Untersuchung der elektrischen Pygmy-Dipolresonanz in den N=82-Isotonen ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴²Nd und ¹⁴⁴Sm mit Photonenstreuung am S-DALINAC

Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte

Dissertation

von

Dipl.–Phys. Stephan Otto Volz aus Bad Kreuznach

Oktober 2005

Darmstadt D 17

Untersuchung der elektrischen Pygmy-Dipolresonanz in den N=82-Isotonen ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴²Nd und ¹⁴⁴Sm mit Photonenstreuung am S-DALINAC

Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte

Dissertation

von Dipl.–Phys. Stephan Otto Volz aus Bad Kreuznach

Oktober 2005

Darmstadt D 17

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <u>http://dnb.ddb.de</u> abrufbar.

1. Aufl. - Göttingen : Cuvillier, 2006 Zugl.: (TU) Darmstadt, Univ., Diss., 2005 ISBN 3-86537-748-3

Dissertation eingereicht am	25. Oktober 2005
Mündliche Prüfung am	19. Dezember 2005

<u>Prüfer</u>

Professor Dr. rer. nat. Andreas Zilges	(Referent)
Professor Dr. rer. nat. Dr. h. c. mult. Achim Richter	(Korreferent)
Professor Dr. rer. nat. Robert Roth	
Professor Dr. rer. nat. Thomas Walther	

© CUVILLIER VERLAG, Göttingen 2006 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2006 Gedruckt auf säurefreiem Papier

ISBN 3-86537-748-3

[Roman Herzog] Niemand darf vergessen: In hoch technisierten Gesellschaften ist permanente Innovation eine Daueraufgabe! Die Welt ist im Aufbruch, sie wartet nicht auf Deutschland. Aber es ist auch noch nicht zu spät. Durch Deutschland muss ein Ruck gehen.

[Rosa Luxemburg] Freiheit ist immer die Freiheit des Andersdenkenden.

Zusammenfassung

In der vorliegenden Arbeit wird die Untersuchung niedrigliegender Dipolmoden in N=82 Kernen mittels resonanter Photonenstreuung vorgestellt. Die hierzu notwendigen Experimente wurden am Injektor des supraleitenden Elektronenbeschleunigers S-DALINAC des Instituts für Kernphysik der Technischen Universität Darmstadt durchgeführt. Der Nachweis der gestreuten Photonen erfolgte mit Germanium-Halbleiter-Detektoren.

Im Rahmen der durchgeführten Experimente konnten in den Kernen ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴²Nd und ¹⁴⁴Sm zahlreiche Dipol-Übergänge beobachtet werden. Unter der Annahme eines ausschließlich elektrischen Dipolcharakters konnte die summierte $B(E1)\uparrow$ -Stärke für ¹³⁸Ba mit 676(118)·10⁻³e²fm², für ¹⁴⁰Ce mit 307(59)·10⁻³e²fm², für ¹⁴²Nd mit 184(35)·10⁻³e²fm² und für ¹⁴⁴Sm mit 207(37)·10⁻³e²fm² bestimmt werden. Dabei zeigte sich ein Trend der Zunahme der detektierten B(E1)↑-Stärke hin zu neutronenreicheren Kernen.

Die Ergebnisse wurden mit Rechnungen im Quasiteilchen-Phonon-Modell verglichen. Dabei gelingt es, die experimentellen Daten gut zu beschreiben. Abschließend wird ein Vergleich bezüglich detektierter $B(E1)\uparrow$ -Stärke in anderen Kernregionen angestellt.

Summary

This work presents the investigation of low-lying dipole modes in N=82 nuclei with photon scattering. The experiments have been performed at the electron accelerator S-DALINAC at the Technische Universität Darmstadt. The scattered photons were detected with high-purity germanium detectors.

In the nuclei ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴²Nd, and ¹⁴⁴Sm numerous dipole transitions were observed. Under the assumption of a purely electric dipole character the summed $B(E1)\uparrow$ strength could be assigned in ¹³⁸Ba with 676(118)·10⁻³e²fm², in ¹⁴⁰Ce with 307(59)·10⁻³e²fm², in ¹⁴²Nd with 184(35)·10⁻³e²fm² and in ¹⁴⁴Sm with 207(37)·10⁻³e²fm². An increase of $B(E1)\uparrow$ strength is seen for more neutron-rich nuclei.

The experimental results are compared with calculations using the quasiparticle-phonon nuclear model. The experimental data are described well within this model. Finally a comparison with the detected $B(E1)\uparrow$ strength in other mass regions is discussed.

Inhaltsverzeichnis

1	Ein	leitung	5 5	1
2	Ker	nreson	anzfluoreszenz	5
	2.1	Prinzi	p der Kernresonanzfluoreszenz	5
		2.1.1	Wirkungsquerschnitt	6
		2.1.2	Winkelkorrelation	7
		2.1.3	Bestimmung der Parität	8
		2.1.4	Möglichkeiten zur Bestimmung der "Fütterung" von Zuständen	11
		2.1.5	Übergangsbreite und reduzierte Übergangsstärken	11
	2.2	Metho	oden zur Erzeugung eines Photonenstrahls	13
		2.2.1	Erzeugung von Bremsstrahlung mit einem "dicken" Target	13
		2.2.2	Erzeugung von energiemarktierten Photonen in einem Tagger	14
		2.2.3	Erzeugung von Photonen mit Compton-Backscattering	15
	2.3	Photo	nenfluss-Bestimmung	17
		2.3.1	Photonenfluss - Relativmessung	17
		2.3.2	Photonenfluss - Simulation	18
3	Pho	otonens	streuexperimente am S-DALINAC	21
	3.1	Erzeug	gung des Photonenstrahls	21
		3.1.1	Der S-DALINAC	21
		3.1.2	Erzeugung des Elektronenstrahls	22
		3.1.3	Erzeugung und Formung des Photonenstrahls	23
	3.2	Aufba	u zur KRF-Messung	23
		3.2.1	KRF-Aufbau	23
		3.2.2	Detektoren	23
	3.3	Verbes	sserungen am KRF-Aufbau	24
		3.3.1	Einsatz weiterer Detektoren	24
		3.3.2	Verbesserung der vorhandenen Abschirmung	26
		3.3.3	Photonenverteilung unter Rückwärtswinkeln	27
		3.3.4	Neutronennachweis und -reduktion	27
		3.3.5	Signalverarbeitung	29
	3.4	Vorbe	reitung für die Messung von 136 Xe \ldots \ldots \ldots \ldots \ldots \ldots	30
4	Exc	erime	ntelle Daten	33
	4.1	Aufge	nommene Spektren	33
	4.2	¹³⁸ Ba	· · · · · · · · · · · · · · · · · · ·	35
		4.2.1	Paritäten	36
		4.2.2	Beobachtete Übergänge	37
	4.3	¹⁴⁰ Ce		39
			· · · · · · · · · · · · · · · · · · ·	

INHALTSVERZEICHNIS

	4.4	142 Nd	43
	4.5	144 Sm \ldots	44
	4.6	Vergleich mit früheren Experimenten	45
		4.6.1 Tagged-Photon-Experimente	45
		4.6.2 Monoenergetische Photonen aus (n, γ) -Reaktionen	46
	4.7	Zusammenfassung der Ergebnisse in N=82 Kernen	47
		4.7.1 Summierte $B(E1)\uparrow$ -Stärke	48
		4.7.2 Energetischer Schwerpunkt der Resonanz	48
		4.7.3 Bestimmung des Isospincharakters	49
		4.7.4 Zwei-Phononen-Zustand in N=82-Kernen	50
5	Ver	gleich der Resultate mit Modellen	51
	5.1	$\label{eq:Quasiteilchen-Phonon-Modell} \ensuremath{(,,Quasiparticle-Phonon-Model",QPM)} \ensuremath{\hfill\ .\ .\ .}$	51
	5.2	Relativistische QRPA-Rechnungen	56
	5.3	α -Cluster und LIR	58
	5.4	Fazit Theorie	58
c	Van	alaiah mit Europinaantan in andaran Kampanianan	61
0	ver:	ühensicht ühen die ermenimentellen Engehniese	01
	0.1 6 0	Ubersicht über die experimentellen Ergebnisse	01 61
	0.2	Anders Franceite en N 82 Kernen	01 61
	0.3	Andere Experimente an N=82-Kernen	01
7	Zus	ammenfassung und Ausblick	63
\mathbf{A}	Dur	chgeführte Benchmarktests	65
В	Wei	tere Verbesserungen am KRF-Messplatz	67
	B.1	Zusätzliche Abschirmung	67
	B.2	Neuer Targethalter	67
	B.3	Diode zur Bestimmung der Photonenstrahlposition	67
	B.4	webMATE ADC-Adapter	68
С	Vor	richtung zum Abfüllen der Ti-Kugeln	69

Abbildungsverzeichnis

1	Die auflösbaren Strukturen eines Atomkerns	1
2	Energetische Verteilung der Dipolstärke in einem Atomkern	2
3	Verschiedene Anregungsformen eines Atomkerns	3
4	Schemazeichnung zur Zerfallsbreite	5
5	Winkelkorrelationsfunktion für Dipol- und Quadrupolstrahlung	8
6	Einfluß des Mischungsparameters auf die Winkelkorrelation	9
$\overline{7}$	Anregung eines Atomkerns mit polarisierten Photonen	9
8	Spektren aus der Anregung mit polarisierten Photonen	10
9	Schemazeichnung zur Fütterung	12
10	KRF-Prinzip mit "dicken" Bremstargets	13
11	Schemazeichnung des Darmstädter Photonentaggers	14
12	Schemazeichnung des HIGS-Setups der Duke University	15
13	Prinzip des Compton-Backscatterings	16
14	Anregungsspektrum eines quasimonoenergetischen Photonenspektrums	17
15	Übergänge des ¹¹ B-Eichstandards	18
16	Vergleich unterschiedlicher GEANT-Versionen	19
17	Visualisierung einer GEANT4-Simulation	20
18	Der S-DALINAC	21
19	Der Injektor des S-DALINAC	22
20	Skizze eines HPGe-Detektors	24
21	Der KRF-Messplatz	25
22	Vergleich von Spektren bei unterschiedlicher Abschirmung	26
23	Verteilung der Photonen auf der Schnittebene des Kollimatorendes	27
24	Photonenverteilung unter Vorwärts- und Rückwärtswinkeln	28
25	Skizze der verwendeten Titankugel	31
26	Nuklidkarte der N=82-Kernregion	33
27	Spektren der gemessenen N=82-Kerne	34
28	$B(E1)\uparrow$ -Stärke im Kern ¹³⁸ Ba	36
29	Paritätsmessung für den 8430 keV Zustand im Kern ¹³⁸ Ba	37
30	$B(E1)\uparrow$ -Stärke im Kern ¹⁴⁰ Ce	42
31	Vergleich mit Tagged-Photon-Daten von Laszewski	46
32	B(E1)↑-Stärke in den untersuchten N=82-Kernen	47
33	Die summierte $B(E1)\uparrow$ -Stärke für die untersuchten N=82-Kerne	48
34	Energetischer Schwerpunkt der Pygmy-Resonanz in N=82-Kernen	49
35	B(E1)-Stärkeverteilung für N=82-Kerne aus einer QRPA-Rechnung	53
36	Vergleich des Experiments am Kern ¹³⁸ Ba mit einer QPM-Rechnung	54
37	Differenz von Neutronen- zu Protonenradius aus einer QPM-Rechnung	54
38	Vergleich der summierten B(E1) \uparrow -Stärke in Experiment und QRPA-Rechnung	55

ABBILDUNGSVERZEICHNIS

39	Fragmentation aus QPM-Rechnung	55
40	Protonen- und Neutronendichte	56
41	Verteilung der $B(E1)\uparrow$ -Stärken aus einer relativistischen QRPA-Rechnung .	57
42	Summierte $B(E1)\uparrow$ -Stärke und relativistische QRPA-Rechnung	57
43	Faltung der B(E1) \uparrow -Stärke mit einer Lorentzkurve	59
44	Erweiterungen des bisherigen KRF-Messplatzes	68
45	Neuer Targethalter	69
46	Die F 170 B Silziumdiode der Firma Siemens.	69
47	Foto webMATE-Adapter	70
48	Foto des Aufbaus zum Abfüllen von Gasen	71