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PREFACE 

This monograph presents a new approach to the investigation of ergodicity and 
stability problems for homogeneous Markov chains with a discrete-time and with 
values in a measurable space. The main purpose of this book is to highlight various 
methods for the explicit evaluation of estimates for convergence rates in ergodic 
theorems and in stability theorems for wide classes of chains. These methods are 
based on the classical perturbation theory of linear operators in Banach spaces and 
give us new results even for finite chains. 

Let X = (Xt,t > 0) be a homogeneous discrete-time Markov chain with values 
in a measurable state space (E,£). From the analytical point of view, any chain 
can be considered as its transition kernel P on (E,£). This kernel defines one-step 
ahead probabilities. A linear operator defined in the usual way on the Banach space 
m£ of finite signed measures on £ corresponds to the kernel P. 

Using this relationship, the theory of quasicompact chains was developed over 
the last four decades by means of the linear operator theory, [Doeblin (1940), Yosida 
and Kakutani (1941), Bogolyubov and Krein (1946), Krein and Rootman (1948), 
Hille and Phillips (1957); see also Neveu (1964), Chapter 5; Revuz (1975), Chap-
ter 6]. Quasicompact chains are often also called uniformly ergodic, uniformly 
recurrent, strong positive recurrent, or uniformly mixing chains. Uniformly er-
godic chains possess some important properties and are widely used in applica-
tions: see Doob (1953), Nagaev (1961), Davydov (1973), Brunei and Revuz (1974), 
Zubkov (1979), Kalashnikov (1981), Anisimov (1988), Korolyuk and Turbin (1976), 
(1978), (1982). In particular, the uniform recurrence of a chain can be easily checked 
by a simple criterion for the quasicompactness, such as the uniform mixing con-
dition or the Doeblin condition, that is expressed in terms of its transition kernel 
P . This fact makes simpler the checking of corresponding conditions and also al-
lows us to obtain bounds for the convergence in the form of explicit inequalities. 
Such bounds are uniform on wide classes of Markov chains — because an "ergod-
icity index" of a quasicompact chain can be effectively expressed in terms of its 
kernel P . 

Often we do not know precisely the transition probabilities and only estimates for 
some moment functionals of a chain are available. For this reason we must use only 
uniform limit theorems that are valid in certain neighborhoods of the transition 
operator. Therefore, uniform bounds obtained below are of a certain interest, and 
especially in statistics. 

Ergodic properties of the quasicompactness follow from the simple structure of 
the spectrum of the linear operator P. It is clear that this spectrum depends not 
only on the analytical definition of the kernel P but also on properties of the Banach 
space m£. We show that a restriction of the domain of the operator P from m£ to 

l 



2 STRONG STABLE MARKOV CHAINS 

some P-invariant subspace VJl C m£ with a norm ||-|| can essentially improve the 
spectral characteristics of the operator P. Often this approach allows us to obtain 
ergodic properties of a chain that is not quasicompact from ones of a quasicompact 
chain. The investigation of the quasicompactness in this extended sense is our first 
goal. 

Another purpose of the monograph is to introduce and investigate the stability 
property of a Markov chain. Each chain can be considered as a map of its transi-
tion operator to a set of finite-time distributions, ergodic distributions and other 
characteristics, that are calculated by one-step transition probabilities. The chain 
with the operator P is said to be strong stable if this map is continuous at the 
point P under suitable choice of metric. In other words, small perturbations of a 
transition operator of a strong stable Markov chain induce only small changes of 
finite-time and ergodic distributions. This notion is closely related to the stability 
theory of stochastic systems developed over the last decades by Zolotarev (1976), 
Borovkov (1977), and Kalashnikov (1983). 

The first part of the monograph develops the theory of uniform ergodic chains 
with respect to a given norm. This theory is based on the approach described above 
and contains all basic results of the theory of quasicompact chains including period, 
cyclic subclasses and Doeblin's criteria. 

Under certain assumptions on the norm, the equivalence between uniform er-
godicity and strong stability is established. We give explicit uniform bounds for 
the convergence, introduce periodicity classes, and investigate an asymptotics of 
transition probabilities. Asymptotic expansions with explicitly evaluated correc-
tion terms in ergodicity and stability theorems are also obtained including uniform 
estimates of a remainder. 

In the second part, we remove the condition on the uniform ergodicity. Actually, 
the unique condition on the initial non-perturbed chain X is the existence of a 
unique finite invariant measure or the finiteness of any invariant measure. Instead 
of the ergodicity condition, we assume that the perturbation D of the transition 
operator P must be subordinated to the generalized potential of the chain, that is, 
to an unbounded operator with its own domain. We show that this condition, with-
out additional assumptions, is necessary and sufficient for stability of the ergodic 
distribution. Particularly, if X is uniformly ergodic then this condition can be re-
duced to the boundedness of the perturbation D in a chosen space of measures. 
The main part of the induced "stability" norm of a perturbation is expressed in 
terms of a nonnegative operator generated by means of hitting times. We also ob-
tain explicit estimates for the stability as well as asymptotic expansions in stability 
theorems. 

Based on the analytical methods proposed by Korolyuk and Turbin (1976-1982), 
we consider the problem of the states consolidation of a Markov chain as a special 
case of the stability problem. Explicit inequalities, asymptotic expansions, and 
uniform consolidation theorems are obtained. Exponential asymptotics of "rare" 
Markov moments on chains are also investigated and corresponding explicit bounds 
are given. 

The main results of the first two chapters are illustrated for the problem of the 
stability and the ergodicity of a waiting times sequence in a one-channel queuing 
system under small perturbations of interarrival and service times of a general form. 
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For instance, the linear correction term of a distribution of the steady-state waiting 
time under such perturbations is evaluated. 

Some new inequalities are given in Chapter 9 for the distance in the uniform 
metric of the distribution function of a sum of a random geometric number of 
independent identically distributed nonnegative random variables and the corre-
sponding exponential function. The right-hand sides of those estimates have the 
first order of smallness with respect to the small parameter of a geometric distri-
bution and contain also the second moment of the terms. The question of the best 
possible constants is considered. 

Estimates of the convergence rate in the classical Renyi theorem are also given. 



CHAPTER I 

UNIFORMLY ERGODIC A N D 
STRONG STABLE MARKOV CHAINS 

We introduce here basic assumptions and list properties of the domain of defi-
nition 971 of a linear operator generated by a transition kernel P. Further we give 
a characterization of the uniform ergodicity of a chain in terms of the generalized 
potential and the resolvent of the kernel P. Then we establish the equivalence with 
respect to the same norm between the uniform ergodicity and the strong stability 
of the invariant distribution of a chain. 

1.1. Norms in spaces of measures, functions, and kernels 

Let ( E , £ ) be a measurable space. Denote by m£, f£, and b£ the spaces of 
finite signed measures on £, measurable functions on £, and measurable bounded 
functions on £, respectively. Let m£+, f£+, and b£+ be the cones of nonnegative 
elements in these spaces. 

For all transition kernels Q(x, A), x € E, A e £, and for all measurable functions 
f(x), x £ E, we define linear mappings Q: f£ —> f£, Q:m£ m£, f:m£ —¥ R as 
follows 

Qg(x) = J Q{x,dy)g(y), 

fiQ(A) = J p(dx)Q(x,A), (1.1) 

IJ-f = J n{dx)f(x) 

provided that these integrals are well defined. 
Here and in the sequel the integral, the sum, and the supremum signs with-

out specifications on a domain are considered on a whole domain of definition of 
corresponding variables. 

Let the symbol f ° n stand for the direct product f(x)pi(A), x G E, A 6 £. As 
usual, |/i| means the full variation of a measure fi. 

Assume that a Banach space UJl is given in m£ with a norm ||-|| such that 
(Ml) |/i(£)| < k\\[i\\ for all n € Tt and some k. 

For the subspace 9JI, we introduce the dual space 01 of functions on f£ with the 
finite norm 

| | / | | = S U P { | M / | , | H < 1 } . ( 1 . 2 ) 

Such functions are supposed to coincide up to the equivalence: f — g if and only if 
/ i f — H9 for all fi 6 fUt. We also introduce the space 93 of transition kernels Q such 
that 9JIQ C 9Ji and the following operator norm is finite 

IMI = s u P { M , | H I < i } . (1.3) 

It follows from condition (Ml) that the function I € b£, that is equal to the unity 
identically, belongs to and |{1|| < K. Note that the operator norms introduced in 
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(1.3) for nonequivalent initial norms on mS are in the general case not comparable, 
even in the case where one of them is subordinated with respect to another. 

In what follows we treat a norm of a function or of an operator as one induced 
by (1.2) or (1.3). Transition kernels and corresponding linear operators are denoted 
by the same symbols. 

For two kernels P and Q, we define their product PQ as the kernel 

We denote by Pl the i-times product of P by itself. By the definition we put P° = I 
where I is the unit operator in 05, that is, a kernel of the form 

It follows from definitions (1.2) and (1.3) that [see Dunford and Schvartz (1953) 
or Rudin (1973)] 

We assume throughout that condition (Ml) is valid as well as usual properties of 
a norm in a Banach space are satisfied. In addition, we use the following consistency 
condition on the norm and the order structure in m£ 

(M2) H îH < ll^i + M2II for Hi £ 97t+; 
(M3) is a substructure in mS, that is, I M I > | € 971 for fi em and ||mi|| < 

||/ii - II for ^ S 97t+, Hi -L H2-
Here and in the sequel 9Jt+ and are the cones of nonnegative elements in the 
spaces DJl and generating the orders in 97t, 01, and B. By definition, fi < v if an<3 
only if v — H € 97T+, / < g if and only if g — f e and P < Q if and only if 
Q - P e B+ = {T € B-.m+T C OT+}. 

We also use the condition 
(M3') ||/ii - nz\\ = \\hi + M2II for HI e 9H+, HI ± H2-

The last condition means that the measures h a n d I a 4 ! have the same norm in 971. 
Analogously, we use the condition for the dual cone 

This condition evidently follows from (M1)-(M3). 
Under (M2) and (M3), condition (Ml) yields 

(Ml ' ) \H\(E) < 2k\\H\\ for all ^ € 97i and some k. 
Note that the constant k may be used here instead of 2k if (M3') is valid. 

Conditions (M1)-(M3) and (M1')-(M3') are satisfied, in particular, for the fol-
lowing spaces (971, ||-||). Let a measurable function v on E be such that inf v > 0. 
Define, for all h G m£, a weighted variation norm 

PQ(x,A) = J P{x, dy)Q(y, A) 

I I m Q I I < I I m - | | Q I I , WQfW < 1 1 0 1 1 - 1 1 / 1 1 , 

Im/I<IHI-11/11, 11011 = sup{||Q/| | , 11/11 < 1 } . 

(M2') ll/iH < ll/i + / 2 I I for fi G 

(1.4) 
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and set 9Jt„ = {/x € m£: ||/i||„ < oo}. Corresponding norms in and Bv are of the 
form [see Goldenstein, Gohberg, and Markus (1957) or Krein at al. (1972)] 

| | / | |„ = sup e e \ , 
1 V { X ) J (1.5) 

||Q||„ = sup j | \Q\(x,dy)^_,x G e } . 

Let q > 1 and let >p be a probability measure on £. Put for ¡i 

i if 
dn 
dip 

<7 \ !/« 
dip) (1 .6 ) 

and DJlqv = {/z € m£:fj. <C ¡p, | | / i | | w < oo}. Then the corresponding space 
coincides with Lv{ip) where p"1 + q~l = 1. 

Due to Krein et al. (1972), chapter 8, from (M2) follows that the cone OT+ is 
normal and from (M3) follows that this cone is reproducing in OT. 

1.2. Un i formly ergodic chains 

Let X = ( X t ) be a homogeneous Markov chain with values in a measurable space 
( E , £ ) and with a discrete time t = 0 , 1 , . . . that is given by its transition kernel 
P{x, A), xe E, A e£. 

Denote by Pl{x,A) the transition probabilities over t steps. The kernel Pl 

is a t-fold power of P. Define also Cesaro averages PW = ^,s<t Ps/t, where 
po _ p(o) _ j a n d j i s t h e u n i t 0 p e r a t 0 r in 071. 

Introduce the following condition 
(P) OTP c and | |P| | < oo. 

Under condition (P), P ^ are linear bounded operators on DTI and, therefore, the 
following definition is correct. 

DEFINITION 1.1. A chain X is called uniformly ergodic with respect to a given 
norm ||-|| if there exists a stochastic kernel II such that p W —> II as t —¥ oo in the 
induced operator norm (1.3). 

REMARK 1.1. A uniformly ergodic with respect to a norm chain may not have 
this property with respect to another one, even in the case where one of these 
measures is subordinated to the another. 

DEFINITION 1.2. A stochastic kernel II is called a stationary projector of a kernel 
P on (E, £) if 

n 2 = n = p n = n p (1 .7 ) 

and ¿i = fill provided that n = / iP , /x £ DJl. 

THEOREM 1.1. Let a chain X be uniformly ergodic with respect to a norm ||-||. 
Then the limit kernel II in Definition 1.1 is the stationary projector of the kernel P. 

PROOF. It is easily seen tha t ( l + t_1) P ( t + 1 ) -t~lI = PPW = pWp. Passing 
to the limit as t oo we conclude that II = P I I = I IP . Therefore II2 = lim I IP ( t ) = 
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l iml l = II. If [j, = f iP then /t = / tP ' i ) /ill as t ->• oo which is what had to be 
proved. • 

REMARK 1.2. If a kernel P has a unique invariant measure it then P has a 
unique stationary projector II of the form II = Io7r, that is, II(:r, A) = •n(A) for all 
x G E, A G £• Indeed, since ¿/II = /¿IIP, /til G {<27r} for all /¿, that is, II = / o tt for 
some / G 91. Since I I I = 1 by the definition, / = I and II = 1 o n. If in addition 
7T 6 OT then II G B. 

REMARK 1.3. Following Korolyuk and Turbin (1978) we assume that in the 
space E there exists a partition E = Uuea-®'"' G such that , for some ill C 
H, the sets EUl are minimal ergodic classes for the chain X and the class Eq = 
UuGU\Ui Eu contains zero states, that is, 

lim sup P (Xt £E\ Eq/Xq = x) = 1 

and, for all u G iii , w € U \ i l l , the function 

q(x, u) = p ( U f l ^ e Eu}/X0 = x\ 
n > 1 t > n ' 

does not depend on x for x G Ev. 
Then, as is shown in Korolyuk and Turbin (1978), Chapter 6, the chain X has 

a stationary projector II of the form: 
f 7ru(yl), for x G Eu, u G Hi, 

II[x .A) — \ 
I Eueu, (¡{x^^viA), for x G Eu, u G U \ i l i , 

where 7ru is the ergodic distribution of the restriction of the chain X on Eu, u G i l l . 

1.3. General ized potent ia l operator 

The property of the uniform ergodicity is closely related to the following notion. 

DEFINITION 1.3. Let a kernel P have the stationary projector II G B. A measure 
// G 971 is said to be the value fi = uR of a generalized potential R of the chain X 
if p is a solution of the system 

H ( l - P ) = u ( l - U ) , p n = 0. (1.8) 

THEOREM 1.2. A generalized potential R is well defined on a subspace 

m 0 = T l ( I - P + U) (1.9) 

and it is a linear isomorphism between spaces DJlo(I — II) and DJl(I — II) such that 
Cm0u)R = {m0R)u = {o}. 

PROOF. TO examine if Definition 1.3 is correct, it is sufficient to check that by 
Definition 1.2 from ¿¿(J — P) = 0, /ill = 0, follows that /i = /ill = 0. 

Let v G 9Jto, that is, v = /¿i(/ —P+II) , /ii G Tl. Then the measure /i = /¿i(/ — II) 
meets (1.8), since /til = 0 and / ¿ i ( / - I I ) ( J - P ) = Hi(I- P) = Hx{I-II)(/-P + 11) 
according to (1.7) and /xi ( / — II) G 9JI because of II G B. So, for v G 37i0 the system 
(1.8) has a unique solution fi G 9Ji. The second assertion of the theorem follows 
from the equality /z = /¿i(/ — II) obtained before. The equalities I I P = PI I = 0 are 
immediately derived from (1.8). If /t = i^IIP then /t(J — P ) = 0 = /¿II and /t = 0. 
Furthermore, if \i — vKR then /t = /ill = 0. The theorem is proved. • 
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THEOREM 1.3. Assume that conditions (M1)-(M3) and (P) are satisfied. A 
chain X is uniformly ergodic with respect to a norm ||-|| if and only if it has a 
stationary projector II € B and one of the following equivalent (provided that 
II 6 B) conditions holds true: 

(R) the extension of the operator R on Wl and ||i?|| < r is bounded, 
(Rl) the operator I — P + II: 9Ji —> DJl has the bounded inverse operator, 
(R2) Tl 0 = OT; 
(R3) IIfi(I - n)|| < r\\n(I - P)|| for all // € m. 

PROOF. The equivalence of (Rl) and (R2) directly follows from the definition 
of OT0: if the operator S = {I - P + I I ) - 1 is bounded then Wl = DJIS{I -P + U) c 
®to C 9JI. On the other hand, if 9Jto = 9JI then S is well defined on the whole 
D71 and is closed. Indeed, /¿(/ - P + II) = 0 implies ¿ill = 0, /z = /¿P = /¿II = 0. 
Condition 9Jto = OT yields that the equation /¿(/ — P + II) = v has a solution for 
all f 6 ®t and, finally, from ¡xn{I — P + II) = VN, //„ —> /¿, VN —> UQ, follows that 
Ho (I — P + II) = fo, so the operator S is closed. Therefore, under condition (R2) 
the operator S is bounded via the theorem on a closed graph, [see Kato (1966), 
Theorem 3.5.20]. 

The equivalence of conditions (R) and (R3) follows from Definition 1.3. Indeed, 
if Re B, ||fl|| < r, and \i = vR, then //II = 0 and 

Mi - n ) | | = m = i i ^ n = | h i - n ) i ? y < T\w - n ) | | = r||M(/ - p ) | | . 

Therefore, by Theorem 1.2, (R3) holds for /x G 9Jl0R where m0R = Wl(I - II). It 
remains to observe that ß{I — P) = ¡i{I — I I)(/ — P) depends only on the measure 
fi(I — P). On the other hand, if condition (R3) is fulfilled, then the operator 
(I — P)~l is bounded on the Banach space = ( j j E 9Ji:/ill = 0} that is the 
closure of its domain, [see Kato (1966), Chapter 3.2 and Chapter 4.5]. Therefore, 
(1.8) immediately implies (R). 

If condition (Rl) holds true, then the system (1.8), that is equivalent to the 
following one n(I - P + II) = v(I - II), / J I = 0, has a solution fi = v{I - II)(/ -
P + I I ) " 1 , ||/i|| < c|H|, that is, R G B. For R G B, we conclude from (1.8) that 
the measure fx = vR 4- i^II is a solution of the equation /¿(/ — P + II) = v and 
\\fi\\ < c||i/||, that is, condition (Rl ) is fulfilled. 

So, conditions (R)-(R3) are equivalent. 
Assume that the chain X is uniformly ergodic. Then from the operator conver-

gence pW —»II we conclude that II G B and by Theorem 1.1 that II is a stationary 
projector. For n > 1 consider the bounded operator Qn = 7 + n - 1 (P^ - II). 
Taking into account (1.7), it is easy to check that 

( i - p + n )Qn = Qn{i - p + n) = i - p ( n ) + n . 

Choose n so that ||P<n) - II|| < 1. Then the operator I - p(n> + II has the 
bounded inverse and commute with Qn and I — P + II. Dividing both sides of 
the equation obtained by its right-hand side, we arrive at the conclusion that the 
operator ( J - P + n ) " 1 = Qn (I - P^ + II) is well defined and bounded. Therefore 
condition (R) is fulfilled as well as all other conditions of the theorem. • 
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We shall prove in Theorem 3.1 that a chain X is uniformly ergodic if II G 
B and R G B and give the corresponding estimates for the convergence rate in 
Definition 1.1. 

REMARK 1 . 4 . The assumptions of Theorem 1 . 3 are necessary for the uniform 
ergodicity of a chain X even without conditions (M2) and (M3), since these are 
not used in the proof of the necessity. On the other hand, the sufficiency of these 
assumptions is essentially based on properties (M2) and (M3). This is illustrated 
in Example 1.1 below. 

EXAMPLE 1 . 1 . E = [ 0 , 1 ) , £ = B [ 0 , 1 ) , and the space TX consists of finite mea-
sures such that the norm = ^ n > 0 I J xU n(dx)\ is finite. Let the chain X be 
given by its transition kernel P defined as Pf(x) = xf(0) + (1 — x)f(x) for / 6 bB. 
For the chain X and the norm ||-||, conditions (Ml) and (P) are satisfied and A' 
has a unique invariant measure w G DJl that is concentrated at zero. According to 
Definition 1.3, one can easily derive from (1.8) that 

for all measures ¡j, with a support separated from zero. Note that this set is dense 
in 371. By 

we conclude that the generalized potential R is bounded, that is, condition (R) of 
Theorem 1.3 is satisfied. 

However, the chain X is not uniformly ergodic with respect to the introduced 
norm ||-||. Indeed, the function f(x) = x belongs to the dual space with a norm 
11/11 = supn l | / ' n ' ( z ) | /n ! . The value of the corresponding Cesaro average is on / 
equal to P ^ f ( x ) = (1 — (1 — x)1) /t and does not converge to II /(x) = 0 in the 
norm 91 which contradicts the uniform ergodicity. 

It is clear that this contradiction appears because the norm is not monotone on 

The following property of a potential shows that, for uniformly ergodic chains, 
it coincides analytically with the sum of an operator series. 

THEOREM 1.4. Let a chain X have the stationary projector II G B, satisfies the 
condition (P), and | |P f | | = o(t) as t —> oo. Then for all 

N G OTOO = ®TO(J - P + n ) = M(I - P + n ) 2 

the value ¡iR coincides with the Cesaro sum of the series 

In particular, for uniformly ergodic chains, equation (1.10) is valid for all ¡i 6 OJt. 

PROOF. It is sufficient to check that the series in (1.10) converges for /z G 9Hoo 
and its sum satisfies Definition 1.3. 

ÜJI. 

( 1 . 1 0 ) 
t>o 


