
Logics for Linguistic Structures

≥



Trends in Linguistics
Studies and Monographs 201

Editors

Walter Bisang
Hans Henrich Hock
(main editor for this volume)

Werner Winter

Mouton de Gruyter
Berlin · New York



Logics for Linguistic Structures

Edited by

Fritz Hamm
Stephan Kepser

Mouton de Gruyter
Berlin · New York



Mouton de Gruyter (formerly Mouton, The Hague)
is a Division of Walter de Gruyter GmbH & Co. KG, Berlin.

�� Printed on acid-free paper which falls within the guidelines
of the ANSI to ensure permanence and durability.

Library of Congress Cataloging-in-Publication Data

Logics for linguistic structures / edited by Fritz Hamm and Stephan
Kepser.

p. cm. � (Trends in linguistics ; 201)
Includes bibliographical references and index.
ISBN 978-3-11-020469-8 (hardcover : alk. paper)
1. Language and logic. 2. Computational linguistics. I. Hamm,

Fritz, 1953� II. Kepser, Stephan, 1967�
P39.L5995 2008
401�dc22

2008032760

ISBN 978-3-11-020469-8

ISSN 1861-4302

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbiblio-
grafie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

” Copyright 2008 by Walter de Gruyter GmbH & Co. KG, D-10785 Berlin
All rights reserved, including those of translation into foreign languages. No part of this
book may be reproduced or transmitted in any form or by any means, electronic or mecha-
nical, including photocopy, recording or any information storage and retrieval system,
without permission in writing from the publisher.
Cover design: Christopher Schneider, Berlin.
Printed in Germany.



Contents

Introduction 1
Fritz Hamm and Stephan Kepser

Type Theory with Records and unification-based grammar 9
Robin Cooper

One-letter automata: How to reduce k tapes to one 35
Hristo Ganchev, Stoyan Mihov, and Klaus U. Schulz

Two aspects of situated meaning 57
Eleni Kalyvianaki and Yiannis N. Moschovakis

Further excursions in natural logic: The Mid-Point Theorems 87
Edward L. Keenan

On the logic of LGB type structures. Part I: Multidominance
structures

105

Marcus Kracht

Completeness theorems for syllogistic fragments 143
Lawrence S. Moss

List of contributors 175

Index 179





Introduction

Fritz Hamm and Stephan Kepser

Logic has long been playing a major role in the formalization of linguistic
structures and linguistic theories. This is certainly particularly true for the
area of semantics, where formal logic has been the major tool ever since
the Fregean program. In the area of syntax it was the rising of principles
based theories with the focus shifting away from the generation process of
structures to defining general well-formedness conditions of structures that
opened the way for logic. The naturalness by which many types of well-
formedness conditions can be expressed in some logic or other led to different
logics being proposed and used in diverse formalizations of syntactic theories
in general and the field of model theoretic syntax in particular.

The contributions collected in this volume address central topics in theo-
retical and computational linguistics, such as quantification, types of context
dependence and aspects concerning the formalisation of major grammatical
frameworks, among others GB, DRT and HPSG. All contributions have in
common a strong preference for logic as the major tool of analysis. Two of
them are devoted to formal syntax, three to aspects of logical semantics. The
paper by Robin Cooper contributes both to syntax and semantics. We there-
fore grouped the description of the papers in this preface in a syntactic and
a semantic section with Cooper’s paper as a natural interface between these
two fields.

The contribution by Hristo Ganchev, Stoyan Mihov, and Klaus U. Schulz
belongs to the field of finite state automata theory and provides a method how
to reduce multi tape automata to single tape automata. Multi tape finite state
automata have many applications in computer science, they are particularly
frequently used in many areas of natural language processing. A disadvantage
for the usability of multi tape automata is that certain automata constructions,
namely composition, projection, and cartesian product, are a lot more com-
plicated than for single tape automata. A reduction of multi tape automata to
single tape automata is thus desirable.

The key construction by Ganchev, Mihov, and Schulz in the reduction is
the definition of an automaton type that bridges between multi and single
tape automata. The authors introduces so-called one-letter automata. These



2 Fritz Hamm and Stephan Kepser

are multi tape automata with a strong restriction. There is only one type of
transitions permitted and that is where only a single letter in the k-tuple of sig-
nature symbols in the transition differs from the empty word. In other words,
all components of the tuple are the empty word with the exception of one
component. Ganchev, Mihov, and Schulz show that one-letter automata are
equivalent to multi tape automata. Interestingly, one-letter automata can be
regarded as single tape automata over an extended alphabet which consists of
complex symbols each of which is a k-tuple with exactly one letter differing
from the empty word.

One of the known differences between multi dimensional regular rela-
tions and one dimensional regular relations is that the latter are closed under
intersection while the former are not. To cope with this difference, Ganchev,
Mihov, and Schulz define a criterion on essentiality of a component in a k-
dimensional regular relation and show that the intersection of two k-dimen-
sional regular relations is regular if the two relations share at most one essen-
tial component. This result can be extended to essential tapes of one-letter
automata and the intersection of these automata.

On the basis of this result Ganchev, Mihov, and Schulz present automata
constructions for insertion, deletion, and projection of tapes as well as com-
position and cartesian product of regular relations all of which are based on
the corresponding constructions for single tape automata. This way the ef-
fectiveness of one-letter automata is shown. It should hence be expected that
this type of automata will be very useful for practical applications.

The contribution by Marcus Kracht provides a logical characterisation of the
datastructures underlying the linguistic frameworks Government and Bind-
ing and Minimalism. Kracht identifies so-called multi-dominance structures
as the datastructures underlying these theories. A multi-dominance structure
is a binary tree with additional immediate dominance relations which have a
restricted distribution in the following way. All parents of additional dom-
inance relations must be found on the path from the root to the parent of
the base dominance relation. Additional dominance relations provide a way
to represent movement of some component from a lower part in a tree to a
position higher up.

The logic chosen by Kracht to formalize multi-dominance structures is
propositional dynamic logic (PDL), a variant of modal logic that has been
used before on many occasions by Kracht and other authors to formalize lin-
guistic theories. In this paper, Kracht shows that PDL can be used to axioma-
tize multi-dominance structures. This has the important and highly desirable



Introduction 3

consequence that the dynamic logic of multi-dominance structures is decid-
able. The satisfiability of a formula can be decided in in 2EXPTIME.

In order to formalize a linguistic framework it is not enough to provide
an axiomatisation of the underlying datastructures only. The second contri-
bution of this paper is therefore a formalisation of important grammatical
concepts and notions in the logic PDL. This formalisation is provided for
movement and its domains, single movement, adjunction, and cross-serial
dependencies. In all of these, care is taken to ensure that the decidability
result of multi-dominance structures carries over to grammatical notions de-
fined on these structures. It is thereby shown that large parts of the linguistic
framework Government and Binding can be formalized in PDL and that this
formalisation is decidable.

The contribution by Robin Cooper shows how to render unification based
grammar formalisms with type theory using record structures. The paper is
part of a broader project which aims at providing a coherent unified approach
to natural language dialog semantics. The type theory underlying this work
is based on set theory and follows Montague’s style of recursively defining
semantic domains. There are functions and function types available in this
type theory providing a version of the typed λ-calculus. To this base records
are added. A record is a finite set of fields, i.e., ordered pairs of a label and an
object. A record type is accordingly a finite set of ordered pairs of a label and
a type. Records and record types may be nested. The notions of dependent
types and subtype relations are systematically extended to be applicable to
record types.

The main contribution of this paper is a type theoretical approach to uni-
fication phenomena. Feature structures of some type play an important role
in almost all modern linguistic frameworks. Some frameworks like LFG and
HPSG make this rather explicit. They also provide a systematic way to com-
bine two feature structures partially describing some linguistic object. This
combination is based on ideas of unification even though this notion need no
longer be explicitely present in the linguistic frameworks. In a type theo-
retical approach, records and their types render feature structures in a rather
direct and natural way. The type theoretical tools to describe unification are
meet types and equality. Cooper assumes the existence of a meet type for
each pair of types in his theory including record types. He provides a func-
tion that recursively simplifies a record type. This function is particularly
applicable to record types which are the result of the construction of a meet
record type and should be interpreted as the counterpart of unification in type



4 Fritz Hamm and Stephan Kepser

theory with records. There are though important differences to feature struc-
ture unification. One of them is that type simplification never fails. If the
meet of incompatible types was constructed, the simplification will return a
distinguished empty type.

The main advantage of this approach is that it provides a kind of intension-
ality which is not available for feature structures. This intensionality can be
used, e.g., to distinguish equivalent types such as the source of grammatical
information. It can also be used to assign different empty types with different
ungrammatical phrases. This may provide a way to support robust parsing
in that ungrammatical phrases can be processed and the the consistent parts
of their record types may contain useful informations for further processing.
Type theory with records also offers a very natural way to integrate sematic
analyses into syntactic analyses based on feature structures.

The paper by Eleni Kalyvianaki and Yiannis Moschovakis contains a so-
phisticated application of the theory of referential intensions developed by
Moschovakis in a series of papers (see for instance (Moschovakis 1989a,b,
1993, 1998)), and applied to linguistics in (Moschovakis 2006). Based on
the theory of referential intensions the paper introduces two notion of context
dependent meaning, factual content and local meaning, and shows that these
notions solve puzzles in philosophy of language and linguistics, especially
those concerning the logic of indexicals.

Referential intension theory allows to define three notions of synonymy,
namely referential synonymy, local synonymy, and factual synonymy. Ref-
erential synonymy, the strongest concept, holds between two terms A and B
iff there referential intensions are the same; i.e., int(A) = int(B). Here the
referential intension of an expression A, int(A) is to be understood as the nat-
ural algorithm (represented as a set–theoretical object) which computes the
denotation of A with respect to a given model. Thus referential synonymy
is a situation independent notion of synonymy. This contrasts with the other
two notions of synonymy which are dependent on a given state a. Local syn-
onymy is synonymy with regard to local meaning where the local meaning
of an expression A is computed from the referential intension of A applied to
a given state a. It is important to note that for the constitution of the local
meaning of A the full meanings of the parts of A have to be computed. In
this respect the concept of local meaning differs significantly from the notion
factual content and for this reason from the associated notion of synonymy
as well. This is best explained by way of an example.



Introduction 5

If in a given state a her(a) = Mary(a) then the factual content of the
sentence John loves her is the same as the factual content of John loves Mary.
The two sentences are therefore synonymous with regard to factual content.
But they are not locally synonymous since the meaning of her in states other
than a my well be different from the meaning of Mary.

The paper applies these precisely defined notions to Kaplan’s treatment of
indexicals and argues for local meanings as the most promising candidates
for belief carriers. The paper ends with a brief remark on what aspects of
meaning should be preserved under translation.

The paper by Edward L. Keenan tries to identify inference patterns which
are specific for proportionality quantifiers. For instance, given the premisses
(1-a), (1-b) in (1) we may conclude (1-c).

(1) a. More than three tenths of the students are athletes.
b. At least seven tenths of the students are vegetarians.
c. At least one student is both an athlete and a vegetarian.

This is an instance of the following inference pattern:

(2) a. More than n/m of the As are Bs.
b. At least 1− n/m of the As are Cs.
c. Ergo: Some A is both a B and a C.

Although proportionality quantifiers satisfy inference pattern (2), other quan-
tifiers do so as well, as observed by Dag Westerståhl. Building on (Keenan
2004) the paper provides an important further contribution to the question
whether there are inference patterns specific to proportionality quantifiers.

The central result of Keenan’s paper is the Mid-Point Theorem and a gen-
eralization thereof.

The Mid-Point Theorem Let p,q be fractions with 0 ≤ p≤ q ≤ 1 and p+
q = 1. Then the quantifiers

(BETWEEN p AND q) and (MORE T HAN p AND LESS T HAN q)

are fixed by the postcomplement operation.

The postcomplement of a generalized quantifier Q is that generalized quan-
tifier which maps a set B to Q(¬B). The following pair of sentences illustrates
this operation:



6 Fritz Hamm and Stephan Kepser

(3) a. Exactly half the students got an A on the exam.
b. Exactly half the students didn’t get an A on the exam.

The mid-point theorem therefore guarantees the equivalence of sentences
(4-a) and (4-b); and analogously the equivalence of sentences formed with
MORE T HAN p AND LESS T HAN q).

(4) a. Between one sixth and five sixth of the students are happy.
b. Between one sixth and five sixth of the students are not happy.

However, this and the generalization of the mid-point theorem are still
only partial answers to the question concerning specific inference patterns
for proportionality quantifiers, since non-proportional determiner exist which
still satisfy the conditions of the generalized mid-point-theorem.

The paper by Lawrence S. Moss studies syllogistic systems of increasing
strength from the point of view of natural logic (for a discussion of this notion,
see Purdy (1991)). Moss proves highly interesting new completeness results
for these systems. More specifically, after proving soundness for all systems
considered in the paper the first result states the completeness of the following
two axioms for L (all) a syllogistic fragment containing only expressions of
the form All X are Y:

All X are Z All Z are Y
All X are X All X are Y

In addition to completness the paper studies a further related but stronger
property, the canonical model property. A system which has the canonical
model property is also complete, but this does not hold vice versa. Roughly,
a model M is canonical for a fragment F , a set Γ of sentences in F and a
logical system for F if for all S ∈ F , M |= S iff Γ � S. A fragment F has
the canonical model if every set Γ⊆ F has a canonical model. The canonical
model property is a rather strong property. Classical propositional logic, for
instance, does not have this property, but the fragment L (all) has it. Some
but not all of the systems in the paper have the canonical model property.

Other system studied in Moss’ paper include Some X are Y, combina-
tions of this system with L (all) and sentences involving proper names, sys-
tems with Boolean combinations, a combination of L (all) with There are
at least s many X as Y, logical theories for Most and Most + Some. The
largest logical system for which completeness is proved adds ∃≥ to the theory



Introduction 7

L (all,some,no,names) with Boolean operations, where ∃≥(X ,Y ) is consid-
ered true in case X contains more elements than Y .

Moss’ paper contains two interesting digressions as well. The first is con-
cerned with sentences of the form All X which are Y are Z, the second with
most. For instance, Moss proves that the following two axioms are complete
for most.

Most X are Y Most X are Y
Most X are X Most Y are Y

Moreover, if Most X are Y does not follow from a set of sentences Γ then
there exists a model of Γ with cardinality ≤ 5 which falsifies Most X are Y.

All papers collected in this volume grew out of a conference in honour of
Uwe Mönnich which was held in Freudenstadt in November 2004. Since
this event four years elapsed. But another important date is now imminent,
Uwe’s birthday. Hence we are in the lucky position to present this volume as
a Festschrift for Uwe Mönnich on the occasion of his 70th birthday.

Tübingen, July 2008 Fritz Hamm and Stephan Kepser

References

Keenan, Edward L.
2004 Excursions in natural logic. In Claudia Casadio, Philip J. Scott, and

Robert A.G. Seely, (eds.), Language and Grammar: Studies in Math-
ematical Linguistics and Natural Language. Stanford: CSLI.

Moschovakis, Yiannis
1989a The formal language of recursion. The Journal of Symbolic Logic 54:

1216–1252.



8 Fritz Hamm and Stephan Kepser

1989b A mathematical modeling of pure recursive algorithms. In Albert R.
Meyer and Michael Taitslin, (eds.), Logic at Botik ’89, LNCS 363.
Berlin: Springer.

1993 Sense and denotation as algorithm and value. In Juha Oikkonen and
Jouko Väänänen, (eds.), Logic Colloquium ’90. Natick, USA: Asso-
ciation for Symbolic Logic, A.K. Peters, Ltd.

1998 On founding the theory of algorithms. In Harold Dales and Gianluigi
Oliveri, (eds.), Truth in Mathematics. Oxford University Press.

2006 A logical calculus of meaning and synonymy. Linguistics and Phi-
losophy 29: 27–89.

Purdy, William C.
1991 A logic for natural language. Notre Dame Journal of Formal Logic

32: 409–425.



Type Theory with Records and unification-based
grammar

Robin Cooper

Abstract

We suggest a way of bringing together type theory and unification-based grammar
formalisms by using records in type theory. The work is part of a broader project
whose aim is to present a coherent unified approach to natural language dialogue
semantics using tools from type theory.

1. Introduction

Uwe Mönnich has worked both on the use of type theory in semantics and on
formal aspects of grammar formalisms. This paper suggests a way of bringing
together type theory and unification as found in unification-based grammar
formalisms like HPSG by using records in type theory which provide us with
feature structure like objects. It represents a small offering to Uwe to thank
him for many kindnesses over the years sprinkled with insights and rigorous
comments.

This work is part of a broader project whose aim is to present a coher-
ent unified approach to natural language dialogue semantics using tools from
type theory. We are seeking to do this by bringing together Head Driven
Phrase Structure Grammar (HPSG) (Sag et al. 2003), Montague semantics
(Montague 1974), Discourse Representation Theory (DRT) (Kamp and Reyle
1993; van Eijck and Kamp 1997, and much other literature), situation seman-
tics (Barwise and Perry 1983) and issue-based dialogue management (Lars-
son 2002) into a single type-theoretic formalism. A survey of our approach
to the semantic theories (i.e., Montague semantics, DRT and situation seman-
tics) and HPSG can be found in (Cooper 2005b). Other work in progress can
be found on http://www.ling.gu.se/˜cooper/records. We give a brief
summary here: Record types can be used as discourse representation struc-
tures (DRSs). Truth of a DRS corresponds to there being an object of the
appropriate record type and this gives us the effect of simultaneous binding
of discourse referents (corresponding to labels in records) familiar from the



10 Robin Cooper

semantics of DRSs in (Kamp and Reyle 1993). Dependent function types pro-
vide us with the classical treatment of donkey anaphora from DRT in a way
corresponding to the type theoretic treatment proposed by Mönnich (1985),
Sundholm (1986) and Ranta (1994). At the same time record types can be
used as feature structures of the kind found in HPSG since they have recursive
structure and induce a kind of subtyping which can be used to mimic unifica-
tion. Because we are using a general type theory which includes records we
have functions available and a version of the λ-calculus. This means that we
can use Montague’s λ-calculus based techniques for compositional interpre-
tation. From the HPSG perspective this gives us the advantage of being able
to use “real” variable binding which can only be approximately simulated in
pure unification based systems. From the DRT perspective this use of com-
positional techniques gives us an approach similar to that of Muskens (1996)
and work on λ-DRT (Kohlhase et al. 1996).

In this paper we will look at the notion of unification as used in unification-
based grammar formalisms like HPSG from the perspective of the type theo-
retical framework. This work has been greatly influenced by work of Jonathan
Ginzburg (for example, Ginzburg in prep, Chap. 3). In Section 2 we will give
a brief informal introduction to our view of type theory with records. The ver-
sion of type theory that we discuss has been made more precise in (Cooper
2005a) and in an implementation called TTR (Type Theory with Records)
which is under development in the Oz programming language. In Section 3
we will discuss the notion of subtype which records introduce (correspond-
ing to the notion of subsumption in the unification literature). We will then,
in Section 4, propose that linguistic objects are to be regarded as records
whereas feature structures are to be regarded as corresponding to record types.
Type theory is “function-based” rather than “unification-based”. However,
the addition of records to type theory allows us to get the advantages of unifi-
cation without having to leave the “function-based” approach. We show how
to do this in Section 5 treating some classical simple examples which have
been used to motivate the use of unification. Section 6 deals with the way in
which unification analyses are used to allow the extraction of linguistic gen-
eralizations as principles in the style of HPSG. The conclusion (Section 7) is
that by using record types within a type theory we can have the advantages of
unification-based approaches together with an additional intensionality not
present in classical unification approaches and without the disadvantage of
leaving the “function-based” approach which is necessary in order to deal
adequately with semantics (at least).



TTR and unification-based grammar 11

2. Records in type theory

In this section1 we give a very brief intuitive introduction to the kind of
type theory we are employing. A more detailed and formal account can be
found in (Cooper 2005a) and work in progress on the project can be found
on http://www.ling.gu.se/˜cooper/records. While the type theoreti-
cal machinery is based on work carried out in the Martin-Löf approach (Co-
quand et al. 2004; Betarte 1998; Betarte and Tasistro 1998; Tasistro 1997)
we are making a serious attempt to give it a foundation in standard set the-
ory using Montague style recursive definitions of semantic domains. There
are two main reasons for this. The first is that we think it important to show
the relationship between the Montague model theoretic tradition which has
been developed for natural language semantics and the proof-theoretic tradi-
tion associated with type theory. We believe that the aspects of this kind of
type theory that we need can be seen as an enrichment of Montague’s original
programme. The second reason is that we are interested in exploring to what
extent intuitionistic and constructive approaches are appropriate or necessary
for natural language. For example, we make important use of the notion
“propositions as types” which is normally associated with an intuitionistic
approach. However, we suspect that our Montague-like approach to defining
the type theory to some extent decouples the notion from intuitionism. We
would like to see type theory as providing us with a powerful collection of
tools for natural language analysis which ultimately do not commit one way
or the other to philosophical notions associated with intuitionism.

The central idea of records and record types can be expressed informally
as follows, where T (a1, . . . ,an) represents a type T which depends on the
objects a1, . . . ,an.

If a1 : T1,a2 : T2(a1), . . . ,an : Tn(a1,a2, . . . ,an−1), a record:⎡
⎢⎢⎢⎢⎣

l1 = a1

l2 = a2

. . .
ln = an

. . .

⎤
⎥⎥⎥⎥⎦

is of type:⎡
⎢⎢⎣

l1 : T1

l2 : T2(l1)
. . .
ln : Tn(l1, l2, . . . , ln−1)

⎤
⎥⎥⎦



12 Robin Cooper

A record is to be regarded as a finite set of fields 〈�,a〉, which are ordered
pairs of a label and an object. A record type is to be regarded as a finite set
of fields 〈�,T 〉 which are ordered pairs of a label and a type. The informal
notation above suggests that the fields are ordered with types being dependent
on previous fields in the order. This is misleading in that we regard record
types as sets of fields on which a partial order is induced by the dependency
relation. Dependent types give us the possibility of relating the values in
fields to each other and play a crucial role in our treatment of both feature
structures and semantic objects. Both records and record types are required
to be the graphs of functions, that is, if 〈�,α〉 and 〈�′,β〉 are members of a
given record or record type then � �= �′. A record r is of record type R just
in case for each field 〈�,T 〉 in R there is a field 〈�,a〉 in r (i.e., with the same
label) and a is of type T . Notice that the record may have additional fields not
mentioned in the type. Thus a record will generally belong to several record
types and any record will belong to the empty record type. This gives us a
notion of subtyping which we will explore further in Section 3.

Let us see how this can be applied to a simple linguistic example. We will
take the content of a sentence to be modelled by a record type. The sentence

a man owns a donkey

corresponds to a record type:⎡
⎢⎢⎢⎢⎣

x : Ind
c1 : man(x)
y : Ind
c2 : donkey(y)
c3 : own(x,y)

⎤
⎥⎥⎥⎥⎦

A record of this type will be:⎡
⎢⎢⎢⎢⎣

x = a
c1 = p1

y = b
c2 = p2

c3 = p3

⎤
⎥⎥⎥⎥⎦

where

a, b are of type Ind, individuals
p1 is a proof of man(a)
p2 is a proof of donkey(b)
p3 is a proof of own(a,b).



TTR and unification-based grammar 13

Note that the record may have had additional fields and still be of this type.
The types ‘man(x)’, ‘donkey(y)’, ‘own(x,y)’ are dependent types of proofs
(in a convenient but not quite exact abbreviatory notation – we will give a
more precise account of dependencies within record types in Section 3). The
use of types of proofs for what in other theories would be called propositions
is often referred to as the notion of “propositions as types”. Exactly what
type ‘man(x)’ is depends on which individual you choose in your record to
be labelled by ‘x’. If the individual a is chosen then the type is the type
of proofs that a is a man. If another individual d is chosen then the type
is the type of proofs that d is a man, and so on. What is a proof? Martin-
Löf considers proofs to be objects rather than arguments or texts. For non-
mathematical propositions proofs can be regarded as situations or events. For
useful discussion of this see (Ranta 1994, p. 53ff). We discuss it in more
detail in (Cooper 2005a).

There is an obvious correspondence between this record type and a dis-
course representation structure (DRS) as characterised in (Kamp and Reyle
1993). The characterisation of what it means for a record to be of this type
corresponds in an obvious way to the standard embedding semantics for such
a DRS which Kamp and Reyle provide.

Records (and record types) are recursive in the sense that the value corre-
sponding to a label in a field can be a record (or record type)2. For example,

r =

⎡
⎢⎢⎢⎢⎣

f =

⎡
⎣ f =

[
ff = a
gg = b

]
g = c

⎤
⎦

g =

[
h =

[
g = a
h = d

] ]
⎤
⎥⎥⎥⎥⎦

is of type

R =

⎡
⎢⎢⎢⎢⎣

f :

⎡
⎣ f :

[
ff : T1

gg : T2

]
g : T3

⎤
⎦

g :

[
h :

[
g : T1

h : T4

] ]
⎤
⎥⎥⎥⎥⎦

given that a : T1, b : T2, c : T3 and d : T4. We can use path-names in records
and record types to designate values in particular fields, e.g.

r.f =

⎡
⎣ f =

[
ff = a
gg = b

]
g = c

⎤
⎦

R.f.f.ff = T1


