

MVVM Survival Guide for
Enterprise Architectures
in Silverlight and WPF

Eliminate unnecessary code by taking advantage
of the MVVM pattern—less code, fewer bugs

Ryan Vice

Muhammad Shujaat Siddiqi

BIRMINGHAM - MUMBAI

MVVM Survival Guide for Enterprise Architectures in
Silverlight and WPF
Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2012

Production Reference: 1010812

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-342-5

www.packtpub.com

Cover Image by Tony Shi (shihe99@hotmail.com)

Credits

Authors
Ryan Vice

Muhammad Shujaat Siddiqi

Reviewer
Kanishka (Ken) Abeynayake

Acquisition Editor
Dhwani Devater

Lead Technical Editor
Dhwani Devater

Technical Editors
Felix Vijay

Manasi Poonthottam

Lubna Shaikh

Copy Editors
Brandt D'Mello

Laxmi Subramanian

Alfida Paiva

Project Coordinator
Abhishek Kori

Proofreader
Lesley Harrison

Indexer
Rekha Nair

Graphics
Manu Joseph

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Foreword

Rich client development remains one of the most popular forms of application
development, both from a user and a developer point of view. While nobody denies
the importance of thin-client interface technologies such as HTML(5), it is clear
that consumers and enterprises alike enjoy using applications that provide a rich,
powerful, productive, and sometimes fun experience. Evidence ranges from the
current App Craze on mobile devices to the long-running history of rich business
applications deployed by many businesses of all sizes. Many of the most successful
applications and systems, measured in commercial success and/or popularity, are
either entirely based on Rich Client technology or make Rich Clients part of the mix.

If you are a Microsoft developer (and if you are reading this book, the chances
are that you are), you find yourself in the lucky position of getting a chance to
use one of the best, if not the best, sets of Rich Client development technologies
and tools. The paradigm first introduced by WPF (then known under its Avalon
code name) and the XAML declarative approach have turned out to be a
super-productive, highly maintainable, and highly reusable approach. The
technologies are easy to use once the developer gets acquainted with the ideas
behind the setup of XAML-based systems. It is true that there is a learning curve.
As an industry, we have used the same UI development paradigm across many
languages, systems, and even platforms for a very long period of time, reaching
back all the way to MS DOS. The drop a control on a form, set a few properties, and
wire up some event handlers approach can be found almost universally in pre-XAML
scenarios ranging from Visual Basic, to C++, PowerBuilder, Delphi, Visual FoxPro,
.NET Windows Forms, ASP.NET WebForms, even standalone HTML scenarios, and
many more. XAML breaks that mold. Yes, you can still employ the old paradigm,
but you can reap significant benefits by following the new ideas. By reading this
book, you are well on your way down that path, and you will find that while there
is a hump in the learning curve you need to get over, there also is a significant
downward slope on the other side of that hump. While many environments retain
a high level of difficulty even once you achieve a high degree of familiarity, WPF
is different in that things tend to be pretty straightforward once you know how to do
things the right way.

WPF has become the de-facto standard for Windows Desktop Application
development. It is now a well-established technology that has superseded the older
Windows Forms (WinForms) framework. Microsoft uses WPF in many of its own
products and WPF has been continually developed for a number of years and across
a number of versions and major releases. While other development environments
may be flashier, and technologies like HTML5 get the limelight, I can tell based
on personal experience that WPF seems to be a secret hot technology. This may be
anecdotal evidence based on my own experiences only, but my experience draws
on my interactions not just with our consulting and custom software customers, but
also on the interactions with a hundreds of people who attend training classes we
teach, thousands of people I interact with at various developer events, and the tens of
thousands of people I interact with one way or another as readers of CODE Magazine.

In short, WPF is a very popular development environment that is used for a large
number of highly strategic development projects. WPF developers are also highly
sought after. While there may not be a need for as many WPF developers as there
is for HTML developers, the demand for WPF developers is much higher. In other
words, while the world generally needs more HTML developers and designers than
WPF equivalents, there is no shortage of those HTML skills. I do not mean to take
anything away from the many highly skilled HTML experts (and the same goes for
many other platforms and technologies). However, those skills are relatively easily
available. WPF skills, on the other hand, are much harder to come by and thus
represent a more valuable expertise. Skilled WPF developers routinely command
a higher salary or hourly rate. A fact you are probably happy to learn if you are
interested in reading this book. ;-)

While this book focuses on WPF, many of the things you learn here will serve you
well beyond WPF. The XAML Paradigm is of course used in other environments.
Silverlight in its original form as a browser plugin is one such example that has
grown out of WPF. While browser plugin technology may have seen its best days as
far as strategic importance goes, Silverlight still goes down in history as one of the
fastest growing and most rapidly adopted developer technologies ever. Silverlight
will also be here to stay for some time to come. While I would not recommend
starting new projects in Silverlight unless you have a very good and specific reason
to do so, you are probably OK using Silverlight for a bit longer if you have already
travelled down that path. For new projects, however, I would recommend WPF.

It is important to remember that the ideas behind Silverlight are not just useful in
browser plugins. Silverlight for Windows Phone is turning out to be a beautiful and
highly productive development environment embraced by developers. For mobile
development, one first chooses the platform of course. If that platform is iOS, Apple's
development environments and languages are a given. If the platform is Android,

one probably ends up with Java. It is too bad one cannot choose Microsoft's version
of Silverlight for Windows Phone to develop on any of these other mobile platforms,
because I would personally choose it any day over any of the other options based on
pure productivity and development joy.

And the story continues. XAML is used as one of the cornerstones in Windows 8's
new Metro user interface mode. So everything you learn in this book will be of use
to you in the bold new world of Windows 8 development as well. Windows 8 Metro
also supports a proprietary development model based on HTML5 and JavaScript,
which will be on equal footing with XAML. The jury is still out and it is too early
to tell (as I am writing these lines, we are still at least a half a year away from the
Windows 8 ship date) but based on what we see at events and from readership
reactions through CODE Magazine, people seem to be most interested in the
XAML development option. A biased result perhaps (after all, current WPF and
Silverlight developers are probably most likely to be the first ones in as far as Metro
development goes), but it is still interesting to see that XAML development is alive
and well, and expected to enjoy a bright future.

Microsoft is planning to ship Windows 8 with two modes; one known as Metro as
well as the more conventional Desktop mode, which largely resembles Windows
7's desktop. Which brings us right back to WPF, because all WPF applications will
continue to work just fine in Windows 8's Desktop mode. Either way you turn it, the
XAML family of technologies is not a bad family to be part of. We are certainly very
happy to base a lot of our efforts on these technologies and have a high degree of
comfort moving forward with that approach.

But not all WPF development is created equal. There are a lot of different scenarios
and approaches. Some good, some bad. One approach may work well in some
scenarios while it doesn't work well at all in others. As in all engineering disciplines,
knowing the pros and cons of each tool in the toolbox is an important aspect of
engineering know-how. With that said however, it is clear that MVVM is a very
valuable pattern for a lot of WPF-based applications (and XAML-based applications,
in general). If done right, MVVM leads to a range of different advantages ranging
from quality to maintainability, reusability, even developer productivity, and more.
As with most powerful tools, the power can be wielded both for good and evil. Yes,
it is possible to create horrible monstrosities that are hard and slow to develop and
result in inflexible and slow applications. If that is the outcome, the developers and
architects did a bad job in evaluating the tools at their disposal and made ill-advised
choices in how to wield them. Luckily, the book you are currently reading is going to
be a valuable first step in learning how to avoid such mistakes and instead unleash
the incredible power of MVVM and many of the associated techniques.

Explaining those details is a task I will leave in the capable hands of the authors of
this book. It is my hope that reading it is going to be just one of the many steps in
your journey of building XAML-based applications for a long time to come. After
all, as a User Interface development and design enthusiast, I can't imagine a UI
development environment that is more beautiful and elegant than WPF and XAML.

Markus Egger
Publisher, CODE Magazine
President and Chief Software Architect, EPS Software Corp.
Microsoft Regional Director and MVP

About the Authors

Ryan Vice is a Microsoft enterprise developer with over 12 years of experience. He
lives in Austin, TX with his wife and family, and works as an independent consultant
. He has experience creating solutions in numerous industries including network
security, geoseismic, banking, real estate, entertainment, finance, trading, construction,
online retail, medical, and credit counseling. He has done projects for companies of
all sizes including high-volume applications for large fortune 500 companies like Dell
and Charles Schwab. He frequently presents sessions at users groups and conferences
throughout Texas including Houston Tech Fest and Dallas Day of .NET. He was
awarded Microsoft MVP for Connected Systems in 2010, 2011, and 2012. He has
also been an MSDN Moderator. His current areas of focus are around MVVM, WPF,
XAML, IoC, NHibernate, and Windows 8 Metro.

Muhammad Shujaat Siddiqi has been serving the Enterprise Software Industry
for more than seven years in Pakistan and USA. He has a bachelor's degree in
Computer and Information Systems (BE) from NED University, Karachi. He is a
passionate blogger. For his services to WPF development community, Microsoft
awarded him MCC in 2011. He is a student of the Shaolin-Do form of martial arts.

About the Reviewer

Kanishka (Ken) Abeynayake has been dabbling in personal computers
from their infancy starting out as an Apple and Mac developer. He authored the
original Internet suite included with Delphi and CBuilder, and is a Consultant at
Sogeti consulting for Fortune 500 companies, such as Dell and Microsoft. When he
is not playing around with the latest Microsoft technologies, he and his wife are
enjoying their passion for travelling. Kanishka obtained his education from the
University of Sri Lanka Moratuwa and the University of Texas. He can be contacted
at ken@lionknight.com.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

To my wife, Heather, my daughter, Grace and my two sons, Dylan and Noah;
the time away from you was the hardest part of writing this book. Thanks for all

your love and support.

-Ryan Vice

I dedicate this work to my amazing parents.

-Muhammad Shujaat Siddiqi

Table of Contents
Preface 1
Chapter 1: Presentation Patterns 7

The Project Billing sample application 8
Types of state 10

History of presentational patterns 11
Monolithic design 11

The problems with monolithic design 12
Data service stub 14
Monolithic Project Billing sample 17

ProjectsView 19
Running the sample 26
Takeaways 27

Rapid application development 28
RAD Project Billing sample 28
Takeaways 39

MVC 40
View 40
Controller 41
Model 41

Layered design 42
The layers 42

MVC with layered design 43
MVC Project Billing sample 44

Model 46
Controller 48
View 49
How it works 55
Takeaways 57
Memory leaks 57

MVP 60
MVP Project Billing sample 61

Table of Contents

[ii]

Model 62
View 64
Presenter 69
Main window 72
How it works 74
Takeaways 74

Summary 75
Chapter 2: Introduction to MVVM 77

History 77
Structure 80

Pure MVVM 80
View 81
View Model 81

WPF and Silverlight enablers 82
Dependency Properties 82

Dependency property inheritance 83
Rich data binding 86

INotifyCollectionChanged and ObservableCollection<> 87
Automatic dispatching 88

Triggers 88
Styles 89
Control Templates 90
Data templates 90
Commands 91

MVVM project billing sample 93
MVVM design 93

View Models 94
Model 96

Code 96
ProjectsModel 97
ProjectViewModel 100
ProjectsViewModel 102
WPF UI 110
Silverlight UI 115

Benefits of MVVM 125
MVVM and humble views 127

Issues and pain points of MVVM 128
MVVM Light 129
Summary 130

Chapter 3: Northwind—Foundations 131
Northwind requirements 132
Presentation tier foundation 133

Locator pattern 136

Table of Contents

[iii]

Data access tier 137
Listing the customers 142

Unit testing getting customers 145
Using an isolation framework 151

Adding tabs 154
Viewing customer details 159

Viewing details for one customer 160
Testing CustomerDetailsViewModel 165

Wiring up the customer list box 167
Testing ShowCustomerDetails() 172

Summary 174
Chapter 4: Northwind—Services and Persistence Ignorance 175

Adding a Service Layer 176
Integrating the Service Layer 181

Persistence ignorance and custom models 186
Trade-offs of generated models 186
Adding persistence ignorance 187

Adding unit tests 192
Summary 201

Chapter 5: Northwind—Commands and User Inputs 203
Pure MVVM 203
Making it easier with frameworks 208
Updating customer details 210

Testing and updating customer details 214
Gestures, events, and commands 216

InputBindings 217
KeyBinding 218
MouseBinding 219

Using code behind 220
Event to command 221

Attached Behavior 222
Using MVVM Light 226

Summary 228
Chapter 6: Northwind—Hierarchical View Model and IoC 229

Adding orders to customer details 229
Service layer 231
Application layer 236
Presentation layer 241

View Models 242
Views 245

Take aways 247

Table of Contents

[iv]

Viewing order details 247
ToolManager 248
Inversion of Control frameworks 255

IoC designs 255
Adding an IoC container to Northwind 258

Order details 271
Summary 280

Chapter 7: Dialogs and MVVM 281
Should we make a compromise? 282
Dialog service 282

Using DataTemplates with DialogService 286
Convention over configuration 294

Mediators 296
Attached behaviors 306
Summary 310

Chapter 8: Workflow-based MVVM Applications 311
WF for business rules execution 312

Handling delays in rules execution 322
WF for controlling application flow 327
Summary 332

Chapter 9: Validation 333
Validations and dependency properties 333
Error templates 334
Validation in MVVM-based applications 342

Validation rules 342
Using validation rules 342
Specializing validation rules—supporting parameters 344
Validation rules and converters 345
Validation mechanism in WPF and Silverlight 349

IDataErrorInfo 350
Validation states 359
Limitations and gotchas 374

INotifyDataErrorInfo 374
Enterprise library validation application block 389
Complex business rules 398

Error notifications 398
Error message box 398
Highlighting fields 400
Error messages in the tooltip 400
Error messages beside the control 400

Table of Contents

[v]

Validation summary pane 401
Flip controls 402

Summary 402
Chapter 10: Using Non-MVVM Third-party Controls 403

Using attached behaviors 405
Using binding reflector 411
readonly CLR properties (with no change notification support) 416

Using .NET 4.0 dynamic 421
Using MVVM adapters 426
Summary 429

Chapter 11: MVVM and Application Performance 431
Asynchronous binding 431
Asynchronous View Model construction 435
Priority binding 437
Virtualization and paging 440
Using BackgroundWorker 441
Targeting system configuration 442
Event Throttling 442
Lazy Initialization 443
Summary 449

Appendix A: MVVM Frameworks 451
Appendix B: Binding at a Glance 453

Basics 453
Validation 453

ValidationRules 453
IDataErrorInfo 454
INotifyDataErrorInfo [.net 4.5] 454
Enterprise Library 5.0 Validation Application Block 454
Windows WF 454
Validation.ErrorTemplate 454

Static properties/fields 454
Executing code in DataContext 454
Binding to DataContext[DC] 455
Resources 455

Types with default constructor 455
XmlDataProvider 455
ObjectDataProvider 455

Binding to resource 456
Static resource 456
Dynamic resource 456

Table of Contents

[vi]

Updating source 456
Binding.UpdateSourceTrigger 456
Binding.Delay: [.net 4.5] [Binding.Mode:TwoWay / OneWayToSource] 456

Mode [Binding.Mode] [T:Target, S:Source] 457
Binding to other elements in the view 457

ElementName 457
RelativeSource 457

Conversion 457
Binding.StringFormat [SF] 457
Converter [C] 458

Performance 458
Async binding 458
ObjectDataProvider.IsAsynchronous 458
PriorityBinding 458

Index 459

Preface
MVVM (Model View View Model) is a Microsoft best practices pattern for working
in WPF and Silverlight that is highly recommended by both Microsoft and industry
experts alike. This book will look at the reasons for the pattern still being slow to
become an industry standard, addressing the pain points of MVVM. It will help
Silverlight and WPF programmers get up and running quickly with this
useful pattern.

MVVM Survival Guide for Enterprise Architectures in Silverlight and WPF will help
you to choose the best MVVM approach for your project while giving you the tools,
techniques, and confidence that you will need to succeed. Implementing MVVM can
be a challenge, and this book will walk you through the many issues you will come
across when using the pattern in real world enterprise applications.

This book will help you to improve your WPF and Silverlight application design,
allowing you to tackle the many challenges you will face in creating presentation
architectures for enterprise applications. You will be given examples that show the
strengths and weaknesses of each of the major presentation patterns. The book then
dives into a full 3 tier enterprise implementation of MVVM and takes you through
the various options available and the trade-offs for each approach. During your
journey you will see how to satisfy many of the challenges of modern WPF and
Silverlight enterprise applications including scalability, testability, and extensibility.

Complete your transition from ASP.NET and WinForms to Silverlight and WPF
by embracing the new tools in the Silverlight and WPF platforms, and the new
design style that they allow for. This book will get you up to speed and ready
to take advantage of these powerful new presentation platforms.

Preface

[2]

What this book covers
Chapter 1, Presentation Patterns, gives the reader an example-driven overview of
the history of presentation patterns. We will implement a Project Billing sample
application using various approaches including MVC and MVP. Along the way,
we will look at the issues with each pattern that motivated the next pattern in the
evolutionary chain. This chapter also demonstrates how presentation patterns that
require .NET events, such as MVC and MVP, can cause memory leaks if not properly
implemented. This chapter will leave the reader with the knowledge needed to
discuss the tradeoffs of the various presentation patterns and allow the reader to
answer question like why use MVVM over MVP or MVC.

Chapter 2, Introduction to MVVM, covers the various features of WPF and Silverlight
that make MVVM an attractive option on these platforms. We will follow this by
re-implementing the Project Billing sample application from the first chapter using
MVVM. We will then look at some of the benefits and cost of using MVVM. We
will finish off the chapter by taking a quick look at the MVVM Light open source
framework that will be used throughout the book.

Chapter 3, Northwind—Foundations, will walk through how to lay the foundation
of the Northwind application that we will build over the next four chapters. We
will wire up the Northwind database using Entity Framework and see how Entity
Framework integrates with the binding systems in WPF and Silverlight to provide
change notifications. We will also add unit tests that allow us to see how MVVM
allows us to test all of our view logic.

Chapter 4, Northwind—Services and Persistence Ignorance, will have us attempting
to make our application more scalable by adding a WCF service layer between
the Presentation Layer and the Application Layer. We will see how WCF integrates
with the binding system in both WPF and Silverlight to provide change notifications.
We will also look at the benefits and cost of implementing a Persistence Ignorant
Presentation Layer.

Chapter 5, Northwind—Commands and User Inputs, discusses the benefits of taking
advantage of the commanding system in WPF and Silverlight to implement MVVM
using the pure approach.

Chapter 6, Northwind—Hierarchical View Model and IoC, explains the power and
productivity that can be added by using the Hierarchical View Model approach to
MVVM. We will also see how to implement an Inversion of Control framework using
IoC best practices by updating our application to use the Ninject for IoC framework.

Chapter 7, Dialogs and MVVM, discusses the various options for showing modal and
modeless dialogs. It also discusses how data can be shared across the dialogs that we
will create.

Preface

[3]

Chapter 8, Workflow-based MVVM Applications, explains how we can use Windows WF
to control the flow of the user interface. It would also be touching the area of business
rules validation using WF including the discussion about slow executing workflows.

Chapter 9, Validation, discusses the various techniques for data entry and business
rules validation. The chapter will also be shedding some light on how the results
of these validations can be displayed to the user.

Chapter 10, Using Non-MVVM Third-party Controls, will focus on the discussion
regarding the usage of non-MVVM based controls in your MVVM based design
to improve the testability of our code base.

Chapter 11, MVVM and Application Performance, explains some features
of XAML frameworks targeting for better application performance.

Appendix A, MVVM Frameworks, outlines the basic features to look for before
selecting an MVVM framework or toolkit. It also lists the available MVVM
frameworks popular in the industry.

Appendix B, Binding at a Glance, summarizes the Binding System infrastructure,
which makes MVVM possible in WPF and Silverlight.

What you need for this book
•	 Microsoft Visual Studio 2010 Service Pack 1
•	 Rhino Mocks
•	 .NET Framework 4 Platform Update 1 for Chapter 8, Workflow-based

MVVM Applications

Who this book is for
This book will be a valuable resource for Silverlight and WPF developers who
want to fully maximize the tools with recommended best practices for enterprise
development. This is an advanced book and you will need to be familiar with C#,
the .NET framework, and Silverlight or WPF.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[4]

Code words in text are shown as follows: "You should now be able to execute
ICustomerService.GetCustomers() from WCF Test Client."

A block of code is set as follows:

public class RepositoryRegistry : Registry
{
 public RepositoryRegistry()
 {
 For<IUIDataProvider>()
 .Singleton();
 For<ICustomerService>()
 .Singleton()
 .Use(() => new CustomerServiceClient());
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class OrderViewModel : ViewModelBase
{
 public const string ModelPropertyName = "Model";
 private Order _model;
 public Customer Customer { get; set; }
 private readonly IToolManager _toolManager;exten =>
 i,1,Voicemail(s0)

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"This will add a Show Details link to our grid".

Warnings or important notes appear in a
box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Presentation Patterns
By Ryan Vice

Separation of Concerns or SoC is a core principle of enterprise software
development which provides many benefits and has been a key driving force behind
many presentation (or UI) design patterns that have emerged over the last 30 years.
In the arena of Silverlight and WPF development, Model View View Model or
MVVM has quickly become the de-facto pattern for achieving SoC in UIs. However,
this pattern often leaves developers and architects frustrated and at the time of this
writing, can be difficult to implement in an effective way that provides more benefits
than some of the older, more familiar presentation patterns (MVC, MVP, and so on).

In this chapter we will cover the evolution of presentational patterns along with
the problems that are solved by each pattern along the evolutionary path. We will
also dive into the shortcomings of each pattern which led to the next pattern in the
evolution and will finish this chapter ready to look at MVVM.

We will begin this chapter by reviewing the functionality of the Project Billing
sample application that we will use throughout this book. We will follow this
by briefly talking about the various types of state that must be managed in UI
applications. Then we dive into the history of presentational patterns and as we
go through the history we will implement Project Billing using each pattern to show
you explicitly the benefits and the shortcomings of each pattern that lead to the
next pattern in the evolution. This will help you understand why you'd want to
use MVVM through examples and make the benefits of MVVM easier to appreciate
when we dive into that topic in the next chapter. This would also help you
evangelize the pattern on your projects if needed and be able to explain what
benefits MVVM would offer over other presentation patterns.

Presentation Patterns

[8]

If you are already familiar with (or not interested in) the history of presentation
patterns, you should still at a minimum review the following sections:

•	 The Project Billing sample application: This section will review the
functionality of the sample application that will be used in the first
two chapters

•	 Types of state: This section defines and discusses the various types of state
that need to be managed in a UI application

•	 Monolithic design: The introduction of this section discusses the coupling
that results from not using some kind of presentational design pattern

	° The problems with Monolithic design: This section discusses
the many problems that result from not using presentational
design patterns

•	 Data service stub: This section covers creating the data service stub that
will be used by the Project Billing application throughout this book

•	 Memory leaks: This section covers how .NET events can cause
memory leaks

However, I'd recommend that unless you are intimately familiar with patterns such
as Model 2 and Passive View that you take the time to go through this chapter as
this knowledge will be very useful in driving home some of the fundamentals of
presentation patterns which will help you adapt these notoriously flexible patterns
to your needs

The Project Billing sample application
Let's start off by walking through the functionality of the Project Billing application.
Project Billing is a contrived application that—as the name suggests—allows for
simple project billing. The application's UI is shown in the following screenshot:

Chapter 1

[9]

The application consists of a simple master/details form for the main window. At
the top of the application is a list of projects that when selected make up the master
of the master/detail relationship. Following the projects come the details which
include the following:

•	 Estimated Cost
•	 Actual Cost

Notice how all the details are disabled along with the Update button. Whenever a
user selects a project from the list, the UI is updated so that all of the details controls
are enabled as shown in the following screenshot:

Now a user can update any of the details they like. If the user sets a value for Actual
Cost that is lower than the Estimated Cost for the selected project and clicks the
Update button, the Estimated Cost will be displayed in green.

The following screenshot shows Project Billing with an Actual Cost
that is lower than the Estimated Cost; however, this book is not in
color and so you will have to run any of the sample implementations
of Project Billing in this book to see the color of estimated cost change.

Presentation Patterns

[10]

This is a contrived example and doesn't have validations or robust
error handling, so entering invalid values for actual cost can cause
problems for the application. However, we will explore validations
later in this book.

Putting in a value that is above the estimated value will cause the Estimated Cost to
be displayed in red. You can also:

•	 Change the Estimated Cost.
•	 Click on the Update button, then change your selection and when you

reselect the updated project you will see that your new values have been
maintained in the view state.

•	 After updating a project, you can also open a second Projects view and
see that the data is synchronized (session state). This is not supported in
all versions of Project Billing but only in those versions whose architecture
supports easily sharing session state.

It's a very simple example but complex enough to demonstrate the various types of
state and logic that need to be managed by a UI application and to show how well
the various patterns handle each type of state and logic.

Types of state
The Project Billing application demonstrates all three types of state that must be
managed in all UI applications.

•	 View state: UI state or view state is the state of the UI which includes the
data being displayed that was provided by the model but could also include
things like what buttons are disabled and the color changes that may have
been applied to text. The disabling of the details controls and changing the
color of Estimated Cost in Project Billing are examples of types of view state.

You may be familiar with the concept of view state from
working in ASP.NET where the view state is stored in a
hidden field in the HTML and accessible server-side via the
ViewState collection.

Chapter 1

[11]

•	 Session state: It is the state of the data that has been retrieved from the
persistence store and is being held in memory. This data could be accessed
by multiple components in the application and remains in memory only until
the user terminates their session or until it is persisted. In Project Billing, any
changes that are made to project details become session state once you click
on the Update button.

•	 Persisted state: It is the state of the applications data that has been retrieved
from or is persisted to some sort of repository such as a database, service or
XML file. In Project Billing, the data that is mocked in the DataService is an
example of persisted state.

Project Billing uses a data service stub that returns fake data and
doesn't demonstrate real persistence. Persistence will be covered
in Chapter 3, Northwind—Foundations.

History of presentational patterns
In this section we will cover the history of presentational (or GUI) patterns.
Presentational patterns have been around for over 30 years and a full coverage
of all the various patterns is outside of the scope of this book. We will instead focus
on two of the major trends that have emerged over the last 30 years and look at how
those two trends eventually evolved to MVVM for Silverlight and WPF.

If you are interested in learning more about the history of presentational
patterns than what is covered here, then see Martin Fowler's article GUI
Architectures (http://martinfowler.com/eaaDev/uiArchs.html).

Monolithic design
Enterprise applications deal with displaying, manipulating, and saving data.
If we build enterprise applications with no design so that each GUI component is
coupled all the way down to the data access code, then there are a lot of problems
that can emerge.

http://martinfowler.com/eaaDev/uiArchs.html
http://martinfowler.com/eaaDev/uiArchs.html

Presentation Patterns

[12]

This style of design is called monolithic and the following diagram shows the
coupling that exists under monolithic designs:

Application

Data Access

Business Logic

UI Logic and State

UI Widget1

Data Access

Business Logic

UI Logic and State

UI Widgetn

The problems with monolithic design
In this section we will review the problems caused by the tight coupling and low
cohesion found in monolithic designs.

Code maintenance
Looking at the previous screenshot if you assume that UI Widget1 and UI Widgetn
are using the same business logic, then using a monolithic design will cause code
duplication. Every time a change needs to be made to the business logic, it would
need to be made in both places. This is the type of issue that is solved by SoC and
one of the motivators for design paradigms like 3-tier which we will look at in the
Layered design section later in this chapter.

Code structure
Not having the code structured into reusable components and well-organized layers
makes things like sharing session state difficult under monolithic design. As you will
see in the examples that follow, once we move to MVC and MVP, there are many
benefits including:

•	 The session state becomes much easier to manage and share
•	 Code is easier to reuse
•	 Code is well-organized and easier to understand and maintain

Chapter 1

[13]

•	 Code scales easier as you can build components into separate DLLs
for distributed deployment

•	 Code is more extensible as you can replace components to provide
different behaviors

Code testability
Creating code that can be effectively tested with unit tests requires designing
for testability. The monolithic approach poses several problems for code
testability including:

•	 Poor isolation of tests: One of the core principles of unit testing is isolation of
the tests. You want your unit tests to test one scenario of one method of one
class and not to test the dependencies. Following this principle makes your
tests more valuable because when a test fails it's more likely that developers
who didn't write the test but introduced the change that broke the test will fix
the issue. This is because it will be very easy for the developer to determine
what the problem was that broke the test because it's so isolated and clear in
its purpose. A big part of getting return on investment from unit tests comes
from making them easy for developers to use and avoid making your unit tests
high maintenance. With high-maintenance unit tests the developers might just
delete, disable, or comment out the test instead of fixing the problem, which
makes the expense that was put into creating the test a waste.

•	 Testing the UI is difficult: Using automated testing to test the UI is notoriously
difficult. Monolithic design makes this problem worse as there is no separation
between the UI and the rest of the layers of logic. One of the major contributors
to the need of separated UI patterns is the desire to move as much logic as
possible out of the UI and into separate testable components.

•	 Poor code coverage: Code coverage refers to how much of your code is
covered by unit tests. Generally speaking, the more code you have covered
by tests, the more stability you will create in your development process, and
the more benefits you will reap from your tests. High code coverage provides
fewer bugs and quicker refactoring times. When you create a monolithic
application, it affects your ability to achieve high code coverage levels,
because you can't test the UI logic and the coupling between the various
layers as it makes mocking dependencies difficult, prohibiting creation of
unit tests.

Presentation Patterns

[14]

100 percent test coverage is not always the best level of coverage as
too much coverage can make the code brittle to change and make the
code high maintenance. My general rule of thumb is that I want to
test the functionality that is defined by the public interface of the class
under test. Testing internal details that could change can provide more
inconvenience than benefit. However, this rule of thumb assumes that
you have a good separation of concerns and have applied the Single
Responsibility Principle to the design of your application. Single
Responsibility Principle is part of the SOLID design principles and
more details about SOLID are easily found online if needed.

Data service stub
We will be using a data service stub as part of our data layer to take the place of a
real data service in our sample applications so that we can focus on presentation
patterns and not on data access patterns and techniques.

Data layer will be explained in the Layered design
section later in this chapter.

Let's start by creating a new Class Library project called ProjectBilling.DataAccess
in a solution called MVVM Survival Guide as shown in following screenshot:

Chapter 1

[15]

Now delete the Class1.cs file that is created by default by the project template and
add a new class called Project and add the following code to Project.cs:

namespace ProjectBilling.DataAccess
{
 public interface IProject
 {
 int ID { get; set; }
 string Name { get; set; }
 double Estimate { get; set; }
 double Actual { get; set; }
 void Update(IProject project);
 }

 public class Project : IProject
 {
 public int ID { get; set; }
 public string Name { get; set; }
 public double Estimate { get; set; }
 public double Actual { get; set; }

 public void Update(IProject project)
 {
 Name = project.Name;
 Estimate = project.Estimate;
 Actual = project.Actual;
 }
 }
}

There are certainly better options than using an interface with an
update method to allow for updating data objects but this approach
will allow us to keep the code in this chapter and the next concise
and allow keep our focus on the topic at hand.

Project is a simple domain object (or business object) that stores the project name,
estimated cost, and actual cost. It's implemented off an interface to provide more
flexibility and better testability and it provides an update method to make it easy
to update an instance's values.

Now we will create the data service stub that will return fake data for our various
clients to consume so that we don't have to be concerned with data access patterns
and techniques and can instead focus on presentation patterns. Add a class to the
project called DataService and add the code that follows to DataService.cs.

This class exposes one method called GetProjects(), which creates three projects
and then returns them as a IList<Project>. We have implemented our data service
stub based on an interface to support dependency injection.

Presentation Patterns

[16]

Dependency injection is a pattern where a dependency is allowed to be
specified by an external component instead of being created internally.
This pattern will be covered in more detail in Chapter 6, Northwind—
Hierarchical View Model and IoC.

using System.Collections.Generic;

namespace ProjectBilling.DataAccess
{
 public interface IDataService
 {
 IList<Project> GetProjects();
 }

 public class DataServiceStub : IDataService
 {
 public IList<Project> GetProjects()
 {
 List<Project> projects = new List<Project>()
 {
 new Project()
 {
 ID = 0,
 Name = "Halloway",
 Estimate = 500
 },
 new Project()
 {
 ID = 1,
 Name = "Jones",
 Estimate = 1500
 },
 new Project()
 {
 ID = 2,
 Name = "Smith",
 Estimate = 2000
 }
 };

 return projects;
 }
 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com . If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

[17]

This will allow us the flexibility to provide different implementations depending on
the context. In a unit test we can provide a testing fake (stub or mock), in blend we can
return a stub that returns design-time data and at runtime we can provide a real data
service that returns real data. We will look into all of these techniques and also the use
of inversion of control frameworks that make this process easier later in this book.

Monolithic Project Billing sample
Let's go ahead and walk through a simple implementation in WPF of the Project
Billing application that was introduced at the beginning of this chapter. We will
create the UI using a monolithic style.

This will be a WPF application but we are not using RAD (Rapid
Application Development) support available in Visual Studio, XAML
or WPF project templates as it better demonstrates the monolithic
style. If you are not familiar with writing code only WPF applications
in this style and want to learn more then see Applications = Code +
Markup: A Guide to the Microsoft Windows Presentation Foundation, by
Charles Petzold.

Start by creating a solution and then adding a new Console Application project named
ProjectBilling.Monolithic to your solution, as shown in the following screenshot:

Presentation Patterns

[18]

We will convert this console application to a Windows application
later in this section but it's not necessary to do so as you can run a
WPF application from a console application. Full details are coming
later in this section.

Now add a reference to the PresentationFramework, PresentationCore, System.
Xaml, and WindowsBase assemblies, as shown in the following screenshot:

The previous screenshot only shows adding a reference to
PresentationFramework. Repeat this process for PresentationCore,
System.Xaml, and WindowsBase as well.

Now add a project reference to ProjectBilling.DataAccess, as shown in the
following screenshot:

Chapter 1

[19]

Next, delete Program.cs and add a new class named ProjectsView and add the
following code to that file.

Using data service means that technically we are not implementing
a monolith as we are introducing a data access layer. This is done
to keep the code as short as possible. Keep in mind that a purely
monolithic application would not have a separate data access layer.
The variation of monolithic design that we are implementing here is
commonly referred to as autonomous view.

ProjectsView
The heart of this application is the ProjectsView class. Let's start by making this
class a window and bringing in the namespaces we need.

using System;
using System.Windows;
using System.Windows.Controls;
using ProjectBilling.DataAccess;
using System.Windows.Media;

namespace ProjectBilling.UI.Monolithic
{
 sealed class ProjectsView : Window
 {

 }
}

Presentation Patterns

[20]

This class now derives from System.Windows.Window, which is what allows it to be
displayed as a WPF application. Add a main function to ProjectsView as follows:

[STAThread]
static void Main(string[] args)
{
 ProjectsView mainWindow
 = new ProjectsView();
 new Application().Run(mainWindow);
}

The main function is given the STAThread attribute—which makes it run in
a single threaded apartment—which is a requirement of WPF and for
interoperability with COM (Component Object Model). The main function simply
creates a ProjectsView and then passes it to System.Windows.Application.Run(),
which initializes WPF, starts a message loop, and then displays ProjectsView as the
application's main window.

Initialization
Most of the work of the application will be done by the ProjectsView constructor
and field initializers. Add the following fields to the class:

private static readonly Thickness _margin
 = new Thickness(5);
private readonly ComboBox _projectsComboBox
 = new ComboBox() { Margin = _margin };
private readonly TextBox _estimateTextBox
 = new TextBox()
 { IsEnabled = false, Margin = _margin };
private readonly TextBox _actualTextBox
 = new TextBox()
 { IsEnabled = false, Margin = _margin };
private readonly Button _updateButton = new Button()
 {
 IsEnabled = false,
 Content = "Update",
 Margin = _margin
 };

Here we've created the Project combobox, Estimated Cost and Actual Cost textboxes
in addition to the Update button.

Chapter 1

[21]

Next let's add a constructor with the following code. We'll start by setting the Title
and size of the MonolithicProjectBillingWindow instance. We will then call two
helper methods that will be covered shortly and also add an event handler for the
updateButton.Click event.

This event handler will allow the code to be notified of user
input via .NET's built-in support for the Observer pattern that
is implemented by .NET events.

public ProjectsView()
{
 Title = "Project";
 Width = 250;
 MinWidth = 250;
 Height = 180;
 MinHeight = 180;

 LoadProjects();

 AddControlsToWindow();

 _updateButton.Click += updateButton_Click;
}

See the Helpers section for methods that are called but not yet
defined such as LoadProjects() and AddControlsToWindow().

Event handlers
Most of the rest of the functionality of the application is contained within the
event handlers:

•	 The following code will create projectsComboBox_SelectionChanged(),
which is an event handler for the projectsComboBox.SelectionChanged
event that we will wire up in the LoadProjects()method that was called
from the constructor. This code first determines if an item is selected by
casting the sender to a comboBox, making sure it isn't null and also that an
item is selected.
private void projectsListBox_SelectionChanged(
 object sender, SelectionChangedEventArgs e)
{
 ComboBox comboBox = sender as ComboBox;

Presentation Patterns

[22]

 // If there is a selected item
 if (comboBox != null && comboBox.SelectedIndex > -1)
 {
 UpdateDetails();
 }
 else
 {
 DisableDetails();
 }
}

•	 If there is an item selected in projectsComboBox then the UpdateDetails()
helper method is called; if no item is selected then the DisableDetails()
helper method is called.

•	 updateButton.Click() is shown in the following code:
private void updateButton_Click(object sender,
 RoutedEventArgs e)
{
 Project selectedProject
 = _projectsComboBox.SelectedItem
 as Project;
 if (selectedProject != null)
 {
 selectedProject.Estimate =
 double.Parse(_estimateTextBox.Text);
 if (!string.IsNullOrEmpty(
 _actualTextBox.Text))
 {
 selectedProject.Actual
 = double.Parse(
 _actualTextBox.Text);
 }
 SetEstimateColor(selectedProject);
 }
}

updateButton.Click() will fire when the user clicks on the Update button
and determine if an item is selected. If an item is selected, it will update the
details controls with the details of the selected item. The values to populate
the details controls will be fetched from the properties of the details controls
which we are currently using for view state. Next updateButton.Click()
will call the SetEstimateColor() helper function to update the color of the
estimateTextBox (view state) based on whether the estimated cost is higher
or lower than the actual cost (view logic).

Chapter 1

[23]

_actualTextBox is checked for null or empty as it starts out in an
empty state and could be empty that state if the user updates only the
Estimated Cost but not actual. This validation was provided to keep
the application running down the happy path while all other validation
have been left out to keep the code short.

Helpers
These private helper methods will add the remaining functionality:

•	 Add the LoadProjects() method, as shown in the following code:
private void LoadProjects()
{
 foreach (Project project
 in new DataServiceStub().GetProjects())
 {
 _projectsComboBox.Items.Add(project);
 }
 _projectsComboBox.DisplayMemberPath = "Name";
 _projectsComboBox.SelectionChanged
 += new SelectionChangedEventHandler(
 projectsListBox_SelectionChanged);
}

•	 The LoadProjects() method will do the following:
	° Fetch the projects to populate the projectsComboBox with data

retrieved from persisted state by instantiating a new DataService
and then calling GetProjects()

	° The results of GetProjects() are iterated over and added
to _projectsComboBox for display

	° Set the DisplayMemeberPath to "Name" to use the Project.
Name property for the displayed text for each project in
the _projectsComboBox.Items collection

	° Wire up an event handler for the projectsComboBox.
SelectionChanged event allowing us to update the details view
when the user changes the selected project

•	 Add the AddControlsToWindow() method with the following code:
private void AddControlsToWindow()
{
 UniformGrid grid = new UniformGrid()
 { Columns = 2 };

Presentation Patterns

[24]

 grid.Children.Add(new Label()
 { Content = "Project:" });
 grid.Children.Add(_projectsComboBox);
 Label label = new Label()
 { Content = "Estimated Cost:" };
 grid.Children.Add(label);
 grid.Children.Add(_estimateTextBox);
 label = new Label()
 { Content = "Actual Cost:"};
 grid.Children.Add(label);
 grid.Children.Add(_actualTextBox);
 grid.Children.Add(_updateButton);
 Content = grid;
}

•	 The previous code will do the following:
	° Create a new UniformGrid
	° Configure the controls we will be using and then add the controls

to the grid
	° Set the grid as the content of the window for display

•	 Add the GetGrid() method to ProjectsView as follows:
private Grid GetGrid()

{
 Grid grid = new Grid();
 grid.ColumnDefinitions
 .Add(new ColumnDefinition());
 grid.ColumnDefinitions
 .Add(new ColumnDefinition());
 grid.RowDefinitions
 .Add(new RowDefinition());
 grid.RowDefinitions
 .Add(new RowDefinition());
 grid.RowDefinitions
 .Add(new RowDefinition());
 grid.RowDefinitions
 .Add(new RowDefinition());
 return grid;
}

Chapter 1

[25]

•	 This code creates a 2x3 Grid that is used to create a basic form layout.

We are not trying to make this form pretty but are instead trying
to focus on the presentation patterns. One of the big benefits
of MVVM is that it will allows us to give our view XAML to a
designer and have them make it look nice without having the need
to involve the developer. We will look at this approach in detail
later in this book in Chapter 7, Dialogs and MVVM.

•	 Add the UpdateDetails() method as follows:
private void UpdateDetails()
{
 Project selectedProject
 = _projectsComboBox.SelectedItem
 as Project;

 _estimateTextBox.IsEnabled = true;
 _estimateTextBox.Text
 = selectedProject.Estimate.ToString();
 _actualTextBox.IsEnabled = true;
 _actualTextBox.Text
 = (selectedProject.Actual == 0)
 ? ""
 : selectedProject.Actual.ToString();
 SetEstimateColor(selectedProject);
 _updateButton.IsEnabled = true;
}

•	 The UpdateDetails() method simply transfers data from the
projectsComboBox.SelectedItem (or master) to the details controls and
then updates the estimateTextBox by calling SetEstimateColor().

•	 Add a DisableDetails() method as follows:
private void DisableDetails()
{
 _estimateTextBox.IsEnabled = false;
 _actualTextBox.IsEnabled = false;
 _updateButton.IsEnabled = false;
}

•	 The DisableDetails() method sets the details controls IsEnabled to false
along with the update button.

Presentation Patterns

[26]

•	 Add SetEstimateColor() as follows:
private void SetEstimateColor(Project selectedProject)
{
 if (selectedProject.Actual == 0)
 {
 this.estimateTextBox.Foreground
 = _actualTextBox.Foreground;
 }
 else if (selectedProject.Actual
 <= selectedProject.Estimate)
 {
 this.estimateTextBox.Foreground
 = Brushes.Green;
 }
 else
 {
 this.estimateTextBox.Foreground
 = Brushes.Red;
 }
}

•	 The SetEstimateColor() method will be called by both event handlers to
update the color of Estimated Cost (view state) by examining the Actual Cost
and Estimated Cost.

Running the sample
Right-click on the ProjectBilling.Monolithic project and select Properties. Next,
set the Output type to Windows Application as shown in the following screenshot:

Chapter 1

[27]

If you leave the Project type as Console Application then a Console
Window will be displayed while your WPF application runs. This can
be useful for debugging as you can write debug messages to the console
and easily kill the application using Ctrl + C when debugging.

Finally set ProjectBilling.Monolithic as the startup project by right-clicking on it
and selecting Set as StartUp project. Now run the application by hitting F5.

You should now see an application as shown in The Project Billing sample application
section at the beginning of this chapter.

Takeaways
This code gets the job done, so what's the problem and why is there the need to
restructure it?

Poor testability
This code has poor testability as the entire code is tightly coupled to the view and
requires the view to fire the events that drive the logic of application. You could
change the access modifiers of the methods of ProjectsView to public the help
alleviate the situation but then you weaken the design from the encapsulation and
design by contract perspectives.

Encapsulation and design by contract are basic principles of
Object-oriented design that are covered extensively on the Web.
Please look up for them if you are already not familiar with them.

Poor extensibility and code reuse
If the users wanted a command line or web-interface, all of the code would need to
be rewritten. Also, supporting multiple synchronized ProjectView is not possible
under this design and would require at a minimum refactoring out a model.

We will demonstrate how adding SoC allows for creating multiple
synchronized views of the model when we get to the MVC section.

Presentation Patterns

[28]

Rapid application development
Microsoft puts a lot of development effort into creating Rapid Application
Development (or RAD) tools that allow developers to simply drag-and-drop
controls onto the IDE's design surface and then allow for configuring the controls'
data needs mostly through the IDE's designer. The designer then creates monolithic
code to get the job done. These tools make the problems of monolithic design worse
by encouraging that style of design and by making it easier to do.

RAD Project Billing sample
This section will walk through rewriting the Project Billing application using
RAD tools in Visual Studio.

Start by adding a new WPF Application project to your solution called
ProjectBilling.RAD. This project template creates two files for you, App.xaml
and MainWindow.xaml.

Next add a project reference to ProjectBilling.DataAccess.

Open MainWindow.xaml in Cider (the WPF designer) by double-clicking on
MainWindow.xaml in the Solution Explorer. If they're not already expanded,
expand the Toolbox window and the Data Sources window. You should have
Visual Studio set up as shown in the following screenshot:

Chapter 1

[29]

The first step is to add an Object Data Source to connect to DataService.
GetProjects(). To do this start by clicking on Add New Data Source in the
Data Sources window, as shown in the following screenshot:

You will now be presented with a dialog that will allow you to specify an Object
Data Source, as shown in the following screenshot:

