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Kurzfassung
Die ultraschnelle Dynamik von Br2 Molekülen in Argonkristallen (Br2:Ar) wird mit Hilfe

der Femtosekunden Anrege-Abfrage Methode zum ersten Male untersucht. In den zeitaufge-
lösten Spektren werden die kohärente intramolekulare Dynamik und eine kohärente Umge-
bungsdynamik beobachtet. Mit dem RKR Algorithmus wird die elektronische B Zustands-
Potentialfläche des Br2 konstruiert. Weiterhin wird die Energierelaxation in diesem Zustand
quantifiziert. Während der ersten Kollision des Moleküls mit dem Käfig aus Edelgasatomen
verliert das molekulare Schwingungswellenpaket bis zu 50 % seiner Energie. Die intramoleku-
lare Kohärenz bleibt dennoch danach erhalten. Ebenso kann diese Kohärenz auch einen nicht-
adiabatischen elektronischen Übergang überleben, was am Beispiel von I2 in Kryptonkristallen
(I2:Kr) verdeutlicht wird.

Die feste Argon-Umgebung erzeugt Dekohärenz im Molekül, dennoch können Interferenz-
phänomene von molekularen Schwingungswellenpaketen kontrolliert werden. Mit Hilfe eines
Computerprogramms zur Wellenpaket-Propagation wird ein neues Kontrollschema, basierend
auf "gechirpten" Laserpulsen, erarbeitet ("chirp" = Änderung der Lichtfrequenz mit der Zeit).
Die Erzeugung des Wellenpaketes mit negativ oder positiv linear "gechirpten" Laserpulsen er-
laubt eine vor- bzw. rückwärtige Zeitverschiebung der normalen Wellenpaket-Propagation.

Darauf basiert ein hier erstmals vorgestelltes Schema zur Quantifizierung des molekularen
Kohärenzzerfalls (Dephasierung). Die Wellenpakete werden unter Anregung mit negativ "ge-
chirpten" Laserpulsen zu einem ZeitpunktTopt räumlich fokussiert. Aus dem Modulations-
kontrast bestimmen wir die Vibrations-DephasierungszeitT vib

deph = 3 ps im B Zustand. Diese
entspricht etwa elf Schwingungsperioden von 280 fs. Die positiv "gechirpten" Pulse ziehen
die molekularen Interferenzstrukturen ("revivals") bezüglichT vib

deph vor. Durch die kohärente
Präparation von vier Schwingungszuständen mit einem positiv "gechirpten" Puls gelingt uns
die Beobachtung eines 1/6 "revivals". Aus den Daten schließen wir auf eine Dephasierung der
vier Niveaus inT 4

vib ≈ 1.2 ps. Der "chirp" verlängert den Laserpuls um einen Faktor zehn auf
∆τ = 300 fs. Die elektronische DephasierungzeitT el

deph des optischen B←− X Überganges
engt die Kontrollmöglichkeit auf das Zeitintervall∆τ < T el

deph ein. Die erfolgreiche Kontrolle
erlaubt daher eine Abschätzung mitT el

deph > 300 fs aus dem Experiment.
Eine langanhaltende, monochromatische FrequenzfP = 2 THz wird in den molekularen

Anrege-Abfrage Spektren des Br2:Ar beobachtet. Diese entspricht der Frequenz des Zonenrand-
Phonons (ZBP) im Argonkristall. Weiterhin wird eine Frequenzkomponente vonfP = 1.5 THz
im Fall von I2:Kr beobachtet, welche wiederum zum ZBP des Kryptonkristalls gehört. Weder
der Absolutwert vonfP noch seine Phase hängt von der molekularen Schwingungsdynamik ab.
Die Phononen werden nach dem DECP ("Displacive Excitation of Coherent Phonons") Schema
beim elektronischen B← X und A ← X Übergang angeregt. Eine Modellrechnung zeigt die
Expansion der Elektronenhülle beim Übergang vom elektronischen Grundzustand X in den
B oder A Zustand, wodurch die Edelgasatome in der Umgebung angestoßen werden. Eine
Gruppe von Edelgasatomen in der (100) Ebene ist von der molekularen Schwingung entkop-
pelt. Die Zonenrand-Phononen haben eine verschwindend kleine Gruppengeschwindigkeitvg.
Daher bleibt ihre Amplitude in der Nähe des Moleküls lokalisiert, während sich alle Phononen
größerer Wellenlänge im Kristall ausbreiten. Das Zonenrand-Phonon bewirkt eine periodische
Modulation der Solvatationsenergie der molekularen Ladungstransferzustände, die als End-
zustände im Anrege-Abfrage Experiment benutzt werden. Dadurch wird die Detektionsef-
fizienz des molekularen Wellenpaketes mit der ZBP FrequenzfP moduliert.



iv

Abstract
The molecule Br2 embedded in solid argon is investigated for the first time on the ultrashort

domain via femtosecond pump-probe spectroscopy. Coherent intramolecular vibrational wave
packet dynamics and coherent host dynamics are identified in the spectra. The electronic B
state potential surface is constructed from the experimental periods using the RKR algorithm,
and the energy relaxation is quantified over a large range in this state. During the first molecule-
cage collision, up to 50 % vibrational energy loss of the wave packet is observed; however, the
intramolecular coherence is preserved in the strong interaction. Furthermore, the coherence can
even survive nonadiabatic electronic transitions, as is documented for the case of I2 in solid Kr.

Interferences in vibrational wave packets of Br2 molecules are controlled in the presence of
a solid Ar environment that provides decoherence. A control scheme based on chirped pulses
is worked out with help of a numerical wave packet propagation. By applying a negatively or
positively chirped excitation pulse, one can set the clock backward or forward respectively in
the wave packet propagation.

Based on this mechanism, we present a general scheme to record vibrational decoherence.
Wave packets are spatially focused atTopt by applying negatively chirped pulses. From the
focusing contrast, we determine a vibrational dephasing time on the B state ofT vib

deph = 3 ps
corresponding to about 11 vibrational periods, each of 280 fs. Positively chirped pulses advance
the formation of fractional revival structures with respect toT vib

deph. By exciting four vibrational
levels with such a pulse in an experiment, we observe a 1/6 revival, indicating the vibrational
coherence timeT 4

vib ≈ 1.2 ps for exactly four levels. The required chirp prolongs the pulse
duration by a factor of ten to∆τ = 300 fs. Electronic dephasingT el

deph of the B←− X transition
restricts the revival control fidelity to parts of the pulse with∆τ < T el

deph, which allows for the
determination ofT el

deph > 300 fs.
A long lasting coherent oscillation with a sharp frequencyfP = 2 THz is observed in Br2:Ar

pump-probe spectra. It matches exactly the Zone Boundary Phonon (ZBP) frequency of the
solid Ar host. Furthermore, a frequency component withfP = 1.5 THz is observed in I2:Kr
pump-probe spectra, matching the Kr crystal ZBP frequency. The value offP and its phase
with respect to the pump pulse do not depend on the B or A state vibrational dynamics. The
phonons originate from a Displacive Excitation of Coherent Phonons (DECP) initiated in the
electronic B← X and A← X transitions. A model calculation shows that an expansion of
the electronic density in going from the electronic ground state X to the B or A state kicks
the Ar/Kr atoms in the Br2/I2 vicinity. Subsequently, a group of host atoms in the (100) plane
is decoupled from the intramolecular dynamics. The ZBPs have a vanishing group velocity
vg, and therefore they stay in the vicinity of the chromophore, whereas phonons with longer
wavelength propagate away from the molecule. The ZBP modulates the solvation energy of the
terminal charge-transfer states used in the probe transition from the A and B state and thus the
detection sensitivity of the intramolecular molecular wave packet.
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Chapter 1

Introduction

The typical time for chemical bond cleavage and reformation is situated in the range of a few
femtoseconds to some picoseconds, dictated by the motion of molecular fragments on their
potential energy surfaces. Besides analysis of chemical reactions using ultrashort laser pulse
spectroscopy [1–3], the possibility to control the reaction arose [4]. In most of these schemes, a
coherencein the reacting system is a precondition in achieving the goal, and therefore the term
"coherent control" has been applied.

By coherence, a well defined phase relation among quantum mechanical wave functions is
meant. For molecular systems, the wave functions are divided into electronic, vibrational and
rotational parts. The coherent superposition of corresponding eigenstates is called an electronic,
vibrational or rotationalwave packet[5].

Coherently coupled eigenstates can show interference patterns. In the optical double slit ex-
periment, the interference pattern can only be observed if the relative phase of the field emerging
from the two slits is stable. In an analogous way, one can construct an interference pattern of
two quantum states with fixed relative phases. The optical analogy for the interference of more
than two eigenstates is a multiple slit or grating experiment. Due to these formal similarities,
the field of coherent quantum phenomena is often called "quantum optics" [6]. Coherent control
schemes exploit the interference patterns of wave functions to control the output of a reaction.
For example, the "Tannor-Rice" method [7,8] uses the interference of intramolecular vibrational
wave functions to achieve a control goal.

The decay of coherence is calleddecoherenceor dephasing.1 It is induced by the coupling
of the coherent system to an environment which provides statistical fluctuations on the phases
of eigenstates. This leads to attenuated interferences among the eigenstates.

Dephasing, used here synonymously with decoherence, destroys the premise of coherent
control. For an application, the dephasing times of the molecule involved have to be taken into
account. In case of free molecules in the vacuum, the electronic, vibrational, and rotational de-
phasing times are much longer than the timescales of chemical reactions. Molecules solvated in
a liquid or solid environment show considerably shorter dephasing times in the range of femto-
to picoseconds. The trend in coherent control of chemical reactions moves in the direction
of multidimensional systems in solution, often with biological relevance. Besides dephasing
and dissipation of energy, thedispersionof wave packets is a crucial process. Wave packets
on anharmonicpotentials (which all relevant molecular potentials are) undergo a broadening,
however without a loss of phase memory.

This study aims at establishing a basic model for multidimensional systems like organic dyes
or biomolecules in solution, and to isolate dissipation, dephasing and dispersion processes. The
insight gained in the model can clarify the preconditions for the observation of coherences in
complex systems.

1The terminology will be specified in section 2.2.4.
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Rare Gas Solids (RGS) present conceptually simple hosts. They have a large ionization
energy which allows for using high intensity laser pulses. The rare gas atoms are spherical
because of their closed electronic shells and they form face centered cubic (fcc) crystals at low
temperature [9]. The phonon dispersion relations and optical properties of the crystals are well
studied [10–12]. The rare gas atoms are chemically inert, thus one can use adapted gas phase
potentials for the molecular dopants.

The molecule in RGS system, studied in this thesis, is chosen under the constraint of an
ultrafast dissipation and dephasing, since this is generally the case for large molecules in solu-
tions. In RGS, excited electronic states of halogens undergo such fast processes because their
vibrational level spacing is close to the Debye frequency. A variety of halogens has been studied
before in RGS.

The molecule can be described as a one dimensional vibronic quantum system, if its rotation
is blocked in the RGS. The ClF molecule is sitting on a single-substitutional site in RGS [13–
19] and undergoes ultrafast angular randomization after excitation [20] and is therefore not
appropriate. First experiments on Cl2, sitting on a double-substitutional site in RGS, indicate
it to be a suitable system under the above mentioned constraints. However, the anharmonicity
and resulting dispersion on the electronic B state of Cl2 are so large that only a few vibrational
periods of the wave packet can be observed in experiments. The anharmonicity of I2 molecules
is much lower. The electronic B state of I2 in RGS shows rich vibrational wave packet structure.
An enormous amount of pump-probe spectroscopy has been done by Apkarian and coworkers
[21–24] and the Schwentner group [20, 25–28]. The Coherent Raman Antistokes Scattering
(CARS) however indicates a limited electronic coherenceT el

deph time of less than 100 fs in the
B←−X transition [29–34]. Some of the control methods conducted here will need an electronic
coherence time of several hundred femtoseconds and therefore, the B state of the I2:RGS system
cannot be used. However, coherent phonon dynamics and an example of coherent spin-flip will
be presented for the I2:Kr system. The electronic ground state X of I2 in RGS is not of interest
for this study, since the CARS spectra indicate a vibrational dephasing time of several hundred
picoseconds, much too long in comparison to complex systems.

Combining the preconditions, we conclude that Br2 in solid Ar should fulfill all require-
ments. Excitation spectra of the B←− X transition indicate an electronic dephasing of some
hundred femtoseconds. The anharmonicity of the B state is in a convenient range that allows for
the observation of a few vibrational wave packet periods without major broadening due to dis-
persion. From the experiments we found that the vibrational dephasing in the electronic B state
is in the picosecond domain. Throughout the thesis, the methods and concepts are primarily
conducted on the system Br2 in solid argon.

The ultrafast dynamics of Br2 has only been studied in two experiments for the free mole-
cule case [35, 36]. Results on ultrafast dynamics of Br2 in condensed media have not been
documented; this thesis presents the first ones. The potential energy surfaces of free Br2 are
documented in literature [37–52]. The electronic potential surfaces can be approximated by
Morse potentials very well [53]. The covalent states of Br2:RGS were studied in absorption and
emission spectroscopy [54–66]. The spectra of the charge-transfer states, needed to establish a
pump-probe scheme, have been measured by us and are presented in chapters 5 and 6.

To detect the ultrafast vibrational dynamics of the molecule in its environment, the femtosec-
ond pump-probe spectroscopy is applied. By use of a first femtosecond laser pulse (pump), a
coherent superposition of vibrational eigenstates (vibrational wave packet) in an excited elec-
tronic state (described by a Morse potential) is created. The interference of the vibrational wave
functions is interrogated with a second time delayed fs laser pulse (probe).

The wave packet disperses on the Morse oscillator potential of Br2, since it spans over a
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finite range in energy, all of which give rise to different oscillation periods. However, due to
the discrete structure of the vibrational levels, the wave packet will revive after some timeTrev

(determined by the anharmonicity) and regain its narrow shape. The phenomenon is known
under the term revival [67–75]. If the vibrational dephasing timeT vib

deph of the molecule in the
RGS is larger than the revival time, the decay of coherence among the vibrational eigenstates
can be deduced from the pump-probe spectra directly as a decay of revival features [76–78].
If the vibrational dephasing time is shorter than the revival time but larger than the oscillation
periodT , a new scheme, which is presented in this thesis and a supplementary article [79]
has to be applied. The dispersion reduces the modulation contrast on the same timescale as
dephasing does. However, dispersion can be suppressed at a distinct timeTopt in the evolution
by excitation with a negatively chirped pulse (see section 2.2.2). The method has been used
before to demonstrate the possibility of vibrational wave packet focusing [80–83]. The scheme
will be systematically applied in this thesis to suppress dispersion at a given timeTopt and
deduce the vibrational dephasing from a background atTopt in the experimental pump-probe
spectra (see sections 2.3.3 and 8.2.1).

Apart from full revivals of the vibrational wave packets in Morse oscillators, fractional
revivals arise that cause multiples of the fundamental oscillation frequency in the pump-probe
spectrum. Using the fractional revivals, information about coherence of a distinct group of
vibrational levels can be deduced. Here, the measured vibrational dephasing timeT vib

deph is too
short to observe fractional revivals directly. Therefore, a novel scheme to control the fractional
revivals of a vibrational wave packet based on chirped excitation pulses is worked out (see
section 2.3.4). The revival features are shifted towards the time-zero by a positively chirped
excitation pulse. A 1/6 revival, exhibiting the threefold vibrational period, is observed on the
B state of Br2 in solid Ar. From this experiment, a coherence time of four vibrational levels is
estimated in section 8.2.2.

The positively chirped excitation pulses used to advance the revival structures in time are
actually longer than one oscillation period of the molecule in its excited electronic state. The
vibrational wave packet portions created by the first part of the pulse will interfere with the
later created parts of the wave packet. Therefore, the electronic coherence between ground and
excited state is involved in the coherent preparation of the wave packet (see section 8.2.3). From
the pulse duration an electronic coherence time for the B←− X transition of Br2 in solid Ar is
estimated.

The coherent vibrational dynamics is used to deduce a detailed picture of the molecule-host
interaction. We are able to construct an effective intramolecular B state potential for Br2 in solid
Ar in section 8.1.2. Furthermore, the vibrational energy relaxation of wave packets on the elec-
tronic B state is determined (section 8.1.3) and a representative trajectory of a vibrational wave
packet is shown (section 8.1.4). For the case of I2:Kr, the vibrational coherence even survives
vibrational energy losses of 1 eV connected to a spin-flip transition to another electronic state
(section 8.1.4).

It will turn out that the interaction of the vibrating molecule with the matrix is not necessarily
statistical. In contrast, collisions of the molecule with the matrix can lead to the creation of
coherent wave packets built from vibrational levels not populated before the collision.

Coherent motions are found even for host atoms, showing up in the pump-probe spectra of
the molecular guest. The conflictive issues of the specific mode, together with its excitation and
probe mechanism were discussed in [24,29,30,32,84–86]. We attribute the coherent host motion
to a Zone Boundary Phonon (ZBP) of the rare gas crystal. To support assignment, spectra of
I2:Kr (also measured by the author) are presented alongside the spectra of Br2:Ar, both showing
the coherent ZBP signature. The excitation of the coherent host phonon is achieved via the
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expansion of the molecular electronic cloud during the A←− X or B ←− X transition. This
scheme is very similar to the model of Displacive Excitation of Coherent Phonons (DECP)
[87–95] and will be presented in section 8.3.1. Many different phonon modes are excited, but
only the ZBP having a vanishing group velocity stay at the excited molecule. They change the
local density in the vicinity of the chromophore and thereby change the solvation energy of
the molecular charge-transfer states [86, 96, 97], which in turn modulates the probe transition
efficiency (see section 8.3.2).

Several theory groups treat the halogen in RGS systems extensively and their efforts have,
to a large extent, motivated our experiments. Classical and quantum mechanical simulations
mostly based on the DIM (Diatomics In Molecules) [98–103] approach give a detailed picture
of the dynamical processes of molecular guests in a RGS host. Besides calculations on small
molecules F2, HCl, and Cl2 in rare gases [104–108], simulations of the heavier I2 molecules in
rare gas environments exist [109–116]. Up to now, no simulations of the Br2 in RGS have been
published. Due to the results presented in this thesis, a collaborative effort within the Sfb 4502

with the groups of Prof. Manz and Prof. Gerber aims to perform such calculations.
This thesis is organized as follows:
Chapter 2 introduces the basic ideas of coherence, dephasing, dispersion and fractional re-

vivals. Furthermore, the ultrafast pump-probe spectroscopy and the methods used to determine
vibrational and electronic dephasing times are explained.

The potential energy surfaces of the free Br2 molecule and the general effects of the RGS
on the spectroscopic molecular properties are presented in chapter 3. The experimental setup is
described in chapter 4, together with a summary of ultrashort (chirped) laser pulses. The chap-
ters 5, 6 on absorption and emission spectroscopy provide the information needed to conduct fs
pump-probe spectroscopy on the system Br2:Ar.

Chapter 7 presents the first results on Br2:Ar dynamics, where one- and two-photon probe
processes are used to detect vibrational wave packet dynamics. The rotation of the molecule is
proved to be frozen. Furthermore, the coherent host motion in Br2:Ar and I2:Kr is illustrated.

The vibrational wave packet dynamics is used to determine an effective molecule-matrix
potential for the electronic B state of Br2 in solid Ar in chapter 8.1. Furthermore, the vibrational
energy relaxation and an experimental trajectory are calculated in this section. The results on
vibrational and electronic dephasing in Br2:Ar are discussed in chapter 8.2. This chapter ends
with the discussion of the coherent zone boundary phonon in I2:Kr and Br2:Ar (chapter 8.3).

2The collaborative research center SFB 450 is also financing and supporting this experimental work.
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Chapter 2

Concepts and methods

Part 2.1 of this chapter will introduce the concepts of coherence, which is a central issue in
this thesis. This will be followed by a presentation of dispersion, wave packet focusing and
fractional revivals in section 2.2. The pump-probe method and the wave packet control schemes
are presented in the final section 2.3 of this chapter.

2.1 Coherence

This section will provide the definition of coherence needed throughout the thesis. It is neces-
sary to have the ideas of coherence in mind to follow the sections to come.

It is reasonable to start from the classical idea of coherence, defined for an ensemble of
trajectories in phase space. For convenience, the dephasing and dissipation processes will be
explained using a harmonic oscillator potential. The step from classical coherence to quantum
coherence is made with the help of the density operator. Since the harmonic approximation is
not sufficiently accurate for diatomic molecular electronic potentials, the Morse potential and
the propagation of classical trajectories and quantum mechanical wave packets on it will be
discussed afterwards. This will lead to the definition of dispersion and fractional revivals of a
vibrational wave packet.

2.1.1 Classical coherence

The electronic state of a diatomic molecule is presented in the harmonic approximation. The
molecules are elongated from the equilibrium distance (for example in an optical transition)
and an oscillatory motion of the molecular ensemble sets in. The classical molecular ensemble
shall have a finite width in the spatial distribution, inducing also a finite width in the momentum
distribution. The ensemble is represented in phase space. One dimension describes the elonga-
tion q of the oscillators, the other dimension the momentump. The distribution of oscillators is
represented as a grey shaded area in phase space as shown in Fig. 2.1.

The molecules are considered as oscillating freely in Fig. 2.1a. Theq andp axis of phase
space shall be scaled such thatq2 represents the potential energy andp2 the kinetic energy. For
that case the total energy is given byr2 = q2 + p2, wherer is the distance to phase space origin.
Since the energy of each oscillator is conserved, the value ofr is not changed in the propagation.
Apart from this, the angleα which the ensemble spans from the phase space origin is also not
changed in the course of time. The propagation is said to be completely coherent in the case
described in Fig. 2.1a.

Next, statistical elastic collisions with an environment are introduced. The molecular os-
cillators will not lose any vibrational energy in the collision, but the phase of an individual
oscillator is changed by a small random value. The molecular oscillator will jump to another
position in phase space, nevertheless keeping the same energy (i.e. r2). The change of the mole-
cular ensemble in thisdephasingprocess is shown in Fig. 2.1b. The angleα gets broader in the
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Figure 2.1: a) An ensemble of free classical harmonic oscillators in phase space position
(q, p)(position,momentum) is shown as the grey area. No dephasing or dissipation occurs and the angle
α under which the ensemble is seen from the origin of phase space does not change in the course of time
(t1< t2<t3). The radiusr being proportional to the average energy is also constant in time. b) Case of
pure dephasing. The molecules suffer statistical elastic collisions with an environment. The phase of a
single molecular oscillator is changed by a small random value in a collision. The angleα for the ensem-
ble average grows with propagation time (α1 < α3). c) Dissipative case. The molecules suffer inelastic
collisions with a bath. The absolute width of the ensemble shall not be changed (no pure dephasing).
The mean energy decreases as a function of time and the ensemble spirals to the potential minimum
in the origin of the phase space plot. Furthermore,α increases with time, indicating the connection of
dissipation and dephasing (form Ref. [73]).

course of time, withα3 > α1 for (t3 > t1). With increasing time, the molecular oscillator en-
semble will fill the complete iso energetic ring depicted in Fig. 2.1b with a corresponding angle
α = 2π. Such an ensemble would be called completely incoherent or completely "dephased".
Each molecule would still fulfill a harmonic oscillation, but its phase cannot be predicted, since
the elastic collisions occur statistically. The same effect would occur, if the oscillation fre-
quency would be slightly different for the groups of molecules. For example, some molecules
can be heavier than others, as is the case for different molecular isotopes. Such a broadening of
the angleα due to a splitting of the ensemble in groups with different oscillatory properties will
be called in generalinhomogeneous, while broadening effects being the same for every member
will be generally calledhomogenous.

Apart from elastic collisions, inelastic collisions also occur in the investigation. The effect
is calleddissipation, or in the special case described in this thesis vibrational energy relaxation,
and is illustrated in Fig. 2.1c. The molecular ensemble loses energy and spirals towards the
center of phase space. The molecular ensemble propagates to smaller distances inr but keeps
the width inq andp, since the phase of an individual oscillator is not changed. Connected with
the loss of energy is the broadening of the angleα. Therefore, dephasing is directly connected
to dissipation and cannot be avoided. When the vibrational ensemble has relaxed to the center
of phase space,α is equal to2π. To distinguish the dephasing induced by dissipation (Fig. 2.1c)
from the dephasing described in Fig. 2.1b, the latter is often calledpure dephasing.

The classical coherence introduced above can indeed be used to describe many experiments.
Apkarian and coworkers, for example, have used classical trajectories for a calculation of pump-
probe experiments [22–24]. However, the interference phenomena cannot be simulated in the
classical approach. The quantum coherence is therefore introduced in the next section. The
picture developed for a completely classical ensemble of molecules deserves to introduce the
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term of quantum coherence here.

2.1.2 Quantum coherence

Thenth eigenfunction|φn〉 in a potential shall belong to energy eigenvalueEn. A wave packet
|Ψ(t)〉 can be written as a superposition of energy eigenfunctions :

|Ψ(t)〉 =
∑

n

cne−i En
~ t|φn〉, (2.1)

wherecn are the excitation coefficients. The|φn〉 can be vibrational, rotational or electronic
eigenfunctions of the molecule.

In order to define the quantum coherence properly, one has to consider the density operator
ρ:

ρ =
∑

i

pi|Ψi〉〈Ψi|. (2.2)

|Ψi〉 is a wave function or wave packet. Thepi are the statistical probabilities of finding the
system in the state|Ψi〉. They have to fulfill the condition:

∑
i

pi = 1.

The state is calledpure, if there is onei for which pi = 1 and all the otherpj = 0 (i 6= j). In
any other case, the state is said to bemixed. Let ρ(x′, x) be the density operator in the position
representation of|Ψ(t)〉, which is a wave packet according to Eq. (2.1). Then:

ρ(x′, x) = 〈x′|Ψ(t)〉〈(t)Ψ|x〉 (2.3)

=
∑
m,n

〈x′|φm〉〈φm|Ψ(t)〉〈(t)Ψ|φn〉〈φn|x〉

=
∑
m,n

φm(x′)(cme−
i
~Emt)(c∗ne

+ i
~Ent)φ∗n(x)

=
∑
m,n

φm(x′)ρmnφ
∗
n(x),

with ρmn = cmc∗ne
− i
~ (Em−En)t being the density operator (matrix) in the energy representation.

A simple example to illustrateρmn shall be given in a two-state system:

ρmn =

(
|c1|2 c1c

∗
2e
− i
~ (E1−E2)t

c∗1c2e
− i
~ (E2−E1)t |c2|2

)
(2.4)

The diagonal elements of the density matrix are called populations. The off-diagonal elements
are called quantumcoherences. In contrast to the diagonal elements, they are complex and
oscillate in time with a frequency corresponding to the energy difference.

These coherences are crucial for the development of interference patterns between the dif-
ferent eigenfunctions, as shall be explained for a system consisting of two vibrational eigen-
functionsφ0(R) andφ1(R) with energiesE0 = 1

2
ωe andE1 = 3

2
ωe. The wave packet is written

as:Ψ(R, t) = c0e
−iωe(0+ 1

2
)tφ0(R) + c1e

−iωe(1+ 1
2
)tφ1(R). One obtains the probability density:

|Ψ(R, t)|2 = |c0|2|φ0(R)|2 + |c1|2|φ1(R)|2 + 2Re(c∗0c1φ
∗
0(R)φ1(R)e−i/(E1−E0)t/~). The inter-

ference term in the last equation is is based on the real part of the coherence of the density
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operator. If this coherence vanishes, only the incoherent superposition given by the first two
terms (populations) in the last equation remain and any time-dependent behavior of the wave
packet is cancelled.

If the entity
Tr(ρρ) = 1. (2.5)

is fulfilled, the system is calledcoherent. A pure state is coherentper se. A mixed state ofn
pure states will be calledpartially coherent, if 1 > Tr(ρρ) > 1/n. A state is calledincoherent
if Tr(ρρ) =1/n.

The question of how to describe the dephasing and dissipation processes in quantum me-
chanics arises. The Liouville-von Neuman equation gives the propagation ofρ by:

i~
∂ρ

∂t
= [H, ρ] + Γρ, (2.6)

whereΓ is a tensor describing the dissipation and dephasing. WithoutΓ, the equation is equal
to the Schrödinger equation. Descriptions ofΓ were given for example by Redfield [117, 118]
or Lindblad [119,120]. In contrast to these studies, the processes here are treated empirically.

The density operator in phase space is discussed and compared to the classical density shown
in Fig. 2.1. This "phase space approach" is taken from D. Tannor [73,121,122]. For that reason,
the Wigner transformation of the density operator has to be defined. The Wigner function
fW (q, p) is a very natural way to describe the density operator. For a pure state it is given as:

fW (q, p) =
1

2π~

∫ ∞

−∞
e

i
~p(x−x′)〈x′|ρ|x〉ds =

1

2π~

∫ ∞

−∞
e

i
~p(x−x′)〈x′|Ψ〉〈Ψ|x〉ds, (2.7)

wherex = q + s/2 andx′ = q − s/2. ThusfW (q, p) is the Fourier transform of〈x′|Ψ〉〈Ψ|x〉 =
Ψ(x′)Ψ∗(x) along the difference coordinates = x − x′. When interpretingq as a position (for
example the internuclear distanceR in case of a molecular vibrational wave packet), the corre-
sponding interpretation ofp would be momentum. The projections of the Wigner functions on
q or p show the absolute square of the wave packet on the respective coordinate. Nevertheless,
fW (q, p) itself might become negative. This is in contradiction to its assignment as an analogue
to classical phase space probability distribution, which is discussed in the literature [73].

The phase space representation of a vibrational wave packet on a harmonic potential1 can be
compared to Fig. 2.1. In order to achieve an increasing angleα as in Fig. 2.1b, a rate constant
T ∗

2 has to be introduced and the coherences (off diagonal elements) of the density matrix in
energy representation have to be multiplied by a factore−t/(|n−m|T∗2), wheren describes the
row andm the column of the density matrix [73]. The populations (diagonal elements) stay
untouched. The nomenclature for the rate constants is adapted from the Bloch equations in
NMR spectroscopy [123]. Here they are defined for a multi-state system instead of only a two
level system as in NMR.

The populations of the density matrix will decay ifdissipation(or in the special case of the
molecular potential,vibrational energy relaxation) occurs. In order to produce the phase space
propagation in Fig. 2.1c with the Wigner transformation of a density operator, a time constantT1

has to be introduced. It acts on the populations by the decay terme−t/T1 and on the coherence
by the decaye−t/2T1 [73]. In a mixed case of pure dephasing and dissipation, a new dephasing
timeT2 can be defined in a two-level system with the dissipationT1 and pure dephasingT ∗

2 :2

1

T2

=
1

2T1

+
1

T ∗
2

. (2.8)

1The evolution on an anharmonic oscillator will be the topic of the next section.
2T1 will be used throughout this thesis for dissipation, whereasT2 will be substituted byTdeph.
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Figure 2.2: a) Scheme for vibrational dephasing. The effective molecular electronic potentialV (R)
changes due to molecule solvent coordinate changes. The cage is tightening in this example (dashed
line). This shifts the vibrational spacing fromν1 toν2. b) Scheme for electronic dephasing. The transition
energy from one electronic state X to another state B is changed by∆E and/or∆R.

The Born-Oppenheimer approximation is inherent in the separation of electronic and vibra-
tional degrees of freedom and thus in the separation of dephasing processes. The motion of
the electrons is fast compared to the nuclear motion in a molecule and therefore the electronic
wave function can be calculated for a fixed set of nuclear parameters. This leads to the calcu-
lation of electronic potentialsV (R), having defined vibrational and rotational wave functions.
The coherences of the density operator have the formcnc

∗
me−

i
~ (En−Em)t. Statesn andm can

be vibrational levels on one electronic surfaceV (R) of the molecule. If the coherence term
vanishes, the process is calledvibrational dephasing. In the same manner, staten can be a vi-
brational state on the electronic ground state, whereas statem is a vibrational level on an excited
electronic state of a molecule. In that case, the loss of coherence is calledelectronicdephasing.

Figure 2.2 presents possible origins of vibrational and electronic dephasing. In panel a),
the vibrational dephasing is sketched (the picture is adapted from Ref. [78]). The solid curve
represents the molecular potential as it is deformed in some solvent. The vibrational eigenstates
of the potential shall have an energy spacing ofν1. If a relative motion between molecule and
solvent atoms occurs, this potential energy surface will be disturbed (dashed line). As sketched
here, the effective intramolecular potential gets steeper and the vibrational spacingν2 bigger
thanν1. This leads to a disturbance (dephasing) in the coherence of the vibrational levels n and
m, since the energy difference3 (En − Em) between the vibrational levels n and m shows up in
the coherencecnc

∗
me−

i
~ (En−Em)t. Thus, the wave packet will lose coherence and interference of

vibrational levels will decay. As a consequence, the probability density loses its localization in
phase space according to the classical dephasing in Fig. 2.1b. The effect can also be formulated
in semi classical terms: the wave packet propagates in a dynamical potential. The dynamics of
the effective potential is statistical in an ensemble. A wave packet of asinglemolecule does not
dephase at all. In anensembleor time-averaged experiment the averaged wave packet structure
will "smear out". The calculation in Ref. [78] is done in exactly that way: a quantum wave
packet is propagated on a dynamical potential that is calculated by classical interaction with the
environment. The final result is averaged over many wave packet propagations.

In case of the electronic dephasing (Fig. 2.2b), the relative energy or/and equilibrium poten-

3Between two neighboring levels, the difference is calledν in Fig. 2.2.


