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Preface 

These Proceedings are an outgrowth of a special research quarter held at the Ohio State 
University in Spring 1993 and supported by the O.S.U. Mathematical Research Institute 
and the National Security Agency. 

The focus during the quarter was primarily on the following topics: finite groups from 
a geometric view point; abelian and non-abelian difference sets; the Monster and related 
topics in number theory and physics; and computational group theory. 

A variety of additional group theoretic topics were discussed. The papers in this 
volume reflect primarily the first three main topics of the quarter. All of the topics 
presented represent areas of intense and active research. Most of the authors have 
included in their articles many stimulating questions for future research, in addition to 
new ideas and theories. 

It is a pleasure to acknowledge the efforts of a number of people who helped make the 
special quarter successful. The Ohio State University Mathematics Department staff— 
particularly Marilyn Radcliff and Denise Witcher—provided the organized support which 
made the conference run smoothly. Several of the papers were retyped by Terry England. 
Professor S. K. Wong was a great support in arranging for the housing and other needs 
of the participants. Finally, the computational group theory week was expertly organized 
by Professor Akos Seress. 

Groups and Geometry. The first week of the conference focused on groups and ge-
ometries. New light was shed on such classical topics as spreads, ovoids and generalized 
quadrangles by Glauberman, Shult and others. In recent years many old and new geomet-
rical themes have been viewed from the perspective of diagram geometries as pioneered 
by Tits, Buekenhout, Ronan and Smith. This perspective informs the work of Baumeister, 
Shult and Stroth. In particular Stroth clearly formulated the challenge to develop a 'theory 
of sporadic geometries'. With roots in the work of Tits, Brown and Quillen, the subject of 
group actions on simplicial complexes has been an extremely active area. It is represented 
here by Smith's article on block complexes. 

Certain investigations arise in contexts not normally considered geometric, but acquire 
a sometimes unexpected geometric flavor. Thus the work of Stroth on the 'uniqueness 
case' is central to the classification of the finite simple groups, but the resolution he 
outlines involves the geometric theory of amalgams. Likewise the work of Frohardt and 
Magaard addresses a conjecture of Guralnick and Thompson arising in connection with 
the inverse problem of Galois theory. However, central to their work is a geometric 
analysis of the fixed point subgeometries of elements acting on buildings. Similarly, the 
point of departure of Kantor's discussion is Thompson's* study of the Lie algebra E% in 
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connection with the simple group Th ( = F3). However he illuminates relations to such 
geometric object as parallelisms and symplectic spreads. 

Perhaps least geometric is Dowd's paper on the 1-cohomology of certain classical 
matrix groups, though the groups in questions are certainly of geometric significance. 
Besides completely solving the problem for three families of groups, he presents new 
techniques for addressing this difficult and important class of problems. 

Besides those who have contributed papers to this volume, many other mathematicians 
joined in the formal and informal discussions of the conference. We thank all of them for 
their enthusiastic participation. The speakers and their topics were the following: 

Michael Aschbacher, Cal Tech, Foundations of the sporadic groups; 

Ulrich Meierfrankenfeld, Michigan State U., A construction of J4; 

Gemot Stroth, U. of Halle, The uniqueness theorem; 

Charles Thomas, U. of Cambridge, Cohomology of finite simple groups·, 

Michael Dowd, U. of Florida, On the cohomology of the groups SL(3, 3") and 

SU( 3,3") ; 

Jonathan Hall, Michigan State U., Locally finite simple groups·, 

Stephen D. Smith, U. Illinois at Chicago, Groups and complexes revisited·, 

Ernest Shult, Kansas State U., M-systems and the BLTproperty ·, 

Andrew Mathas, U. Notre Dame, Left cell representations and generic degrees·, 

George Glauberman, U. of Chicago, Outer automorphisms of Sym(6) and Sp( 4 ,2" ) ; 

Gemot Stroth, U. of Halle, Some sporadic geometries', 

Michael Abramson, Bowling Green State U., Affine blueprints·, 

J. J. Seidel, Tech. U. Eindhoven, Signed graphs, root lattices and Coxeter groups·, 

Barbara Baumeister, Freie U. Berlin, Flag-transitive rank 3 geometries which are 

locally complete graphs·, 

Daniel Frohardt, Wayne State U., Applications of n-gons', 

Thomas Weigel, U. of Freiburg, Primitive linear p'-groups and the distribution of 

p-singular elements', 

Kay Magaard, Wayne State U., Fixed point ratios for exceptional groups', 

Robert Liebler, Colorado State U., Antipodal distance transitive covers of complete 

bipartite graphs', 

Norbert Knarr, Tech. U. of Braunschweig, Construction of translation planes', 

Chat Yin Ho, U. of Florida, Involutions of a finite group and an application to 

collineation groups', 

William Kantor, U. of Oregon, Orthogonal decompositions of Lie algebras. 

Ron Solomon 
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Difference Sets. The subject of difference sets is in the midst of a renaissance of 
unprecedented scope. Besides discovering fascinating properties of the designs and 
codes arising from difference sets, researchers all around the world, in ever increasing 
numbers, are establishing new existence criteria by extending the traditional character-
theoretic and cyclotomic techniques which have long been applied to abelian groups to 
such great effect by Marshall Hall, Jr. among many others, and by developing entirely 
new techniques, some of which exploit the representation theory of nonabelian groups 
in an essential way. And, mirabile dictu, the most spectacular of these new results are 
positive—the construction of difference sets in groups where many had hitherto believed 
that they could not exist. These giant strides in our understanding are well illustrated 
by the recent work in the area of Hadamard difference sets—those that have parameters 
(υ, k, λ) = (AN2,2N2 - Ν, Ν2 — Ν), in which case the (±1)-incidence matrix of the 
translate design is a Hadamard matrix. 

Beginning with Turyn's thesis in 1965 and at a rate rapidly increasing in recent years, 
much progress was made on the fundamental problem of determining which groups 
could support such a Hadamard difference set. But until 1992 all Hadamard groups 
known had order AN2, where Ν was of the form 2a3b, and, indeed, some researchers 
opined that no other orders were possible. Then in the spring of 1992 Ted Shorter, a young 
computer scientist in the Office of Mathematical Research of the National Security Agency 
succeeded in constructing a difference set in the nonabelian group (Z5 χ Z5) »2 Z4 of 
order 100 = 4 · 52. Shorter carried out an attack which had been outlined by Ken 
Smith, who, himself, had found all possible F20 homomorphic images of such a putative 
difference set and had proposed searching for the four Z5 χ Z5 coset pieces by taking into 
account all these homomorphism constraints. This result was all the more exciting because 
Bob McFarland had shown that no Hadamard difference set could exist in any abelian 
group of order 4p2 , for ρ > 3 a prime. The order barrier having been breached, it was 
shortly demolished by Ming-yuan Xia of China who constructed Hadamard difference 
sets with Ν = p2, for all primes ρ = 3 (mod 4). 

Thus it was in such a propitious atmosphere that researchers gathered in Columbus 
during the period 17-19 May 1993 to take stock of these startling new developments and 
to discuss promising new directions for future research. The speakers and their topics 
were the following: 

James A. Davis, U. Richmond, Nonexistence of abelian Menon difference sets using 
perfect binary arrays', 

Xiaohong Wu, Ohio State U., Construction of difference sets', 
Shuhong Gao, U. Waterloo (Canada), On nonabelian difference sets', 
Richard J. Turyn, Newton, Massachusetts, Backtrack with lookahead; 
D. B. Meisner, London (England), Menon difference sets', 
John F. Dillon, National Security Agency, An update on Hadamard difference sets of 

both kinds; 
Κ. T. Arasu, Wright State U., Updating Lander's table·, 
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Joel Ε. Iiams, Colorado State U., Hadamard difference sets in a group G of order 4 ρ2, 

where G has the Frobenius group of order Λ ρ as homomorphic image; 

Ming-yuan Xia, Huazhong Normal U. (People's Republic of China), Williamson 

matrices and difference sets', 

Stefan Loewe, TU Braunschweig (Germany), Multipliers of partial addition sets; 

Alexander Pott, U. Augsburg (Germany), Quasiregular collineation groups of projec-

tive planes', 

Bernhard Schmidt, U. Augsburg (Germany), Nonexistence of some difference sets', 

Vladimir D. Tonchev, Michigan Technological U., Designs with the symmetric differ-

ence property and their groups', 

A. R. Calderbank, AT&T Bell Laboratories, The linearity of some notorious families 

of nonlinear binary codes ', 

Kenneth W. Smith, Central Michigan U., Difference sets in 2-groups of large exponent', 

Harriet Pollatsek, Mount Holyoke C., On difference sets in groups of order An, η = p* 

or p2q2, ρ and q odd primes', 

Warwick de Launey, DSTO (Australia), Some cocyclic Hadamard matrices and their 

relative difference sets; 

Sonja Radas, U. Florida, PSL(3, q) as a totally irregular collineation group', 

Chat Ho, U. Florida, Planar Singer groups', 

Qing Xiang, Ohio State U., Some number theoretic results on multipliers; 

W. K. Chan, Ohio State U., Nonexistence results on Menon difference sets. 

In addition to papers presented at the workshop, these Proceedings also include two 
excellent survey articles—one by Jim Davis and Jonathan Jedwab on Hadamard difference 
sets, and the other by Alex Pott on relative difference sets, a construct which is extremely 
useful in the construction and analysis of difference sets, but which is also of great interest 
and a source of wonderful problems and beautiful results in its own right. 

Not all talks are included in these Proceedings. For example, at the time of the 
difference set workshop Rob Calderbank was visiting at Ohio State to discuss the then 
recently discovered phenomenon of the Z4-linearity of certain well-known nonlinear bi-
nary codes. Since the most famous class of such codes—the Kerdock codes—correspond 
to difference sets in the the elementary abelian 2-group Ζψ1, this topic fit in perfectly 
with the theme of the workshop which Rob therefore graced with an exposition. His 
paper, jointly authored with Hammons, Kumar, Sloane and Sole, has recently appeared 
in the IEEE Transactions on Information Theory. 

The papers included in these Proceedings are split evenly between abelian and non-
abelian groups, with the two survey papers treating both. The paper by Arasu, Davis, Jed-
wab, Ma and McFarland lowers Turyn's exponent bound for certain parameters (υ, k, X) 

including (96,20,4) and thus completes the classification of abelian groups of order 96 
which can support such a difference set. Xia's paper outlines his dramatic breakthrough on 
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the Hadamard group order problem; and Xiang studies abelian groups which can support 
Paley-type partial difference sets, another variation on the difference set theme. Some of 
the latest ideas on exploiting the representation theory of nonabelian groups in the study 
of difference sets are presented in the paper of Iiams, Liebler and Smith and the paper 
of Harriet Pollatsek; in particular, much of the spirit of the Smith-Shorter construction is 
captured in these papers. Finally, Meisner extends to nonabelian semi-direct products an 
important composition theorem of Turyn. 

The difference set period of concentration got off to a wonderful start on Sunday 
evening when all visitors were treated to an exquisite reception at the beautiful home of 
Dijen Ray-Chaudhuri and his wife; we are most grateful for their generous hospitality. 
The last night saw the difference set contingent enjoying a veritable symposium at the 
local brew-pub where all participating graduate students were guests of honor. The 
pleasant surroundings of the Ohio State campus and the well-planned accommodations 
made possible easy interaction among all participants. We thank those who prepared 
papers for this volume and the referees who worked so hard to make it a very special 
one. We are indebted to Mrs. Terry England, who TßXed so beautifully most of the 
contributions. Qing Xiang also helped with the typing and cheerfully made himself 
available for the local transportation of visitors. But, most of all, we thank all who attended 
— that geographically diverse yet intellectually focused cadre whose presence and spirited 
participation so well exemplified the present vitality of this subject of difference sets. 

Κ. T. Arasu, John F. Dillon, Surinder Sehgal 

The Monster. "When Ernest Rutherford dismissed nuclear energy as moonshine in 
1933, Leo Szilard took it as a personal challenge. Nine years later, under a Chicago 
grandstand, Enrico Fermi demonstrated the first self-sustaining pile." (quoted from an 
article written by Albert Wattenberg, Physics Today, January 1993). 

On the first day of the conference I asked John Conway and Simon Norton if they 
had in mind the moonshine of Rutherford when they titled their epoch-making paper, 
written in 1979,'Monstrous Moonshine'. Conway said that wasn't the reason. The words 
monster and moonshine are now deeply embedded in the mathematical psyche. Our 
monster is beautiful, awesome, sometime even fearful. 

In one of M. Koike's survey articles written in Japanese, he writes: "In 1979, Conway 
and Norton published a paper with a strange title, Monstrous Moonshine, in Bull. London 
Math. Soc. Journal. It is a poetic title. A reason why they called in this way the phonomena 
they discovered may be - it can not be phrased using the present mathematical language, 
but it is a solid mathematical fact, and some facts are hidden now before it all becomes 
clear {sunshine) -". 

The moonshine has not yet turned into sunshine, far from it actually. Our progress, 
however, is slow and steady. The year 1993, when the conference was held, is the 20th 
year since the Monster first appeared in the world. The Monster is now an adult at least 
physically if not mentally. The account of its discovery, Gries s' construction of it, the 
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McKay-Thompson observation-conjecture, the construction of the moonshine module, 
etc. are presented very well in a book written by Frenkel, Lepowsky and Meurman [Vertex 
Operator Algebras and the Monster, Academic Press, Inc. (1988)]. 

The conference was stimulating for all participants. What follows in Part 3 is the 
collection of papers submitted by the speakers of the conference. Most of them are 
original research works, a few, however, are expository. The speakers and their topics 
were the following: 

George Glauberman, Univ. of Chicago, Y -diagram generators for the twisted E& = 
[2E6( 2)}; 

Noriko Yui, Queen's Univ., Singular values of the Thompson series', 
John Mckay, Concordia Univ., Α Hauptmodul for all seasons', 
Geoffrey Mason, Univ. of Calif., Santa Cruz, Modular invariance and the boson-

fermion correspondence; 
John H. Conway, Princeton Univ., Colloquium Talk, Understanding Γο (Ν) and 

similar groups', 
Shogo Aoyama, Leuven, Belgium, The Virasoro invariant anti-bracket formalism in 

the string theory·, 
Michael P. Tuite, Univ. College Galway and Dublin Inst, for Advanced Studies, 

Monstrous moonshine and the uniqueness of the Moonshine module', 
Paul S. Montague, Univ. of Cambridge, A third order twisted construction of the 

Monster conformal field theory, 
Hiromichi Yamada, Hitotsubashi Univ. Japan, A generalization of the Kac-Moody 

algebras', 
Simon P. Norton, Univ. of Cambridge, Non-monstrous moonshine', 
John H. Conway, Princeton Univ., The 'square root of the Monster construction'·, 
Masahiko Miyamoto, Ehime Univ. Japan, Deep hole isotropic elements and 21 -node 

systems on the Monster module; 
Robert L. Griess, Jr., Univ. of Michigan, Codes, loops, and ρ-locals; 
Charles R. Ferenbaugh, Yale Univ., Lattices and generalized Hecke operators; 
Chongying Dong, Univ. of Calif., Santa Cruz, Representations of vertex operator 

algebras; 
Yves Martin, Univ. of Calif., Santa Cruz, On multiplicative eta-quotients; 
Alex Ryba, Marquette Univ., A natural invariant algebra for the Harada-Norton 

group. 

Koichiro Harada 
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PART I 

GROUPS AND GEOMETRY 





On flag-transitive c.c*-geometries 

Barbara Baumeister 

Introduction 

In this paper we continue the classification of the groups G, which act flag-transitively 
on a geometry Γ belonging to 

1 n-2 1 
In the diagram the integer below a node of type i is one less than the number of maximal 
flags, which contain a fixed flag of cotype {i}, i e {1,2,3}. A geometry with the 
diagram έ — i s also called a c.c*-geometry and we call the objects of type 1 
points, those of type 2 lines and those of type 3 circles. 

For notation and definitions concerning geometries see [Buel]. For the convenience 
of the reader we recall the definition of a c.c*-geometry. 

A geometry Γ consisting of points, lines and circles belongs to o-i=—l-2-o if 
(1) for every point P, the residue Γ ρ of Ρ is the complete graph Kn on η vertices, 

where the circles and the lines in Γ/> are the vertices and the edges respectively; 
(2) for every line L the residue Γχ, of L is a generalized 2-gon consisting of two points 

and two circles; 
(3) for every circle C, the residue Tc of C is the complete graph Kn, where the points 

and the lines in Tc are the vertices and the edges respectively. 
Furthermore for X an element of Γ, we denote by Gx the stabilizer of X in G and 

by Κχ the kernel of the action of Gx on the residue Γχ of X in Γ. 

In [Ba2] we gave two examples with η = 15 and G ρ = Αη, which admit IM^i 
and M22 as flag-transitive automorphism group, respectively. Moreover we determined 
all flag-transitive c.c*-geometries with n = 15. 

It is known that for each point Ρ the group Gp is a doubly-transitive permutation 
group of degree n [Ba2], [GM]. On the other hand for each doubly-transitive permutation 
group L of degree n there exists a c.c*-geometry, the two-coloured hypercube H(n), 
with automorphism group G, such that the stabilizer of a point is isomorphic to L, see 
for instance [Wi], [Ba2]. 

Now assume that Gp has no regular normal subgroup. We are going to show that Γ 
is covered by the two-coloured hypercube or Gp = Αη or Gp is a group of Lie-type of 
rank 1 (Theorem A). Furthermore we determine all flag-transitive c.c*-geometries with 
n < 20 (Theorem B). 
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Finally we give all known examples (Section 2). There the geometries appearing in 
Theorem A or Β are described in more detail. 

Grams and Meixner [GM] independently studied some of the geometries assuming 
η < 12. 

Theorem A. Suppose that G acts flag-transitively on a c.c*-geometry T,and that 
Gp/Kp has no normal elementary abelian subgroup. Then Gp and GQ are isomorphic. 
If furthermore Gp/Kp is not isomorphic to a group of Lie-type of rank 1, then one of 
the following holds: 
(1) G is isomorphic to a factor group of 2" - 1 : Gp, where Gp is a doubly-transitive 

permutation group of degree η and the universal 2 -cover of Γ is the two-coloured 
hypercube Η {ή). 

(2) G = 2M22 or M22, GP = GC= Αί and GL = S4X Z2. 

Theorem B. Suppose that G acts flag-transitively on a c.c*-geometry Γ, that 
Gp/Kp has no normal elementary abelian subgroup and that each point is incident 
to η circles, η < 20. Then G is isomorphic to a factor group of G, where G is one of 
the following. 
(1) G = 2n~l: Gp, and G ρ is a doubly-transitive permutation group of degree n. 
(2) G = Mn, GP =L 2 (11 ) and Gl = DnxZ2, η = 11. 
(3) L2(q) < Gp < Aut (L 2 (q)) and η = q + 1. 

(i) q = 4, G = L2( 11), GP = Λ5 and GL = Dn. 
(ii) q = 5, G = 3Ae or and G^ = D% or D\e respectively. 
(iii) q =9, 2L?,(4) < G < 2L-}(4){f g), f afield and g a graph automorphism 

and Gi an extension of D% * Z4. 
(iv) q = 11, G = M\2 or Aut(Mi2) and GL = D2Q or D202. 

(4) G = i/3(3), GP = L3(2) and GL = (Z4 x Z2): Z2, n = l. 
(5) G = 2M22, Gp = A7 and GL = S4x Z2, η = 15. 

In particular the examples (26) and (32) from [Bue4], which are listed in (2) and 
in (3)(iii), are simply connected. 

Some words about the proof of Theorems A and B. We use the method of generators 
and relations, see for instance [Yo]. By [As] we can identify Γ with the group geometry 
Γ(G, (GP, GL, GC)) for {Λ L, C} a flag of Γ. Now the strategy is to determine the 
amalgam of GP, G^ and GC and its completion G. Then we obtain G as a factor 
group of G. 

We show, that if Κ and L are two doubly-transitive permutation groups of the same 
order and the same degree and if Κ is almost simple, then Soc(K) = Soc(L) holds 
(Section 3). Supposing that Gp/Kp is almost simple we derive from this Gp = Gc as 
permutation groups on the circles in Γρ or the points in Tc, respectively. Looking at 
the generators and relations of the two-coloured hypercube, [Ba2], we give a sufficient 
condition on Gp that Γ is covered by the hypercube. Using this condition we obtain 
Theorem A. 
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Now suppose η < 20 (Section 5). By our condition on Gp we only need to consider 
the doubly-transitive groups Gp, whose stabilizer of 2 points has a nontrivial center, 
and the two exceptional cases Gρ = 1-2(11), Μ of degree 11,15, respectively. Using 
coset enumeration we obtain |G|. We complete the determination of G by examining the 
examples from section 2. The enumeration was done with the algebra system CAYLEY. 

We exclude the case Gp/Kp being an affine group, since for some of them, e.g. the 
Frobenius groups, it is not clear how to glue Gp and GQ together. Moreover most of 
them fail the sufficient condition on Gp to be covered by the hypercube, see also [Ball. 
For the moment a classification of these amalgams seems to be out of range. 

Notation. We write G* for G \ {1}, G a group. 

Examples 

In this section we give examples of groups G acting flag-transitively on c.c*-geometries 
Γ. Only the examples in (6) do not appear in the statement of Theorem B. There Gp/Kp 
has a normal elementary abelian subgroup. 

Remark. Let Ν be a normal subgroup of G, which acts semiregularly on the points, 
lines and circles of Γ. Moreover suppose for η € Ν* and for X an element of Γ that the 
residues Γ* and Γχ« have an empty intersection. Then, as usual for group geometries, 
we get a new c.c*-geometry identifying, respectively, points, lines and circles iff they 
are in the same orbit of N. The obtained quotient is covered by Γ and G/N acts 
flag-transitively on it. 

(1) Semibiplanes. 

Each semibiplane induces a c.c*-geometry Γ. Asemibiplane S is a rank 2 geometry 
satisfying: 

(i) any two points are incident with 0 or 2 common blocks; 
(ii) any two blocks are incident with 0 or 2 common points (see for example [Wi]). 
As points and circles of Γ we take, respectively, the points and blocks of S and as 

lines the quadruples (Pi, Ρι ,Β\ , B2), where the two different points P\, P2 are incident 
with the two different blocks (circles) B\, B2. 

If G is a flag-transitive automorphism group of S, such that the stabilizer Gp of 
a point Ρ acts transitively on the points of S at distance 1 from P, then G acts 
flag-transitively on Γ too. 

Conversely if Γ is a c.c*-geometry for which the Intersection Property [Bue2] holds, 
then the truncation of Γ to points and circles (blocks) is a semibiplane. 

All of the following examples are semibiplanes except for the example admitting Se 
as automorphism group and except for some non tri vial quotients of the two-coloured 
hypercube and also of the third example of (6). 
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(2) The two-coloured hypercube. 

2n~lGP 

1 C 2 3 3 -1 ο ο ο 
1 η—2 1 

2„-1 2η-2(2) 
Gp β22 σ/> 

Gp an arbitrary doubly-transitive permutation group on Ω = { Ι , . , . , η } and Β = 
stabcP({l}, {2}). The point-circle incidence graph of this geometry Γ is an η-dimensio-
nal cube. Hence the points and the circles are the vertices and the lines are the rectangles 
of the η-dimensional cube. This geometry appears in [Wi] and we can construct Γ also 
in the following way: 

Take an η-dimensional GF{2)-vector space V = (e\,..., en) and let Gp act on 
V by permuting the index of the basis {ei,... ,e„). We can identify the π-dimensional 
cube with V, so that the points are the elements in U := {e\ -I- e,, i e Ω) and the circles 
are those in V \ U. Then G = U:Gp = 2 n~lGp acts flag-transitively on Γ, see also 
[Ba2]. 

The geometry Γ is simply connected and G is the completion of the amalgam of 
Gp, GL and Gc, see for instance [Ba2]. 

(3) Examples with E(GP) = L2(q). 

1 C 2 D 3 
Ο ο t 2 ( l l ) » 3 

11 55 11 
Z,2(4) 3.22 L2(4) 

In this case GP and Gc are not conjugated in G and any two points as well as any 
two circles are at distance at most 2. This geometry can be found in [Bue3]. 

3A6 
1 C 2 D 3 Ο ο ο 
1 4 1 

9 0 
L2( 5) Dg L2(S) 

The stabilizer Gp and Gc are not conjugated in G and we have G l = (ΝβΡ(ϊ), 
NGc(0). 1 a n arbitrary involution of Gp Π Gc = üio· In the quotient each point is 
incident to each circle. These geometries are due to [JvT]. By Theorem Β we obtain 
Aut(r ) = 3S6. 

1 C 2 D 3 
-o 2L3(4) ο ο ' 1 8 1 

U2 56·('2°) 112 
L2(9) Dg2 L2(9) 

The quotient T(L3(4), (L2(9), D ^ , £>2(9))) can be constructed in the Steiner-system 
S = 5(3, 6,22) on the set Δ = {oti, . . . , 022}· The points and the circles are the hexads 
of S, which do not contain α ι . A point Ρ is incident to a circle C iff their intersection is 
empty. Then two different points P\ and P2 are simultaneously incident with 0 circles 
iff I Pi Π P2 | = 0 and with 2 circles iff | P\ Π P2 |= 2. 
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Let / be a field and g a graph automorphism of Z-3(4). By Theorem Β the full 
automorphism group of Γ is 2L3(4)</, g). 

1 C 2 D 3 
Μ12 ° ι ίο ι 

144 72C2
2) 144 

i.2(ll) O20 ^dD 
This geometry was found by [Leo] and a construction is given in [BCN, p. 371]. 

Take the Steiner-system S = 5(5, 8,24) and two complementary dodecads D\ and Z>2. 
Then stabji/24(I>i) = Mn. Define a graph Δ with vertex set D\ χ £>2, where two pairs 
(dud2), (ei, β2) are nonadjacent either if d\ = e\ or d2 = e2 orifthereisanoctad Β in 
S with BC\D\ ={d\,e\) and {d2, e2j C Β(!D2. Then Δ has exactly 144 12-cliques. 
The points are the vertices of Δ and the circles the 12-cliques. Thus the stabilizer of 
a point is contained in a maximal subgroup of G which is isomorphic to M\\ and the 
stabilizer of a circle is a maximal subgroup in M\2. In fact, Aut(r) = Aut(ATi2). 

(4) Example with Gp = Ln(q), η >2. 

U3( 3) 
1 C 2 D 3 
Ο Ο Ο 
1 S 1 
36 18 Q 36 

L3( 2) (4x2)2 i-3 (2) 
The group G = Us(3) has a rank 4 representation on 36 points over Η = L^(2) 

with orbitals of lenghts 1,21,7,7. Define a graph Δ, whose vertices are the conjugates 
of Η in G and where two vertices are adjacent iff they intersect in a subgroup isomorphic 
to De. Then G has two orbits of 7-cliques, each of length 36. The group Aut(G), also 
acting on Δ, interchanges these two orbits. The points of Γ are the vertices and the 
circles are the 7-cliques in one of these two orbits. This example is due to [Neu], see 
also [Ch]. 

(5) Examples with exceptional doubly-transitive action of Gp. 
1 C 2 D 3 

Μγι ° 

1 9 1 
144 "( 'J) 144 

L2(ll) Ol2xZ2 t2(ll) 
In this geometry, which was found by Buekenhout [Bue3], the stabilizer of a point 

and the stabilizer of a circle are conjugated maximal subgroups in Μγι. 
1 C 2 D 3 

2M22 ° 0 ° 
1 13 1 

176 88 (2) 176 

Αη $4X2 Αη 

The quotient with flag-transitive automorphism group M22 can be constructed in the 
Steiner-system 5(5, 8,24) on the set Ω = {αϊ , . . . , a24}, [Ba2]. The points are the 
octads which contain αϊ, but not a24 and the circles are the octads, which contain a24 
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but not αι. The lines are two-coloured sextets {Li,L2, L3} {L4, L5, Le}, suchthat 
αϊ g Li and «24 e U · A pomt Ρ is incident to a circle C iff their intersection is 
empty. Moreover the geometry Γ = Γ(1-3(4), (L2(9), Di6, £2(9))) can be found in Γ. 
The points and the circles of Γ are the points of Γ, which contain also a 2 . 

(6) Examples with affine Gp. 

rL2(q)/Z(SL2(q)) ° - \ ο , q = pk odd. 1 fl—ι 1 
3<Ϊ2-Ι) 

Take the projective plane CP = PG(2, g) and an homology a of CP of order 2. Then 
the points of Γ are the unordered pairs (Ρ, P a ) , Ρ a point of CP, which is not fixed by 
a, and the circles are the unordered pairs (/,/"), I a line of CP, which is not fixed by 
a. A point (P,Pa) is incident to a circle (l,la) iff Ρ is on I or la. This geometry 
was discovered by Hughes [Hug] and Γ admits the quotients G/Z, ZiGLiiq)) > Ζ > 
Z(SL2(q)). Also Η < G, Η = GL2(q)/Z(SL2(q)), acts flag-transitively on Γ where 
HDGp =Frob(q(q - 1)). 

1 C 2 D 3 k AA ΓL 3(q) ο ^ Ο , q = Ρ odd. 

Γί-ι (?2) z2*£4 rL,(?
2) 

This geometry can be found in [Bal] and the quotient G/Z{GLz{q)) is described in 
[Hug]: Take the projective plane 7 = PG(2, q2) and a Baer involution of IP . Then the 
points, the circles and the incidence of the quotient are defined as in the previous example. 
Also Η < G, Η = GL$(q) acts flag-transitively on Γ. 

2 ( ' -1 ) + 2 'Z ( 2*-i)Z* ? ? 
2 2 * - l 2 2 * - l 

ΓΖ.,(2*) Z*£4 VL1 (2*) 
This is the third example of [Hug]. Take the projective plane CP = PG(2, q), q — 2k 

and an elation of CP. Then the points, the circles and the incidence are defined as in the 
previous examples. 

On doubly-transitive permutation groups 
In this section we prove special facts about doubly-transitive permutation groups, that will 
be needed in the proof of Theorem A. Let G be a doubly-transitive permutation group 
on a set Ω. Denote by Go and Goo the stabilizer of one point and of two points of Ω, 
respectively. By [Ca] either G = pmGo, pm = |Ω|, or G is an almost simple group 
listed in [Ca, p. 8]. Since we are only interested in the latter, we suppose in this section 
E(G) φ 1. For a doubly-transitive permutation group, the subgroup E(G) of G is the 
nonabelian socle of G. 
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About NG(GOO). 

Lemma 3.1. If G is not isomorphic to Ld(2), d > 2, £2(8): 3 or Αη of degree 2d — 
1, 28, 15 respectively, then Ng (Goo)/Goo — Z2· 

Proof. As NG(GQO) acts doubly-transitive on the fixed points of Goo in Ω, [Hul, Π. 
I.13], we have NG(GOO)/GQO = Z2, Goo fixes exactly two points of Ω and this 
holds NGO(GQO) = Goo· By [Ca] E(G) operates doubly-transitive on Ω, too. If 
NGO(GOO) > Goo. then Goo and £(G)oo fixes more than two points, hence in this case 
NE(G)O(E(G)OO) > E(G)00. Thus we may assume E(G) = G. 

We inspect the list of [Ca]. If G acts 3-transitively on Ω or if Go is a Frobenius 
group, then the assertion follows. Hence the Lemma is proved for G = A„, Ui(q), 
Sz(q), R(q), Mu of degree 11 or 12, Μγι, A/22. M23 and M24. 

If G = Ljt(r), r > 2, then it is easy to see, that Goo fixes exactly two points 
and if G = Sp2d(2), d > 2, of degree 22d~1 + 2d~l or 2 ω " 1 - 2d~l, then G 0 = 
°td(2)' 0 2 d W G00 = 0^d_l}(2), 22^O^d_l)(2) respectively. Hence 
in this case Goo is a maximal parabolic subgroup in Go· 

The assertion holds also for the remaining groups, since if G = L201) , H S or 
C3 of degree 11,176,276, then Goo = S3, Ü4(3)2 is a maximal subgroup of 
Go = A5 , U3(5): 2, Aut(McL) respectively. 

Extensions of automorphisms of Go. 

Lemma 3.2. If G is not isomorphic to L2OI), Mu, M22, M23, L$(4) of degree 
II , 11, 22, 23, 21 respectively, then each automorphism of Go, which leaves Goo 
invariant, can be extended to an automorphism of G. 

Proof If E{G) = Sp2d(2), An, M 1 2 , M2 4 , C 3 , Αη, Mn, HS of degree 22d~l + 2d~l 

or 22d~l - 2 d ~ l , n , 12 ,24,276,15,12, 176 respectively, then [Goo,a] < Goo yields 
a € Inn (Go). Hence we may assume E(G) = Ld(q), Sz(q), R(q), U^q) or £2(8) = 
R(3)'. 

Now suppose there exists an automorphism a G Aut(Go), which can not be extended 
to an automorphism of G. Without loss of generality we may assume o(a) = rs, r a 
prime. 

In the proof we distinguish three cases E(G) = Ld(q), E(G) = Sz(q), R(q), Uj(q) 
and E(G) = L 2(8). Set q = pn, ρ a prime. 

Case 1. E(G) = Ld(q) of degree (qd - 1 )/(q - 1), (d, q) φ (3,4). 
We have G = E(G).F, where F are diagonal and field automorphism, and Go = 
Q: (H: D).F, Q = Op(G0) = Eqd-1 is a natural module for Η = SLd-i(q) and D = 
Z{q—i)f(d,q—i) induces a diagonal automorphism of order (q-\,d-i) on H. Furthermore 
Goo = NGo(Qi) = Qi:stabH(Qi).D.F, Qi := Q Π Goo = Eqd-i. We have 

(1) Cg.A(Q) = Q, for G · A < Aut(G) with G A S PTLd(q). 
(2) Without loss of generality [Q,A] = 1 and [Go, A] < Q: 

Without loss of generality we have [ ß i , A] < Qi and by (1) there is an homomorphism 
ψ from GQA into Aut(ß) with kernel β . As [β , α] < β , Α induces also an 
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automorphism a on β . Hence a e NAut(Q)(H^) and [Q\ ,a] < Q\. Thus there exists 
an element β e Goo A with [Q,aß] = 1 and [β ι , β] < β ι · With the Three-Subgroup 
Lemma we get [G0, aß] < CAut(G)(ß) = ß by (1) and then [Goo, aß] < ^ G o ( ß i ) = 
Goo- As G = E(G)GQ due to Frattini, we also get Β € Aut(G). Hence we may suppose 
[β, α] = 1 and [G0 ,a] < β . 

(3) d > 2: 
Suppose d = 2. Then we have Η = 1, Go = ß : D.F, ß : D a Frobenius group of order 
q(q~ ! ) / ( ? -1 ,2 ) , and Goo = Ö.F. As £> char Goo we obtain [£>,a] < QnD = 1. 
Thus we get [Go, a] < Cc0(ß: Ö) = CQ(D) = 1 in contradiction to our assumption, 
that a can not be extended. 

(4) o(a) = p: 
Suppose r φ ρ and set W := (α) χ β . By (2) we have W < Go{a). Hence 
(a) char W, so [Η, α] < β Π (a) = 1 in contradiction to our general assumption. 
Hence r = p. Since a induces an automorphism of order ρ on QH, we get o(a) = ρ 
with (1). 

(5) Cw(H) = 1: 
Suppose 1 φ g G Cw(H). Then g = xa' for some χ e ß , i € {1,...,/?} and 
[QH, xa'] = 1. We get [G0 ,*a] < CGo(QH) = 1. Hence a' and also a can be 
extended to an automorphism of G, contradiction. 

(6) There is no counterexample: 
By (5) Η and Ha are not conjugated in QH, thus either d = 3 and q = 2n, η > 1 or 
(d, q) = (4,2) [JP]. As (d, q) φ (4,2) by [Ba2] and as we suppose (d, q) φ (3,4), 
we have D φ 1. From W = [W, D] χ CW(D) = β χ CW(D) we obtain CW(D) = 
{wa}, w € Q. Hence , as Η < CGo(D), we get [H, wa] < β Π CGo(Z)) = 1. This 
yields the contradiction [Go, wa] = 1. 

Case2. £(G) = Sz(q), q = 22m+1 > 2, /?(<?), ? = 32 m + 1 > 3, £/3(?), <? > 2, 
of degree q2 + 1, q3 + 1, q3 + 1 respectively. 
We have £(G)0 = β : Η, β = Op(G0), and £(G)oo = H. 

If E(G) = then | β | = Ζ(β) = β ' = 0 ( β ) = β / 0 ( β ) = and 
tf = zq-1. Η acts transitively on 0(β)* and also on (ß /0(ß))* , [Hu III, XI. 3.1], 

If £(G) = R(q) then |ß | = <r>, Q' = 0 ( ß ) = Z(ß) = and Η = 
Η acts transitively on (β/0(β))*, W>(ß)/Z(ß))* and on Z(ß)*, [Hu III, XI. 13.2]. 

If E(G) S i/3(<?), then | β | = <?3, Ζ(β) = β ' = 0 ( ß ) £ β / 0 ( β ) = EQI 
and Η = Z^i^yj, d = (q + 1, 3). Furthermore β / 0 ( β ) / / is a Frobenius group and 
Η acts transitively on <£(ß)*, [Hu I, II. 10.12]. 

(1) Without loss of generality G = E(G): 
If a <E Aut(Go), then [£(G)0 ,a] < E(G)0 and [£(G)oo,a] < £(G)oo. Suppose there 
exists an element Β e Aut(£(G)) with [E(G)0,aß] = 1. Then [G0,a/3] < CQ(H) = 
1. Due to Frattini we get G = E(G)GQ and Β € Aut(G). 

(2) Without loss of generality [β /0 (β ) , a] = 1: 
We get due to [Hui, II 7.3] [β/0(β),<*£] = 1 for an element β e Η · A, where 
Aut(G) = E(G)A. As aß normalizes Go and Goo, we may assume [ β / 0 ( β ) , α ] = 1. 

Hence we obtain also 
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(3) [Η, a] = 1 and due to Burnside 
(4) o(a) = ps, q being a power of p. 
(5) If G = Sz(q), U3(q), then [<*>(β), a ] = 1 and if G = R(q), then [Ζ(β), α] = 

1 = [<£(β)/Ζ(β),α]: 
Suppose G = Sz(q) or U$(q). Then C<j,(Q)(α) φ 1 by (4). As Η acts on Οφ(θ){α) 
by (3), we get C^ ( ß ) (a) = 0 ( ß ) . 

The same argument holds in the case G = R(q). 
(6) G = U3(q): 

First suppose G = Sz(q). As Z ( ß ) = <p{Q) we can define an if-module homomor-
phism ψ between β / 0 ( β ) and 0 ( β ) given by = [q,oc]. Since Η acts 
transitively on Q/<p(Q), we have Cg(a) = φ(Ο), thus ψ is an //-module isomor-
phism. 

By [Hu ΙΠ, XI. 3.1] there exist monomorphisms ß\ :(Q/<p{Q))H ATL\(q) and 
β2·Φ(Ω)Η AVL\(q) with ahßl = λα and ahßz = k2m+l+la for some λ € GF{q)* 
and for all α € GF(q), (h) = H. 

Hence there exists an Λ € Ν s u c h that hßlA = h&2. This is 
impossible, since NAxJtmQ)ß2)((h^)) = Aut(GF(q)). 

If G = R(q), then Ζ ( β ) and </>(β)/Ζ(β) are isomorphic //-modules, in contra-
diction to [Hu ΠΙ, XI. 13.2] and [Hul, Π. 7.3]. 

(7) There exists no counterexample: 
By (6) we have G = U-$(q). Again there is an //-module homomorphism ψ between 
β and φ (β ) given by q* = [q,a]. Since ß / 0 ( ß ) = Eqi and 0 ( ß ) = Eq, we get 
Cß(of)/0(ß) Φ 1. As Η acts on Cg(a), we obtain [β, a] = 1. Thus a = 1 in 
contradiction to our assumption. 

Case 3. E(G) = L2(8) of degree 28. 
We have G = L2(8)3, Go = (c, d), (d) = induces the full automorphism group on 
<c> = Z9 and Goo = {d3). As [Goo, a ] < Goo we get [d3,a] = 1 and [(c), a] < <c). 
Thus we may suppose [(c), α] = 1. Then [(d), or] < C^)({c}) = 1, the contradiction 
[Go, α] = 1 follows. 

Lemma 3.3. Let G = M\\, M22, A/23, ^3(4) of degree 11,22,23,21 respectively and 
let a be an automorphism of Go with [a, Goo] < Goo, such that there exists an 
involution a € NG(GOQ) \ Goo with (aaa)2 € Inn(Goo)· Then a can be extended to an 
automorphism of G. 

Proof First we examine E(G) = M22 and M23. 
Let Η be isomorphic to M24 acting 5-transitively on Ω = {1,. . . ,24} and set 

Ho := stabw({l}), Hoo := stab//({l}, {2}), Hm := stabH({l}, {2}, {3}) and // (4) := 
stab//([l},.. . , {4}). 

If E(G) = M23, then we have G = E(G), H0 = G, HQO = G0, Goo = #000 
and Ν Η (HQO) = Aut(A/22). Identifying //ooo and Goo there exists an element a € 
Nh0(g00) \ Goo and an a e Nh(HOQ) Π Nh(GQO), such that [α_1α, Goo] = 1 and 
[α_1α, Go] = 1. Hence α has the orbits {1}, {2,3} on {1,2,3} and α fixes 3. Since 
(1aaa)2 e Goo, we obtain a e Goo· Thus a € Inn(Goo) and the assertion follows. 
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E(G) £ M22. If G = Aut(M2 2) , then G0 = L3(4)2, Goo ^ 24L2(4)2 and 
NAut(G0)(Goo) = Goo· Thus a e Inn(G0). 

If G = A/22 = Hoo, then Go = #000 and Goo = #(4)· Furthermore NAUKGQ) 
(Goo) is isomorphic to a subgroup of Ν//(#οοο)· Identifying H^ and Goo w e get 
[α - 1 α , Goo] = 1 for an α e NH(HOOQ), which yields the assertion. 

E(G) = M\\. Hence G = M\\. Embedding G in Μγι we obtain in the same 
manner as above, that a can be extended. 

E(G) = L3(4). Then E(G)0 = Q:H, Q = 24 a natural module for Η = SL2(4), 
E(G)00 = (Qi x Qi){e), Qi = Qi = 22, o(e) = 3 and {e} acts transitively on 
Q*, i = 1,2. Furthermore Q\ = Q(~\E(G)oo- Assume that the assertion is false. With 
the proof of Lemma 3.2 we get without loss of generality [Q, a] = 1 = [QH/Q, a] 
and a induces an automorphism of order 2 on Go. Let Q\ = {x\,x2), x2 '·= x\ 
and Qi = (ΧΤ,,ΧΑ), ΧΑ '•— X\- Then we may assume χ™ = χι,χ" — χι and *3 = 
x3xi,x% = X4X2. Moreover we have [a,e] = 1 and we may suppose Q° = Q2. Hence 
x\ = X3, X3X4 or X4. In each case we get [Qi, (aaa)2] £ Qi, i = 1,2 in contradiction 
to (aa a)2 G Inn(Goo). 

About Z(Goo). 

Lemma 3.4. We have Z(Goo) = 1 or E(G) is isomorphic to a member of A := 
[L2(q), L3( 2), U3(q), Sz(q), R(q), L2(8)} of degree q + 1, 7, q3 + 1, q2 + 1, q3 + 1, 28 
respectively. 

Proof Assume E(G) is not isomorphic as a permutation group to any member of A. 
If E(G) ^ An, L2( 11), A7, M11 of degree 11 or 12, Mn, M23, M24, HS, C3, then 
Goo = E(G)00 = An_2 ,53 ,A4,£9:ß8,A5 ,Mio,L3(4),M22,Aut(A6) , Aut(£/4(3)) 
respectively. In these cases Z(Goo) = 1 holds. Suppose E(G) = Sp2d(2) of degree 
2id-i + 2d-\ or 2 ^ - 1 _ 2d~l. Then E(G)00 = Goo = Q- H, Q = E2w_i> and 
Η = C>2(d_ !)(2) or jj (2) respectively. Since Q is a natural module for H, we 
get Z(Goo) = 1. 

Thus we only have to consider E(G) = Ld(q), d > 2 and (d,q ) Φ (3,2). We 
use the terminology introduced in Lemma 3.2 and set Q2 := OP(NH(QI))· It is not 
difficult to see CGQ0(Q 1 χ ß 2 ) = QI χ Q2. As CQIXQ2(NH(QO) = CQL(NH(QI)) χ 
CQ2(NH(Q\)) = 1 we obtain again Z(Goo) = 1. 

Two doubly-transitive groups of the same degree and the same order. Let Η be a 
further doubly-transitive group of the same degree η and the same order as G. If G and 
Η have normal ρ and r subgroups respectively, ρ, r primes, then η = pm = rs for 
some r, j < 1. Thus we get r = ρ and Soc(G) = Op(G) = pm = Op(H) = Soc(H). 
We want to show Soc(G) = Soc(H) as permutation groups provided G is almost simple. 

Lemma 3.5. The group Η is almost simple. 

Proof Suppose Op(H) φ 1 for some prime p. Then Op(H) = pm = rt, m e N. As 
η φ 28 the group E(G) acts doubly-transitively on the cosets of E{G)0 by [Ca], hence 
| £ ( G ) : £ ( G ) 0 | = n . 
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Due to [Gu] and [Ca] we get E(G) = An, Ld(q), L2(l 1), Mu, Af23 of degree 
n, (qd ~ 1 )/(q - 0 ,11 ,11 ,23 respectively. If G = L 2 ( l l ) , M n or M23, then it 
follows Ho < ΓΖ-ι(ρ), thus |G| = | / / | does not hold. 

Hence E(G) = An or Ld(.q). As |TLi(^)| = ρ — 1 we have m > 1. 
First suppose E(G) = A„ and let Τ e Syl p (H) and 5 e Sylp(E(G)). Then we have 
|S| = pPm~'+·-+P+K As Η < Op(H)GLm(p), we get |Γ | | p^{m-\)/2 S i n c e 

η > 5 it follows m = 1, a contradiction. 
Thus E(G) = Ld{q) and η = (qd - 1 )/(q - 1) = pm. In [Li, appendix 1] all 

affine doubly-transitive permutation groups are determined. There are 4 infinite classes 
and some exceptional cases. If Η is one of the exceptional affine groups, then we obtain 
η ^ pm = l l 2 , E(G) = L5(3) and H0 < SL2(3)2 χ Z5 or SL2(5) χ 5. But this yields 
a contradiction to |G| = Thus Η belongs to an infinite class. So Ho < TL\{pm) 
or Ho contains a normal subgroup isomorphic to SLa(t), Spiait), Giit)', η = ta or 
t20 respectively. 

Let S € Sylp(G) and suppose q = rs, r a prime. As rsd—1 φ 63, duetoZsigmondy 
[Zsig] ρ does not divide r ' — 1 for ι < sd. Then (p , s ) = 1 and |S| = pm. If Ho is 
not contained in TL\{pm), then \T\ > pm for Τ e Syl p (H), which contradicts to our 
assumption. So Ho < TL\{pm). Again we obtain a contradiction to |G| = \H\. 

L e m m a 3.6. Suppose E(G) = Ld(q) and E(H) = Lk(s). Then (qd - 1 )/{q - 1) = 
(sk - 1 ) / ( j - 1) and |G| = \H\ iff q = J and d = k. 

Proof Artin showed, if |E(G)| = |£(H) | , then E(G) ^ E(H) [Art]. We will use his 
argumentation modified for our problem. We have 

m d(d-ο 7 . 
e 

Ι β Ι - Ϊ Ι , ^ - Ο , . ν - ΐ ) . 
e\ 

where q = pr, m | r, e \ (d, q — 1), s = p[l, m\ | r\, e\ | (k, s — 1). Furthermore 

Μ < sk\ 

as 

μ < s^-m+(k+i)k/2-i{l _ J L ) . . . . . ( 1 _ _ L ) m i < < f . 
sz sK 

If ρ = pi, then s = q and d = k hold. Hence we may assume ρ φ p\. As 
s(sk-2 + ..+S + 1) = q(qd~2 + · · · + q + 1), we get 

J I qd~2 + · · · + q + 1 · 

If d = 2, then q + 1 = ί * - 1 Η l· s + 1, hence q—s and d =k. 
Moreover we may suppose d = 3 or d = 4: 

Assume d, k > 4. We may choose notations, such that p\ φ 2, and let / be the smallest 
positive number, such that p\ | (qf — 1). As \ (qd~x - 1 )·...· (q — 1 )m we 
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get 

m 
< qd-Xpx

pi m < ^ ^ T m < ^ 3 ? , 

see [Art, p. 362]. Since k > 5 we have -pL < | Hence, as \E(G)\ < sk2, we obtain 

|£(G)| < qT3T, which is impossible [Art, p. 362-363]. 
Suppose d = 3. Then - l)/(? - 1) = (j* - 1)/(j - 1) yields q > 11 and 

J I q + 1. As |G| = f q3(q3 ~ 1 )(q2 ~ 1) we get j*(*"l>/2 | 4 ( q + since k > 3, 
we have 2Jfc/(fc - 1) > 3. Thus 

j q \ 1 - l /?) 2 < |G| < sk2 < 4\q + 1 )3m3. 

Hence 

» 4 ^ + fl)3 ? , < 14 , 13 , , c 143 

q8 < A 3 q-rzm1 < 4 4 i 5 (—) 3 (—) < 4 ? r (1 _ 1)2 * 13 12 * 123 

4 7 7 2 

and ^ < 4 5 g < - g - < 9 i n contradiction to q > 11. 
A similar argumentation yields also a contradiction for d = 4. 

Proposition 3.7. If G and Η are two doubly-transitive permutation groups of the same 
order and the same degree, then Soc(G) = Soc(H). 

Proof. We shall look at the list of the almost simple doubly-transitive permutation groups 
[Ca, page 8], and show one by one E(G) = E(H). Let q be a prime power pr. 

E{G) = An of degree n. Then, as Η is a permutation group of degree n, the group 
Η is isomorphic to a subgroup of Sn, hence E(G) = E{H). 

E(G) = Ld(q) of degree (qd - 1 )/(q - 1). Due to [Ca] and Lemma 3.6 we get 
E(G) = E(H) or E(H) = Sp2k(2). Hence suppose E(H) = Sp2k{2) of degree 
22λ-ΐ + 2k~l or 22*"1 - 2*"1, k > 3. Then |G| = \H\ = 2k\22 - 1) ·... · {2lk ~ 1) 
and q is odd. 

If d = 2, then 2*2 divides |ΓΖ,2(?)| = (q + 1 )q(q - l)r, but aSylow 2-subgroup 
of G has order at most 2k~l2r < 2kq < 2k2lk < 2k\ 

Thus d > 2 and, as G and Η have the same degree, k > 3. Then we obtain 
qd(d-1)/2 < 22k3k/2 with the same argumentation as in 3.6 and, as |G| < qd* and 
2d/(d - 1) < 3, 

2**+t<*+D(1 _ I } * < 2*2+*(*+i) p j ( 1 _ J_ ) ( 1 + j . ) = i m < qd> < 26k33k/2 
2 I = 1

 2 ' 2 ' 

Now 22* < 2633/2, so that 2k < 2333/4 < 8 · 2 = 16, which yields the contradiction 
it = 3. 
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E(G) = U3(q) of degree q3 + l. Then \G\ = j ^ y i q 3 + 1 ) ? V - l)2m, m\r 
and ε e {0,1}. 

If E(H) = Sz(s) of degree s2 + 1, * = 2b, b > 3, then q3 = j 2 and ? = 22b>3. 
As |H| divides i 2 ( j 2 + l)(s - \)b we obtain 

^(<?3 + l)<7V"l) \s2(s2 + l)(s-l)b, 

hence (24b/3 - 1) | 3b(2b - 1). Since αφ 6, a : = 46/3, there exists a prime f, such 
that f I (2α - 1), but t j (21 - 1), i < a [Zsig]. Hence t = 1 mod a and t φ 3, as 
a > 2, which is a contradiction to f I 3fc(2* - 1). 

It follows = E(G) or = 5ρ2λ(2) due to the üstof [Ca]. 
Suppose Η = Ε (Η) = SP2k( 2) of degree 22*"1 + 2*"1 or 22*"1 - Then 
+ 1 = 2k~\2k -f 1) or 2k~\2k - 1), so that q is odd and q3 + 1 ξ 2*"1 mod 2k. 

Hence q + l = 2k~l mod 2k, q - \ =2 mod 4 and r is odd. As |S| = 2*2, S € 
Syl2(iO, we have 2kl | (q3 + 1 )(q2 - 1)2, thus we get the false statement 2*2 | 2lk. 

If E(G) = R(q) of degree q3 + 1, q = 32a+l, then we only have to check the case 
E{H) = Sp2k(2). Since 32b+1 + 1 = 4 mod 8 for all b e N, we get k = 3. But then 
G and Η do not have the same degree. 

For the remaining groups the assertion follows immediately. 

Corollary 3.8. If G and Η are two doubly-transitive permutation groups of the same 
order with isomorphic point stabilizers and if G is almost simple, then G and Η are 
isomorphic as permutation groups. 

Proof. Because of Proposition 3.7 it follows E(G) = E(H). Without loss of generality 
we may assume Η < Aut(E(G)). 

If Aut(E(G))/E(G) is cyclic, then we get G = Η because of |G| = |H|. Thus 
due to the list of [Ca] we only have to consider E(Gp) = Ld(q) and U^(q) with 
{d, q — 1) φ 1 and 3|q + 1, respectively. Now, as Go = Ho, we obtain G = H. 

An inspection of the doubly-transitive almost simple permutation groups yields, that 
G and Η are isomorphic as permutation groups, too (see also [Ba2, (3.4)]). 

Proof of Theorem A 

From now on we suppose that the group G acts flag-transitively on a c.c*-geometry Γ. 
Let P,L,C be a flag, Ρ a point, L a line and C a circle. In [Ba2] we showed 

Lemma 4.1. Κ ρ = Kc = 1. 

and 

Lemma 4.2. If a group G acts flag-transitively on a geometry Γ belonging to the 
diagram ö c ο 3 o, n>\, there are pairwise distinct subgroups G\, G2, G-$ < G, 1 n-2 1 
satisfying the following conditions: 
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(1) Gi acts doubly-transitively on {(Gi Π G3)g, g e G,}, i e {1,3}; 
(2) Β < G2 , G2/B ^ Ea, (G2 Π Gi)/B £ Z2 and G; = (aitGi Π G3), a, € 

(G2 Π G,·) \ Β, ι e {1, 3}, ami 5 := Gi Π G2 η G3 ; 
(3) (Gl n G 3 ) n ( G i nG3) f l ' = B; 
(4) G = (Gi, G3). 

By Lemma 4.1 and 4.2 the stabilizers Gp and Gc are doubly-transitive permutation 
groups of the same order, which have also isomorphic point stabilizers. From now on we 
suppose, that Gp has no regular normal subgroup. Thus Corollary 3.8 yields 

Proposition 4.3. The groups G ρ and Gc are isomorphic as permutation groups. 

We can choose the isomorphism between G ρ and Gc in a favourable way. 

Lemma 4.4. If G ρ ^2(11) of degree 11, then there exists an isomorphism φ: G ρ -> 
Gc. suchthat 0|G/»nGc

 = id. If furthermore Gp ^ A7,L2(8):3 of degree 15,28 
respectively, then also {Gp Π GjJ)^ = Gc Π G/, holds. 

Proof. By Propositon 4.3 and Lemma 3.1, 3.2 and 3.3 there exists an isomorphism 
<p:GP Gc with <j>\GPnGc = i d · W e s h o w (Gp Π Grf = (G c Π GL). By Lemma 
3.1 we only have to consider Gp = Ld(2), d > 2. 

Let GP = Ld(2). Then NCp(B) = BU, U = S3 and BU acts as S3 on {gj7} with 
kernel B, Qi := Op(GpDGc)n5. Let GP(lGL = (B,a\) and G c n G L = {B,a3). 
Then the order of a^af Β is 1 or 3. We get, as [(a^lai)~l(a^laf), Β] = 1 and 
( a j l a \ ) 2 € B, that [(a^laf)2h, ß ] = 1 for some h e B. Hence (a^af)2 acts 
trivially on {Q*{}, which implies (a^laf)2 e Β and a3 = a f . 

Remark. Suppose, that Γ is simply connected. Then G is the completion of the 
amalgam of Gp, Gc and Gl, [Pa, p. 234—236]. Let U < Gp be a point stabilizer in 
the doubly-transitive action of Gp and let φ be an isomorphism between Gp and Gc-
If Gp 2= L2(11) of degree 11, then, by Lemma 4.4, Gp and Gc are amalgamated in 
the following way: 

u = u* for all u e U. 

But if Gp = L2( 11) of degree 11, then Gp and Gc can be amalgamated in a twisted 
way: 

u = u** for all u e U, 

where ψ is an automorphism of U^ = As, which can not be extended to one of Gc-
This situation happens in Γ(Μι2ι (L 2( l l ) , £>i2 x Z2, L 2( l l ) ) ) . In this case there exists 
no isomorphism between Gp and Gc, which is the identity on Gp Π Gc-

If GP = ΑΊ or L2(8): 3 of degree 15, 28 respectively, then NGp(B) > GP Π GL. 
For the group geometry Γ(Μ22, (Αη, χ Z2, A7)) there exists actually no isomorphism 
φ: GP Gc with φ\οΡηοα = i d a n d ( g p n gl)4 = Gc Π Gl. 
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Now suppose that Gp ^ £2(11). Αη, 1*2(8): 3 of degree 11,15,28 respectively 
and that Γ is simply connected. Then by Lemma 4.3 we can give a presentation of G, 
which depends on the stabilizers Gp and G 

Let Β = (X]23 I Ä123), AT 123 being generators and Ä123 relations, G p O G c = 
(X13 I Ä13), where X123 C X13 and /?i23 C GPf)GL = <{βι) UX123 I *2i>. 
Then we get GL = <{ai,<Z3}UXi23 I Ä21UÄJI· (αΓ 1 α3) 2 = b) for some b G Z(B) and 
Gc = {{03} U X13 I Äj3), where 03 6 G t Π Gc and where Ζ?"3· is the set of relations 
which we obtain from the relations Rjj by replacing a\ by 03, i, j e {1,2,3} . Hence 

G = {{au a3] U X3 I U R?, (α^ια3)2 = t> . 

The following has been proved in [Ba2]. 

Lemma 4.5. The geometry Γ is the two-coloured hypercube with point stabilizer Gp iff 
there exist a\ e (GpHGi,)\fi and 03 e (GcHGi,)\5, suchthat G = ({αϊ, 03)11X13 | 
Ä l U ^ . ^ f l j ) 2 ^ ) . 

Thus we obtain: 
If G P ¥ L 2 ( l l ) , A 7 ,L 2 (8) :3 of degree 11,15,28 and if Z(5) = 1, 
then Γ is the hypercube with point-stabilizer Gp. 

Now Lemma 3.4 yields 

Proposition 4.6. If G ρ has no normal elementary abelian subgroup, then Γ is cov-
ered by the two-coloured hypercube with point stabilizer Gp or E(Gp) = U, U e 
{L2(q), 13(2), U3(q), Sz(q), R(q), Z,2(ll), L2(S)} of degree <7 + 1,7, q3 + \,q2 + 
1, q^ + 1,11,15,28 respectively. 

Proof of Theorem A. Suppose that Γ is simply connected. By assumption Gp is 
neither an affine group nor isomorphic to a group of Lie-type of rank 1. As £3(2) = 1,2(7) 
we have by Proposition 4.6 Gp = Αη of degree 15 or Γ is the hypercube with point 
stabilizer Gp. In [Ba2] it was shown that, if |Gp:Gp η Gel = 15, then Γ is 
the hypercube with point stabilizer Gp or Γ = Γ(2Μ22, (Αη, 54 χ Ζ2 , Αη)). Hence 
Theorem A holds. 

Proof of Theorem Β 
Suppose Γ is simply connected and |GpiGp Π Gel < 20. Let Λ : = [L2(q), L3(2), 
L 2 ( l l ) , L2(8)} of degree q + 1,7, 11,28, respectively. If E(GP) $ Λ, then either 
G is a factor group of 2 " - 1 G p and Γ is covered by the two-coloured hypercube or 
G = 2M22 or M22 by Proposition 4.6 and by [Ba2]. Hence we have only to examine 
£(Gp) e Λ. We distinguish the three cases E(GP) = L2(q), ^3(2), £2(11) of degree 
q + 1,7 or 11 respectively. 

Case 1. E(GP) = L2(q), 4 < q < 19, of degree n = q + 1. 
Due to [HP] Lj{q) is generated by a\,c,d and the following relations always hold: 

1 = <*(?-»>// = cp = (a,c)3 = daid = a f , 
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where q = pn. In VLiiq) we have furthermore 

eL = d,ea1 =e-l,\=fn = [ a u f ] = [c, /], e' =e 

e a diagonal and / a field automorphism. Adding for each q respectively the following 
relations we get a presentation (Fi3 U {αϊ} | R), Yu = {c, d, e, /}, for TL,2(q): 

= (cd)3 = (aide)5 

= cdc = (aide)5 = cec2 

f =*P 

q= 4 
q = 5 
q = 7 
q = 8 
q = 9 
q = 11 

2 = 1 3 
q = 16 
9 = 1 7 
2 = 19 

As GP < rL2(q 

cdc3 = cec5 

= (c Jc) 2 = (cd)7 = ( a i a f ) 7 

= c] = (d2c)2 = (aicd)5 = cecdc~x 

= c J c 2 = c ec3 

= cdc9 = c e c n 

= d-*cd3cdc-1 

= c^c8 = ii_1c5aic-1aic2aic6ai = ce(? 
= Λ τ 4 = c ' c " 2 . 

this provides us with a presentation {X13 U {αϊ} | R\) of Gp, 
[c, d} c X13 c y1 3 . Then due to Lemma 4.4 G is isomorphic to G( i ) for some 
ί €{1 (q~\)/t), 

G(i) := {X13 U {αι,α3} \ R1 U Λ?3, ( a f 1 ^ ) 2 = 

If i = 0, then Lemma 4.5 yields case (1) of Theorem B. 
For i > 1 application of coset enumeration yields |G(i)| = 1 or 

q= 4 |G(1)| = |G(2)| = 11 

q = 5 |G(1)| = 18 

q = 9 |G(2)| = 112 

9 = 11 |G(1)| = |G(4)| = 144. 

It is not difficult to see, that if q = 4,11, then G( l ) = G(2) and G( l ) = G(4) respec-
tively. Since we know flag-transitive c.c* -geometries with point stabilizer isomorphic as 
permutation group to Gp, Γ is the universal 2-cover of one of these and (3) of Theorem 
Β holds. 

Case 2. E(GP) = L3 (2) of degree 7. 
Because of the doubly-transitive action we have Gρ = Li(2). Choosing 

w\ = 

r = 

w 2 
/I 1 0\ 

= 0 1 0 , 
\o 0 1/ 

.(:; I) 
\0 0 1/ 

s = 

we have the following relations for G ρ 

Ri = {1 = w2 = w2 — [u»i, W2] = s2 = [iüi, j ] = W2W1W2 = r3 = w[w2 = 
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W2W1W2 = rsr = af = [j,a(\ = w^w\s = (W2ax)3 = (air)3}. 

Let «3 be chosen as in the previous case. As (Λ1Λ3)2 6 J? and Β is elementary abelian 
of order 4, we get (a\a3)4 = 1 and [(aia^)2, a\] = 1, hence (a\ai)2 = sl for some 
ι e {0,1}. Thus G is isomorphic to 

G(i) = (X13 U {aua3} | Ri U R?, (a^la3) = 

for some i e {0, 1}. 
If i = 0, again Lemma 4.5 yields (1) of Theorem B. 
Since we have the example (4) in section 2, we get G(\)/N = U3(3) for a normal 

subgroup Ν of G(l) . By coset enumeration follows |G(1): Gp\ = 36, so (4) holds. 
Case 3. E(GP) ^ L 2 ( l l ) of degree η = 11. 

Then the stabilizer of a circle in E(Gp) is isomorphic to A5. In L2(l l) there are two 
conjugacy classes of subgroups isomorphic to Λ5, which are interchanged by 
Aut(L2(l l)) . Thus GP = E(Gp). InCase 1 we got a presentation of Gp = G(l) for 
q = 4. Hence replacing there a\ by b and 03 by a\, we obtain the relations 

Rx = {1 = b1 = d3 = (bd)2 = c2 = (cd)3 = (be)3 = (bdef = 

af = (axc)3 = (aid)2 = (axdc)5 = (bax)2d\ 

where Β = {b, d) and GPC\Gc = (b, d, c). 
Unfortunately for GP = L201) of degree 11 Lemma 4.4 does not hold. As for X a 

point or a circle GX Π GL = NGX(B), where Β = S3, Lemma 3.1 and Proposition 4.3 
yields that there is an automorphism ifr:GP Gc with (Gp Π Gq)^ = Gp Π Gq and 
(GpD Gl)* = Gc π GL. Hence we can choose <23 as A^. If there is an automorphism 
φ e Aut(Gc) with [GP η G c , ψφ] = 1, then, as Z(B) = 1, case (1) of Theorem Β 
holds by Lemma 4.5. 

Now suppose, that ψ induces an automorphism on Gp Π Gc, which can not be 
extended to one of Gc- Without loss of generality we may assume 

d = (123), b = (12)(45), c = (12)(34) and ψ = (12). 

Hence [α\α$ά, Β] = 1 holds and, as (αια3)2 € Β, we obtain (a\a^d)2 e Z(B). Thus 
G is isomorphic to 

(aua3,b,d,c\Ri,\=4 = (a3c)3 = (a3d)2 = (a3dc)5 = (ba3)2d = 

(axa3)2d~l), 

R\ the relations of Gp. Due to example (5) section 2 we have G/N = Μγι for a 
normal subgroup Ν of G. Now by coset enumeration |G| = fAf 121, hence Ν = 1. 
Thus Theorem Β is proved. 

Remark. If G/> = Z-2(8)3 of degree 28, then we do not get new interesting examples. 
In this case the geometry Γ is covered by the hypercube and G is a factor group of 
2 2 7 G p . 
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On the 1-cohomology of the groups 
SL4(2n), Si/4(2"), and 8ρίη7(2Λ) 

Michael F. Dowd 

Abstract. We compute the first cohomology groups with values in the simple modules for 
the algebraic groups ^3(^2), Β2Φ2), and related finite groups. 

Introduction 
In this note, we compute the cohomology groups Hl(G, M), where G is either the 
finite group SL^{2n), the finite group SU4(2n), the finite group Spin7(2n), the algebraic 
group ^3(^2), or the algebraic group #3(F2), and Μ is a simple module. The bulk of 
the argument for the finite groups involves the reduction of the problem to a reasonable 
finite number of cases where the cohomology might be nonzero. We show that the 
1-cohomology groups vanish in a large number of cases by using a generalization of 
Alperin's induction step [1] obtained from the long exact sequence in cohomology. We 
then handle the remaining cases by using information about cohomology over the algebraic 
group; with a suitable bound on n, we may use the relationship between rational and 
generic cohomology, as documented by Cline, Parshall, Scott, and van der Kallen ([3]), 
and Andersen ([2]). In the course of many of the arguments, we need to show that certain 
hom groups are zero; thus we need to develop a lot of information about which simple 
modules appear as composition factors of certain tensor products of simple modules. An 
important tool in this type of analysis will be the concept of module "mass", which was 
first introduced in the papers of Sin ([6], [7], [8]). In the case of the #3-type groups, we 
are able to take advantage of a very simple consequence of the special isogeny that exists 
between the algebraic groups of type Bi and Q . 

§1. Notation and preliminaries 
We fix an algebraic closure F of F2, and regard finite extensions of F2 as subfields 
of F. For η € Ν, we denote by G the simply connected semisimple algebraic group 
of type Aj or #3 over F, and by G(n) either the finite group SL^(2n), the finite 
group Spin7(2rt), or the finite group Si/4 (2"). The latter is by definition the subgroup 
of SL4(22n) preserving the hermitian form on F^2n represented in the standard basis 
by the identity matrix. Thus, G(n) can always be regarded as the subgroup of fixed 
points under an appropriate endomorphism of G. Let Γ be a maximal torus of G, and 
for dominant weights μ, e X+(T), with respect to a fixed choice of Borel subgroup 
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containing Τ, let L(μ) denote the unique (up to isomorphism) simple module for G 
with highest weight μ. For a module M, over G or G(n), we denote by M* its 
dual (contragredient). We denote by Af/ the ith Frobenius twist of M. The set of 
(isomorphism classes of) simple modules for SL^{2n) (resp. SU^{2n), Spin7(2")) 
is comprised of the restriction to 5L4(2") (resp. SU4(2n), Spin7(2n)) of the 2" -
restricted modules for G. By Steinberg's tensor product theorem, this will be exactly the 
restriction to G(n) of the set of modules of the form Ζ,(μο) <8> £(μ ι ) ΐ <8> · · · ® L(ßn)n = 

L(ßo) ® L(2ß\) ® · · · <g> L ( 2 η μ η ) = L ( ß 0 + 2μι + · · · + 2ημη), as μ0, ..., μη range 
over the restricted weights (i.e. those integral weights λ for which 0 < { λ, α,ν) < 2 
for each simple root a,·). We note however, that Λ/,·+„ = Μ, if G(n) = SL^{2n), or 
Spin7(2n), while M i + n = M* if G{n) = Si/4(2n). 

We label the modules corresponding to the restricted weights as follows. Let λ], λ2, λ3 
denote the standard fundamental dominant weights for a root system of type A3 (resp. 
B3). 

Table 1.1 

symbol Α3 Βι dim mass(A3) mass(l?3) 
Θ £(λι ) 4 3 
Λ L{k2) L M 6 4 3 
Γ ί-(λ2 + λ3) 20 7 
Ψ Μ λ ι + λ 3 ) 14 6 5 
σ ί.(λ3) 8 3 
Σ L(X 1 + λ 2 + λ3) £ ( λ ι + λ 2 ) 64 10 8 
S ί-(λ! + λ2 + λ3) 512 11 

Remark. The notation of Table 1.1 has been chosen to be compatible with the restriction 
map from B3 to A3, but for didactic reasons, we will hereafter refer to the module 
L(p) = L(X 1 +λ2 + λ3) in A3 as "S instead of " Σ 

For convenience in notation, we shall often denote tensor products of distinct Frobenius 
twists by juxtaposition (and the subscript zero shall be supressed). For example, the 
module Ao <S> Θ* ® Γ2, for simply connected A3, will be denoted by ΛΘ*Γ2· Because 
of the special isogeny which exists between the simply connected algebraic groups of 
type B3 and C3, it turns out that for G = B3, we have 1.(μ)®Ι.(λ·$) = Ζ,(μ + λ3), for 
μ € {λι ,λ2,λι +λ2}. (See [11].) Thus, we refer to L(X\ + λ 3 ) as Λσ, etc. The fact 
that 5, the first Steinberg module, is actually a tensor product of two smaller modules 
will be of great help in some of the induction step arguments. Later on, we will need to 
use variables to represent some indeterminate restricted module isomorphism types; we 
will use the capital greek letters Α, Π, Τ , Ξ, and Ω. 

For a finite set I of natural numbers, we let V/ = V). The collection of simple 
FG(n)-modules then consists of the set of all (isomorphism classes of) modules of the 
form 

Θ/ Θ Θ} ® Λ * ® V l ® Γ Μ <g> Γ*Ρ ® SR, 
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if G = A3, or the set of modules of the form 

Λ/ <S> Ψ/ <S> ΣK ® aL ® {Ασ)Μ ® (Ψσ)Ρ <8> SR, 

if G = B3, where / , / , . . . , / ? are disjoint subsets of Ν = {0,1, . . . , η — 1}. It is 
well-known that the module S^ is projective; it is the Steinberg module for G(n). The 
group of field automorphisms Gal(F2«/F2) acts on the set of isomorphism classes of 
simple FG(n)-modules by acting on the set of ordered 7-tuples of disjoint subsets of N. 
The automorphism γ Η* y2' acts by adding i to each element of Ν and then taking 
the remainder modulo n, if G(n) = SL4(2"), or Spin7(2n). If G(n) = SU4(2n), this 
is followed by the transpositions (/, J) and (Μ, Ρ). Thus, the main result of the paper 
can be stated as follows: 

Theorem. A) (A3 version) For η > 8, if I, J, ...,/? is an ordered 7- tuple of disjoint 
subsets of Ν = {0,1, ..., η — 1}, then 

H\G(n), Θ / <8> Θ } ® KK <g> <g> ΓΜ <8> ® SR) Ζ F 

for ( / , . . . , R) Galois conjugate to (0,0,0, {0}, 0,0,0), (0,0, {1}, {0}, 0,0,0), ({1}, 
0, {0}, 0 , 0 , 0 , 0 ) or (0, { l j , {0}, 0, 0 , 0 , 0 ) , and is zero otherwise. 

B) (Z?3 version) For η > 6 , if I, J, ..., R is an ordered Ί-tuple of disjoint subsets 
of Ν = {0, 1, . . . ,n - 1}, then 

Hl (G(n), Λ/ (8) Ψ7 <8> Σ * ® <rL <8> (Λαγ)^ ® (Ψσ)/> <8> 5Ä) £ F 

for ( / , . . . , / ? ) Ga/o/j conjugate to ({0}, 0 ,0 ,0 ,0 ,0 ,0) , ({1}, {0}, 0 ,0 ,0 ,0 ,0) , or 
({0}, 0, 0, {1}, 0, 0, 0), am/ is zero otherwise. 

The same results hold for G (in both cases) if I, J, ...,/? are allowed to be disjoint 
finite sets of nonnegative integers and conjugation is by Z. 

The result for G follows from the result for G(n) because of Theorem 7.1 of [3], 
which asserts that the restriction map 

Ext^LOa), L(v)) ExtJ^CLO*), L(v)) 

is injective if μ and ν are 2n -restricted, and that it is an isomorphism if η is larger than 
a bound which depends on μ and v. 

Most of our results will hinge on whether or not particular simple modules appear as 
composition factors of certain tensor products of simple modules; the main tool for this 
type of analysis will be the concept of module "mass", as first introduced in the papers of 
Sin ([6], [7], [8]). 

We must first define "mass" for modules over the algebraic group. In the following 
lemmas, we let G be an arbitrary semisimple, simply connected, algebraic group over 
an algebraically closed field of characteristic p. Let Τ be a maximal torus of G, and 
fix a choice of Borel subgroup containing Τ. Let ΖΦ denote the root lattice, Δ a 
(fixed) base of simple roots corresponding to the choice of Borel subgroup, Ζ + Δ the set 
of nonnegative integral linear combinations of positive roots, X(T) the weight lattice, 
X(T)+ the set of dominant weights, and let X\{T) be the set of ρ-restricted weights 
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= {ν € Χ(Γ) : 0 < (υ,αΓ) < ρ V α, e Δ}. Let Ε = ER = Χ ( Γ ) <g>z Ε . Fix some 
/ e Ε* such that /(or,·) > 0 for all a,· e Δ (e.g., we may take / = (/p", ·), where 
ρ = 1 /2Σ α € φ+α ν > and where f is the torsion coefficient of Χ ( Γ ) / Ζ Φ ; this will ensure 
that m will take values in Z + . Note also that this choice will make the definition of mass 
invariant under duality.) Define the (/?-restricted) "mass" of a module, m(V) e M, for 
G-modules V as follows: 

i) For λ = Σ ί = ο P% e Χ(Γ)+ (where λ, e X\(T) for all I), we let M{X) = 

E U /(λ, ·) · 
ii) Define m(V) = sup {m(X): L(X) is a composition factor of V}. (In particular, we 

have m(L(X)) =m(X) . ) 
In the notation established above, if we define the mass function by taking / = (2P\ ·) 

for A3 and / = (pi ·) for £3, we have the masses for the simple restricted modules for 
A3 and #3 as listed in Table 1.1. 

Lemma 1.1 .Let X,X' e X(T)+, with Χ = Σί=ορ''λ,·, λ' = Σ/=οΡ ' λ / 
λ(·, λ) € Χι (Γ) / o r all i). Then m(L(X) ® L(X')) < m(X) + m(X') vWi/i equality if and 
only if λ,· + λ̂  € X\ (Τ) for all i, in which case L(X + X') is the unique composition 
factor of L{X) <g> L(X') of greatest mass. 

Proof Case 1. λ, λ' both ρ-restricted. 
Suppose V = L(v) is a composition factor of L(X) <8> L(X'). Then υ < X -(- λ ' in 

the Ζ + Δ (usual) partial order. If ν = Σ Ρ * ν ϊ (vi 6 then we have m(v) = 
Σ / ( υ . ) < Σ P'7(v,·) = / ( ν ) < / ( λ + λ') = / ( λ ) + / ( λ ' ) = /η(λ) + /η(λ') with 
equality if and only if ν = v0 € Xi(T) and ν = λ -I- λ'. Thus m(L(X) ® L(X')) < 
m(X) + m{X') with equality if and only if ν = λ + λ ' e Xj (Γ). 

Case 2. {λ, λ'} g Χι (Γ). 
We induct on the quantity m(X) + m(X'). Write λ = λο + pX, X' = XQ 4- pX'. Since 

mass is preserved under Frobenius twisting, we may assume that λο + XQ φ 0. Also, we 
have λ + λ ' φ 0 by assumption. Now, 

m(L(X) <g> L(X')) = m(L(X0) ® L(X'0) <g> L(pX) ® L(pX')) = m(L(v) ® L(v')) 

for some composition factors L(v),L(v') of L(XQ) <g> L(X'Q), L(pX) <g> L(pX') respec-
tively. By induction then, m(v) < m(X0) + /η(λ^) and m(v') < m(pX) + m(pX'). If 
equality holds in both, we would have that λ, + λ· e Χ ^ Γ ) for all i, that L(v) = 
L(X0 + AQ) and L(v') = L(pX + pX') are the unique composition factors of great-
est mass of L(XQ) <g> L(XQ) and L(pX) <g> L(pX'), respectively, and thus that L(X + 
X') = L(v) <8> L(v') is the unique composition factor of L(X) ® LiX') of greatest mass 
m{X + X') = m(X) + m(X'). Otherwise, m(v) + m(v') < m(X) + m(X'), so that the 
induction hypothesis could be applied to L(v)®L(v') conclude that m(L (λ )® L (λ')) = 
m(L(y) ® L(y')) < m(v) + m(v') < m(X) + m(X'). • 

Corollary 1.2. If X,X' G Χι(Γ) and L(v) is a composition factor of L(X)<g>L(X') with 
ν i X\(T), then m(L(v)) < m(X) + m(X') - (ρ - 1) · { min (mOO)}. 

μ€Χι(Γ)\{0) 
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Proof. Suppose ν = Εί=ο ρ1 ν, is the p-adic expansion of v. We rewrite the inequality 
from the proof of Case 1: m(X) 4- m(V) - m(v) = /(λ + λ ' ) - Σ / t o ) ^ /00 ~ 
Σ / t o ) = Σ ρ ' / t o ) - Σ / t o ) = Σ ( ρ ' - l)m(v,·) > (Ρ - l)m(v*) for some 
1 < k < r and ν* φ 0, by assumption on v. • 

We may also define, for any k € N, the pk -restricted mass, by letting rripk (λ) = 
Σί=ο /(λ,·), (and extending to nonsimple modules as in (ii) above,) where r(i, it) 
is the least non-negative residue of i mod k. It is an easy exercise to check that statements 
analogous to Lemma 1.1 and Corollary 1.2 hold for pk-restricted mass. There is a natural 
way of extending the definition of mass to G(n)-modules by representing the simple 
modules as restrictions to G(n) of G-modules with pn-restricted highest weight; it can 
then be shown that the pk -restricted mass of a G-module is > to the pk -restricted mass 
(as G(n)-module) of its restriction to G(n). The following is a refinement of Lemma 
2.3 of [10] which works for the finite groups G(n). 

Lemma 1.3. Let λ = Ρίχ> = λ° + PK μ = Σ 0 P^i = μ° + ρ β, ν = 

P'vi = ρν> where λο φ μο, and m(A,) > /«(μ.,) for all i = 1, ... ,n — 1. If 

L(X) is a composition factor of 

L{y) <g> L(jjl) = L(pv) ® 1(μ), 

as G(n)-modules, then (pn — 1) · θ < (m(ßο) — m{Xο)) + ΣΊ=\ p'm(v/), where 

θ - { min (m(/?))}. 

Proof Since λο φ μο, L(X) cannot be a composition factor (as G -module) of 

L(y) <8> L(ß) = L(ßo) <8> [L(pv) ® L(pß)], 

by Steinberg's tensor product theorem. Therefore, we must have that L(X) is a compo-
sition factor of resG(n)(^M), for some non- pn-restricted weight ω such that L(oS) is 
a G-composition factor of L(v) ® Ζ,(μ). This implies that 

η-1 

mpn(L(k)) = ^ ρ ' / η ( λ , ) < mpn(L(co)) 

i=0 
< mpn (L(v)) + fflpn (Lin)) - (pn - 1) · θ 

n-l n-l 

= Σ P'mivi) + Σ>'/η(μ/) - (Pn ~ 1) • θ 
i=1 1=0 
n-l n-l 

< Σ P' wto) + {m(jiο) - m(Xο)) + Σ P i f n Μ - (Ρ" - 1) · Ö 
(=1 i=0 

whence 
n-l 

(Pn - 1 ) · θ < (m(jio) - m(ko)) + Σ p ' m t o ) · • 
i—l 
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§2. Tensor products of simple modules 
Lemma 2.1. The composition factors which appear in each tensor product of pairs 
of restricted simple modules are as indicated in Tables 2.1 and 2.2. (We have omitted 
those tensor products in Β3 which are immediately obtainable from given ones, e.g., 
Ασ ® Ψ = σ ® (Λ ® Ψ).) 

Remark. In many cases, we are only interested in which modules appear as composition 
factors in a product of restricted modules, and not in their multiplicities as composition 
factors. 

Proof. The weight multiplicities of the restricted simple modules can be completely 
determined from those of the Weyl modules using the Jantzen Sum Formula. The tensor 
products are then computed by calculating the weight orbits under the Weyl group and 
then multiplying the appropriate formal characters. • 

Table 2.1 (Type A3). 

product composition factors 
Θ <8» Θ 
Θ ® Θ* 
Θ <g> Λ 
Θ ® Ψ 
Θ ® Γ 
Θ ® Γ* 
Λ ® Λ 
Λ (g) Ψ 
Λ ® Γ 
Ψ ® Ψ 

2F, 3Ψ, 2Λι,ΛΘι 
2 F, 2Ψ,Λι 

2 Λ , ί , Θ ι , Θ Ϊ 
Θ*, 3Γ*, 2ΘΘ*, Θ*Λι 

6F, 4Ψ, 4Λι, 2ΛΘι, 2ΛΘ*, Ψι 

2Λ,Θι 
2 F, Ψ 
Θ*, Γ* 

2Γ, Θ*Θι 
2Λ, S, Θ* 

Table 2.1 (Type Α3 cont.). 

product composition factors 
Ψ ® Γ 
Γ ® Γ 
Γ ® Γ* 
5 ® Θ 
5 ® Λ 
5 ® Ψ 

5 ® Γ 

5 ® S 

2Θ, 4Γ, 3Θ*Θι, Θ*©}, 2ΘΛι, Γ*©* 
6Λ, 2S, 4Θι,4Θ*, 2ΨΘ}, 2ΛΛι, Γ! 

10F, 7Ψ, 6Λι, 3ΛΘι, 3ΛΘ*, 2Ψι, ΨΛι 
4Γ*, 3ΘΘ*, 2Θ*Λι, ΓΘι 

8F, 6Ψ, 6Λι, 3ΛΘι, 3ΑΘ*ν 2Ψι, ΦΛ] 
10Λ, 25, 8Θι, 8Θ*, 3ΨΘι, 

3ΨΘ*, 4ΛΛι, 2Γι, 2Γ*, ΛΦι 
8Θ*, 8Γ*, 4ΘΘι, 6ΘΘ*, 4Θ*Λι, 

2ΓΘι, 3ΓΘ*, 2Θ*Φι, 2Γ*Λ1, Θ ^ 
40F, 20Ψ, 32Λι, 14ΛΘι, 14ΛΘ*, 16Ψι, 

4Θ2,4Θ*, 8ΨΛι, 4Λ 2 ,25Θι, 25Θ*, 2ΛΓι, 2ΛΓ*, 2ΨΦι, Si 

1' 
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Table2.2 (Type B3). 

product composition factors 
A ® A 2F, 2Φ, Αι 
A ® Φ 2Α, Σ, σ\ 

Φ <8> Φ 6F, 4Φ,4Αι,2Ασι, Φι 
Σ Θ Α 8F, 6Φ, 6Λι, 3Λσι, 2Φι, ΦΑι 
Σ <8> Φ 10Λ, 2Σ, 6σι, 3Φσι, 4ΛΛι, 2(Ασ)ι, ΑΦι 
Σ ® Σ 40 F, 20Φ,32Αι, 12Ασι, 16Φι,4<τ2, 

8ΦΑι,4Λ2,2Σσι,2Λ(Ασ)ι,2ΨΦι, Σι 
σ <8> σ 4F, 4Λ, 2Φ, σι 

σ ® Ασ 8F, 8Α, 8Φ, 2Σ, 4Αι, 2au Ασ\ 
σ ® Φσ 12F, 8Α, 12Φ, 4Σ, 8Α ι, 4σι, 4Ασ], 2Φι, Φσι 
σ Θ S 32F, 20Λ, 24Φ, 8 Σ , 24Λι, I2au 8Φ1, 

4(Ασ)ι, 8ΑΑι, 12Λσι, 4ΨΛι,6Ψσι, 2ΛΦι, Σσι 
Ασ ® Ασ 32F, 24Α, 28Φ, ΙΟσι, 8Σ, 20Αι, 

8Ασι,4Φι,2Φσι,4ΑΛι,2ΦΛι, (Ασ)ι 
Ασ ® Φσ 52F, 36Α, 40Φ, 12Σ, 36Λι, 20σι, ΙΟΦι, 

18Ασι, 4ΦΑ ι, 8Φσι, 8ΑΑι, 4(Ασ) ι, 2ΛΦι, σ2, Σσχ 

Table 2.2 (Type B3 cont). 

product composition factors 
Ψσ®Ψσ 

S®Aa 

S <3> Ψ<τ 

S&S 

88 F, 64Λ, 60Φ, 38au 16Σ, 64Λι, 20Φι, 32Λσι, 20Φσι, 
24ΑΛ], 8ΦΛι, 12(Λσ)ι, 8ΑΦι, 4Σσι, 4σ2,2ΦΦι, 2Ασ2, (Φσ)ι 

144F, 92Λ, 88Ψ, 56σχ, 24Σ, 112Αι, 48Φι, 
48Λσι, 30Φσι, 44ΛΛι, 24ΦΛι, 22(Λσ)ι, 6Σσι,4ΣΛι, 

8σ2, 14ΛΦι, 3Λσ2, 4ΦΦι, 2(Φσ)ι, 8Λ2,4Λ(Λσ)ι, 2Σχ, Φ(Λσ)ι 
264F, 168Λ, 140Φ, 36Σ, 216Λι, 104σι, 108Φι, 82Λσι, 
52ΦΛι, 36ΛΦι, 60Φσι, 96ΛΛ], 48(Λσ)ι, 14Σσι, 26σ2, 
8(Φσ)χ, 14ΦΦι, 12Λσ2,3Φσ2, 24Λ2, 8Σι, 8ΣΑι, 2ΣΦι, 

12Λ(Λσ)ι,4Φ(Λσ)ι,2Λισ2,Λ(Φσ)ι 
840F, 480Λ, 368Φ, 736Λι, 296σι, 88Σ, 352ΛΛι, 216Λσι, 

464Φι,208ΦΛι, 164Φσι, 144Λ2,176(Λσ)!, 120σ2,168ΛΦι, 40Σσι, 
40ΣΛι, 80ΦΦι, 56Ασ2,64Λ(Λσ)χ, 24ΛΛ2,56(Φσ)ι, 60Σι, 20Φ<τ2, 

32Φ(Λσ)ι, 8ΦΛ2,20Λισ2,4σισ2, 12ΣΦι, \2σχΚ2,12Λ(Ψσ)ι, 8ΛΣι, 
4Φ2) 2Σσ2 ,4Σ(Λσ)ι, 2ΛΛισ2,2ΦΣι, 2Φ(Φσ)ι, S\ 

Lemma 2.2. A) (A3 version) Let I, J, K, L, Μ, P, and R be disjoint subsets of 
Ν = {0, 1, . . . , N - l } , andlet i € N. Then Α,<8>(Θ/<8>Θ}®ΛΑΓ®ΦΖ,®Γμ®Γ£<8>5Κ) 
contains no composition factor of the form St with |Γ| > |/?| + 1, where A denotes 
any of Θ, Θ*, Α, Φ, Γ, Γ*, 5. 
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Β) (Z?3 version) Let I, J, K, L, Μ, P, and R be disjoint subsets of Ν = 
{0, 1 , . . . , n—\), and let i e N. Then Α,®(Λ/®Ψ/®Σκ®σ ί ,®(Λσ)Μ<8>(Ψσ)/>®5Λ) 
contains no compositionfactor of the form A /> ®Ψ/> ® Σ ̂ ' ® σ^/ ®(Ασ)Μ>®(Ψσ) P>®SR' 
with > |/?| + 1, where A denotes any of Α, Ψ, Σ, σ, Λσ, Ψσ. Furthermore, if 
i € N\(IUJ\JKULUMUPUR), then (Si®Si)®(Al®Vj<8>ZK®aL®(Aa)M<8) 
(Ψσ)/> ® Sr) contains no composition factor of the form Sj with \T\ > |/?| +2. 

Proof We induct on the quantity m(A, )+m(A/ <S> - · <2>SR), if G = Β3. The argument 
for A3 is similar. If i 0 IU ·· · U R, there is nothing to prove, so we analyze the filtration 
of AI ® (Λ/ ® • · · ® SR) = (AT ® Τ,·) ® (A/ 0 · · · ® Ύυ\{ί] ® · · · ® S*), resulting 
from a composition series of A, <g> Τ,, for each choice of Τ corresponding to the various 
possibilities i e / , i € J, etc., and the various possible choices for A. Inspection of 
Table 2.2 shows that the resulting filtration factors are of one of the following 3 forms: 

i) irreducible of the form A/' ® Ψ/' <8> Σ^' ® a y ® (Ao)m> ® (Ψσ)/» ® 5/?' with 
l * ' l < 1*1 + 1, 

ii) of the form Aj ® (A// ® · · · ® SÄ/) with j e {i + 1,1 + 2}, /?' c /?, and 

m(Aj) + m(A/' ® · · · ® < /"(A/) + m(A/ ® · · · ® SR), 

by Corollary 1.2, or 
iii) of the form A'i+l ® A'?+2 ® (A// ® · · · ® SR>) with |Ä'| = \R\ - 1 and 

m(A'i+l) + m(A;7
+2) + m(Ar ® · · · ® SR>) < m(A t) + m(A/ ® · · · ® S*), 

by Corollary 1.2. 
Thus, we may apply the induction hypothesis (twice if necessary). 
Finally, to prove the last assertion, we examine the composition factors of ® S,. (cf. 

Table 2.2) We observe that we may apply the first assertion of the theorem at most twice 
in succession to terms of the form A* ® (A/ ® Ψ./ ® Σ ^ ® σ^ ® ( Λ σ ) ^ ® (Ψσ)ρ ® S R ) 
(where k = i 4- 1 or i + 2 ) to obtain the result. • 

We will need information about the structure of the module A, <8 SR. A restriction on 
which composition factors can appear in the head and socle is obtained by determining the 
decomposition into (projective) indecomposables of A,· ® SN- In the following, P{M) 
denotes the projective cover of Μ. 

Lemma2.3A. (A3 version) 
a) ®I®SN = P(R*®SN\{I]) 
b) Γ, ® SN = Ρ(Θ* ® SN\[I)) θ 2Ρ(Γ* ® S a m j ) 
c ) A,· ® SN = Ρ(Φ,· ® SN\{I]) 
d) Ψ, ® SN = P(AI ® 5N\{/ j) Θ 2SN 

e) ST ® SN = P(SN\[I}) φ 2P(VI ® SN\[I}) Θ 2 Ρ ( Γ / + ι ® SN\{I+L}) θ 2Ρ(Γ*+1 ® 
SN\V+1}) 

Proof a) d im F (HomFG(n) iß i®S N , Θ /® · · · Γ * P ® S R ) ) = dimF(HornFG{n)(SN, Θ?® 
( Θ / ® · · ·®Γρ®5/ ί ) ) = multiplicity of SN as a composition factor of Θ * ® ( Θ / ® · · ·® 
Γρ ® SR) since SN is simple and projective. However, m(0* ® (Θ/ ® · · · ® SR)) < 
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m(©*) + τη(Θ/ ® · · • ® SÄ) = 3 + 3 | / | + 3 | / | + 4\K\ + 6|L| + 7\M\ + 7|/>| + 10|Ä|, 
which is < 10η, unless |Ä| > n - 1, and, if |/?| = n - 1, either \M\ = 1 or |P | = 1. 
This reduces us to three cases: 

i) i e R. 
(Θ* ® Si) ® (Γα, (8) Γ* ® SÄM<·,) » (4Γ, + 3Θ;Θ,+, + 2Θ,·Λ/+1 + Γ , Θ ^ , ) ® (ΓΜ ® 
Γ* ® SR\[i}), and a mass argument applies to all filtration factors except Γ, Θ*+1 ® (Γλ/ ® 
Γρ ® Sw\{j})· However, expanding Θ*+1 ® A,+i (for some Λ), if necessary, results in 
a reduction of mass estimate by at least 3 (cf. Cor. 1.2), together with simple filtration 
factors that are clearly not isomorphic to Sn. Thus the multiplicity of Sn is zero in this 
situation. 

ii) Μ = {i] (and R = N\{i}). 
m((0 ; ® Γ,) ® SN\[i}) < m(@; ® Γ,·) + m(Siv\l/}) = 7 + 1 0(* ~ 1) < m(SN). 
iii) Ρ — {ζ} (and /? = W\{i}) . 

(Θ* <8> Γ*) ® Sn\[i} ~ (2Λ, + Θ ι +1 + Si) ®Sn\{i) . Thus (by applying the mass argument 
to the filtration factor Θ,+ι ® Sjv\{/|) the multiplicity of Sn is shown to be equal to one 
in this case. 

b) HomFC(i.)(r,· ® SN, Θ/ ® · · · ® SR)) = HornFc(n)(SN , rf ® (Θ/ ® · · · ® SR)). 
Inspection of Table 2.1 in light of the type of mass considerations used in part (a) shows 
that the multiplicity of Sn is nonzero only when R = Ν \ {/}; in that situation, the 
multiplicity is one when i e J, two when i € P, and zero otherwise. This is immediate 
except if i € L, Μ or R; but in those cases the mass argument still goes through for 
all filtration factors except those of the form Γ,Λ,+ι ® (Θ// ® · · · ® SR>) (or similar). 
However, further expansion (if indeed i + 1 € / 'U · · · U R') reduces the mass estimate by 
at least 3 (i.e., resulting in irreducible filtration factors not isomorphic to Sn , or filtration 
factors with mass less than m(£#)·) 

c) HomF G W(A,· ® SN, Θ/ <g> · · · <S> SR)) = Homfco.)OSw, A,· ® (Θ/ ® · · · ® SR)). 
We argue as in (b). (The case i e R is handled by further expansion of the filtration 
factor Ψ,Λ,+ι ® (Θ/ ® · · · ® 5Ä\{l}).) 

d) HomFG(n)(^i ® S f f , Θ/ ® · · · ® SR)) = HomFG(n)(5N , Ψ, ® (Θ/ ® · · · ® SR)). 
The argument of (b) goes through immediately to give the stated result. 

e) HomFG(„)CSi ® SN, Θ/ ® · · · ® SR) = HornFG(n)(SN , St ® (Θ/ ® · · . ® SR)). 
An argument similar to that of (b) goes through except if i e R \ but in that situation we 
make the observation that with further expansion of the filtration factor 5/Θ,+ι ® (Θ/ ® 
• · · ® SR\{i)), a nonzero result is obtained only when i + 1 e Ρ and R = Ν \ {i -1-1} 
(similarly for 5,·Θ?+1 ® (Θ/ ® · · · ® SR\{i])). • 

Lemma2.3B. (Bs version) 
a) A j e S j v S P T O i e S ^ j , ) 
b) Ψ/ ® SN = P((Aa)i ® 5^\{i}) Θ 2SN 

c) Σ,· ® SN = P{oi ® SN\{i}) θ 2Ρ((Φσ), ® Sjv\{.}) θ 2Ρ((Σ<+ι ® ^λτ\{ϊ-ι-ι}) 
d) σ,· ® SN = />(Σ,· ® SN\{i]) 
e) (Λσ),· ® SN = Ρ(Ψ< ® SN\{i}) 
f) (Ψσ),· ® SN = P(Ai ® SN\[i}) θ 2Ρ(Σ, ® SN\{1]) 
g) Si ®SN = P(SN\{i)) θ 2P(Vi ® SN\{i}) Θ 2Ρ(Σί ® Σ,·+ι ® Sjv\{,-,/+i}) 
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Proof. The arguments are similar to those of version A. • 

Corollary 2.4A. Let Τ c Ν = {0, ...,n - 1} and let i e T. Let A denote any 
of the symbols Θ, . . . , Γ*. Then H d / r c ^ A , <g> ST) has no constituent of the form 
Θ/ ® · · · ® Γ* <g> SR with \I U · · · U P\ > 1. 

Corollary 2.4B. Let Τ C. Ν = {0, ..., η - 1} and let i € Τ. Let A denote any of the 
symbols Α, Ψ, Σ, σ, Λσ, Ψσ. Then HdfC(„)(A; <8> ST) has no constituent of the form 
Λ/ <8>···® (Ψσ)/>®5Λ with \I U · · · U P\ > 1. 

Proof We prove the claim if G = £3 and A = Σ; the other cases are simpler. We 
observe that Σ, <g> 5, already has 5 simple summands in its head: in fact, Hd/rG(n)(E, <g> 
Si) = σ,· φ 2(Ψσ),· θ 25,-σ,+ι. For example, Hornfg(η)(Σ, ® 5/, 5,-σ,+ι) = 2F, since 
Σ ® S is the restriction to FG(n) of a module Μ over the algebraic group that has 
L(p+2ki) as a composition factor with multiplicity 2, while Ext^(L(p+2A3), L(v)) = 0 
for all composition factors L(v) of M. This follows from the Lyndon-Hochschild-Serre 
spectral sequence for the infinitesimal subgroup G1, since L(p) is injective for G1, 
whereas all of the other composition factors of Μ are of the form L(v0 4- 2v) with 
vo Φ Ρ-

Thus, Hd/rG(n)(Σ/ ® St) must consist only of the five summands (σ,· <g> St\[i}) Θ 
2((Ψσ),· ® St\ü}) Θ 2(σ<+ι ® ST) if i + 1 i T, or of the five summands (σ, ® ST\[i j) Φ 
2((Ψσ),· ®5γ\{,·))Θ2(Σ,·+ι <8>Sr\{i+i}) if ί + 1 e Γ, since there are only five summands 
in the head of Σ, <8) S^. • 

§3. Reduction of the problem 

We show that the 1-cohomology groups vanish in a large number of cases. The following 
lemma is a generalization of Alperin's induction step ([1]) that is used frequently in the 
papers of Sin ([6], [7], [8]). It follows easily from the long exact sequence of cohomology 
for FG(n). 

Lemma 3.1. Let D be any FG(n)-module, let A, Β be simple FG(n)-modules, and let 
Ε be any simple quotient of Β <g> D. LetX(A,B) denote the {unique up to isomorphism) 
FG{n)-module with head isomorphic to A, and radical isomorphic to a direct sum of 
d = dim ρ (Ext (A, B)) copies of B. Then surjectivity of the natural map 

HomFG(n)(A <8> D, E) —> HomFC(n)(X(A, Β) ® D, E) 

implies that dimf(Exti.G^(A, B)) < dimHExtJ^^A <S> D, E)). • 

In our applications, we will prove surjectivity by showing that 

Hom/rc(rt) (X(A, B) <g> D, E) = 0. 

In most cases we can simply check that A is not a composition factor of D* <8> Ε. 
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L e m m a 3.2. Let I, J be subsets of Ν = { 0 , 1 , . . . , η — 1} with I φ J. If G = A3, 

suppose furthermore that either 

i ) | / Δ / | > 1, or 

i i ) | / Δ / | = 1, and I U J = ( / Π / ) U {/} where I - 1 G / Π J. 

Then Extl
FC(n)(Si, Sj) = 0. 

Proof. A ) (for A 3 . ) W e may assume J ζ / (as S is self-dual). Let k e N \ I . We prove 
that d i m F t E x t J ^ j i S / . S / ) ) < d i m F ( E x t } , G ( n ) ( S / u { i } , Syu{*})) using Lemma 3.1; it 
suffices to show that H o m F G ( « ) ( * ( · * / , Sj)®Sk, Sj®Sk) ( ^ H o m F G ( n ) ( X ( 5 / , 5 y ) , (Sk<8> 

Sk) ® 5 / ) ) = 0 . (The result then follows by downward induction on | / | , as Sff is 
projective.) 

The composition factors of Sk ® Sk are: {F, Ψ * , A * + i , Α * Θ * + ι , Α * Θ £ + 1 , Ψ * + ι , 
®k+2, ®k+2> ψ * Λ * + ΐ . M+2, Sk®k+1, Α * Γ * + ι , Α * Γ £ + 1 , Ψ ^ + ΐ ) . Sk+ι}. 

Since m ( S ) = 10, we need only consider those composition factors of mass > 10 (i.e., 
i t ö t + i , Α * Γ * + ι , Sk+i , and their duals), in order to show by a 

mass argument that S/ is not a composition factor of (Sk <8> Sk) Θ Sj. 

i) i f not irreducible, can be written as (Sk+ι <8>Λ*+ι)®Ψ*<8> Sj\{k+\), 

and thus has mass < m(Sk+i <S>Ak+i)+m(.^k)+m(Sj\{k+i)) < 10 + 6 + 1 0 ( | / | - 1 ) < 
m ( S / ) (see Table 2.1). 

i i) Sk@k+i®Sj, i f not irreducible, can be written as (S*+i ® ©*+i)<g> 5(yu{Jt})\{/t+i}· 
Each filtration factor resulting from a composition factor, A, of Sk+ι <8> Θ * + ι has mass 
< m ( A ) + m(S(jU{k})\{k+i)) < 7 + 1 0 | / | < m ( S / ) , except possibly i f Λ = Γ * + ι Θ * + 2 

(see Table 2.1). However, the resulting filtration factor Γ^+ιΘ^+2 <8> (S(j\jik})\{k+i}) is 
either irreducible (and not isomorphic to 5 / ) or can be rewritten as (Sk+2 ® Θ&+2) <8> 
Γ^+ι ® 5(7u{A})\{/t+i,jk+2}» which has mass at most 

m(Sk+2 <8> θ * + 2 ) + m ( r t + i ) +m(S(7u{*})\{4+i.Jfe+2}) < 10 + 7 + 1 0 ( | / | - 1) < m ( S / ) . 

i i i ) Akrk+i® Sj, i f not irreducible, can be written as (Sk+i ®rk+i)®Ak®Sj\{k+i), 

and thus has mass < m(Sk+i Θ Γ * + ι ) + m ( A j 0 + fn (S / \ { *+ i } ) < 1 1 + 4 + 1 0 ( | / | - 1 ) < 
m(S[) (see Table 2.1). 

iv) <8>Sj, i f not irreducible, can be written as (S*+ i 
and thus has mass < m(Sk+i ® Ψ * + ι ) + > η ( Ψ Α ) + ™ ( 5 / \ { * + ΐ } ) < 10 + 6 + 1 0 ( | 7 | - 1) < 
m ( 5 / ) . 

v) Sk+ι <8> Sj, i f irreducible, can be isomorphic to Si only i f / \ J = [k + 1} which 
is impossible i f the hypothesis of the theorem is satisfied (since k £ I). Otherwise we 
have m ( 5 j t + i ® 5 y ) < m(Sk+\ <g> S * + i ) + m ( S A { j t + i } ) < 13 + 1 0 ( | / | - 1 ) < m(S{) (see 
Table 1). 

B) (for B3.) W e proceed by showing that 

dimHExtJ^^iS/, Sj)) < dim/KExtJ^^iS/ <8> ak, Sj ® ak)) 

< d i m f (Ext)rG(w)(5/u{jt), Syu{*))) 
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for arbitrary k € Ν \ I , using Sk = ak <8> Σ * . The first inequality fol lows from Lemma 
3.1, if we can show that 

H o m F C ( n ) ( X ( 5 / , Sj) ® ak, Sj ®ak) ( = H o m F G ( „ ) ( X ( 5 / , Sj), (ak ®ak) <8> Sj)) ^ 0 . 

This is immediate, as ®ak) <8> 5y ) < <8> ak) + m(Sj) = 5 + 11|/| < m(Sj). 

The second inequality will fol low from H o m f C ( „ ) ( X ( S / <g> ok, Sj <8> ok) <8> Σ * , (Sj <8> 
ak) <8> Σ * ) = Horn F C ( „ ) ( * ( £ / ®ak,Sj® ak), ( Σ * <8> Σ * ) (8) ( S j ® ak)) ^ 0. Here we 
observe that all of the composition factors of Σ * <8> Σ * have mass less than 11, except 
for Σ * σ * + ι . Now, ( Σ * σ * + ι ) <g> ( S j <8> a k ) = Syui*} <8> crjk+i. if irreducible, cannot be 
isomorphicto 5/<8>σ* (as η > 1). On the other hand, m ( S ( j D [ k ) ) \ [ k + i ) ® ( S k + i ® a k + \ ) ) = 
m(S(ju{k))\{k+\) ® (Zk+I Q^k+i) ® σ * + ι ) ) < fn(S(yu{/fc})\{*+i}) + / η ( Σ * + ι ) + m(ak+y <g> 
a k + 0 = 11|J| + 8 + 5 < 11|/| + 2 < m(5/ ® a k ) . The result fol lows (as in A ) by the 
obvious downward induction. • 

L e m m a 3.3. Given disjoint subsets I, J, K, L, Μ, P, and R, with IU · · · U R ζ Τ for some 

subset Τ c Ν = {0, 1, ..., η — 1}, with at least one of I, J, ..., Ρ nonempty, then 

E x t F G ( n ) ( 5 r , Θ/ <g> · · · ® Γ * ® S/e) = 0 , 

if G = A3, and 

E x t FG (n ) ( 5 7 · ' Λ / <g> · · · <g> ( Ψ σ ) p ®SR) = 0, 

if G — B3. 

Proof A ) ( for A 3 . ) By the usual argument, it will suffice to show that St is not a 
composition factor of (Sk <8> Sk) <8> Θ/ <8» · • · <8> Γ*ρ <8> SR, for k e Ν \ T. This follows 
immediately by mass argument if I , J, Κ, or L is nonempty or if \M U P\ > 1, for 
then m((Sk <8> Sk) <81 Θ/ <8> · · · <8> <8> SR) < m{Sk <8> Sk) + m ( © / <8> · · · <8> Γ ρ <8> SR) < 

13 + [10(|Γ| - 2) + 6] = 10|Γ| - 1. Otherwise, the only composition factors of Sk <8> Sk 

of concern are Sk@k+\ (and its dual); then Sk@k+1 (8> ( Θ / <8> · · · <8> ® SR), if not 
irreducible, can be written in one of the fol lowing 3 forms: 

0 CS*+i <8> Θ * + ι ) <8 Sk <8>Γμ <8> Γρ <g> SR\[k+1}, which has mass < m(Sr), by the 
"equality only i f " assertion of Lemma 1.1, 

ϋ ) (Γ*+ ΐ <8> ©jfc+i) <8> Sk «8» SR, which has mass < m(Sr), again by Lemma 1.1, 
or, 

iii) (r^+i<8>©it+i)<8)5/t(8)5«. However, all of the composition factors of Γ ^ + ι Φ Θ ^ + ι 
have mass < 10, except but ® Sk <8> SR is irreducible, ^ St (as k $ T ) . 

B ) ( for £3 . ) W e show that 

d im F ( Ex t^ C ( n ) ( 57 - , A / <8> · · · <8> (Ψσ)/> <8> SR)) 

< dimF (ExtJTQ^) (ST ® Σ * . A / <8> • · · <8> (Φσ)/> <8> SR <8» Σ * ) ) 

< dimF (ExtirC ( M ) (5ru{Jt } , A / <8> · · · <8> ( Φ σ ) Ρ ® SRö[k])) 

for k e Ν \ Τ. The first inequality will fo l low from Lemma 3.1 if we can show that S t 

is not a composition factor of ( Σ * <8> Σ * ) <8> A / <8> · · · <8> ( Ψ σ ) ρ <8> SR. The mass argument 


