Arne Von Berswordt

Entwicklung und Scale-up zur Synthese organischer Harze

Masterarbeit

BEI GRIN MACHT SICH IHR WISSEN BEZAHLT

- Wir veröffentlichen Ihre Hausarbeit,
 Bachelor- und Masterarbeit
- Ihr eigenes eBook und Buch weltweit in allen wichtigen Shops
- Verdienen Sie an jedem Verkauf

Jetzt bei www.GRIN.com hochladen und kostenlos publizieren

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Impressum:

Copyright © 2020 GRIN Verlag ISBN: 9783346722423

Dieses Buch bei GRIN:

Arne Von Berswordt	
Entwicklung und Scale-up zur Synthese organisc Harze	her

GRIN - Your knowledge has value

Der GRIN Verlag publiziert seit 1998 wissenschaftliche Arbeiten von Studenten, Hochschullehrern und anderen Akademikern als eBook und gedrucktes Buch. Die Verlagswebsite www.grin.com ist die ideale Plattform zur Veröffentlichung von Hausarbeiten, Abschlussarbeiten, wissenschaftlichen Aufsätzen, Dissertationen und Fachbüchern.

Besuchen Sie uns im Internet:

http://www.grin.com/

http://www.facebook.com/grincom

http://www.twitter.com/grin_com

Technische Hochschule Georg Agricola

Masterarbeit

Entwicklung und Scale-Up zur Synthese organischer Harze

In dieser Masterarbeit geht es darum, den Herstellungsprozess von Chlorcyan als Edukt zur zweistufigen Synthese eines Cyanatesterharzes zu optimieren und ein Novolak Cyanatester herzustellen. Die höchste Chlorcyanausbeute (89,8%) wurde unter Verwendung einer 10%igen Salzsäure und einer hohen Dosiergeschwindigkeit der Edukte erreicht. Anschließend konnte das gewonnene CICN via Novolak Phenolharz in Gegenwart eines tertiären Amins in der zweiten Stufe erfolgreich zum Zielprodukt Novolak Cyanatester umgesetzt werden. Zukünftig liegt der Fokus der Prozessoptimierung auf der Zugabe des tertiären Amins.

Abstract:

The aim of this master thesis is to optimize the production process of cyanogen chloride as educt for the two-step synthesis of a cyanate ester resin and to produce a novolac cyanate ester. The highest yield of cyanogen chloride (89.8%) was achieved using a 10% hydrochloric acid and a high dosing rate of the reactants. Subsequently, in the second stage, the obtained CICN was successfully converted via Novolac phenolic resin in the presence of a tertiary amine to the target product Novolac cyanate ester. In the future, the focus of process optimization will be on the addition of the tertiary amine.

Inhaltsverzeichnis

l.	Abl	bildungsverzeichnis	IV			
II.	Tal	bellenverzeichnis	V			
III.	. Abkürzungsverzeichnis					
IV.	Formelverzeichnis					
1	Zie	elsetzung	1			
2	The	eoretischer Hintergrund	2			
2	2.1	Chlorcyan als Edukt	32			
2	2.2	Cyanatester als Produkt	37			
3	Vei	rsuchsaufbau & Durchführung	44			
3	3.1	Versuchsapparatur zur Herstellung von Chlorcyan	46			
(3.2	Versuchsdurchführung zur Synthese von Chlorcyan	48			
3	3.3	Versuchsapparatur zur Herstellung von Cyanatester	51			
3	3.4	Versuchsdurchführung zur Synthese von Cyanatester	53			
4	Vei	rsuchsauswertung	58			
4	l.1	Versuchsauswertung Herstellung von Chlorcyan	58			
	4.1	.1 Lagerstabilität des Chlorcyans	73			
4	1.2	Versuchsauswertung zur Herstellung von Cyanatester via CICN	77			
4	1.3	Versuchsauswertung zur Herstellung von Cyanatester via BrCN	80			
4	1.4	Synthese via BrCN vs. CICN	82			
5	Ana	alytische Methoden und Messgeräte	83			
6	Schlussbetrachtung88					
7	Literaturverzeichnis 9					

I. Abbildungsverzeichnis

Abbildung 1: Allgemeine Strukturform herkömmlicher CE-Monomere ^{3,S,2}	2
Abbildung 2: Zusammenhang zwischen der Glasübergangstemperatur Tg und Bruchdehnung BMI-, Epoxid- und CE-Harzen ^{,S.432}	
Abbildung 3: Thermisches Verhalten verschiedener kommerzieller Cyanatesterharze, S.40	6
Abbildung 4:Vergleichendes Hygrodehnungsverhalten und dielektrische Eigenschaften (im gequollenen Zustand) von Epoxid-, BMI- und CE-Harzen ¹⁵	
Abbildung 5: Hydrolyse von Polycyanurat ^{19,S.532}	10
Abbildung 6: Umsetzung von Cyanatester zu Carbamat ^{.S.527}	11
Abbildung 7: Struktureller Aufbau von Lignin ⁶	25
Abbildung 8: Chemische Strukturformel von Trans-Anethol ⁶⁴	26
Abbildung 9: Synthese von Kreosol aus Lignin ⁶⁷	27
Abbildung 10: Synthese von Bisphenol A (BPA) ⁶⁷	28
Abbildung 11: Global market development from the period 2016-2026 ⁷⁰	29
Abbildung 12: Region and country wise statistics of the global cyanate ester resins market the period 2016-2026 ⁷⁰	
Abbildung 13: Oligomerisierung von CICN zu C ₃ Cl ₃ N ₃ ⁸⁰	37
Abbildung 14: Allgemeines Reaktionsschema für die Herstellung von Cyanatester ^{15, S.11}	38
Abbildung 15: Mögliche Nebenreaktionen bei der Herstellung von Cyanatestern	39
Abbildung 16: Hydrolyse von Cyanaten während des Aushärteprozesses ^{5, S,9}	40
Abbildung 17: Aushärtungsprozess via Cyclotrimerisierungsprozess ^{5, S.2}	41
Abbildung 18: Isotherme Polymerisation von unkatalysiertem BADCy ^{5, S.3}	43
Abbildung 19: Versuchsapparatur CICN	47
Abbildung 20: HCN-polymerisation bei der Zugabe der NaCN-Lsg. auf halber Kolonnenhöhe	∍48
Abbildung 21: Apparatur zur Synthese von CE	52
Abbildung 22: Zusammenhang Ausbeute (ClCN) bez. auf Cl ₂ und Dosierrate (Cl ₂)	60
Abbildung 23: Zusammenhang Ausbeute (CICN) bez. auf NaCN und Dosierrate (NaCN)	61
Abbildung 24: Zusammenhang Ausbeute (CICN) und Verhältnis NaCN:Cl ₂	62
Abbildung 25: HCN-Polymerisation in der Kolonne	66
Abbildung 26: Nahaufnahme Polymerisationsbereich	66
Abbildung 27: Zusammenhang Ausbeute (ClCN) bez. auf Cl ₂ und Dosierrate (Cl ₂)	68
Abbildung 28: Zusammenhang Ausbeute (CICN) bez. auf NaCN und Dosierrate (NaCN)	69
Abbildung 29: Zusammenhang Ausbeute (CICN) und Verhältnis NaCN:Cl ₂	70
Abbildung 30: Vergleich der CICN Ausbeute bzgl. Cl ₂	71
Abbildung 31: Vergleich der CICN Ausbeute bzgl. NaCN	72
Abbildung 32: Titrigramm einer Cyanidbestimmung	84

II. Tabellenverzeichnis

Tabelle 1: Handelsnamen und Typen kommerzieller CE Produkte ^{6,S.451}	14
Tabelle 2: Stoffdaten Cyanwasserstoff	45
Tabelle 3: Blausäureaustritt als Gefährdung der Abluft	45
Tabelle 4: Blausäureaustritt als Gefährdung der Umwelt	45
Tabelle 5: Liste relevanter Stoffe (Herstellung CICN)	50
Tabelle 6: Liste relevanter Stoffe (Herstellung von CE via CICN)	55
Tabelle 7: Liste relevanter Stoffe (Herstellung von CICN via BrCN)	57
Tabelle 8: Versuchsreihe zur Synthese von CICN mit 10%iger HCI	59
Tabelle 9: Versuchsreihe zur Synthese von CICN mit 15%iger HCI	64
Tabelle 10: Übersicht der Lagerstabilität CICN in Kombination verschiedener Additive	76
Tabelle 11: Versuchsdurchführung CE via CICN	77
Tabelle 12: Masse CE via CICN nach Trocknung	79
Tabelle 13: Synthese CE via BrCN	80
Tabelle 14: Masse CE via BrCN nach Trocknung	81
Tabelle 15: Parameter GC-MS (Intern)	87
Tabelle 16: Parameter GC-MS (Extern)	87

III. Abkürzungsverzeichnis

Å	_Ångström
Ag	Silber
Ag(CN) ₂	
AgNO ₃	
AG	
AGW	Arbeitsplatzgrenzwert
Al	
APAC	
Äq	_Äquivalent
BADCy	Bisphenol A Dicyanate
BAM	
Be	
BECy	Bisphenol E Cyanate ester
BMI	Bismaleinimidharz
BrCN	_Bromcyan
BPA	_Bisphenol A
c	Stoffmengenkonzentration
C	
CAS	_Chemical Abstract Service
CAGR	_Compound Annual Growth Rate
CE	_Cyanatester
CEH	<u>.</u> Cyanatesterharz
CH ₂ NO ₂	_Carbamat
Ck	_Chlorcyan
Cl ₂	Chlor
CICN	_Chlorcyan
cm	_Zentimeter
cm ⁻¹	Wellenzahl
CN	_Cyanid
Co	_Compagnie
Co	_Cobalt
CO ₂	Kohlenstoffdioxid
Cp	_spezifische Wärmekapazität
Cu	_Kupfer