

Grundlagen der Hochfrequenztechnik

von Prof. Dr.-Ing. Jürgen Detlefsen, Dr.-Ing. Uwe Siart

3., aktualisierte und erweiterte Auflage

Oldenbourg Verlag München

Prof. Dr.-Ing. Jürgen Detlefsen, Jahrgang 1943, studierte Elektrotechnik, Fachrichtung Nachrichtentechnik an der Technischen Universität München (Diplom 1967). Nach seiner Promotion (1971) und Habilitation (1978) wurde er Professor für Funkortung und Funknavigation an der Technischen Universität München. Seit 1988 leitet er dort in der Fakultät für Elektrotechnik und Informationstechnik das Fachgebiet Hochfrequente Felder und Schaltungen. Seine Arbeitsgebiete sind Methoden und Anwendungen der Hochfrequenzsensorik, die Modellierung hochfrequenter Systeme, die Abbildung mit Millimeterwellen sowie das Thema Elektromagnetische Verträglichkeit für Mensch und Umwelt (EMVU).

Dr.-Ing. Uwe Siart, Jahrgang 1969, studierte Elektrotechnik mit Schwerpunkt Kommunikationselektrotechnik an der Friedrich-Alexander-Universität Erlangen-Nürnberg. Danach wechselte er an die Technische Universität München, wo er seit seiner Promotion (2005) als Akademischer Rat am Lehrstuhl für Hochfrequenztechnik tätig ist. Dort gibt er Vorlesungen über Hochfrequenzschaltungen und nichtlineare Mikrowellenschaltkreise. Seine Forschungsgebiete sind Signalverarbeitung und statistische Elektrodynamik.

Das Titelbild zeigt den TerraSAR-X-Satelliten, einen hoch auflösenden, im X-Band (9,65 GHz) operierenden Radarsatelliten mit synthetischer Apertur, der am 15. Juni 2007 erfolgreich von Baikonur gestartet wurde. Der Satellit, der für Zwecke der wissenschaftlichen und kommerziellen Fernerkundung der Erde eingesetzt wird, wurde in Kooperation zwischen dem Deutschen Zentrum für Luftund Raumfahrt (DLR) und der Astrium GmbH entwickelt und gebaut.

Bereits 4 Tage nach dem Start konnte das erste von TerraSAR-X aufgenommene Radarbild prozessiert werden. Seitdem hat das SAR-Instrument tausende von hochaufgelösten Radaraufnahmen hoher Qualität geliefert.

Derzeit arbeiten das DLR und die Astrium GmbH an der Fertigstellung des TanDEM-X-Satelliten, einem nahezu baugleichen Zwilling des TerraSAR-X, der ab Ende 2009 im engen Formationsflug mit TerraSAR-X fliegen soll. Hauptziel der TanDEM-X-Mission ist die Erstellung eines globalen digitalen Höhenmodells aller Landmassen der Erde mit bislang unerreichter Genauigkeit. Copyright Astrium GmbH

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© 2009 Oldenbourg Wissenschaftsverlag GmbH Rosenheimer Straße 145, D-81671 München Telefon: (089) 45051-0 oldenbourg.de

Das Werk einschließlich aller Abbildungen ist urheberrechtlich geschützt. Jede Verwertung außerhalb der Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen.

Lektorat: Anton Schmid Herstellung: Anna Grosser Coverentwurf: Kochan & Partner, München Gedruckt auf säure- und chlorfreiem Papier Druck: Grafik + Druck, München Bindung: Thomas Buchbinderei GmbH, Augsburg

ISBN 978-3-486-59131-6

Vorwort zur dritten Auflage

Mit der aktualisierten und erweiterten dritten Auflage verfolgen wir weiterhin das Ziel, eine umfassende und breite Einführung in das Gebiet der Hochfrequenztechnik zu geben und dabei die wissenschaftliche Exaktheit zu wahren, ohne einen umfangreichen mathematischen Apparat zu bemühen. Für eine Auffrischung der dennoch notwendigen mathematischen Grundlagen steht wie gewohnt der Anhang zur Verfügung.

Neben einer inhaltlichen und typografischen Überarbeitung wurden dieser Auflage einige neue Abschnitte hinzugefügt – unter anderem über das Konzept der Streuparameter, die Grundlagen von Ultrabreitbandantennen und das Prinzip von Direktkonversionsempfängern, welche eine wichtige Empfängerarchitektur in modernen mobilen Endgeräten darstellen. Die Erzeugung des Stichwortverzeichnisses wurde ebenfalls revidiert.

Mit dem Erscheinen der dritten Auflage freuen wir uns über die anhaltend positive Resonanz. Konstruktive Rückmeldungen begrüßen wir ausdrücklich, da sie der weiteren Verbesserung des Buches nur dienlich sein können. Um einen effizienten Kanal für Rückmeldungen bereitzustellen, haben wir die E-Mail-Adresse gdhfbuch@siart.de eingerichtet.

Wiederum wünschen wir allen Lesern einen erfolgreichen Einstieg in das Gebiet der Hochfrequenztechnik, dessen Anwendungen heute in vielfältiger Weise unser Umfeld prägen.

München, im Juli 2009

Jürgen Detlefsen, Uwe Siart

Wie auch in den vorausgegangenen Auflagen gebührt mein besonderer Dank meiner Familie – meiner Frau Tanja und meinen Söhnen Nicolas und Daniel. Die zeitintensive Arbeit zur Erstellung und Pflege des Manuskriptes wurde erst durch ihre Geduld und ihr bislang anhaltendes Verständnis für dieses Projekt möglich, welches an zahlreichen Abenden und Wochenenden erhebliche Schmälerungen des Familienlebens mit sich brachte. Ferner möchte ich all den ehrenamtlichen Programmierern danken, die zur Verfügbarkeit und Weiterentwicklung des verwendeten Schriftsatzsystems IAT_EX und seiner Zusatzpakete beitragen und die ihre Arbeit kostenfrei zur allgemeinen Verfügung stellen.

München, im Juli 2009

Uwe Siart

Vorwort zur ersten Auflage

Das vorliegende Buch entstand aus Skripten und Notizen zu den Vorlesungen »Grundlagen der Hochfrequenztechnik (LB)« und »Hochfrequenztechnik (LB)«, die an der Technischen Universität München im Rahmen des Studienplanes »Lehramt an Beruflichen Schulen« für Studenten mit dem Erstfach Elektrotechnik gehalten werden. Die Entscheidung, ein vorlesungsbegleitendes Buch zu verfassen, wurde durch entsprechende Anfragen von Seiten der Hörer ausgelöst. Es stellte sich heraus, dass wir mit Empfehlungen nur auf Literatur zurückgreifen konnten, die von Umfang und Detailgehalt ein vertieftes Studium der Hochfrequenztechnik in einer Weise verlangt, wie sie im Diplomstudiengang mit entsprechender Schwerpunktsetzung geschieht. Nachdem die Vorlesungen in Hochfrequenztechnik bereits den Bedürfnissen der Lehramtstudierenden Rechnung tragen, lag es nahe, diesem Mangel an verfügbaren Textbüchern durch Aufbereitung des Vorlesungsstoffes zu begegnen.

Das Buch möchte die wesentlichen Inhalte der Hochfrequenztechnik in einem Umfang darstellen, der praxisorientierten und berufsnahen Fragestellungen angepasst ist. Ein wichtiges Ziel war es, beim Leser einen schlankeren mathematischen Hintergrund vorauszusetzen und dennoch die wissenschaftliche Exaktheit zu bewahren. Aus diesem Grund werden zwar häufig vereinfachende Annahmen gemacht, doch wird auch – wo immer dieses geschieht – deutlich darauf hingewiesen. Obwohl viele Aspekte aus den Disziplinen Nachrichtentechnik, Elektrodynamik, Feldtheorie und Schaltungstechnik behandelt werden, kann und möchte dieses Buch schon aus Gründen des Umfangs Lehrbücher aus diesen Gebieten nicht ersetzen. Es werden keine eingehenden Analysen der behandelten Fragestellungen durchgeführt. Das Ziel ist vielmehr, ein grundsätzliches Verständnis wichtiger Zusammenhänge auf Basis der wesentlichen Effekte und Erscheinungen auf anschauliche und übersichtliche Weise zu vermitteln.

Unser Dank gilt ganz herzlich dem Oldenbourg-Verlag, der durch Unterstützung in jeder Phase des Projekts entscheidend dazu beigetragen hat, dass das Werk zügig fertiggestellt werden konnte.

München, im März 2003

Jürgen Detlefsen, Uwe Siart

Verzeichnis der verwendeten Formelzeichen

Symbol	Einheit	Bedeutung
Α	m ²	Fläche
$A_{\rm W}$	m ²	Wirkfläche
В	S	Blindleitwert (Suszeptanz)
С	As/V	Kapazität
C'	F/m	Kapazitätsbelag
C_{∞}	As/V	große Kapazität, als HF-Kurzschluss zu behandeln
D	1	Richtfaktor (engl. directivity)
D	m	Außendurchmesser
F	1	normierter Frequenzparameter
F	1, dB	Rauschzahl
$F_{\rm E}$	1	Einzelcharakteristik
$F_{\rm G}$	1	Gruppencharakteristik
$F_{\mathbf{R}}$	1	Gesamtcharakteristik
F_Z	1, dB	zusätzliche Rauschzahl
G	1, dB	Gewinn
G	S	ohmscher Leitwert (Konduktanz)
G'	S/m	Ableitungsbelag
Ι	А	komplexe Stromamplitude
I_0	А	Strom im Arbeitspunkt, Ruhestrom
I _h	А	komplexe Amplitude der hinlaufenden Stromwelle
I _{max}	А	größter Betrag der Stromamplitude
I _{min}	А	kleinster Betrag der Stromamplitude
<i>I</i> _r	А	komplexe Amplitude der rücklaufenden Stromwelle
L	Н	Induktivität
L'	H/m	Induktivitätsbelag
L_{∞}	Н	große Induktivität, als HF-Leerlauf zu behandeln
M	Н	Gegeninduktivität
Ν	W	Rauschleistung
Р	W	Leistung
P_*	W/m ²	Strahlungsleistungsdichte
$P_{\rm B}$	W	Blindleistung
$P_{\rm E}$	W	Empfangsleistung

Symbol	Einheit	Bedeutung
$P_{\rm S}$	W	Sendeleistung
P_{W}	W	Wirkleistung
Q	As	Gesamtladung
Q_0	1	Eigengüte
Q_C	1	Güte einer realen Kapazität
Q_L	1	Güte einer realen Induktivität
R	Ω	ohmscher Widerstand (Resistanz)
R'	Ω/m	Widerstandsbelag
R_0	Ω	Gleichstromwiderstand
R _S	Ω	Strahlungswiderstand, Serienwiderstand
<i>R</i> _m	$1/\Omega_{s}$	magnetischer Widerstand
R_{\sim}	Ω	Wechselstromwiderstand
S	S	Steilheit
S	W	Signalleistung, Nutzleistung, komplexe Scheinleistung
Т	Κ	Temperatur
U	V	komplexe Spannungsamplitude
U_0	V	Spannung im Arbeitspunkt, Gleichanteil
U _{GS}	V	Spannung zwischen Gate und Source
$U_{\rm h}$	V	komplexe Amplitude der hinlaufenden Spannungswelle
U _{max}	V	größter Betrag der Spannungsamplitude
$U_{\rm min}$	V	kleinster Betrag der Spannungsamplitude
$U_{\rm r}$	V	komplexe Amplitude der rücklaufenden Spannungswelle
V	m ³	Volumen
X	Ω	Blindwiderstand (Reaktanz)
Y	S	komplexe Admittanz
Ζ	Ω	komplexe Impedanz
Z_*	Ω	spezifischer Öberflächenwiderstand
$Z_{\rm F0}$	Ω	Feldwellenwiderstand des freien Raumes
$Z_{\rm L}$	Ω	Leitungswellenwiderstand
$\Delta \langle Symbol \rangle$		Änderung, Abweichung
Φ	Vs	komplexer Zeiger des magnetischen Flusses
α	1/m	Dämpfungskonstante
α	rad	Einfallswinkel
β	1/m	Phasenkonstante, komplexes Phasenmaß
δ	m	Eindringtiefe, äquivalente Leitschichtdicke
δ_{ε}	rad	dielektrischer Verlustwinkel
l	m	Leitungslänge, allgemeine Länge
$\ell_{\rm L}$	m	Feldlinienlänge in Luft
$\ell_{\rm eff}$	m	effektive Länge
$\ell_{\rm m}$	m	Feldlinienlänge in magnetischem Material
γ	1/m	Ausbreitungskonstante
κ	S/m	Leitfähigkeit

Symbol	Einheit	Bedeutung
λ	m	Wellenlänge
λ_0	m	Freiraum-Wellenlänge
λ_z	m	Wellenlänge in z-Richtung, Hohlleiterwellenlänge
μ	Vs/Am	Permeabilität
μ_0	Vs/Am	absolute Permeabilität
$\mu_{\rm r}$	1	relative Permeabilität
ω	rad/s	Kreisfrequenz
$\omega_{ m R}$	rad/s	Resonanz-Kreisfrequenz
∂A	m	Randkurve einer Fläche, geschlossene Kurve, Umlauf
∂V	m ²	Oberfläche eines Volumens, geschlossene Hülle
π	1	Ludolfsche Zahl
σ	m ²	Streuquerschnitt
σ	As/m ²	Flächenladungsdichte
τ	S	Relaxationszeit, Zeitkonstante
ε	As/Vm	Permittivität
ε_0	As/Vm	absolute Permittivität
ε _r	1	relative Permittivität
φ	rad	Phasenwinkel, Azimutalwinkel
θ	rad	Polwinkel
В	Vs/m ²	komplexer Zeiger der magnetischen Flussdichte
D	As/m ²	komplexer Zeiger der elektrischen Verschiebungsdichte
Ε	V/m	komplexer Zeiger der elektrischen Feldstärke
Н	A/m	komplexer Zeiger der magnetischen Feldstärke
J	A/m^2	komplexer Zeiger der Stromdichte
Κ	A/m	Flächenstromdichte
S	1	Streumatrix
а	\sqrt{W}	Vektor aller einlaufenden Wellengrößen
b	Vs/m ²	magnetische Flussdichte im Zeitbereich
b	\sqrt{W}	Vektor aller ablaufenden Wellengrößen
d	As/m ²	elektrische Verschiebungsdichte im Zeitbereich
е	V/m	elektrische Feldstärke im Zeitbereich
e_{ν}	1	Einheitsvektor in Richtung der Koordinate v
h	A/m	magnetische Feldstärke im Zeitbereich
i	A/m^2	Stromdichte im Zeitbereich
n	1	Normaleneinheitsvektor
$v_{ m D}$	m/s	Driftgeschwindigkeit
a	1, dB	Dämpfung
а	m	Kantenlänge
а	\sqrt{W}	Wellengröße der hinlaufenden Welle
b	m	Kantenlänge
b	\sqrt{W}	Wellengröße der reflektierten Welle
<i>c</i> ₀	m/s	Vakuum-Lichtgeschwindigkeit
~		

Symbol	Einheit	Bedeutung
d	m	Innendurchmesser, Strahlerabstand
е	1	Eulersche Zahl
f	Hz	Frequenz
fio	Hz	Frequenz des Lokaloszillators
fT	Hz	Trägerfrequenz
fzf	Hz	Zwischenfrequenz
h	m	Antennenhöhe
i	А	Zeitfunktion des Stromes
j	1	imaginäre Einheit
k	1	Koppelfaktor
k	Ws/K	Boltzmann-Konstante
т	1	Anpassungsfaktor
п	1	Windungszahl
n_P	dBm	Leistungspegel
n_U	dBµV	Spannungspegel
r	m	Abstand
r(z)	1	Reflexionsfaktor als Funktion der Längenkoordinate z
r, φ, z	m, rad, m	Zylinderkoordinaten
r, θ, φ	m, rad, rad	Kugelkoordinaten
S	1	Stehwellenverhältnis
S	m	Gangunterschied
$s_{\mu\nu}$	1	Streuparameter
ť	S	Zeit
и	V	Zeitfunktion der Spannung
vp	m/s	Phasengeschwindigkeit
<i>x,y,z</i>	m	kartesische Koordinaten
y	1	normierte Admittanz
Z	1	normierte Impedanz

Physikalische Konstanten

c_0	=			299792458 m/s	Vakuum-Lichtgeschwindigkeit
μ_0	=	1		$4\pi \cdot 10^{-7} \text{ Vs/Am}$	absolute Permeabilität
ε_0	=	$\frac{1}{\mu_0 c_0^2}$	\approx	$8,854 \cdot 10^{-12} \text{ As/Vm}$	absolute Permittivität
k	=	, o o		$1,38 \cdot 10^{-23} \text{Ws/K}$	Boltzmann-Konstante
$Z_{\rm F0}$	=	$\sqrt{\frac{\mu_0}{\varepsilon_0}}$	\approx	377 Ω	Vakuum-Feldwellenwiderstand
е	=	, 0		$1,602 \cdot 10^{-19} \mathrm{As}$	Elementarladung

Inhaltsverzeichnis

Verze	ichnis der verwendeten Formelzeichen	VII
1	Einführung	1
2	Elektromagnetische Wellen	7
2.1	Maxwellsche Gleichungen für zeitharmonische Vorgänge	7
2.1.1	Verschiedene Formen der Maxwellschen Gleichungen	7
2.1.2	Durchflutungsgesetz	9
2.1.3	Induktionsgesetz	11
2.1.4	Quellenfreiheit der magnetischen Flussdichte	11
2.1.5	Quellen des elektrischen Feldes	12
2.2	Materialgleichungen und Randbedingungen	12
2.2.1	Elektrisch polarisierbare Stoffe	13
2.2.2	Magnetisch polarisierbare Stoffe	14
2.2.3	Grenzflächen	15
2.3	Skineffekt	17
2.3.1	Leitfähigkeit und Wirbelströme	17
2.3.2	Stromdichte in kreiszylindrischen Leitern	18
2.3.3	Definition der Eindringtiefe	21
2.3.4	Anwendungsbeispiele	23
2.4	Ebene Wellen	24
2.4.1	Die Wellengleichung	24
2.4.2	Eine einfache Lösung der Wellengleichung	25
2.4.3	Polarisation	33
2.5	Leitungsgeführte Wellen	38
2.5.1	Transversal elektromagnetische Wellen	38
2.5.2	Feldgrößen und Leitungsgrößen	42
2.6	Übungsaufgaben	46
3	Theorie der Leitungen	49
3.1	Leitungsgleichungen	49
3.1.1	Spannungs- und Stromverteilung	49
3.1.2	Wellenwiderstand	52
3.1.3	Reflexionsfaktor	55
3.1.4	Leistungstransport	56
3.1.5	Dämpfungskonstante bei kleinen Verlusten	58

3.2	Leitungen mit beliebigem Abschluss
3.2.1	Transformation des Reflexionsfaktors
3.2.2	Stehwellenverhältnis und Anpassungsfaktor
3.2.3	Blindleitungen
3.3	Smith-Diagramm
3.3.1	Grundlagen
3.3.2	Konzentrierte Bauelemente
3.3.3	Leitungsabschnitte
3.3.4	Stichleitungen
3.3.5	Impedanzmessung mit Hilfe einer Messleitung
3.3.6	Zusammenfassung
3.4	Wellengrößen und Streuparameter
3.5	Übungsaufgaben
4	Bauelemente der Hochfrequenztechnik 87
4.1	Leiter und Widerstände
4.1.1	Skineffekt in kreiszylindrischen Leitern
4.1.2	Widerstandsbauformen
4.1.3	Hochfrequenz-Ersatzschaltbilder
4.2	Kondensatoren
4.2.1	Grundlagen
4.2.2	Geschichtete Dielektrika
4.2.3	Beschreibung von Wirkverlusten
4.2.4	Technische Ausführungsformen
4.3	Induktivitäten
4.3.1	Definition
4.3.2	Leitender Kreisring 101
4.3.3	Zylinderspule
4.3.4	Gegeninduktivität
4.3.5	Spulen mit magnetischem Kern 107
4.3.6	Ringkern mit Luftspalt
4.3.7	Magnetische Werkstoffe
4.4	Übungsaufgaben
5	Passive lineare Schaltungen 121
5.1	Transformationsschaltungen
5.2	Resonanzschaltungen
5.2.1	Resonanzkreis
5.2.2	Schmalbandnäherung
5.2.3	Güte von Reflexionsresonatoren 129
5.2.4	Resonanztransformatoren
5.2.5	Das Fostersche Theorem
5.3	Breitbandschaltungen

5.4	Filterschaltungen
5.4.1	Grundlagen
5.4.2	Zweikreisige Kopplungsbandfilter
5.4.3	Akustische Oberflächenwellenfilter144
5.5	Übungsaufgaben
6	Elektromagnetische Wellen in homogenen Medien 149
6.1	Beschreibung von Wirkverlusten im Medium
6.1.1	Komplexe Materialparameter
6.1.2	Näherung bei kleinen Verlusten
6.1.3	Materialien mit endlicher Leitfähigkeit
6.1.4	Mittlerer Leistungsfluss bei Verlusten
6.2	Wechselwirkung mit dielektrischen Materialien
6.2.1	Makroskopische Betrachtungsweise
6.2.2	Mikroskopische Betrachtungsweise
6.2.3	Debye-Beziehung
6.3	Einflüsse elektromagnetischer Wellen auf biologische Gewebe 157
6.3.1	Wirkungsweise
6.3.2	Sicherheitsnormen zum Schutz des Menschen
6.3.3	Bewertung
6.4	Reflexion ebener Wellen an Grenzflächen
6.4.1	Senkrechter Einfall
6.4.2	Schräger Einfall
6.4.3	Totalreflexion
6.4.4	Reflexion an einer leitenden Ebene
6.4.5	Rechteckhohlleiter
6.4.6	Dielektrische Wellenleiter
6.5	Übungsaufgaben
7	Antennen 187
7.1	Grundbegriffe
7.2	Isotroper Kugelstrahler
7.3	Antennenkenngrößen
7.3.1	Gewinn
7.3.2	Richtfaktor
7.3.3	Wirkfläche
7.3.4	Effektive Länge
7.3.5	Richtcharakteristik
7.4	Lineare Antennen
7.4.1	Hertzscher Dipol
 7.4.2	Halbwellenstrahler
7.4.3	Elektrisch kurze Antennen
7.5	Antennenanordnungen
7.5.1	Anordnungen von zwei Strahlern

7.5.2 7.5.3 7.5.4 7.5.5 7.6 7.7	Dipolzeilen208Multiplikatives Gesetz211Spiegelungsprinzip211Technische Ausführungsformen213Ultrabreitbandantennen221Übungsaufgaben227
8	Ausbreitung elektromagnetischer Wellen 229
8.1	Funkfelder im freien Raum
8.2	Brechung in der Atmosphäre
8.3	Reflexion
8.3.1	Erdboden
8.3.2	Ionosphäre
8.3.3	Ausbreitung durch Streuung
8.4	Atmosphärische Dämpfung
8.5	Beugungserscheinungen
8.6	Übungsaufgaben
9	Sende- und Empfangstechnik 245
9.1	Nichtlineare Kennlinien
9.1.1	Bauelemente und Potenzreihenentwicklung
9.1.2	Aussteuerung mit einer Frequenz
9.1.3	Aussteuerung mit zwei Signalen unterschiedlicher Frequenz
9.1.4	Aussteuerung mit zwei Signalen gleicher Frequenz
9.2	Mischer
9.2.1	Beschreibung
9.2.2	Kenngrößen
9.2.3	Konversionsarten
9.3	Schwingungserzeugung
9.3.1	Entdämpfung eines Schwingkreises
9.3.2	Rückkopplung eines Verstärkers
9.3.3	Einfache Oszillatorschaltungen
9.3.4	Spannungsgesteuerte Oszillatoren
9.3.5	Ouarzoszillatoren
9.3.6	Frequenzvervielfachung
9.3.6 9.3.7	Frequenzvervielfachung
9.3.6 9.3.7 9.3.8	Frequenzvervielfachung268Frequenzteilung269Frequenzaufbereitung269
9.3.6 9.3.7 9.3.8 9.4	Frequenzvervielfachung268Frequenzteilung269Frequenzaufbereitung269Hochfrequenzverstärker271
9.3.6 9.3.7 9.3.8 9.4 9.4.1	Frequenzvervielfachung268Frequenzteilung269Frequenzaufbereitung269Hochfrequenzverstärker271Vorverstärkung271
9.3.6 9.3.7 9.3.8 9.4 9.4.1 9.4.2	Frequenzvervielfachung268Frequenzteilung269Frequenzaufbereitung269Hochfrequenzverstärker271Vorverstärkung271Leistungsverstärkung278
9.3.6 9.3.7 9.3.8 9.4 9.4.1 9.4.2 9.5	Frequenzvervielfachung268Frequenzteilung269Frequenzaufbereitung269Hochfrequenzverstärker271Vorverstärkung271Leistungsverstärkung278Aufbau von Sendern284
9.3.6 9.3.7 9.3.8 9.4 9.4.1 9.4.2 9.5 9.5.1	Frequenzvervielfachung268Frequenzteilung269Frequenzaufbereitung269Hochfrequenzverstärker269Hochfrequenzverstärkung271Vorverstärkung271Leistungsverstärkung278Aufbau von Sendern284Endstufenmodulation284

9.6	Aufbau von Empfängern
9.6.1	Geradeausempfänger
9.6.2	Überlagerungsempfänger
9.6.3	Direktkonversionsempfänger
9.7	Modulation und Demodulation
9.7.1	Amplitudenmodulation
9.7.2	Einseitenbandmodulation
9.7.3	Frequenzmodulation
9.7.4	Grundzüge digitaler Modulationsverfahren
9.8	Rauschen
9.8.1	Grundbegriffe des elektrischen Rauschens
9.8.2	Effektive Rauschtemperatur
9.8.3	Rauschzahl
9.8.4	Kettenrauschzahl
9.8.5	Rauschpegel
9.8.6	Rauschanpassung
9.8.7	Antennenrauschen
9.9	Übungsaufgaben
A	Mathematische Grundlagen und Hilfsmittel 321
A.1	Der Feldbegriff
A.2	Koordinatensvsteme
A.2.1	Kartesische Koordinaten
A.2.2	Zylinderkoordinaten
A.2.3	Kugelkoordinaten
A.3	Vektoranalytische Operationen
A.3.1	Skalarprodukt
A.3.2	Kreuzprodukt
A.3.3	Der Gradient eines skalaren Feldes
A.3.4	Die Divergenz eines Vektorfeldes
A.3.5	Die Rotation eines Vektorfeldes
A.4	Kurven-, Flächen- und Volumenelemente
A.5	Kurven-, Flächen- und Volumenintegrale
A.6	Sätze und Korrespondenzen der Fouriertransformation
В	Elektrotechnische Grundlagen und Hilfsmittel
B.1	Komplexe Zeiger
B.2	Leistung im Netzwerk
B.3	Leistungstransport auf Hochfrequenzleitungen
B.4	Das Dezibel
B.4.1	Definition
B.4.2	Pegelrechnung
B.5	Grafische Auswertung der Richtcharakteristik

С	Lösungen zu den Übungsaufgaben	355
Weite	rführende Literatur	373
Stichy	wortverzeichnis	375

1 Einführung

Hochfrequenztechnik befasst sich, wie der Begriff schon sagt, mit Bauelementen, die bei höheren Frequenzen arbeiten. Historisch gesehen war damit eine Abgrenzung von der klassischen Starkstrom- und Niederfrequenztechnik (Frequenzen typisch bei 50 Hz bis etwa 20 kHz) beabsichtigt, bei der die Beschreibung von physikalischen Abläufen in einfacher Weise durch Spannungen und Ströme möglich ist. Im Bereich der Hochfrequenztechnik müssen dagegen elektrische und magnetische Felder in ihrer Wechselwirkung betrachtet werden, Spannung und Ströme lassen sich daraus nur in verallgemeinerter Form als integrale Größen ableiten.

Die Ausbreitungsvorgänge werden im Bereich hoher Frequenzen durch die magnetischen Wirkungen sich zeitlich ändernder elektrischer Felder (Begriff des Verschiebungsstroms) wesentlich mitbestimmt. Damit werden in Zusammenwirken mit der Erzeugung elektrischer Felder durch zeitveränderliche Magnetfelder Wellenausbreitungsvorgänge möglich, die der drahtlosen Informationsübertragung dienen und ebenfalls Gegenstand der hochfrequenztechnischen Beschreibung sind. Wichtigstes Kennzeichen der in der Hochfrequenztechnik verwendeten Bauelemente ist, dass ihre geometrischen Abmessungen in der Größenordnung der Wellenlänge der elektromagnetischen Schwingungen liegen.

Insgesamt umfasst die Hochfrequenztechnik die Gesamtheit der Vorgehensweisen und Verfahren zur Erzeugung, Fortleitung, Erfassung und Verarbeitung elektromagnetischer Felder. Damit werden Bauelemente, Geräte und Systeme realisiert, für deren Entwurf spezifische Methoden notwendig sind, die kennzeichnend für die Hochfrequenztechnik sind. Moderne Anwendungen der Hochfrequenztechnik liegen vorwiegend im Bereich der drahtlosen Datenübertragung und Funktechnik, befassen sich aber auch mit der Wechselwirkung elektromagnetischer Wellen mit der Materie (Mikrowellenerwärmung, Mikrowellenspektroskopie) sowie mit Methoden zur Verhinderung nicht gewollter Abstrahlung zur Vermeidung der wechselseitigen Störung von Systemen der Nieder- und Hochfrequenztechnik (EMV: elektromagnetische Verträglichkeit). Mit Hilfe der Hochfrequenztechnik können allgemeine Nachrichtenübertragungssysteme realisiert werden, wie sie durch das Modell in Abb. 1.1 beschrieben werden.

Die frequenzmäßige Einordnung hochfrequenztechnischer Systeme hängt von den Dimensionen der Bauelemente im Vergleich zur Wellenlänge ab. Mit entsprechend großen Antennen kann Abstrahlung bereits bei Frequenzen um 10kHz erreicht werden. Die Wellenlänge derartiger Systeme, die bis vor kurzem für die Funknavigation mit weltweiter Bedeckung (OMEGA) eingesetzt wurden, liegt bei 30km. Eine obere Grenze für die dämpfungsarme Wellenausbreitung und damit für die technische An-

Abb. 1.1: Allgemeines Nachrichtenübertragungssystem

wendung von Funksystemen liegt wegen der zunehmenden Wechselwirkung der elektromagnetischen Wellen mit den Molekülen der Atmosphäre unterhalb von 300GHz, also bei Wellenlängen im Millimeterwellenbereich.

 $f = 10 \text{ kHz} \dots 300 \text{ GHz}$ entspricht $\lambda_0 = 30 \text{ km} \dots 1 \text{ mm}$

Die Benennung der Frequenzbereiche geschieht anhand der Wellenlänge λ_0 . Die Umrechnung zwischen Frequenz f und Wellenlänge λ_0 im Freiraum ist durch

$$\lambda_0 = \frac{c_0}{f} \quad \text{mit} \quad c_0 \approx 3 \cdot 10^8 \,\text{m/s} \tag{1.1}$$

gegeben.

Beispiele für hochfrequenztechnische Bauelemente, die erkennbar nicht mit den Methoden der Niederfrequenztechnik behandelt werden können, sind der Rechteckhohlleiter mit einem metallisch geschlossenen Querschnitt, der als Wellenleiter für den Transport hoher Leistungen geeignet ist, der Dipol als einfache Antenne sowie die Hornparabolantenne, die mit den Verfahren der Mikrowellenoptik behandelt werden kann.

Die Tabelle 1.3 gibt einen Überblick über typische Anwendungen der Hochfrequenztechnik unter Bezug auf wichtige physikalische Eigenschaften, die für die Auswahl höherer Frequenzen für die jeweilige Aufgabenstellung maßgebend sind. So ist zum Beispiel die Antennenbündelung, d. h. die Breite einer Antennenkeule nur vom Verhältnis der geometrischen Abmessung D der Antennenöffnung zur Wellenlänge λ abhängig. Es gilt:

Für ein PKW-Radar, das für die Abstandsmessung zum vorausfahrenden Fahrzeug eingesetzt werden soll, ist eine Strahlbreite von etwa $3^{\circ} - 4^{\circ}$ erforderlich. Bei vernünftigen Abmessungen *D* der Antennenöffnung, die eine Integration in die Fahrzeugvorderseite erlauben, ist diese Bündelung nur bei Frequenzen im Millimeterwellenbereich (77 GHz) erreichbar.

Anwendung	Frequenzen (GHz)
Terrestrischer Mobilfunk PCN (GSM, DCS, DECT,) WLAN, drahtlose Rechnernetzwerke Mobile Breitbandkommunikation	0,9/1,8 2,5/5,3/61 62 - 66
Terrestrischer Richtfunk öffentlicher/privater Richtfunk Vernetzung von Mobilfunk-Feststationen	8 - 40 18/23/38
Mobile Satellitenkommunikation via GEO-Satellit (INMARSAT): Flottenmanagement etc. via LEO-Satellit (IRIDIUM, Global Star, etc.)	1,6 1,6
Satelliten-Richtfunk, Satelliten-Rundfunk DBS VSAT ISL	12 12/14; 20/30 60
Identifikationssysteme Fahrzeuge (Flottenmanagement) Personenidentifikation Logistik (Produktion, Warenverteilung, etc.)	2,5/5,8/61 2,5/5,8/61 2,5/5,8/61
Verkehrsleittechnik/IHVS Automatische Gebührenerfassung, Zugangskontrolle Verkehrsleittechnik (Straße, Schiene, Wasser, Luft)	5,8/61 5,8/24/61
Automobil-/Fahrzeugsensoren Abstands- und Hinderniswarnung Doppler-Geschwindigkeitssensor Sensorik für autonome Fahrzeuge, Spurführung	24/77 24/61 24/61/94
Navigation, Ortsbestimmung GPS, DGPS, GLONASS MLS, Funkbaken, Peiler	1,5 5/8 u.a.
Erd- und Umweltbeobachtung Radiometer Spektrometer SAR (Module)	35/95 u.a. 35/95 u.a. 5/10/35 u.a.
Sicherungssysteme Doppler-Sensoren (Haus, Auto, etc.) Radar-Zaun, Überwachungsradar	9/24/61 24/35
Industrie-Sensoren Füllstandsmessung Material- und Werkzeugprüfung	9/24 1/24/61

Tabelle 1.1: Moderne Anwendungen der Hochfrequenztechnik im Mikrowellenbereich

1861 – 64	Maxwell	Aufstellung der Maxwellschen Gleichungen
1884	H. Hertz	Experimenteller Nachweis der Wellennatur, Reflexion elektro- magnetischer Wellen an metallischen und dielektrischen Kör- pern
1896	Marconi, Braun	Funkübertragung
1903	Hülsmeyer	Hindernisdetektor für Schiffe
1907	Bellini, Tosi	Funkpeiler
1922	Marconi	Grundidee des Schiffsradars
1935	USA	Pulsradar 60MHz
1939 – 45		Funknavigationsverfahren (DECCA, LORAN)
1957		Doppler-Navigator für Flugzeuge
1965		Radar mit synthetischer Apertur (SAR), Impulsreflektometer
1967		Erster vektorieller Netzwerkanalysator (NWA)
1975		Phased Array Antennen (elektronische Strahlschwenkung)
1977	Engen	Vektorieller Netzwerkanalysator nach dem Sixport-Prinzip
1980		Erkundung der Erde mit Radar
ca. 1982		Monolithic Microwave IC (MMIC)
1985		Satellitennavigation (GPS, GLONASS)
1988		Digitaler Mobilfunk (GSM, DECT, IS 95, PCS), mobile Satelliten- kommunikation (IRIDIUM, INMARSAT)
1990		Satellitenfernsehen
1997		Digitales Fernsehen
1998		ICC, Radio in the Local Loop
2000		Abstands-Radar (Autonomous Intelligent Cruise Control) für PKW
2001		UMTS
2002		Wireless LAN auch im Heimgebrauch

Tabelle 1.2: Historischer Überblick

Anwendung	Nutzeffekt bei Mikro- und Millimeterwellen					
	Antennen- bündelung	Modulations- bandbreite	Ausbreitungs- eigenschaften	Durch- dringung der Ionosphäre	Rausch- minimum	Materialeigen- schaften
Richtfunk	X	X	X			
Satellitenfunk	×	×		×	×	
Mobilfunk	×	×		×	×	
Radar, Funkortung	×	×	×			
Telemetrie				×		
Radioastronomie	×			×	×	
Erwärmung						×
Material-						
untersuchung						×
Radiometrie						
Remote Sensing			×			×

Tabelle 1.3: Anwendungsbezug hochfrequenzspezifischer Effekt
--

Tabelle 1.4: Benennung der Frequenz- und Wellenlängenbereiche nach der Vollzugsordnung für den Funkdienst (VO Funk) und nach DIN 40015. Vergabe durch die Regulierungsbehörde für Post und Telekommunikation

Bereichsziffer	Frequenzbereich	Wellenlänge	Benennung	Kurzbezeichnung
4	3 30 kHz	10010 km	Myriameterwellen (Längstwellen)	VLF
5	30 300 kHz	101 km	Kilometerwellen (Langwellen)	LF
6	300 3000 kHz	10,1 km	Hektometerwellen (Mittelwellen)	MF
7	330 MHz	10010 m	Dekameterwellen (Kurzwellen)	HF
8	30300 MHz	101 m	Meterwellen (Ultrakurzwellen)	VHF
9	3003000 MHz	10,1 m	Dezimeterwellen (Ultrakurzwellen)	UHF, Mikrowellen
10	330 GHz	101 cm	Zentimeterwellen	SHF, Mikrowellen
11	30300 GHz	10,1 cm	Millimeterwellen	EHF, Mikrowellen
12	300 3000 GHz	10,1 mm	Mikrometerwellen	Submillimeterwellen Terahertzbereich

2 Elektromagnetische Wellen

2.1 Maxwellsche Gleichungen für zeitharmonische Vorgänge

2.1.1 Verschiedene Formen der Maxwellschen Gleichungen

In der Literatur sind verschiedene Schreibweisen der Maxwellschen Gleichungen gebräuchlich, die den jeweiligen Problemstellungen und Betrachtungsweisen angepasst sind. Wir werden für das Induktions- und das Durchflutungsgesetz allgemein die Darstellung mit den Feldern e und b verwenden. Dabei werden die zeitabhängigen Feldgrößen als Momentanwerte durchwegs mit kleinen Buchstaben gekennzeichnet. Betrachtet man, wie dies in der Praxis häufig geschieht, sinusförmige Vorgänge auf einer Frequenz, so können die Berechnungen mit Hilfe der komplexen Rechnung wesentlich vereinfacht werden. Die zugehörigen komplexen Amplituden werden mit großen Buchstaben bezeichnet.

Integralform

Elektromagnetische Felder sind stets so beschaffen, dass für beliebige Raumbereiche die folgenden integralen Beziehungen gelten:

$$\oint_{\partial A} \boldsymbol{b} \cdot \mathbf{d}\boldsymbol{s} = \mu_0 \left(\iint_A \boldsymbol{j} \cdot \mathbf{d}\boldsymbol{A} + \varepsilon_0 \iint_A \frac{\partial \boldsymbol{e}}{\partial t} \cdot \mathbf{d}\boldsymbol{A} \right)$$
(2.1a)

$$-\oint_{\partial A} \boldsymbol{e} \cdot \mathbf{ds} = \iint_{A} \frac{\partial \boldsymbol{b}}{\partial t} \cdot \mathbf{dA}$$
(2.1b)

$$\oint_{\partial V} \boldsymbol{b} \cdot \mathbf{d}\boldsymbol{A} = 0 \tag{2.1c}$$

$$\oint_{\partial V} \boldsymbol{e} \cdot \mathbf{d}\boldsymbol{A} = \frac{1}{\varepsilon_0} \iiint_V \rho \, \mathrm{d}V \tag{2.1d}$$

Dabei bezeichnen A und V beliebige Flächen und Volumina und ∂A bzw. ∂V die Berandungskurven bzw. -flächen. Mit ∂A ist also eine geschlossene Kurve (eben der Rand einer Fläche) und mit ∂V eine geschlossene Hülle (die Berandung eines Volumens) gemeint. Im Sinne der Vektoranalysis müssen diese Kurven und Flächen noch weitere Eigenschaften aufweisen, die wir im Rahmen dieses Buches allerdings nicht weiter vertiefen wollen und stets als gegeben voraussetzen. Zur Durchführung der Flächenintegrationen müssen die Flächen beispielsweise orientierbar sein. Eine beliebige Fläche weist diese Eigenschaft nicht notwendigerweise auf.

Obwohl in den folgenden Abschnitten noch näher auf die Bedeutung dieser Beziehungen eingegangen wird, seien an dieser Stelle einige kurze Erläuterungen zur Interpretation vorweggenommen. Die erste Gleichung (2.1a) bezeichnet man auch als das *Durchflutungsgesetz*. Es stellt einen Zusammenhang zwischen der magnetischen Flussdichte **b** entlang der Berandung einer Fläche und allen durch diese Fläche hindurch fließenden Ströme her. Offenbar besitzt auch der Term $\varepsilon_0 \partial e/\partial t$ die Bedeutung einer Stromdichte und hat magnetische Wirkungen¹. Auf diese wichtige Feststellung gehen wir später noch gesondert ein.

Die zweite Gleichung (2.1b) verbindet die elektrische Feldstärke *e* auf einer Flächenberandung mit der zeitlichen Änderung des magnetischen Flusses, der die Fläche durchsetzt. Diese Beziehung hat innerhalb der elektromagnetischen Theorie ebenfalls eine besondere Bedeutung und trägt den Namen *Induktionsgesetz*. Gleichung (2.1c) besagt, dass der magnetische Fluss durch eine geschlossene Hülle stets Null ist. Diese Aussage ist eine unmittelbare Folge der Tatsache, dass es keine magnetischen Monopole gibt. Man sagt, das magnetische Feld sei *quellenfrei*. Schließlich deklariert Gleichung (2.1d) die räumliche Verteilung der elektrischen Ladungen als Quellen des elektrischen Feldes. Demnach ist auch das Integral des elektrischen Feldes über eine geschlossene Hülle proportional zur gesamten in dieser Hülle eingeschlossenen Ladung.

Wir betonen noch, dass die Gleichungen (2.1a–d) überall und vor allem zu jedem Zeitpunkt gelten, obwohl die in Beziehung gesetzten Größen (auf dem Rand und im Inneren eines Gebietes) räumlich getrennt sind.

Differenzialform

Die Gleichungen (2.1a–d) können durch Anwendung geeigneter Integralsätze auch in ihre äquivalente differenzielle Form umgeschrieben werden. Es ergibt sich die Darstellung

$$\operatorname{rot} \boldsymbol{b} = \mu_0 \left(\boldsymbol{j} + \varepsilon_0 \frac{\partial \boldsymbol{e}}{\partial t} \right)$$
(2.2a)

$$-\operatorname{rot} \boldsymbol{e} = \frac{\partial \boldsymbol{b}}{\partial t} \tag{2.2b}$$

$$\operatorname{div} \boldsymbol{b} = 0 \tag{2.2c}$$

$$\operatorname{div} \boldsymbol{e} = \frac{\boldsymbol{\rho}}{\varepsilon_0},\tag{2.2d}$$

deren Bedeutung und Inhalt völlig identisch mit der integralen Schreibweise ist. In der differenziellen Schreibweise werden die Feldgrößen lokal, also in einem Aufpunkt

¹ Der Begriff *Wirkung* soll hier nur im vektoranalytischen Sinn verstanden werden, weil die Größen $\partial e/\partial t$ und $\partial b/\partial t$ nicht zu den physikalischen Ursachen des elektromagnetischen Feldes zählen. Das magnetische Feld wird nur von Strömen erzeugt, während elektrische Felder von Ladungen und von zeitveränderlichen Strömen ausgehen [17].

zueinander in Beziehung gesetzt, während die integrale Schreibweise räumlich ausgedehnte Zusammenhänge formuliert. Durch die Anwendung der Integralsätze von Gauß und Stokes können beide Darstellungsformen leicht ineinander übergeführt werden.

Zeigerform

Unter der Voraussetzung, dass jede Zeitabhängigkeit sinusförmig, also rein harmonisch (und damit monofrequent) ist, gelangen wir zur Darstellung von (2.2a–d) mit Hilfe von komplexen Zeigern:

$$\operatorname{rot} \boldsymbol{B} = \mu_0 \left(\boldsymbol{J} + j\omega\varepsilon_0 \boldsymbol{E} \right) \tag{2.3a}$$

$$-\operatorname{rot} \boldsymbol{E} = j\omega \boldsymbol{B} \tag{2.3b}$$

$$\operatorname{div} \boldsymbol{B} = 0 \tag{2.3c}$$

$$\operatorname{div} \boldsymbol{E} = \frac{\boldsymbol{P}}{\varepsilon_0}.$$
 (2.3d)

Alle auftretenden Feldgrößen werden hier durch ihre komplexen Zeiger dargestellt und die partielle Differenziation nach der Zeit geht über in eine einfache Multiplikation mit $j\omega$.

2.1.2 Durchflutungsgesetz

Wir wollen die Bedeutung und die Interpretation der Maxwellschen Gleichungen weiter vertiefen. Dies geschieht zweckmäßig anhand ihrer integralen Darstellung (2.1a– d), da hier die physikalische Anschaulichkeit am ehesten gegeben ist.

Das Durchflutungsgesetz (2.1a) liefert uns eine Aussage über den Zusammenhang zwischen der Durchflutung einer Fläche A und der Zirkulation der magnetischen Flussdichte B entlang der Berandung ∂A dieser Fläche. Dabei sind der Umlaufsinn von ∂A und die Orientierung von A (die Wahl der Richtung des Normaleneinheitsvektors n) so zu wählen, dass sie im Sinne einer Rechtsschraube orientiert sind (Abb. 2.1). Der Begriff *Durchflutung* bezeichnet die gesamte rechte Seite von (2.1a) und ist im Folgenden noch genauer zu erläutern.

Abb. 2.1: Zum Durchflutungsgesetz

Eine Komponente der Durchflutung ist das Flächenintegral der Stromdichte j über der Fläche A, also die gesamte Ladung, die je Zeiteinheit durch A hindurch transportiert wird. Zu dieser Gesamtheit der Durchströmung von ∂A tragen außer der Stromdichte j auch alle Linienströme i_{μ} bei. Linienströme sind eigentlich ein Rechenmodell und sie besitzen auch keine physikalische Realität, da ihre Strombahnen keine Querschnittsfläche besitzen. Unter Verwendung der Dirac-Delta-Funktion können Linienströme jedoch zwanglos in den Integralformalismus von (2.1a) eingebaut werden. Wir bezeichnen also mit

$$I = \iint_{A} \mathbf{j} \cdot \mathbf{dA}$$
(2.4)

den gesamten Strom, der durch A hindurchfließt und meinen damit den Strom, der auf der realen Bewegung von Ladungsträgern beruht. Die Stromdichte setzt sich aus den drei Komponenten

$$\boldsymbol{j} = \boldsymbol{j}_{\rm f} + \boldsymbol{j}_{\rm mag} + \boldsymbol{j}_{\rm pol} \tag{2.5}$$

zusammen. Dabei ist j_f die Stromdichte, welche durch die Bewegung freier Ladungsträger hervorgerufen wird und auch *Konvektionsstromdichte* genannt wird. Wenn sich die elektrische Polarisation zeitlich ändert, werden Ladungen verschoben und es fließt die Polarisationsstromdichte j_{pol} . In magnetisch polarisierten Materialien ist als Folge der Überlagerung der Ringströme von ausgerichteten magnetischen Dipolen die Magnetisierungsstromdichte j_{mag} zu berücksichtigen. Durch die Einführung von makroskopischen Materialkenngrößen, gelingt es jedoch, eine Form der Maxwellschen Gleichungen zu finden, welche ohne den Bezug auf j_{pol} und j_{mag} auskommt und in der ausschließlich die in der Regel einfacher zugängliche freie Stromdichte j_f steht. Wir kommen unten darauf zurück.

Die zweite Komponente der Durchflutung ist der sogenannte Verschiebungsstrom

$$I_{\rm v} = \varepsilon_0 \iint\limits_A \frac{\partial e}{\partial t} \cdot dA, \tag{2.6}$$

der genau dann von Null verschieden ist, wenn sich das elektrische Feld zeitlich ändert. Wenngleich es schwerfallen mag, mit der Größe $\varepsilon_0 \partial e/\partial t$ die Vorstellung eines Stromes zu verbinden, so geht sie dennoch ebenso in die Durchflutungsbilanz ein wie die freien Ströme. Die Bezeichnung *Strom* für die Größe $\varepsilon_0 \partial e/\partial t$ kann zunächst sicherlich als eine rein formale Namensgebung aufgefasst werden, die einfach daher rührt, dass $\varepsilon_0 \partial e/\partial t$ die Dimension einer Stromdichte besitzt und im Durchflutungsgesetz auch völlig gleichberechtigt neben den Ladungsströmen auftritt. Tatsächlich findet man sogar, dass Verschiebungsströme die stetige Fortsetzung von Ladungsströmen bilden, wenn diese irgendwo enden, beispielsweise auf Kondensatorplatten. Die damit verbundene Änderung der Raumladungsdichte erzeugt ein veränderliches elektrisches Feld, welches als Fortsetzung des Ladungsstromes aufgefasst werden kann.

Abb. 2.2: Zum Induktionsgesetz

2.1.3 Induktionsgesetz

Im Induktionsgesetz (2.1b) wird ein Zusammenhang zwischen dem elektrischen Feld *e* und der zeitlichen Änderung $\partial b/\partial t$ der magnetischen Flussdichte festgestellt. Es besagt, dass die Zirkulation (das Umlaufintegral) des elektrischen Feldes entlang einer orientierten geschlossenen Kurve gleich dem negativen Wert der zeitlichen Änderung des gesamten magnetischen Flusses durch jede von der orientierten Kurve berandete Fläche ist. Hierbei ist wieder zu beachten, dass die Orientierung der Randkurve und die Orientierung der Fläche eine Rechtsschraube bilden.

Das Induktionsgesetz wird oft in Verbindung mit Leiterschleifen verwendet und die Vorstellung der Induktion ist nicht selten auch mit der Vorstellung von induzierten Strömen verbunden. Aus diesem Grund betonen wir, dass (2.1b) für beliebige Kurven im Raum (also auch ohne die Präsenz von leitender Materie) immer und überall gilt.

2.1.4 Quellenfreiheit der magnetischen Flussdichte

Die Gleichungen (2.1c) und (2.2c) besagen, dass der magnetische Fluss durch eine *geschlossene* Hülle unter allen Umständen und zu jedem Zeitpunkt gleich Null ist. Dieses ist gleichbedeutend mit der Aussage, die magnetische Flussdichte sei lokal und auch global *quellenfrei*. In dieser Feststellung manifestiert sich die allgemeine und bis heute gültige Beobachtung, dass es keine magnetischen Ladungen bzw. keine magnetischen Monopole gibt, die ihrerseits die Quellen der magnetischen Flussdichte darstellen würden.

Aus der Quellenfreiheit der magnetischen Flussdichte können wir auch folgern, dass durch zwei Flächen A_1 und A_2 der gleiche magnetische Fluss tritt, wenn A_1 und A_2 eine gemeinsame Randkurve $\partial A_1 = \partial A_2$ besitzen und beide Flächen zusammen mit ∂A im Sinne einer Rechtsschraube orientiert sind (Abb. 2.3).

Um durch die Verwendung der Begriffe nicht zu verwirren, wollen wir hier deutlich unterscheiden zwischen den *Quellen*, die durch Divergenzbildung erhalten werden und den *physikalischen Ursachen* eines Feldes. Das magnetische Feld hat wohl physi-

Abb. 2.3: Magnetischer Fluss durch geschlossene Hüllen

kalische Ursachen (nämlich Ladungsströmungen), es besitzt aber keine Quellen im Sinne der Vektoranalysis, welche einen von Null verschiedenen resultierenden Fluss durch geschlossene Hüllen bedingen würden.

2.1.5 Quellen des elektrischen Feldes

Anders dagegen sind die Verhältnisse beim elektrischen Feld. Hier können die Raumladungen ρ als die Quellen des elektrischen Feldes identifiziert werden. Sie setzen sich im Allgemeinen gemäß

$$\rho = \rho_{\rm f} + \rho_{\rm pol} \tag{2.7}$$

aus der Dichte $\rho_{\rm f}$ der freien Ladungen und der Dichte $\rho_{\rm pol}$ der Polarisationsladungen zusammen. Dem entsprechend erhalten wir die einprägsame Aussage, dass der elektrische Fluss $\varepsilon_0 \iint e \cdot dA$ durch eine geschlossene Hülle ∂V gerade gleich der gesamten eingeschlossenen Ladung ist, welche sich als Volumenintegral über die Raumladungsdichte ρ errechnet. Diese Aussage gilt unabhängig von der Form der Ladungsverteilung, die auch punktförmig, linien- oder flächenhaft sein darf.

2.2 Materialgleichungen und Randbedingungen

Die bisher vorgestellten Maxwellschen Gleichungen werden von jedem elektromagnetischen Feld erfüllt, gleichgültig, mit welchem Material der Feldraum gefüllt ist. Dabei haben wir zunächst die Parameter ε und μ zur Beschreibung der Materialeigenschaften eingeführt, ohne deren Bedeutung näher zu erläutern. Ebenso sind wir noch nicht darauf eingegangen, auf welche Weise ein elektromagnetisches Feld in einem endlichen begrenzten Raumvolumen durch Randbedingungen eindeutig festgelegt ist. Zur eindeutigen Lösung der Maxwellschen Gleichungen in einem begrenzten Volumen werden Bedingungen für die Lösung auf den Randflächen des betrachteten Volumens benötigt. Diese werden von der Art der jeweiligen Grenzfläche festgelegt. In diesem Kapitel erläutern wir den feldtheoretischen Hintergrund der Materialparameter und die vektoranalytische Formulierung von Randbedingungen, wobei eine tiefer gehende Beschreibung der zugrunde liegenden Elektrodynamik in diesem Rahmen nicht möglich ist. Der interessierte Leser sei daher auf [17] verwiesen, woran sich auch die folgende Darstellung anlehnt.

2.2.1 Elektrisch polarisierbare Stoffe

Durch Einprägen eines elektrischen Feldes werden im atomaren oder molekularen Bereich bestimmter Substanzen Ladungen verschoben, sodass ein Volumenelement dVdas Dipolmoment dp aufweist. Die zugehörigen physikalischen Mechanismen werden in Abschnitt 6.2.2 erläutert. Zur feldtheoretischen Beschreibung definiert man den Vektor P der elektrischen Polarisation² durch

$$\boldsymbol{P} = \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}\boldsymbol{V}}.\tag{2.8}$$

Führt man zur Beschreibung der lokalen Ladungsverschiebung den Verschiebungsverktor ℓ ein, so ergibt sich die elektrische Polarisation auch durch

$$\boldsymbol{P} = \rho_0 \boldsymbol{\ell} \,, \tag{2.9}$$

wobei ρ_0 die Ladungsdichte der Elektronen im unpolarisierten Zustand angibt. Durch die lokalen Ladungsverschiebungen treten unkompensierte Ladungen auf und bilden im Inneren des polarisierten Nichtleiters die so genannte Polarisationsladungsdichte ρ_{pol} . Die Polarisationsladungen bilden ihrerseits die Quellendichte des elektrischen Polarisationsfeldes *P* und hängen mit diesem über die Beziehung

$$\operatorname{div} \boldsymbol{P} = -\rho_{\mathrm{pol}} \tag{2.10}$$

zusammen. An der Oberfläche des Nichtleiters stellt sich eine unkompensierte Flächenladungsdichte σ_{pol} ein, die bis auf das Vorzeichen den gleichen Wert hat wie der Sprung der Normalkomponente von P an der Oberfläche:

$$\boldsymbol{n} \cdot (\boldsymbol{P}^+ - \boldsymbol{P}^-) = -\sigma_{\text{pol}}. \tag{2.11}$$

Wenn die Polarisation nicht statisch sondern zeitveränderlich ist, fließt durch die ständige Ladungsbewegung ein räumlich verteilter Polarisationsstrom der Dichte

$$J_{\text{pol}} = \rho_0 \frac{\mathrm{d}\boldsymbol{\ell}}{\mathrm{d}t} = \frac{\mathrm{d}\boldsymbol{P}}{\mathrm{d}t}.$$
(2.12)

Der zeitlichen Ableitung d ℓ /dt entspricht dabei die Geschwindigkeit der lokalen Ladungsverschiebung. Der Polarisationsstrom ist dabei ebenso wie die Stromdichte der freien Ladungen eine Komponente der Gesamtstromdichte und ist genauso wie ein freier Ladungsstrom im Durchflutungsgesetz zu berücksichtigen.

²Die hier besprochene Polarisation von Substanzen durch äußere Felder ist nicht zu verwechseln mit der in Abschnitt 2.4.3 behandelten Polarisation ebener elektromagnetischer Wellen.

Die gesamte elektrische Verschiebungsdichte ergibt sich durch Überlagerung der elektrischen Polarisation mit der elektrischen Verschiebungsdichte im Vakuum, also

$$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P}. \tag{2.13}$$

Bei den meisten technischen Dielektrika ist die auftretende elektrische Polarisation proportional zur eingeprägten elektrischen Feldstärke E. Es gilt also der einfache Zusammenhang

$$\boldsymbol{P} = \varepsilon_0 \chi_{\rm el} \boldsymbol{E} \,. \tag{2.14}$$

Der Proportionalitätsfaktor χ_{el} heißt elektrische Suszeptibilität. Setzt man (2.14) in (2.13) ein, so erhält man

$$\boldsymbol{D} = \varepsilon_0 (1 + \chi_{\rm el}) \boldsymbol{E} = \varepsilon_0 \varepsilon_{\rm r} \boldsymbol{E}$$
(2.15)

mit der relativen Permittivitätszahl $\varepsilon_r = 1 + \chi_{el}$.

2.2.2 Magnetisch polarisierbare Stoffe

Die Beschreibung der magnetischen Polarisation gelingt auf ähnliche Weise. Auch hier ist die Einführung des Vektors der magnetischen Polarisation

$$M = \frac{\mathrm{d}m}{\mathrm{d}V} \tag{2.16}$$

als die Volumendichte des magnetischen Dipolmoments m sinnvoll. Das Dipolmoment m eines Volumenelementes dV entsteht durch Ausrichtung atomarer magnetischer Elementardipole, die als infinitesimal kleine Kreisströme beschreibbar sind. Als Ursache der Magnetisierung kann daher auch die Magnetisierungsstromdichte J_{mag} eingeführt werden, die gemäß

$$J_{\rm mag} = \operatorname{rot} M \tag{2.17}$$

ihre Wirbel dort besitzt, wo eine Magnetisierung vorliegt. An der Oberfläche eines magnetisierten Körpers verbleibt eine flächenhafte Magnetisierungsstromdichte K_{mag} , die durch

$$K_{\text{mag}} = \mathbf{n} \times (\mathbf{M}^+ - \mathbf{M}^-) \tag{2.18}$$

gegeben ist. Die Magnetisierungsströme sind – ebenso wie Polarisationsströme – in der Gesamtstromdichte des Durchflutungsgesetzes (2.1a) oder (2.2a) einzusetzen. Bei paramagnetischen und diamagnetischen Substanzen ist M proportional zur äußeren Feldstärke H und es gilt

$$M = \chi_{\rm mag} H \,. \tag{2.19}$$

Dieser proportionale Zusammenhang gilt jedoch *nicht* für ferromagnetische Stoffe, deren nichtlineare Eigenschaften im Abschnitt 4.3.7 behandelt werden. Die Magnetisierung liefert einen Beitrag zur gesamten magnetischen Flussdichte **B**, der sich gemäß

$$\boldsymbol{B} = \boldsymbol{\mu}_0 \boldsymbol{H} + \boldsymbol{M} \tag{2.20}$$

dem Anteil $\mu_0 H$ überlagert. Damit ergibt sich völlig analog zu (2.15) die Materialgleichung

$$B = \mu_0 (1 + \chi_{\text{mag}}) H = \mu_0 \mu_r H$$
(2.21)

mit der magnetischen Suzeptibilität χ_{mag} und der relativen Permeabilitätszahl $\mu_r = 1 + \chi_{mag}$.

Mit den so eingeführten Materialgrößen ε_r und μ_r zur makroskopischen Beschreibung elektrischer und magnetischer Polarisationsphänomene finden wir die folgende Form der Maxwellschen Gleichungen:

$$rot H = J_{f} + j\omega D$$
(2.22a)
$$-rot E = j\omega B$$
(2.22b)

$$\operatorname{div} \boldsymbol{B} = 0 \tag{2.22c}$$

$$\operatorname{anv} \boldsymbol{D} = \rho_{\mathrm{f}}.$$

Die Eigenschaften der Materie sind hier durch

$$D = \varepsilon_0 \varepsilon_r E$$
(2.23a)
$$B = \mu_0 \mu_r H$$
(2.23b)

beschrieben, sodass in (2.22a–d) nur noch freie Ströme und Ladungen auftreten. Eine Übersicht aller Formen der Maxwellschen Gleichungen mit den jeweiligen Bedeutungen der darin vorkommenden Größen j und ρ ist in Tabelle 2.1 auf der nächsten Seite gegeben.

2.2.3 Grenzflächen

An Grenzflächen zwischen verschiedenen Medien, deren elektromagnetische Eigenschaften durch ε und μ beschrieben sind, gelten feste Randbedingungen, die vom elektromagnetischen Feld erfüllt werden (müssen). Diese Randbedingungen gelten lokal, also in infinitesimal kleinen Bereichen an beliebig gekrümmten Grenzflächen. Zur Vereinfachung werden unten nur ebene und unendlich ausgedehnte Grenzflächen betrachtet. Die allgemeinen Randbedingungen sind jedoch Voraussetzung zur Bestimmung der auftretenden Felder und werden hier kurz angegeben.

Durch die Zählrichtung für die Normalenrichtung wird eine Fläche *orientiert*. Es wird eine Richtung für positive Zählung eingeführt und daher werde die Seite der Grenzfläche, welche der Normalenzählung abgewandt ist, mit – bezeichnet, der zugehörige Grenzwert eines Feldes F sei der linksseitige Grenzwert F^- . Der rechtsseitige Grenzwert ist entsprechend mit F^+ bezeichnet (Abb. 2.4).

gerform) Differenzialform	Differenzialform	$\operatorname{rot} \boldsymbol{B} = \mu_0 \left(\boldsymbol{J} + j\omega\varepsilon_0 \boldsymbol{E} \right)$ $-\operatorname{rot} \boldsymbol{E} = j\omega \boldsymbol{B}$ $\operatorname{div} \boldsymbol{B} = 0$ $\operatorname{div} \boldsymbol{E} = \frac{\rho}{\varepsilon_0}$	$rot H = J + j\omega D$ $-rot E = j\omega B$ $div B = 0$ $div D = \rho$		
Frequenzbereich (Zei	Integralform	$\oint_{\partial A} \mathbf{B} ds = \mu_0 \left(\iint_A \mathbf{J} dA + j\omega \varepsilon_0 \iint_A \mathbf{E} dA \right)$ $- \oint_{\partial A} \mathbf{E} ds = j\omega \iint_A \mathbf{B} dA = 0$ $\bigoplus_{\partial V} \mathbf{E} dA = 0$ $\bigoplus_{\partial V} \mathbf{E} dA = i \iint_V \rho dV$	$\oint_{\partial A} H ds = \iint_{A} J dA + j\omega \iint_{A} D dA$ $- \oint_{\partial A} E ds = j\omega \iint_{A} B dA$ $= \iint_{\partial V} B dA = 0$ $\bigoplus_{\partial V} D dA = \iint_{A} \rho dV$		
	Differenzialform	$\operatorname{rot} \boldsymbol{b} = \mu_0 \left(\boldsymbol{j} + \varepsilon_0 \frac{\partial \boldsymbol{e}}{\partial t} \right)$ $-\operatorname{rot} \boldsymbol{e} = \frac{\partial \boldsymbol{b}}{\partial t}$ $\operatorname{div} \boldsymbol{b} = 0$ $\operatorname{div} \boldsymbol{e} = \frac{\rho}{\varepsilon_0}$	$\operatorname{rot} \boldsymbol{h} = \boldsymbol{j} + \frac{\partial \boldsymbol{d}}{\partial t}$ $-\operatorname{rot} \boldsymbol{e} = \frac{\partial \boldsymbol{b}}{\partial t}$ $\operatorname{div} \boldsymbol{b} = 0$ $\operatorname{div} \boldsymbol{d} = \rho$		
Zeitbereich	Integralform	$\oint_{\partial A} b \mathrm{d}s = \mu_0 \left(\iint_A f + \varepsilon_0 \iint_A \frac{\partial e}{\partial t} \mathrm{d}A \right)$ $- \oint_{\partial A} e \mathrm{d}s = \iint_A \frac{\partial b}{\partial t} \mathrm{d}A$ $\bigoplus_{\partial V} b \mathrm{d}A = 0$ $\bigoplus_{\partial V} e \mathrm{d}A = 0$ $\bigoplus_{\partial V} e \mathrm{d}A = -1 \iint_V \rho \mathrm{d}V$	$ \oint_{\partial A} h ds = \iint_{A} j dA + \iint_{A} \frac{\partial d}{\partial t} dA $ $ - \oint_{\partial A} e ds = \iint_{A} \frac{\partial b}{\partial t} dA $ $ \bigoplus_{\partial V} b dA = 0 $ $ \bigoplus_{\partial V} dA = \iint_{V} \rho dV $		
		$j = j_{\rm f} + j_{\rm mag} + j_{\rm pol}$ $\rho = \rho_{\rm f} + \rho_{\rm pol}$	$j = j_f$ $p = p_f$ $d = \varepsilon_0 \varepsilon_f e$ $b = \mu_0 \mu_r h$		
		niəməglla	nətlörgleirəteM tim		

Tabelle 2.1: Verschiedene Formen der Maxwellschen Gleichungen

Abb. 2.4: Orientierte Grenzfläche S und Normalenvektor n

Von einem Vektorfeld F erhält man durch die Operation $n \cdot F$ die Normalkomponente und durch $n \times F$ die Tangentialkomponente. Deshalb ergibt $n \cdot (F^+ - F^-)$ den Sprung der Normalkomponente von F und $n \times (F^+ - F^-)$ den Sprung der Tangentialkomponente von F.

Die elektromagnetischen Randbedingungen an einer beliebigen Grenzfläche für die Felder E und B lauten

$$\boldsymbol{n} \cdot (\boldsymbol{E}^+ - \boldsymbol{E}^-) = \frac{\sigma}{\varepsilon_0} \tag{2.24a}$$

$$\boldsymbol{n} \times (\boldsymbol{E}^+ - \boldsymbol{E}^-) = \boldsymbol{0} \tag{2.24b}$$

$$n \cdot (B^+ - B^-) = 0 \tag{2.24c}$$

$$\boldsymbol{n} \times (\boldsymbol{B}^+ - \boldsymbol{B}^-) = \mu_0 \boldsymbol{K}, \qquad (2.24d)$$

wobei σ die *Flächenladungsdichte* ($[\sigma] = A s/m^2$) und *K* die *Flächenstromdichte* ([K] = A/m) bezeichnen. In Worten bedeuten diese Randbedingungen [17]:

- Die Normalkomponente der elektrischen Feldstärke ist an geladenen Flächen unstetig und springt dort um σ/ε₀.
- Die Tangentialkomponente des elektrischen Feldes ist stetig.
- Die Normalkomponente der magnetischen Flussdichte ist stetig.
- Die zum Flächenstrom *K* senkrechte Tangentialkomponente der magnetischen Flussdichte ist unstetig und springt dort um μ₀|*K*|. Die *K*-parallele Tangentialkomponente ist stetig.

2.3 Skineffekt

2.3.1 Leitfähigkeit und Wirbelströme

Ein Material weist dann eine elektrische Leitfähigkeit auf, wenn ein Teil seiner Elektronen (oder allgemein: seiner Ladungsträger) nicht fest gebunden, sondern beweglich ist. Ein elektrisches Feld e übt eine Kraft auf diese Ladungsträger aus und versetzt diese in Bewegung, sodass eine Ladungströmung vorliegt. Allerdings nimmt auch bei konstanter Kraft F auf die Ladungsträger deren Driftgeschwindigkeit v_D nicht beständig zu. Dies ist nicht weiter überraschend wenn man bedenkt, dass sich die Ladungsträger im Atomverband der Materie nicht ungehindert bewegen können

Abb. 2.5: Ausbildung von Wirbelströmen in leitfähigen Materialien

sondern durch Stöße immer wieder kinetische Energie verlieren und eine Ablenkung erfahren. Für den Fall, dass kein äußeres magnetisches Feld vorliegt, erhalten wir einen proportionalen Zusammenhang zwischen der Stromdichte j und der elektrischen Feldstärke e:

$$\boldsymbol{j} = \boldsymbol{\kappa} \cdot \boldsymbol{e} \tag{2.25}$$

Diese Beziehung ist das verallgemeinerte ohmsche Gesetz für ruhende Leiter. Sie entspricht dem bekannten makroskopischen Zusammenhang $I = G \cdot U$ mit dem Leitwert G des betreffenden Bauelements.

Liegt in einem leitfähigen Material ein zeitveränderliches magnetisches Feld b(t) vor, so ist dieses Magnetfeld gemäß (2.2b) von einem elektrischen Wirbelfeld begleitet, welches wiederum eine Stromdichte j in dem Leiter verursacht. In diesem Fall spricht man von *Wirbelströmen*. Die tatsächliche Berechnung solcher Wirbelstromverteilungen ist jedoch nicht elementar, weil außer dem elektrischen Feld e auch das magnetische Feld b eine Kraft auf die bewegten Ladungsträger ausübt. Dem elektrischen Feld e ist also auch noch der Anteil $v_D \times b$ überlagert. Die Beziehung (2.25) ist in der Form

$$\boldsymbol{j} = \kappa \left(\boldsymbol{e} + \boldsymbol{v}_{\mathrm{D}} \times \boldsymbol{b} \right) \tag{2.26}$$

zu modifizieren. Eine ähnliche Abwandlung der Problemstellung ergibt sich, wenn der Leiter selbst bewegt ist. Aus diesem Grund gilt (2.25) in dieser Form nur für *ruhende* Leiter.

2.3.2 Stromdichte in kreiszylindrischen Leitern

Um eine (stark vereinfachte) Vorstellung vom Zustandekommen einer Stromverdrängung zu erhalten, nehmen wir zunächst an, dass in einem kreiszylindrischen Draht

Metall	Leitfähigkeit κ (10 ⁶ \$/m)	Metall	Leitfähigkeit κ (10 ⁶ S/m)	Metall	Leitfähigkeit κ (10 ⁶ S/m)
Quecksilber	1,04	Blei	4,8	Kalium	14,3
Aluminium	30	Eisen	10,2	Platin	10
Kupfer	58	Silber	62,5	Gold	41

Tabelle 2.2: Leitfähigkeit verschiedener Metalle

mit der Querschnittsfläche *A* eine homogene und axiale Stromverteilung j(t) vorliegt. Der Leiter wird dann vom Gesamtstrom $i = |j| \cdot A$ durchflossen und gemäß dem ohmschen Gesetz (2.25) liegt dann ein ebenso homogenes elektrisches Feld e(t) vor, auf dessen Ursachen wir hier nicht weiter eingehen wollen.

Die Stromverteilung j(t) erzeugt ein konzentrisches Magnetfeld h(t), welches wiederum von einem elektrischen Feld derart begleitet wird, dass überall das Induktionsgesetz erfüllt wird. Die angenommene homogene Feldverteilung kann dieses offenbar nicht leisten. Zur Verdeutlichung genügt es, einen rechteckigen Integrationsweg wie in Abb. 2.6 gezeigt, zu wählen. Dieses Rechteck wird von einem zeitveränderlichen magnetischen Feld durchflutet, das Umlaufintegral der elektrischen Feldstärke würde jedoch bei homogenem axialem Feld verschwinden. Das Gesamtfeld muss also so beschaffen sein, dass es zur Leiteroberfläche hin in seiner Feldstärke anwächst, damit die Vorzeichen der Umlaufspannung und der magnetischen Durchflutung gemäß (2.1b) verschieden sind.

Nachdem uns diese einfache Überlegung verdeutlicht, dass (zumindest bei zeitveränderlichen Strömen) keine homogene Verteilung vorliegen kann, wollen wir mit Hilfe der einschlägigen Gesetze die tatsächliche Stromverteilung ableiten. Hierzu be-

Abb. 2.6: Zur Erläuterung der Stromverdrängung an die Leiteroberfläche

trachten wir einen Ausschnitt aus der Leiteroberfläche, der so klein sei, dass die Oberfläche als plan angenommen werden kann.

Innerhalb des Leiters wählen wir am Ort $x = x_0$ zwei infinitesimale quadratische Umläufe 1 und 2 deren Kanten parallel zu den Koordinatenrichtungen verlaufen (Abb. 2.7). Zur Vereinfachung der Rechnung verwenden wir die Zeigerdarstellung der Feldgrößen. Die Orientierung der Umläufe ist rechtshändig zu den Zählrichtungen der Feldgrößen zu wählen.

Als ersten Schritt stellen wir das Durchflutungsgesetz für den Umlauf 1 auf. Dabei setzen wir voraus, dass *H* nur eine *x*-abhängige *z*-Komponente besitze, also von der Form $H = H_z(x) \cdot e_z$ sei. Wir schreiben dann einfach $H(x) := H_z(x)$.

$$\oint_{1} \boldsymbol{H} \cdot d\boldsymbol{s} = H(\boldsymbol{x}) \cdot d\boldsymbol{z} - H(\boldsymbol{x} + d\boldsymbol{x}) \cdot d\boldsymbol{z} = J(\boldsymbol{x}_{0}) \cdot d\boldsymbol{x} \cdot d\boldsymbol{z}$$
(2.27)

Durch den Grenzübergang d $x \rightarrow 0$ erhalten wir den differenziellen Zusammenhang

$$J(x) = -\frac{\mathrm{d}H(x)}{\mathrm{d}x} \,. \tag{2.28}$$

Ebenso muss für den Umlauf 2 das Induktionsgesetz gelten. Wir nehmen wieder an, dass J und damit E nur eine y-Komponente besitzen und erhalten

$$\oint_{2} \boldsymbol{E} \cdot d\boldsymbol{s} = E(\boldsymbol{x} + d\boldsymbol{x}) \cdot d\boldsymbol{y} - E(\boldsymbol{x}) \cdot d\boldsymbol{y} = -j\omega\mu \cdot H(\boldsymbol{x}_{0}) \cdot d\boldsymbol{x} \cdot d\boldsymbol{y}, \qquad (2.29)$$

was durch den oben beschriebenen Grenzübergang zur weiteren Bestimmungsgleichung

$$j\omega\mu \cdot H(x) = -\frac{\mathrm{d}E(x)}{\mathrm{d}x} \tag{2.30}$$

führt. Schließlich stellt noch das ohmsche Gesetz

$$J = \kappa \cdot E \tag{2.31}$$

einen Zusammenhang zwischen J und E her. Die Gleichungen (2.28), (2.30) und (2.31) stellen die Bestimmungsgleichungen für die drei unbekannten Größen H, J und E dar. Einsetzen von (2.31) in (2.30) ergibt

$$j\omega\mu H(x) = -\frac{1}{\kappa} \cdot \frac{\mathrm{d}J(x)}{\mathrm{d}x} \,. \tag{2.32}$$

Durch einmaliges Differenzieren dieser Gleichung nach x und mit (2.28) erhalten wir die homogene Differenzialgleichung

$$\frac{\mathrm{d}^2 J(x)}{\mathrm{d}x^2} - j\omega\mu\kappa \cdot J(x) = 0$$
(2.33)

für die Stromdichte J(x). Eine Differenzialgleichung von Typ (2.33) besitzt als Lösungen Funktionen der Gestalt $J(x) = k \cdot e^{\gamma x}$, wobei die Abkürzung $\gamma^2 = j\omega\mu\kappa$ eingeführt wurde. Mit den beiden komplexen Wurzeln

$$\gamma = \pm \sqrt{\frac{\omega \kappa \mu}{2}} (1+j) \tag{2.34}$$

und der zusätzlichen Forderung $J(x \rightarrow \infty) = 0$ finden wir den Verlauf

$$J(x) = J(0) \cdot e^{-\sqrt{\frac{\omega \kappa \mu}{2}} \cdot x} \cdot e^{-j\sqrt{\frac{\omega \kappa \mu}{2}} \cdot x}$$
(2.35)

der Stromdichte J(x). Die Konstante k besitzt offensichtlich die Bedeutung der Stromdichte an der Stelle x = 0.

2.3.3 Definition der Eindringtiefe

Die Funktion (2.35) gibt Aufschluss über den Verlauf der Stromdichte von der Oberfläche eines Leiters zu dessen Innerem hin. Der Betrag |J(x)| fällt von seinem Maximum an der Oberfläche aus exponentiell ab, während die Phase linear mit wachsendem x kleiner wird. Die Tiefe $x = \delta$, an der der Betrag der Stromdichte auf das 1/e-fache abgefallen ist, bezeichnet man als die *Eindringtiefe* oder häufig auch als *äquivalente Leitschichtdicke*. Sie berechnet sich zu

$$\delta = \sqrt{\frac{2}{\omega\kappa\mu}} \tag{2.36}$$

und beschreibt die Verhältnisse bei gegebenen Materialeigenschaften κ und μ und bei gegebener Frequenz f. Mit Hilfe der Eindringtiefe δ kann (2.35) auf die einfachere

Abb. 2.8: Zur Berechnung der Oberflächenstromdichte und des spezifischen Oberflächenwiderstandes

Form

$$J(x) = J(0) \cdot e^{-\frac{x}{\delta}} \cdot e^{-j\frac{x}{\delta}}$$
(2.37)

gebracht werden.

Oberflächenstromdichte

Mit Hilfe des bekannten Verlaufs (2.37) kann nun bestimmt werden, welcher Gesamtstrom ΔI in einem Leiterstreifen der Breite Δz fließt. Er ergibt sich durch die Integration

$$\Delta I = \int_{z_0}^{z_0 + \Delta z} \int_{0}^{\infty} J(x) \, \mathrm{d}x \, \mathrm{d}z$$
(2.38)

der Stromdichte über die Querschnittsfläche eines Leiterstreifens der Breite Δz . Damit ergibt sich für die *Oberflächenstromdichte* $I_{\rm F} = \Delta I / \Delta z$ der Ausdruck

$$I_{\rm F} = J(0) \frac{\delta}{1+j} \,. \tag{2.39}$$

Zwischen der vektoriellen Oberflächenstromdichte I_F und der tangentialen magnetischen Feldstärke H(0) besteht der Zusammenhang

$$I_{\rm F} = \boldsymbol{n} \times \boldsymbol{H}(0) \,. \tag{2.40}$$

Spezifischer Oberflächenwiderstand

Der flächenbezogene Widerstand eines kleinen quadratischen Oberflächensegments mit den Abmessungen $\Delta z \cdot \Delta y$ wird als spezifischer Oberflächenwiderstand bezeichnet.

Abb. 2.9: Vektorieller Zusammenhang zwischen Oberflächenstromdichte und tangentialem magnetischen Feld am Beispiel einer Mikrostreifenleitung

Er ist bestimmt durch den Quotienten aus der Spannung

$$U = E(0) \cdot \Delta y \tag{2.41}$$

entlang der Strecke Δy und dem Gesamtstrom

$$I = |I_{\rm F}| \cdot \Delta z \tag{2.42}$$

in einem Streifen der Breite Δz . Für eine kleine quadratische Einheitsfläche $\Delta z = \Delta y$ ergibt sich also der flächenbezogene Widerstand

$$Z_* = R_* + jX_* = \frac{U}{I} = \frac{E(0)}{|I_{\rm F}|} = \frac{1}{\kappa\delta} + j\frac{1}{\kappa\delta}.$$
(2.43)

Es ist also $R_* = X_*$.

2.3.4 Anwendungsbeispiele

Die Tatsache, dass elektromagnetische Felder und die Stromdichte zum Inneren eines Leiters sehr schnell abklingen, hat neben der unerwünschten Widerstandszunahme auch Nutzeffekte. So können metallische Gehäuse dazu verwendet werden, elektronische Schaltungen gegen äußere Störfelder abzuschirmen. Ebenso kann metallische Schirmung die Abstrahlung von Energie, die an anderer Stelle Störungen verursachen kann, verhindern. Dabei ist bereits bei Frequenzen im Megahertzbereich die Eindringtiefe so klein, dass jede aufbautechnisch sinnvolle Blechdicke ausreicht, um hohe Schirmdämpfungen zu erreichen.

Eine weitere Folge des Skineffektes ist, dass im Mikrowellenbereich nicht das ganze Volumen eines metallischen Bauelementes aus gutem Leiter hergestellt sein muss. Es genügen nur wenige Mikrometer gut leitenden Materials an der Oberfläche, welches zum Beispiel galvanisch aufgebracht werden kann. Die heutige Metallisierungstechnik ermöglicht dadurch sogar die Fertigung von mechanisch aufwändigen Mikrowellenstrukturen mit kostengünstiger Kunststoffspritzgusstechnik in großen Stückzahlen. **Beispiel 2.1** Ein Abschirmblech aus Aluminium für die Vorstufe eines Fernsehempfängers des Bereichs I (47 MHz ... 68 MHz) soll eine Schirmdämpfung von 120 dB garantieren. Die äquivalente Leitschichtdicke an der unteren Bandgrenze ist

$$\delta = \sqrt{\frac{2}{\omega \kappa_{\rm Al} \mu_0}} = \sqrt{\frac{2}{2\pi \cdot 47 \cdot 10^6 \, \text{l/s} \cdot 30 \cdot 10^6 \, \text{S/m} \cdot 4\pi \cdot 10^{-7} \, \text{Vs/Am}}} = 13.4 \, \mu\text{m} \, .$$

Für eine Schirmdämpfung von 120 dB ergibt sich aus

 $J(x) = J(0) \cdot e^{-\frac{x}{\delta}} \cdot e^{-j\frac{x}{\delta}}$

die Bedingung

$$e^{-\frac{x_{\min}}{\delta}} = 10^{-\frac{120\,\mathrm{dB}}{20\,\mathrm{dB}}}$$

und damit schließlich eine minimal erforderliche Blechdicke von

 $x_{\min} = 185 \,\mu m$.

Beispiel 2.2 Zum Schutz vor Korrosion und zur Verringerung der Leiterverluste werden Mikrowellenbauelemente häufig galvanisch vergoldet. Nimmt man beispielsweise an, dass ein aus Messing gefertigtes Bauelement für den Betrieb im Ka-Band (Mittenfrequenz $f_m = 33,25$ GHz, siehe Tabelle 6.3 auf Seite 180) vergoldet werden soll und fordert man ferner, dass die Stromdichte an der Grenzfläche Gold-Messing auf 5% ihres Oberflächenwertes abgefallen sein soll, so folgt aus der Bedingung

$$\frac{|J(x)|}{|J(0)|} = e^{-\frac{x}{\delta}} = 0.05$$

eine Goldschichtdicke von

$$x = -\delta \cdot \ln(0,05) = -\sqrt{\frac{2}{\omega \kappa_{Au} \mu_0}} \cdot \ln(0,05)$$
$$= \sqrt{\frac{2}{2\pi \cdot 33,25 \cdot 10^9 \, \text{l/s} \cdot 41 \cdot 10^6 \, \text{s/m} \cdot 4\pi \cdot 10^{-7} \, \text{Vs/Am}}} \cdot \ln(0,05) = 1,29 \, \mu\text{m} \cdot 10^{-7} \, \text{Vs/Am}}$$

2.4 Ebene Wellen

2.4.1 Die Wellengleichung

Wir betrachten den Sonderfall, dass der gesamte Raum mit einem homogenen und verlustfreien Isolator erfüllt ist. Es soll also keine Ladungsströmungen J und auch keine Raumladungen ρ geben und die Materialparameter ε_r und μ_r sollen nicht ortsabhängig sein. Unter diesen Voraussetzungen nimmt das System der Maxwellschen Gleichungen (2.2) die einfachere Gestalt

$\operatorname{rot} \boldsymbol{H} = j\omega\varepsilon\boldsymbol{E}$	(2.44a)
$rot E = -i\omega u H$	(2.44b)

$$rot \mathbf{E} = -j\omega\mu\mathbf{H}$$
(2.44b)
$$div \mathbf{H} = 0$$
(2.44c)

$$\operatorname{div} \boldsymbol{E} = 0 \tag{2.44d}$$