FRANCK-CONDON-Prinzip wird durch das Quadrat der Übergangsmomente bestimmt. Die Intensität ist daher auch proportional zum Quadrat des Überlappungsintegrals $S_{v'v}$ der am Übergang vom Schwingungsniveau v des elektronischen Grundzustands in das Niveau v' des angeregten elektronischen Zustands beteiligten Wellenfunktionen, das als FRANCK-CONDON-Faktor bezeichnet wird [15,18].

2.2.3 Auswahlregeln

Auskunft darüber, ob ein Übergang zwischen zwei Zuständen möglich ist, geben die sogenannten Auswahlregeln. Danach werden in Abhängigkeit des Übergangsmoments U_{ki} Elektronenübergange als "erlaubt" oder "verboten" definiert. "Erlaubte" Übergänge haben ein von Null verschiedenes Übergangsmoment U_{ki} . Bei einem Übergangsmoment von Null dagegen ist der Übergang "verboten". Allerdings kann das "Verbot" aufgrund von Störungen gelockert werden, so dass es nur innerhalb der Grenzen der aufgestellten Näherungen greift [18].

Zur Beschreibung der Elektronenspektren der synthetisierten Komplexe werden drei Auswahlregeln benötigt, die

- (1) auf dem Spin,
- (2) der Symmetrie der Orbitale und
- (3) der lokalen Symmetrie in Abhängigkeit der Überlappung der Orbitale beruhen.

Bezüglich der drei Auswahlregeln bewirken die nachstehenden Ausnahmen eine Lockerung des Übergangsverbots:

- (1) durch den Spin in Abhänigkeit der Größe der Spin-Bahn-Kopplung,
- (2) durch die Symmetrie, die durch die vibronische Kopplung, die auch unter dem Begriff Herzberg-Teller-Effekt bekannt ist, gelockert wird, und
- (3) durch die *lokale Symmetrie und Überlappung*, deren bekanntestes Beispiel die Charge-Transfer-Übergänge sind.

Spin-Auswahlregel

Nach der Spin-Auswahlregel sind nur Übergänge zwischen Zuständen gleicher Multiplizität M erlaubt (bzgl. M vgl. Kapitel 2.1.2, S. 14) [17]. Diese Einschränkung basiert auf dem Drehimpulserhaltungssatz. Der Gesamtdrehimpuls \vec{j} jedes Teilchens (hier eines Elektrons) ist definiert als Vektorsumme \vec{j} aus dem Bahndrehimpuls \vec{l} (mit der Quantenzahl l) und dem Eigendrehimpuls oder Spin \vec{s} (mit der Quantenzahl m_s) nach Gleichung (6) [25]. Da sich der Gesamtdrehimpuls \vec{j} bei einem Elektronenübergang zur Erhaltung der Multiplizität *M* nicht ändern darf, der Bahndrehimpuls \vec{l} sich aber um $\Delta l = \pm 1$ ändert, muss sich der Spindrehimpuls \vec{s} um den gleichen Betrag ändern. Da allerdings für die Werte von \vec{s} nur $m_s = \pm \frac{1}{2}$ möglich ist, bleibt ihr Gesamtwert mit $|\vec{s}| = \vec{s}$ unverändert [15,25].

Die Spin-Bahn-Kopplung (*engl. spin-<u>o</u>rbit-<u>c</u>oupling*, SOC) beschreibt die Wechselwirkung zwischen den magnetischen Momenten des Spindrehimpuls eines Elektrons \vec{s} und seinem Bahndrehimpuls \vec{l} . Sie entspricht der Feinstrukturaufspaltung der Energie, die durch den Energieoperator H_{SO} beschrieben wird (Gleichung (7)) [18,26].

$$H_{\rm SO} \propto \frac{Z^4}{n^3} \tag{7}$$

Demnach steigt H_{SO} proportional zur vierten Potenz der Kernladungszahl Z an, wohingegen das Reziproke der dritten Potenz der Quantenzahl *n* in die Berechnung einfließt [26]. Dies zeigt die Abhängigkeit der SOC von Atomen höherer Ordnungszahl (= größerer Kernladungszahl Z), der auch als Schweratomeffekt bezeichnet wird [18]. Bei Molekülen mit Atomen kleiner Kernladungszahl Z ist die Spin-Auswahlregel dagegen streng gültig [15].

Liegt eine starke Spin-Bahn-Kopplung wie im Falle von Übergangsmetallkomplexen vor, wird die strikte Trennung zwischen den Multiplizitäten *M* gelockert. Es können sogenannte Singulett-Triplett-Interkombinationen (*engl. intersystem crossing*, ISC) auftreten, die eine Besetzung von Zuständen anderer Multiplizitäten *M* erlauben. Auf die Auswirkungen der Spin-Bahn-Kopplung und die Bedeutung in Zusammenhang mit der Entwicklung von Übergangsmetallkomplexen als Emittermaterialien für elektrolumineszente Anwendungen wird in Kapitel 2.3.2 (S. 25) und Kapitel 2.4.1 (S. 28) eingegangen.

Symmetrie-Auswahlregel

Allgemein betrachtet fordert die Symmetrie-Auswahlregel, dass ein Übergang nur dann symmetrie-"erlaubt" ist, wenn für das elektrische Übergangsdipolmoment U_{ki} Gleichung (8) gilt [17].

$$U_{\rm ki} = \int \Psi_{\rm k} \vec{r} \,\Psi_{\rm i} dV \neq 0 \tag{8}$$

Dabei definiert \vec{r} den Ortsvektor des Übergangsdipolmomentoperators U, in den die Größe des Dipolmoments μ einfließt. Die Symmetrie des Ausgangszustands der Wellenfunktion Ψ_i wird demnach durch das Übergangsdipolmoment in die Symmetrie des Endzustands Ψ_k überführt [27,28].

Ein spezieller Fall der Symmetrieauswahlregel ist die LAPORTE-Regel, die besagt, dass Dipolübergange in Molekülen mit Inversionszentrum nur dann erlaubt sind, wenn sich die Parität von Anfangs- und Endzustand unterscheidet [17]. Als Parität wird dabei die Symmetrieeigenschaft der Wellenfunktionen der Spiegelung an einem Inversionszentrum nach Gleichung (9) definiert:

$$\Psi(\vec{r}) = -\Psi(\vec{r}) \tag{9}$$

Bei der Beteiligung von Schwingungen des Ausgangszustands und / oder des Endzustands am Übergang, wie dies bereits bei der Beschreibung des FRANCK-CONDON-Faktors in Kapitel 2.2.2 (S. 18) gezeigt wurde, muss das elektronische Übergangsmoment U durch das vibronische Übergangsmoment $U(\nu)$ ergänzt werden, wobei $\Psi(\nu)$ eine vibronische Wellenfunktion darstellt (Gleichung (10)) [28].

$$U(\nu) = \int \Psi_{\rm k}(\nu) \, \vec{r} \Psi_{\rm i}(\nu) dV \tag{10}$$

Die Auswahlregel der elektronischen Übergänge nach der LAPORTE-Regel können nun auf die vibronischen Übergänge angewendet werden.

Eine Ausnahme von der Symmetrie-Auswahlregel basiert auf den Kernbewegungen. Ist die BORN-OPPENHEIMER-Näherung nicht mehr gültig, kommt es zu einer Elektronen-Schwingungs-Kopplung, die auch als vibronische Kopplung (HERZBERG-TELLER) bezeichnet wird. Aufgrund der auftretenden Verzerrung der Symmetrie werden "reine" Zustände vermischt. Übergänge zwischen verschiedenen Paritäten werden dadurch erlaubt. Beobachtet werden diese Schwingungs-Kopplungen vor allem bei "d-d-Übergängen" von Übergangsmetallen, zwischen denen ein Übergang aufgrund gleicher Symmetrie des Ausgangs- und Endzustands der d-Orbitalen eigentlich verboten ist [17].

Lokale Symmetrie und Überlappung

Die Auswahlregel der lokalen Symmetrie und Überlappung besagt, dass das Übergangsmoment gleich null wird, wenn sich die an diesem Übergangsmoment beteiligten Molekülorbitale nicht überlappen, deren Produkt gleich null ist. Bei Elektronenübergängen, die von einem (Teil-)System auf ein anderes erfolgen, ist das Übergangsmoment von null verschieden. Diese Elektronenübergänge werden als Donor-Akzeptor-Übergänge (*engl. charge-transfer*, CT) bezeichnet und stellen die Lockerung der Auswahlregel dar. Am Beispiel der oktaedrischen, aus Zentralatom und drei zweizähnigen Liganden bestehenden Metallkomplexe sollen die unterschiedlichen Wege des Ladungsübergangs veranschaulicht werden (s. Abbildung 2) [18].

Abbildung 2 Schematische Darstellung der Ladungsübertragungsprozesse in Metallkomplexen [18,29].

Der Übergang des Elektrons von einem besetzten Orbital mit vorwiegend Metallcharakter auf ein unbesetztes Orbital mit vorwiegend Ligandcharakter wird als MLCT-Übergang bezeichnet (*engl. <u>metall-ligand-charge-transfer</u>*). Ein Liganden-lokalisierter Elektronenübergang ($\pi - \pi^*$ -Übergang) ist als LLCT-Übergang (*engl. <u>ligand-ligand-charge-transfer</u>*) definiert [30].

Die Auswahlregel der "lokalen Symmetrie und Überlappung" ist im Gegensatz zur Spinund Symmetrieauswahlregel nicht streng gültig. Die Lockerung in Form von CT-Übergängen kann experimentell anhand breiter Elektronenbanden beobachtet werden [18].

2.3 Das Phänomen Licht

Licht ist eine elektromagnetische Welle, die nach der klassischen Physik durch den elektrischen Feldvektor E(x) und den magnetischen Feldvektor B(x) definiert ist, die senkrecht aufeinander stehen [18]. In der Quantenchemie wird das Licht in Form einzelner Lichtquanten, sogenannten Photonen betrachtet, wobei diese Lichtquanten als Energiepakete der Energie $E = h \cdot v$ beschrieben werden, die über die Frequenz v mit der Wellenlänge λ und der Wellenzahl \tilde{v} wie folgt in Beziehung zueinander stehen (Gleichung (11)) [31].

$$E = h \cdot \nu = h \cdot \frac{c}{\lambda} = h \cdot c \cdot \tilde{\nu}$$
⁽¹¹⁾

Abhängig vom Prozess seiner Entstehung kann Licht bezüglich seiner Wellenlänge sehr inhomogen sein, d.h. es kann Lichtquanten unterschiedlicher Energie enthalten. Sein Spektrum weist daher ein Maximum mit einer gewissen Halbwertsbreite FWHM auf [31]. Voraussetzung für die Absorption von Licht durch ein Molekül ist die Übereinstimmung der Energie des Lichtes mit der Energiedifferenz zweier Zustände im Molekül. Aus quantenchemischer Sicht tritt das Licht mit dem Übergangsmoment U_{ki} der Wellenfunktionen Ψ_i und Ψ_k des Moleküls in Wechselwirkung [18].

2.3.1 Absorption, Transmission, Reflexion

Beim Durchgang elektromagnetischer Strahlung durch ein Medium wird ein Teil der Strahlung an den Grenzungsflächen reflektiert, ein Teil im Innern des Mediums absorbiert und ein Teil hindurch gelassen [32]. Als sogenannte Absorption *A* ist dabei die Intensitätsverringerung des Lichts beim Durchtritt durch ein Medium definiert. Sie beruht auf der teilweisen Aufnahme von einfallender elektromagnetischer Strahlung und der Anhebung der Elektronen in elektronisch angeregte Zustände der Moleküle des Mediums. Durch Abstrahlung von Wärme oder Emission von Licht gehen die Elektronen in den angeregten Zuständen wieder in den Grundzustand über. Das LAMBERT-BEERsche Gesetz stellt einen Zusammenhang zwischen der Änderung der Lichtintensität I beim Durchtritt durch ein absorbierendes Medium und der Länge d sowie der Konzentration c einer hochverdünnten Probe in Lösung her (Gleichung (12)) [15]:

$$A = -\log \frac{l}{l_0} = \varepsilon \cdot c \cdot d \tag{12}$$

Der molare dekadische Absorptionskoeffizient ε ist eine substanzspezifische Größe. Die Transmission *T* ist definiert als der Anteil *I* des einfallenden Lichts *I*₀, der von der Probe hindurchgelassen wird (Gleichung (13)) [31].

$$T = \frac{I}{I_0} \tag{13}$$

Desweiteren treten Reflexion und Brechung an der Grenzfläche zum Medium auf, die nach dem Reflexions- und dem Brechungsgesetz beschrieben werden können. Das Reflexionsgesetz besagt, dass der Einfallswinkel eines Lichtstrahls auf eine Grenzfläche gleich seinem Ausfallwinkel ist. Neben Reflexion wird ein Teil des Lichtstrahls an der Grenzfläche zum absorbierenden Medium hin gebrochen [31].

2.3.2 Das JABLONSKI-Diagramm

Alle in einem Molekül als Folge der Lichtabsorption ablaufenden monomolekularen Prozesse können in einem JABLONSKI-Diagramm dargestellt werden (s. Schema 4, S. 26) [18].

Die *Absorption* findet aus dem Schwingungsgrundzustand des elektronischen Grundzustands $S_0^{(1)}$ in einen angeregten Schwingungszustand der angeregten elektronischen Zustände S_1 oder S_2 gleicher Multiplizität *M* entsprechend der Spin-Auswahlregel statt. Nach FRANCK-CONDON (vgl. Kapitel 2.2.2, S. 18) werden dabei vor allem höher liegende Schwingungsniveaus des elektronisch angeregten Zustands S_1 besetzt. Die *innere Umwandlung* (*engl. internal conversion*, IC) in den Schwingungsgrundzustand des angeregten Zustands S_1 erfolgt strahlungslos. Diese strahlungslosen Umwandlungen sind

¹ Dieser Zustand entspricht dem HOMO.

sehr schnell. Daher werden sowohl die Lebensdauern der höheren Zustände als auch die Quantenausbeuten der Emission aus höheren Zuständen als sehr klein angesehen. Diese Vorgänge führen zur Regel von KASHA, nach der intensive Emissionen grundsätzlich aus dem tiefsten angeregten Zustand, also dem S₁-Zustand stattfinden [18]. Demnach erfolgt der Übergang aus dem Schwingungsgrundzustand des ersten angeregten Zustands S₁ in angeregte Schwingungszustände des elektronischen Grundzustands S₀ unter Aussendung von Lichtenergie, die als *Fluoreszenz* bezeichnet wird.

Schema 4 JABLONSKI-Diagramm zur Beschreibung der wichtigsten strahlenden und nicht-strahlenden Prozesse in Singulett- und Triplett-Systemen; die Anordnung der Spins zueinander ist ebenfalls gezeigt [24].

Als Folge der Emission aus dem Schwingungsgrundzustand des elektronisch angeregten Zustands in einen angeregten Schwingungszustand des elektronischen Grundzustands ist eine bathochrome Verschiebung des Emissionsspektrums im Vergleich zum Absorptionsspektrum zu beobachten. Die Wellenlängendifferenz der intensivsten Banden im Absorptions- und Emissionsspektrum wird als STOKEs-Shift bezeichnet und ist charakteristisch für das individuelle Molekül [31]. Die Besetzung der Triplett-Zustände ist nach der Spin-Auswahlregel "verboten". Allerdings wurde in Kapitel 2.2.3 gezeigt, dass bei ausgeprägter Spin-Bahn-Kopplung eine Lockerung dieser Auswahlregel eintritt. Die strahlungslose Spinumkehr zwischen Zuständen unterschiedlicher Multiplizitäten M wird als *Interkombination* (ISC) bezeichnet [18]. Als *Phosphoreszenz* ist die Lichtemission aus dem Schwingungsgrundzustand des angeregten Triplett-Zustands T₁² in angeregte Schwingungszustände des Grundzustands S₀ definiert.

Ein bedeutender Unterschied zwischen Fluoreszenz und Phosphoreszenz besteht in der Anzahl der möglichen Konfigurationen, aus denen sie erfolgen können und die sich aus der Multiplizität *M* ergeben. Die Fluoreszenz kann lediglich aus einer Singulett-Konfiguration erfolgen. Dem gegenüber stehen bei der Phosphoreszenz drei Triplett-Konfigurationen zur Verfügung. Der Einfluss dieser Tatsache auf die erreichbaren maximalen Effizienzen von OLEDs geht einher mit der bereits in Kapitel 2.2.3 (S. 20) angedeuteten Entwicklung phosphoreszenter Emittermaterialien. Im folgenden Kapitel werden diese Zusammenhänge näher erläutert.

² Dieser Zustand entspricht bei Triplett-Emittern dem LUMO.

2.4 Parameter der Emission

Wichtige Merkmale zur Beschreibung der Emission eines Moleküls sind das Emissionsmaximum bzw. die Emissionsmaxima λ bzw. λ_{max}^{3} , die Halbwertsbreite FWHM (vgl. Kapitel 2.2.2, S. 18), die CIE-Koordinaten, die Quantenausbeute Φ und die Abklingzeit τ . Besondere Abhängigkeiten aufgrund der Art des Lumineszenzvorgangs (Fluoreszenz oder Phosphoreszenz) bestehen dabei zwischen Quantenausbeuten und Abklingzeiten. Aus quantenmechanischer Sicht unterscheiden sich Fluoreszenz und Phosphoreszenz durch ihre Multiplizitäten *M*. Eine experimentelle Betrachtung zeigt zudem gravierende Unterschiede in der Lebensdauer des angeregten Zustands T₁ und S₁, der über die Abklingzeiten und Quantenausbeuten unter Einbeziehung nicht-strahlender Konkurrenzprozesse vorgestellt. Eine strikte Unterteilung in abgeschlossene Kapitel ist dabei nahezu unmöglich. Die Abschnitte sollen dem Leser lediglich als Orientierungshilfe dienen.

2.4.1 Quantenausbeute

Die Quantenausbeute der Photolumineszenz Φ_{PL} , d.h. der Emission, der eine Anregung durch Absorption von Licht vorausgegangen ist, ist definiert als Quotient aus der Zahl der emittierten Quanten n_E zur Zahl der absorbierten Quanten n_A (Gleichung (14)) [33]:

$$\Phi_{\rm PL} = \frac{n_{\rm E}}{n_{\rm A}} \tag{14}$$

Bei einer Quantenausbeute von eins (= 100 %) werden alle absorbierten Quanten in emittierende Quanten durch innere Umwandlung (IC) oder Interkombinationsübergänge (ISC) umgewandelt (vgl. JABLONSKI-Diagramm, Kapitel 2.3.2, S. 25). Finden strahlungslose Konkurrenzprozesse statt, so führt dies zu einer Reduzierung der Quantenausbeute. Auf die Konkurrenzprozesse wird später in diesem Kapitel ausführlicher eingegangen.

³ Unabhängig von der Intensität des Elektronenüberganges ist λ_{max} definiert als die längst wellige Emissionswellenlänge. Sie ist bei Vorhandensein mehrerer Emissionsmaxima von der intensivsten Wellenlänge λ zu unterscheiden.

Die Unterscheidung zwischen Fluoreszenz und Phosphoreszenz wurde anhand der Multiplizität *M* der Zustände geführt, aus denen das Elektron in den Grundzustand übergeht (vgl. JABLONSKI-Diagramm, Kapitel 2.3.2, S. 25). Demnach sind bei einer Emission unter Beteiligung der ersten angeregten Singulett-Konfiguration und der drei Triplett-Konfigurationen viermal so viele Konfigurationen beteiligt als bei einer alleinigen Emission aus dem Singulett-Zustand mit nur einer Konfiguration. Entsprechend verhalten sich die zu erwartenden maximalen Quantenausbeute von 25 % bzw. 100 %. Dies ist die Erklärung dafür, dass für die Entwicklung von Emittermaterialien in OLEDs die Verwendung phosphoreszenter Übergangsmetallkomplexe derzeit vorangetrieben wird.

Zur Begründung dieser Unterschiede in den Quantenausbeuten müssen alle am Elektronenübergang beteiligten Vorgänge und Parameter betrachtet werden. Ausgehend von der Definition der Elektronenübergänge in Kapitel 2.2.1 (S. 17) ist deren Intensität abhängig vom Übergangsmoment U_{ki} (vgl. Gleichung (4), S. 17) und dem Überlappungsintegral S_{ki} (vgl. Gleichung (2), S. 15). In Abbildung 3 sind die folgenden Überlegungen schematisch gezeigt.

Abbildung 3 Schematische Darstellung der Elektronenübergänge zwischen Singulettund Triplett-Zuständen und die zugehörigen Übergangsmomente [34].

Die grundlegende Voraussetzung der Emission ist die vorherige Absorption von Energie, d.h. der Elektronenübergang aus dem Grundzustand S_0 in einen angeregten Zustand gleicher Multiplizität. In Form des Übergangsmoments wird die Absorption in Abhängigkeit des Dipolmoments ausgedrückt als $U_{S_iS_0} = \langle S_i | U | S_0 \rangle$. Die Fluoreszenz als direkte Umkehr der Absorption unter Berücksichtigung der KASHA-Regel (vgl. 2.3.2, S. 25) wird durch das Übergangsmoment $U_{S_0S_i} = \langle S_0 | U | S_i \rangle$ beschrieben.

Nach der Spin-Auswahlregel sind Elektronenübergänge zwischen Zuständen verschiedener Multiplizitäten M "verboten" (vgl. Kapitel 2.2.3, S. 20ff), d.h. die als Phosphoreszenz bezeichnete Emission aus dem T₁ in den S₀-Zustand unter Spinumkehr hat ein geringes Übergangsmoment $U_{S_0T_1} = \langle S_0 | U | T_1 \rangle$. Als Voraussetzung der Emission aus dem T₁-Zustand muss dieser zunächst mit Elektronen besetzt werden, woraus die direkte Proportionalität zum Übergangsmoment der Absorption $U_{S_1S_0} = \langle S_i | U | S_0 \rangle$ hervorgeht (Gleichung (15)) [34,35]:

$$\langle S_0 | \mathbf{U} | T_1 \rangle = \sum_{i=1}^n \frac{\langle S_i | H_{\mathrm{SO}} | T_1 \rangle}{E_{\mathrm{T}_1} - E_{\mathrm{S}_i}} \langle S_i | \mathbf{U} | S_0 \rangle \tag{15}$$

Die Wahrscheinlichkeit des Elektronenübergangs aus einem besetzten S_i-Zustand in den unbesetzten T₁-Zustand ist demnach abhängig von der Spin-Bahn-Kopplung H_{SO} , die im Term als Übergangsmoment $U_{T_1S_i} = \langle S_i | H_{SO} | T_1 \rangle$ auftaucht. Nach Gleichung (7) (S. 21) ist H_{SO} proportional zur vierten Potenz der Kernladungszahl Z. Ist die Größe der Spin-Bahn-Kopplung gering, spiegelt sich das in einer minimalen Besetzungswahrscheinlichkeit des T₁-Zustands wieder. Die Emission erfolgt ausschließlich aus Singulett-Zuständen. Die Verwendung von Metallkomplexen "weicht" die Spin-Auswahlregel auf und "erlaubt" Interkombinationsvorgänge zwischen S_i und T₁.

Zusätzlich zur Spin-Bahn-Kopplung fließt der energetische Abstand ΔE der betrachteten Energieniveaus T₁ und S_i in diesen Term ein. Die Besetzung des T₁-Zustands wird demnach von der Überlappung der beteiligten Orbitale beeinflusst: Je geringer das Überlappungsintegral $S_{S_iT_1} = \int \Psi_{S_i}^* \Psi_{T_1} dV$ ist, desto "verbotener" ist die Besetzung von T₁.

Im Idealfall gehen Elektronen aus allen drei Triplett-Konfigurationen des Triplett-Zustands T_1 und dem angeregten Singulett-Zustand S_1 unter Abgabe von Photonen in den Grundzustand S_0 über. Die Quantenausbeute wird auf 100 % maximiert. Liegt keine Spin-Bahn-Kopplung vor, können maximal 25 % der theoretisch zur Verfügung stehenden Zustände besetzt werden, was die Quantenausbeute einschränkt.

2.4.2 Abklingzeit

Die Abklingzeit τ ist definiert als die mittlere strahlende Lebensdauer des angeregten Zustands, nach der noch $1/e \approx 37$ % der Moleküle im angeregten Zustand vorhanden sind (s. Abbildung 4).

Abbildung 4 Abklingkurve erster Ordnung.

Bestimmt wird τ aus der exponentiell abfallenden Abklingkurve über die Intensität *I* und die Geschwindigkeitskonstante 1. Ordnung k_0 , die zur Abklingzeit τ umgekehrt proportional ist (Gleichung (16) und (17)) [18,31]

$$I = I_0 e^{-k_0 t} (16)$$

$$\tau = \frac{1}{k_0} \tag{17}$$

Unterschieden werden muss die Abklingzeit τ von der Halbwertszeit $t_{1/2}$, nach der die Hälfte aller Moleküle zerfallen sind [31]. Beide Größen stehen nach Gleichung (18) zueinander in Beziehung [31]:

$$t_{1/2} = \frac{\ln 2}{k} = \tau \cdot \ln 2 = \tau \cdot 0.693 \tag{18}$$

Nach FINKENZELLER et al. wird die Abklingzeit τ allgemein durch die Zahl "verbotener" Übergänge beeinflusst [36,37]. Diese Aussage wirft die Frage auf, wie diese "verbotenen" Übergänge minimiert werden können.

Abbildung 5 Relative Lage und Aufspaltung der Singulett- und Triplett-Zustände organischer Moleküle und Übergangsmetallkomplexe in Abhängigkeit vom Zentralatom und dem Ausmaß der Spin-Bahn-Kopplung [37].

Bei Betrachtung von "rein" organischen Molekülen (s. Abbildung 5 links) ist infolge geringer Kernladungszahlen Z die Spin-Bahn-Kopplung vernachlässigbar klein. Die Wahrscheinlichkeit einer Interkombination (ISC) ist minimal, die für den Elektronenübergang benötigte Zeit liegt im Nanosekundenbereich. Zudem beträgt die mittlere Lebensdauer τ der T₁-Zustände in organischen Molekülen mehr als eine Sekunde. In dieser Zeit werden die angeregten T₁-Zustände strahlungslos deaktiviert, woraus die Limitierung der maximalen Quantenausbeute von 25 % resultiert [35,37]. Bei Komplexen mit Zentralatomen der dritten und vierten Periode, die vergleichsweise kleine Kernladungszahlen Z enthalten (s. Abbildung 5 mitte), findet eine schwache Spin-Bahn-Kopplung statt. Der Elektronenübergang vom Singulett- auf den Triplett-Zustand wird "erlaubt", d.h. die Wahrscheinlichkeit von Elektronenübergängen von S₁ auf T₁ steigt. Zusätzlich wird der energetische Abstand zwischen S₁ und T₁ halbiert. Ebenso nimmt die Geschwindigkeit der Interkombination der Ladungsträger von S₁ auf T₁ um vier Größenordnungen zu und auch die Lebensdauer der Triplett-Zustände T₁ sinkt vom Sekunden- in den Millisekundenbereich. Zudem wird die Auswahlregel der lokalen Symmetrie gelockert, da ein erhöhter Anteil von LLCT-Übergängen und ein kleiner Anteil an MLCT-Übergängen beobachtet wird [35,37].

Eine weitere Erhöhung der Kernladungszahl Z des Zentralatoms durch Verwendung von Metallen der fünften Periode führt zu einer ausgeprägten Spin-Bahn-Kopplung, die in einer weiteren Verringerung des energetischen Abstands zwischen S1 und T1 resultiert (s. Abbildung 5 rechts). Vormals "verbotene" Interkombinationsübergänge werden "erlaubt", d.h. die Wahrscheinlichkeit eines ISC ist sehr hoch. Das drückt sich vor allem in einem Anstieg der Geschwindigkeiten aus: Interkombinationen finden im zweistelligen Femtosekundenbereich statt, so dass der Triplett-Zustand mit hoher Häufigkeit besetzt wird. Die mittlere Lebensdauer τ des angeregten Triplett-Zustands liegt im Mikrosekundenbereich. Zusätzlich gewinnen MLCT-Übergänge an Bedeutung. Die Zunahme der Anzahl von MLCT-Übergängen bei Zentralatomen der fünften Periode im Vergleich zur Anzahl bei Verwendung von Metallen der dritten und vierten Periode geht einher mit der Erhöhung der Spin-Bahn-Kopplung. Die Aussendung von Photonen findet aus den drei T₁-Konfigurationen unter Beteiligung der S₁-Konfiguration statt, die maximale Quantenausbeute von 100 % kann somit erreicht werden [35,37].

2.4.3 Nicht-Strahlende Konkurrenzprozesse

Die Lebensdauer τ des angeregten Zustands T₁ ist der Summe der Geschwindigkeitskonstanten k des strahlenden Elektronenübergangs k_r und des nicht-strahlenden Elektronenübergangs k_{nr} umgekehrt proportional (Gleichung (19)) [18,31,33,35,38]:

$$\tau = \frac{1}{k_{\rm r} + k_{\rm nr}} \tag{19}$$