


IBM DB2 9.7 Advanced 
Administration 
Cookbook

Over 100 recipes focused on advanced administration 
tasks to build and configure powerful databases with  
IBM DB2

Adrian Neagu

Robert Pelletier

 

BIRMINGHAM - MUMBAI



IBM DB2 9.7 Advanced Administration 
Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: March 2012

Production Reference: 1200212

Published by Packt Publishing Ltd. 
Livery Place 
35 Livery Street 
Birmingham B3 2PB, UK.

ISBN 978-1-84968-332-6

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)



Credits

Authors
Adrian Neagu

Robert Pelletier

Reviewers
Nadir Doctor

Marius Ileana

Nivasreddy Inaganti

Nitin G. Maker

Drazen Martinovic

Eldho Mathew

Acquisition Editor
Rukshana Khambatta

Lead Technical Editor
Hithesh Uchil

Technical Editor
Arun Nadar

Project Coordinator
Leena Purkait

Copy Editor
Brandt D’Mello

Proofreader
Aaron Nash

Indexer
Monica Ajmera Mehta

Production Coordinator 
Shantanu Zagade

Cover Work
Shantanu Zagade



About the Authors

Adrian Neagu has over 10 years of experience as a database administrator, mainly with 
DB2 and Oracle databases. He has been working with IBM DB2 since 2002. 

He is an IBM DB2 Certified Administrator (versions 8.1.2 and 9), Oracle Database 
Administrator Certified Master 10g, Oracle Certified Professional (9i and 10g), and Sun 
Certified System Administrator Solaris 10. He is an expert in many areas of database 
administration, such as performance tuning, high availability, replication, and backup  
and recovery. 

In his spare time, he enjoys cooking, taking photos, and catching big pikes with huge jerkbaits 
and bulldawgs.

I would like to give many thanks to my family, to my daughter Maia-Maria, 
and my wife Dana, who helped and supported me unconditionally, and also 
to my colleagues, my friends, to Rukshana Khambatta, my acquisition editor, 
for her patience, and finally to Robert Pelletier and Marius Ileana, who have 
provided invaluable advice, helping me to climb up the cliffs of authoring.

Robert Pelletier is a Senior DBA Certified Oracle 8i, 9i, 10g, and DB2. He has 12 years 
of experience as DBA, in production/development support, database installation and 
configuration, and tuning and troubleshooting. He has more than 30 years of IT experience in 
application development in mainframe central environments, client-server, and UNIX. More 
recently, he has added expertise in Oracle RAC 11gR2, 10gR2, 9i, DB2 UDB DBA, ORACLE 
9iAS, Financials, PeopleSoft, and also SAP R/2 & R/3. He is renowned for his expertise 
among many major organizations worldwide and has a solid consulting background in  
well-known firms.

I would like to thank my wife, Julie, and son, Marc-André, for their positive 
and unconditional support, and also to Adrian Neagu, who helped me a 
lot for coauthoring this book, and all the Packt publishing team for making 
this possible. I would also like to thank my clients and colleagues who have 
provided invaluable opportunities for me to expand my knowledge and 
shape my career.



About the Reviewers

Marius Ileana is an OpenGroup Certified IT specialist currently working in banking industry.

Working for six years in IBM Romania as a part of middleware team and also being a two-year 
support specialist, he has been involved in various IBM-related technologies and enterprise 
grade deployments.

He holds many IBM certifications including IBM Certified DBA for DB2 9 on LUW. Since Java 
development is one of his hobbies, he is also a Sun Certified Programmer for Java™ v1.4. His 
areas of expertise include AIX, HACMP, WebSphere Application Server, DB2 UDB, and design 
and development of J2EE™ applications.

His current focus areas include the architecture and development of a general-purpose 
monitoring solution, Portal solutions, and data visualization.

Nitin G. Maker is an IBM Certified DB2 UDB DBA with around 11 years of IT experience, 
primarily in IBM DB2 Universal Database Technologies. He has demonstrated excellent 
capabilities in various roles as Data Architect/Database Administrator/DataWarehouse 
Architect, Applications Administrator, Upgrade Specialist, and Technical Team Leader.

Nitin has worked with many leading software houses in India and also completed assignments 
in the USA, UK, and Sri Lanka. He is currently based in Pune, with his family, and enjoys 
making new friends, listening to music, and following sports.

Drazen Martinovic graduated at the Faculty of Electronics, Machinery and Shipbuilding, 
Split, Croatia, in 1996. He worked in DHL international d.o.o. as a Unix administrator—IT 
support administrator—for 11 years. He then started to work as a database administrator for 
DB2 for LUW. He has been an IBM Certified Database Administrator (DB2 9 for Linux, UNIX, 
and Windows), since last year. 

He works in the Raiffeisenbank Austria d.d. Zagreb bank as a Database Administrator for DB2. 
It has over 2000 employees.

Eldho Mathew is a DB2 LUW, Linux and AIX certified administrator with 8 years of proven 
expertise in various aspects of building, administrating, and supporting highly complex 24x7 
operational and warehouse database servers. He has handled highly complex and critical 
systems for many top branded customers in UK.



www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book. 

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book 
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of 
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library. Here, 
you can access, read and search across Packt’s entire library of books. 

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today 
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, or 
the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/


Table of Contents
Preface	 1
Chapter 1: DB2 Instance—Administration and Configuration	 7

Introduction	 7
Creating and configuring instances for non-partitioned environments	 8
Creating and configuring a client instance	 13
Creating and configuring an instance for multipartitioned environments	 14
Starting and stopping instances	 21
Configuring SSL for client-server instance communication	 23
Listing and attaching to instances	 27
Dropping instances	 31

Chapter 2: Administration and Configuration of the  
DB2 Non-partitioned Database	 33

Introduction	 33
Creating and configuring DB2 non-partitioned databases	 34
Using Configuration Advisor	 42
Creating a database from an existing backup	 48
Configuring automatic database maintenance	 51
Managing federated databases—connecting to Oracle and MSSQL	 54
Altering databases	 59
Dropping databases	 63



ii

Table of Contents

Chapter 3: DB2 Multipartitioned Databases—Administration  
and Configuration	 65

Introduction	 66
Creating and configuring a multipartitioned database	 66
Adding database partitions	 68
Creating database partition groups	 71
Altering database partition groups—adding partitions to  
database partition groups	 75
Managing data redistribution on database partition groups	 80
The table distribution key and its role in a multipartitioned environment	 84
Altering database partition groups—removing partitions from a database 
partition group	 87
Removing database partitions	 89
Converting a non-partitioned database to a multipartitioned database  
on MS Windows 	 92
Configuring Fast Communication Manager	 101

Chapter 4: Storage—Using DB2 Table Spaces	 103
Introduction	 103
Creating and configuring table spaces within automatic  
storage databases	 104
Creating and configuring SMS table spaces	 107
Creating and configuring DMS table spaces	 110
Using system temporary table spaces	 114
Using user temporary table spaces 	 115
Altering table spaces and dropping table spaces	 119
Table spaces in a multipartitioned environment	 124

Chapter 5: DB2 Buffer Pools	 127
Introduction	 127
Creating and configuring buffer pools	 128
Configuring the block-based area	 131
Managing buffer pools in a multipartitioned database	 133
Altering buffer pools	 136
Dropping buffer pools	 138

Chapter 6: Database Objects	 141
Introduction	 141
Creating and using MDC tables and block-based indexes	 141
Creating and using materialized query tables	 147
Implementing table partitioning	 152



iii

Table of Contents

Using temporary tables	 163
Created global temporary table	 164

Chapter 7: DB2 Backup and Recovery	 167
Introduction	 168
Configuring database logging	 168
Performing an offline database backup	 170
Performing a full online database backup	 172
Performing an incremental delta database backup	 173
Performing an incremental cumulative database backup	 177
Backing up table spaces	 179
Crash recovery	 180
Full database recovery	 184
Database rollforward recovery	 188
Incremental restore	 191
Recovering table spaces—full and rollforward recovery	 196
Redirected restore	 200
Recovery history file	 203
Configuring tape-based backup with IBM Tivoli Storage Manager	 206
db2move and db2look utilities as alternative backup methods 	 208

Chapter 8: DB2 High Availability	 213
Introduction	 213
Setting up HADR by using the command line	 215
Setting up HADR by using Control Center	 225
Changing HADR synchronization modes	 232
Performing takeover and takeover by force	 235
Using automated client rerouting with HADR	 238
Opening the standby database in read-only mode	 240
Using the DB2 fault monitor	 244

Chapter 9: Problem Determination, Event Sources, and Files	 247
Introduction	 247
Using db2mtrk—DB2 memory tracker	 248
Using db2pd—DB2 problem determination tool	 251
Using db2dart—DB2 database analysis and reporting tool command	 255
Using db2ckbkp—DB2 check backup tool for backup integrity	 258
Using db2support to collect diagnostic data	 262

Chapter 10: DB2 Security	 265
Introduction	 265
Managing instance-level authorities	 266
Managing database-level authorities and privileges	 274



iv

Table of Contents

Managing object privileges	 280
Using roles	 286
Using table encryption	 290
Using label-based access control (LBAC) to strengthen data privacy	 293
Auditing DB2	 305

Chapter 11: Connectivity and Networking	 315
Introduction	 315
Configuring network communications	 316
Cataloging and uncataloging instances and databases	 320
Using DB2 Discovery	 326
Communications with DRDA servers (z/OS and i/OS)	 330
Monitoring and configuring FCM for optimal performance	 336

Chapter 12: Monitoring	 343
Introduction	 343
Configuring and using system monitoring	 344
Configuring and using snapshot monitoring	 350
Configuring and using event monitoring	 360
Using Memory Visualizer	 368
Using Health Monitor	 372

Chapter 13: DB2 Tuning and Optimization	 379
Introduction and general tuning guidelines	 379
Operating system tuning	 380
Resolving CPU bottlenecks	 385
Tuning memory utilization	 392
Collecting object statistics with the RUNSTAT utility	 397
Default automatic statistics collection	 398
Tuning with indexes	 400
Tuning sorting	 403
Hit ratios and their role in performance improvement	 405
I/O tuning	 408
Using logging and nologging modes	 415
Using parallelism	 416
Loading a table	 418
Using EXPLAIN PLAN	 419
Creating a benchmark testing scenario	 424



v

Table of Contents

Chapter 14: IBM pureScale Technology and DB2 	 427
Introduction	 427
Managing instances, members, and cluster facilities in DB2 pureScale	 428
Monitoring DB2 pureScale environments	 434
High availability in DB2 pureScale environments	 439
Backup and recovery in DB2 pureScale environments	 442

Index	 449





Preface
IBM DB2 LUW is a leading relational database system developed by IBM. DB2 LUW database 
software offers industry leading performance, scale, and reliability on your choice of platform 
on various Linux distributions, leading Unix systems, such as AIX, HP-UX, and Solaris, and also 
MS Windows platforms. With lots of new features, DB2 9.7 delivers one the best relational 
database systems on the market.

IBM DB2 9.7 Advanced Administration Cookbook covers all the latest features with instance 
creation, setup, and administration of multi-partitioned databases.

This practical cookbook provides step-by-step instructions to build and configure  
powerful databases, with scalability, safety, and reliability features, using industry  
standard best practices.

This book will walk you through all the important aspects of administration. You will learn to 
set up production-capable environments with multi-partitioned databases and make the best 
use of hardware resources for maximum performance.

With this guide, you can master the different ways to implement strong databases with  
high-availability architecture.

What this book covers
Chapter 1, DB2 Instance—Administration and Configuration, covers DB2 instance creation 
and configuration for non-partitioned database and multipartitioned database environments.

Chapter 2, Administration and Configuration of the DB2 Non-partitioned Database, contains 
recipes that explain how to create a database and get operational in simple and easy steps. In 
this chapter, you will also learn how to configure your database for its mission and prepare it 
for automatic maintenance, so its operation is worry-free.



Preface

2

Chapter 3, DB2 Multipartitioned Databases—Administration and Configuration, contains 
recipes that explain how to create and configure a multipartitioned database and its related 
administration tasks. This chapter will also teach us how to add and remove new partitions, 
how to perform add, remove, and redistribute operations on database partition groups, and  
much more.

Chapter 4, Storage—Using DB2 Table Spaces, covers physical aspects of storage, the 
foundation of a database. In this chapter, we will cover configuring SMS and DMS table 
spaces, altering table spaces, and dropping table spaces.

Chapter 5, DB2 Buffer Pools, covers caching. Here, you will learn how data is read from the 
disk, to buffer pools. And as reading from memory is faster than reading from disk, the buffer 
pools play an important part in database performance.

Chapter 6, Database Objects, covers Multidimensional Clustering (MDC), Materialized Query 
Tables (MQT), and Partitioning as the key techniques used for efficient data warehousing. 
Combined with database partitioning, these deliver a scalable and effective solution,  
reduce performance problems and logging, and provide easier table maintenance.

Chapter 7, DB2 Backup and Recovery, covers the major aspects of backup and recovery,  
as is practiced industry-wide, the preferred solutions, and how we can implement some of 
these methods.

Chapter 8, DB2 High Availability, mainly covers High Availability Disaster Recovery as a HA 
solution and DB2 Fault Monitor, which is used for monitoring and ensuring the availability 
of instances that might be closed by unexpected events, such as bugs or other type of 
malfunctions. The reader will learn how to implement HADR using command line and  
Control Center, about synchronization modes, how to initiate takeover and takeover by  
force, how to configure and open a standby database in read-only mode, and more.

Chapter 9, Problem Determination, Event Sources, and Files, has recipes for various tools 
used for diagnostics, inspection, and performance problem detection, such as db2mtkr, 
for gathering memory-related information, db2pd, a very powerful tool used for problem 
determination, db2dart, also a very powerful tool with wide applicability, that can be  
used for virtually any problem that may arise, db2ckbkp, for backup image checking,  
and db2support, used mainly for automating diagnostic data collection.

Chapter 10, DB2 Security, speaks about the main security options used to harden and secure 
DB2 servers. It is about instance-level and database authorities, data encryption, roles, and 
securing and hiding data using Label Based Access Control.

Chapter 11, Connectivity and Networking, covers many network-related configurations that 
apply to DB2 servers and clients, such as node cataloging, setting up connections to DRDA 
serves, and how to tune and monitor the Fast Communication Manager.

Chapter 12, Monitoring, covers an important part of a DBA's work, ensuring the database is 
available and that nothing hinders its functionality.



Preface

3

Chapter 13, DB2 Tuning and Optimization, provides general guidelines, as well as insightful 
details, on how to dispense the regular attention and tuning that databases need, using a 
design-centered approach. Our tips, based on best practices in the industry, will help you in 
building powerful and efficient databases.

Chapter 14, IBM pureScale Technology and DB2, represents mainly an introduction to 
pureScale technology. We will cover the principal administration tasks related to members, 
instances, and caching facilities. The reader will also learn about monitoring, backup and 
recovery methods, and special features that exist only in pureScale configurations. 

What you need for this book
Unless you have access to a facility that has DB2 installed, you can install a trial version of 
DB2 on your own PC for learning purposes. Make sure you have the required hardware and 
operating system.

We must stress the importance of using a sandbox environment in order to duplicate the 
recipes in this book. Some recipes are intended for demonstration purposes and should not 
be done in a production environment.

Who this book is for
If you are a DB2 Database Administrator who wants to understand and get hands-on with the 
underlying aspects of database administration, then this book is for you.

This book assumes that you have a basic understanding of DB2 database concepts, and 
sufficient proficiency in the Unix/Linux operating system.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Partitioned indexes facilitate data maintenance by 
making rollin and rollout operations easier."

A block of code is set as follows:

SELECT DISTINCT  
  STORE, INTEGER(SALESDATE)/100
FROM POS.SALES



Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

db2 "CREATE TABLE POSP.MQT_REFTBLS AS ( … )
 ...
 MAINTAINED BY SYSTEM
 DISTRIBUTE BY REPLICATION"

Any command-line input or output is written as follows:

CREATE GLOBAL TEMPORARY TABLE TMP_INVCDET

LIKE POSP.INVCDET

ON COMMIT DELETE ROWS

NOT LOGGED

IN POSTEMP8K;

New terms and important words are shown in bold. Words that you see on the screen, 
in menus or dialog boxes for example, appear in the text like this: "Navigate to Database 
partition groups, right-click, and choose Create…."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.



Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you find  
any errata, please report them by visiting http://www.packtpub.com/support,  
selecting your book, clicking on the errata submission form link, and entering the details  
of your errata. Once your errata are verified, your submission will be accepted and the errata 
will be uploaded to our website, or added to any list of existing errata, under the Errata section 
of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com




1
DB2 Instance—

Administration and 
Configuration

In this chapter, we will cover:

ff Creating and configuring instances for non-partitioned environments

ff Creating and configuring a client instance

ff Creating and configuring instances for multipartitioned environments

ff Starting and stopping instances 

ff Configuring SSL for client-server instance communication

ff Listing instances

ff Attaching to instances

ff Dropping instances

Introduction
The main focus of this chapter is DB2 instance creation and configuration, for non-partitioned 
database and for multipartitioned database environments. 



DB2 Instance—Administration and Configuration

8

Creating and configuring instances for 
non-partitioned environments

A DB2 instance can be defined as a logical container or as a logical context for databases. It can 
also be described as a layer between DB2 software binaries, a database, and its objects. Also it 
provides a level of isolation between databases; for example, it is possible to have two or more 
databases on the same environment, with the same name, but under different instances. It also 
provides and ensures the communication layer between clients and databases.

Getting ready
For this recipe (and almost all recipes in this book), we will use two servers running Red Hat 
Enterprise Linux Server x64 release 5.5 (Tikanga), named nodedb21 and nodedb22. The 
hostnames are optional, but our recommendation is to set up an identical environment to 
avoid confusion during reading and applying the recipes.

As install location for the IBM DB2 9.7 Enterprise Server Enterprise software product, we 
will use the directory /opt/ibm/db2/V9.7 on nodedb21. On nodedb22, we will install 
DB2 Client software to location /opt/ibm/db2/V9.7_clnt. The instance owner will be 
db2inst1 on nodedb21 and db2clnt1 as client instance owner on nodedb22. Also, on 
nodedb21, we will create a second instance owner user named db2inst2, to demonstrate 
how to create an instance manually.

How to do it...
The default method to create an instance is during the IBM DB2 9.7 Enterprise Server Edition 
software installation. The other possible option is to use the db2icrt command.

In Linux and Unix, every instance is created under a dedicated user, called the instance owner. 
To create an instance in Linux and UNIX you have to be the root user; on these platforms, 
we are limited to one instance per user. On Microsoft Windows platforms, you may have more 
than one instance created under the same user.

Usually, if you set up the software in graphical mode you do not have to create the users 
manually—you can do this using the wizard. In our recipes, we want to reuse the same groups 
(db2iadm1 and db2fadm1) for the non-partitioned and the multipartitioned instance and 
database setup. For the multipartitioned setup we will have the same groups defined on both 
servers; because we have to deal with security regarding permissions, here, we should create 
the groups with the same group ID (GID):

1.	 Create primary groups with the same GID on both servers:
	 [root@nodedb21 ~]# groupadd -g 1103 db2iadm1
	 [root@nodedb21 ~]# groupadd -g 1102 db2fadm1
	 [root@nodedb21 ~]#



Chapter 1

9

	 [root@nodedb22 ~]# groupadd -g 1103 db2iadm1
	 [root@nodedb22 ~]# groupadd -g 1102 db2fadm1
	 [root@nodedb22 ~]#

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

2.	 Run db2setup from the IBM DB2 9.7 Enterprise Server Edition software  
installation kit.

Instance owner user db2inst and fenced user db2fenc 
will be created during installation. The groups db2iadm1 
and db2fadm1 will automatically fill in on the screen.

3.	 To create a new instance during the installation with db2setup in graphical mode, 
navigate through configuration steps 1 to 6 and, at step 7 you will find Create a DB2 
instance option checked; this is the default option.and let as it is.Click Next.

4.	 At step 8—Partitioning options—you will find Single partition instance option 
checked ; this is the default option and let as it is. Click Next and finalize installation. 
If installation was successful, we have a new instance named db2inst1 created.

Another way to create an instance is to use the db2icrt command. This method is 
suitable in the case that you install the DB2 software with db2_install (manual 
installation), or that you do not check the Create a DB2 instance option during 
installation with db2setup. Other scenarios would be if you drop an instance  
and want to create a new one, or if you want to create an additional instance.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


DB2 Instance—Administration and Configuration

10

5.	 As mentioned previously, in Linux and Unix, every instance has to be created 
under an instance owner user. As a root user, we will create the user db2inst2 
as instance owner and db2fenc2 as fenced user; set passwords identical to the 
individual usernames:

	 [root@nodedb21 ~]# useradd -g db2iadm1 db2inst2

	 [root@nodedb21 ~]# useradd -g db2fadm1 db2fenc2

	 [root@nodedb21 ~]# passwd db2inst2

	 Changing password for user db2inst2.

	 New UNIX password:

	 Retype new UNIX password:

	 passwd: all authentication tokens updated successfully.

	 [root@nodedb21 ~]# passwd db2fenc2

	 Changing password for user db2fenc2.

	 New UNIX password:

	 Retype new UNIX password:

	 passwd: all authentication tokens updated successfully.

	 [root@nodedb21 ~]#

6.	 At this step, set the communication protocol to TCP/IP. The instance communication 
protocol is set up using the DB2COMM variable. We can set this variable no protocol 
managers will be started and will lead to communication errors at the client side.

	 [db2inst2@nodedb21 ~]$ db2set DB2COMM=TCPIP

	 [db2inst2@nodedb21 ~]$

7.	 Next, as user root, edit /etc/services and add db2c_db2inst2 50002/
tcp entry (highlighted in bold in the listing bellow). Port 50002 will be assigned to 
db2inst2 instance. Port 50001 corresponds to the db2c_db2inst1 service name 
and was added at db2inst1 instance creation. Port names prefixed with DB2 are 
reserved for inter-partition communication, a subject that we're going to discuss  
later on.

	 db2c_db2inst1   50001/tcp
	 DB2_db2inst1    60000/tcp
	 DB2_db2inst1_1  60001/tcp
	 DB2_db2inst1_2  60002/tcp
	 DB2_db2inst1_END        60003/tcp
	 db2c_db2inst2 50002/tcp

If you choose to use only port numbers for SVCENAME database 
manager parameter you do not need to edit this file.



Chapter 1

11

8.	 As root user, create instance db2inst2, using the previously created users as 
instance owner and fenced user:

[root@nodedb21.~]# /opt/ibm/db2/V9.7/instance/db2icrt -a SERVER 
ENCRYPT -p db2c_db2inst2 -u db2fenc2 db2inst2

DBI1070I  Program db2icrt completed successfully.

[root@nodedb21 ~]#

We need to explain a little bit about the options used for creating instance 
db2inst2:

�� The –a option indicates the authentication type; the default is SERVER. Using 
the –a option, the following authentication modes are available: SERVER, 
CLIENT, and SERVER ENCRYPT. We may change it later by modifying the 
AUTHENTICATION or the SRVCONN_AUTH instance parameter.

�� The –u switch is used to set the fenced user.

�� The –p option is used to specify the port or its corresponding service name 
used for client communication, as defined in /etc/services. The port or 
service name may be changed later by modifying the SVCENAME database 
manager parameter

�� For MS Windows platforms, we don't have the –a option to specify the 
authentication mode. The –p option in Windows has a different meaning; 
it is used to specify the instance profile. The –u option is for specifying the 
account name and password used that will be included in the Windows 
service definition associated with the instance.

To use the Control Center for managing an instance locally or remotely, you 
need to have DB2 Administration Server (DAS) up and running, on the server.
To check the status of DAS, execute the following command, as DAS owner 
user, which is in our case dasusr1:
[dasusr1@nodedb21 ~]$ db2dascfg get dasstatus

ACTIVE

[dasusr1@nodedb21 ~]$

Usually, it is installed and created during IBM DB2 software installation. If 
there is no DAS created, you should create it using the dascrt command. 
The steps are similar to those for creating an instance—create a group and a 
user. It has to be created by specifying the owner.
For example, /opt/ibm/db2/V9.7/instance/dascrt –u dasusr1.



DB2 Instance—Administration and Configuration

12

How it works...
In Linux or Unix, when an instance is created, the db2icrt command builds up under 
the instance owner home directory, the sqllib directory, as a collection of symbolic links 
pointing to the IBM DB2 software installation home directory. If you want to see what is 
executing db2icrt in the background, you need to include the –d option to enable debug 
mode. This explains what happens behind the scenes for the steps mentioned earlier.  
Usually, this switch is used for detailed diagnostics, and should be activated at the  
request of IBM support.

Almost all files and directories from sqllib directory  are symbolic links to the corresponding 
installation path (DB2HOME). A short listing inside sqllib directory looks like this:

[db2inst1@nodedb21]/home/db2inst1/sqllib>symlinks -v .
other_fs: /home/db2inst1/sqllib/map -> /opt/ibm/db2/V9.7/map
other_fs: /home/db2inst1/sqllib/bin -> /opt/ibm/db2/V9.7/bin
other_fs: /home/db2inst1/sqllib/ruby64 -> /opt/ibm/db2/V9.7/dsdriver/
ruby64

On MS Windows platforms, the db2icrt command creates a service. The binaries are 
actually copied and a service associated with the instance is created.

On a generic Windows machine we'll create an instance named db2win. Initially, the 
associated service has the status set to stopped and the startup type set to manually. If you 
want the service to start automatically at system boot, you have to change its startup type  
to automatic.

To create instance db2win, execute the following command under a privileged user:

C:\Windows\system32>db2icrt db2win
DB20000I  The DB2ICRT command completed successfully.

To find the associated Windows service with db2win instance, execute the following command:

C:\Windows\system32>sc query state= all  | findstr "DB2WIN"
SERVICE_NAME: DB2WIN
DISPLAY_NAME: DB2 - DB2COPY1 - DB2WIN
C:\Windows\system32>

There's more...
The db2isetup graphical tool might be used also for creating instances; this tool is available 
only on the Linux and Unix platforms.

On Linux and Unix you have the possibility to create a non-root type instance using the 
installer. You are limited to only one non-root instance per server.



Chapter 1

13

Updating instances using the db2iuptd command
Usually this command is used to update an instance after an upgrade to a higher version, 
or migrate an instance from a lower product level such as Workgroup Edition to Enterprise 
Edition. Also it might be used for instance debug using the –d option. Like db2icrt, this 
command has its own particularities on MS Windows operating systems. To find the available 
options and related descriptions of this command issue db2iuptd –h. For non-root type 
instances exists a variant of this command named db2nruptd.

Creating and configuring a client instance
Usually, this special type of instance is used for cataloging nodes and databases to which you 
want to connect using this client. Compared to server instances there are some limitations, as 
it cannot be started or stopped, and you cannot create databases under it. Mainly, it is used 
by the DB2 Client and DB2 Connect products.

Getting ready…
On nodedb22 we will create the instance owner db2clnt1 and fenced user named 
db2fenc1. For creating a client instance, we'll use the –s option of the db2icrt command.

How to do it…
1.	 Install DB2 Client in the /opt/ibm/db2/V9.7_clnt location on nodedb22, 

without creating an instance; to do this during installation, check at step 6—Instance 
setup—Defer this task until after installation is complete.

2.	 Next, create users on nodedb22—db2clnt1 as the client instance owner and 
db2fenc1 as fenced user—and set passwords identical to the usernames:

	 [root@nodedb22 ~]# useradd -g db2iadm1 db2clnt1
	 [root@nodedb22 ~]# useradd -g db2fadm1 db2fenc1
	 [root@nodedb22 ~]# passwd db2clnt1
	 Changing password for user db2clnt1.
	 New UNIX password:
	 Retype new UNIX password:
	 passwd: all authentication tokens updated successfully.
	 [root@nodedb22 ~]# passwd db2fenc1
	 Changing password for user db2fenc1.
	 New UNIX password:
	 Retype new UNIX password:
	 passwd: all authentication tokens updated successfully.
	 [root@nodedb22 ~]#



DB2 Instance—Administration and Configuration

14

3.	 As user root, create the client instance db2clnt1:
[root@nodedb22 ~]# /opt/ibm/db2/V9.7/instance/db2icrt -s client -u 
db2fenc1 db2iclnt1

DBI1070I  Program db2icrt completed successfully.

[root@nodedb22 ~]#

How it works...
Mainly you need to setup a client instance when you have plans to administer DB2 servers 
remotely with tools that are using non-Java based connections such as Control Center or Toad 
for DB2. The same scenario is applicable when you are using CLI for remote administration or 
command execution and also in this category are non-java based application clients.

There's more...
In the previous section we used the term non-java clients. However, this not totally exact for 
older type JDBC or JDBC-ODBC bridge connections using type 1 and 2 drivers. Type 3 and 4 
JDBC drivers have implemented internally the entire network communication stack; this is  
the main reason for their independence from client instances and external network  
libraries. A good example for a tool that is relying only on JDBC type connections is the  
new Optim Database Administrator recommended by IBM to be used in future for  
database administration.

See also 
The Communication with DRDA servers (z/OS and i/OS) recipe in Chapter 11, Connectivity 
and Networking

Creating and configuring an instance for 
multipartitioned environments

The IBM DB2 database multipartitioned feature offers the ability to distribute a large database 
onto different physical servers or the same SMP server, balancing the workload onto multiple 
databases that are working as one, offering a very scalable way of data processing. We may 
have all the database partitions reside on the same server, this method of database partitioning 
is called logical partitioning. There is another scenario when the database partitions are 
spanned on different physical servers; this partitioning method is called physical partitioning.

An instance in a multipartitioned configuration is not very different by a non-partitioned 
instance, if it is running on a logical partitioning scheme. To use only physical partitioning, or 
physical partitioning combined with logical partitioning, an instance must be configured as 
shared across all the database partitions. In this recipe, we will use the last scenario.



Chapter 1

15

The instance is created once on one node; on the other participant nodes, you have to  
create just the instance owner user with the same user ID (UID) and GIDs and the same  
home directory as on the instance owner node. In the following recipe, we will configure 
servers for the purpose of multipartitioning and will create a new instance named db2instp.

Notice that in this recipe we will use node and partition termsinterchangeably

Getting ready
To install a multipartitioned instance, we need to prepare a suitable environment. For this 
recipe, we will use the two Linux servers named nodedb21 and nodedb22, mentioned 
before. nodedb21 will contain the instance home and will export it through NFS to the 
nodedb22 system. We will also use a new disk partition, defined on nodedb21, for instance 
home /db2partinst, which, in our case, is a Linux LVM partition. We will create users 
on both servers with the same UID, and will install IBM DB2 ESE in a new location or 
DB2HOME—/opt/ibm/db2/V9.7_part on nodedb21 with the create a response file 
option. On nodedb22, we'll also install IBM DB2 ESE, in the location /opt/ibm/db2/V9.7_
part, using the response file created during installation on nodedb21.

How to do it...
1.	 Because this is not a Linux book, we do not cover how to install NFS or how to create 

a new Linux partition. As a preliminary task, you should check if you have NFS and 
portmap installed and running on both servers. 

2.	 As user root, execute the following commands on both servers:

To check if we have NFS and portmap on nodedb21:
	 [root@nodedb21 ~]# rpm -qa | grep nfs

	 nfs-utils-lib-1.0.8-7.6.el5

	 nfs-utils-1.0.9-44.el5

	 [root@nodedb21 ~]# rpm -qa | grep portmap

	 portmap-4.0-65.2.2.1

	 [root@nodedb21 ~]#

To check their current status on nodedb21:

	 [root@nodedb21 ~]# service nfs status

	 rpc.mountd (pid 3667) is running...

	 nfsd (pid 3664 3663 3662 3661 3660 3659 3658 3657) is running...

	 rpc.rquotad (pid 3635) is running...

	 [root@nodedb21 ~]#

	 [root@nodedb21 ~]# service portmap status

	 portmap (pid 3428) is running...

	 [root@nodedb21 ~]# 



DB2 Instance—Administration and Configuration

16

Set up NFS for sharing the instance home
1.	 To automatically export /db2partinst on system boot, add your hostnames or 

the corresponding IP numbers to the /etc/exports file. On nodedb21, add the 
following line in /etc/exports:

	 /db2partinst       10.231.56.117(rw,no_root_squash,sync)  
	   10.231.56.118(rw,no_root_squash,sync) 

2.	 To export the partition immediately, execute the following command:
	 [root@nodedb22 ~]# exportfs –ra

	 [root@nodedb22 ~]#

3.	 On nodedb22, as user root, create a directory /db2partinst, used as mount 
point for /db2partinst, exported from nodedb21:

	 [root@nodedb22 ~]# mkdir /db2partinst

	 [root@nodedb22 ~]#

4.	 In /etc/fstab on nodedb22, to mount /db2partinst on system boot, add the 
following line:

	 nodedb21:/db2partinst /db2partinst nfs  
	   rw,timeo=300,retrans=5,hard,intr,bg,suid

5.	 To mount the partition immediately on nodedb22, issue the following command:
	 [root@nodedb22 ~]# mount nodedb21:/db2partinst /db2partinst

	 [root@nodedb22 ~]#

Creating the instance owner and fenced user
1.	 On nodedb21, create the instance owner db2instp and the fenced user db2fencp. 

Instance home will be located in /db2partinst/db2instp:
[root@nodedb22 ~]# useradd -u 1316 -g db2iadm1 -m -d /db2partinst/
db2instp db2instp

[root@nodedb22 ~]# useradd -u 1315 -g db2fadm1 -m -d /db2partinst/
db2fencp db2fencp

[root@nodedb22 ~]# passwd db2instp

Changing password for user db2instp.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

[root@nodedb21 ~]# passwd db2fencp

Changing password for user db2fencp.

New UNIX password:



Chapter 1

17

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

[root@nodedb21 ~]#

2.	 Repeat step 1 on nodedb22 and ignore any warnings.

Set up SSH for client authentication
In a physical multipartitioned environment, any instance owner user has to be able to execute 
commands on any participant node. To ensure this, we need to establish user equivalence 
or host equivalence between nodes. Actually, we have two methods: one is with RSH, which 
is less secure and the other is using SSH, which is secure. With SSH, there are two methods: 
one is host-based authentication and the other is client-based authentication. Next, we  
will implement client-based authentication; this method fits better with a small number  
of partitions, as in our example.

1.	 As user db2instp on nodedb21, execute the following commands:
[db2instp@nodedb21 ~]$ cd ~

[db2instp@nodedb21 ~]$ mkdir .ssh

[db2instp@nodedb21 ~]$ chmod 700 .ssh

[db2instp@nodedb21 ~]$ cd .ssh

[db2instp@nodedb21 .ssh]$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/db2partinst/db2instp/.ssh/
id_rsa): Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /db2partinst/db2instp/.ssh/
id_rsa.

Your public key has been saved in /db2partinst/db2instp/.ssh/id_
rsa.pub.

The key fingerprint is:

2b:90:ee:3b:e6:28:11:b1:63:93:ba:88:d7:d5:b1:14 db2instp@nodedb21

[db2instp@nodedb21 .ssh]$ cat id_rsa.pub >> authorized_keys

[db2instp@nodedb21 .ssh]$ chmod 640 authorized_keys

2.	 As user db2instp on nodedb22, execute the following commands:
[db2instp@nodedb22 .ssh]$ cd ~/.ssh

[db2instp@nodedb22 .ssh]$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/db2partinst/db2instp/.ssh/
id_rsa):



DB2 Instance—Administration and Configuration

18

/db2partinst/db2instp/.ssh/id_rsa already exists.

Overwrite (y/n)? y

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /db2partinst/db2instp/.ssh/
id_rsa.

Your public key has been saved in /db2partinst/db2instp/.ssh/id_
rsa.pub.

The key fingerprint is:

87:36:b4:47:5a:5c:e5:3e:4e:e9:ce:5b:47:2c:ce:6b db2instp@nodedb22

[db2instp@nodedb22 .ssh]$ cat id_rsa.pub >> authorized_keys

[db2instp@nodedb22 .ssh]$

3.	 Go back on nodedb21 and issue the following commands to set up a host  
trust relationship:
[db2instp@nodedb21 ~]$ cd ~/.ssh

[db2instp@nodedb21 .ssh]$ ssh-keyscan -t rsa 
nodedb21,10.231.56.117 >> known_hosts

# nodedb21 SSH-2.0-OpenSSH_4.3

[db2instp@nodedb21 .ssh]$ ssh-keyscan -t rsa 
nodedb22,10.231.56.118 >> known_hosts

# nodedb22 SSH-2.0-OpenSSH_4.3

[db2instp@nodedb21 .ssh]$

4.	 Verify that the client authentication is working; on nodedb21, issue ssh nodedb22 
date (do it the other way around—now it should work without asking for a password):

[db2instp@nodedb21 .ssh]$ ssh nodedb22 date

Thu Jun  9 16:42:33 EEST 2011

[db2instp@nodedb21 .ssh]$ ssh nodedb22

[db2instp@nodedb22 ~]$ ssh nodedb21 date

Thu Jun  9 16:42:48 EEST 2011

[db2instp@nodedb22 ~]$ ssh nodedb22 date

Thu Jun  9 16:42:55 EEST 2011

[db2instp@nodedb22 ~]$ ssh nodedb21

[db2instp@nodedb21 ~]$ ssh nodedb21 date

Thu Jun  9 16:43:07 EEST 2011

[db2instp@nodedb21 ~]$



Chapter 1

19

Install DB2 ESE software with a response file option
A response file is a text file containing installation and configuration information such as 
paths, installation options etc. It can be created and recorded using interactive installation 
and replayed by other installations to perform the same steps.

1.	 Launch db2setup, and, at step 4 of the installation wizard (Install action), check  
the Install DB2 Enterprise Server Edition on this computer and save my setting in 
a response file option. Provide the complete path to the response file.

2.	 At step 5, specify /opt/ibm/db2/V9.7_part for Installation directory.
3.	 At step 7 (Partitioning option), check Multiple partition instance.
4.	 Next, for DB2 instance owner, choose db2instp and, for fenced user, choose 

db2fencp. On the next screen, choose Do not create tools catalog. At the end 
of installation, we will find (in the directory chosen at step 4 of installation wizard) 
two files with .rsp extension; you need to copy just db2ese_addpart.rsp to 
nodedb22 and issue on nodedb22, from the installation directory:
./db2setup -r <your path>db2ese_addpart.rsp

DBI1191I  db2setup is installing and configuring DB2 according to 
the response file provided. Please wait.

Configuring communication for inter-partition command execution
1.	 The communication method of inter-partition command execution is controlled 

by DB2RSCHCM registry variable. Because our choice is SSH for inter-partition 
command execution, you must next set the DB2RSHCMD variable to point to SSH 
executable DB2RSHCMD=/usr/bin/ssh. If this variable is not set, the rsh method 
is used by default:

	 [db2instp@nodedb21 ~]$ db2set DB2RSHCMD=/usr/bin/ssh -i

2.	 To verify the current DB2 registry variables, issue the following command:
	 [db2instp@nodedb21 ~]$ db2set -all

	 [i] DB2RSHCMD=/usr/bin/ssh

	 [i] DB2COMM=tcpip

	 [i] DB2AUTOSTART=YES

	 [g] DB2FCMCOMM=TCPIP4

	 [g] DB2SYSTEM=nodedb21

	 [g] DB2INSTDEF=db2instp



DB2 Instance—Administration and Configuration

20

Configuring the nodes
In the db2nodes.cfg file, database partition configuration file, located in $INSTANCEHOME/
sqllib, set the participant nodes. Define three nodes—two on nodedb21, partion number 0 
with logical port 0 and partition number 2 with logical port 1 and one on nodedb22, partition 
1 with logical port 0. After adding the nodes we should have the following structure:

0 nodedb21 0
1 nodedb22 0

2 nodedb21 1

How it works...
Instance db2instp knows about the current nodes by reading their definition from 
db2nodes.cfg database partition configuration file. The logical ports and number of maximum 
partitions per server are limited by the range defined within /etc/services file as follows:

DB2_db2inst1

60000/tcp DB2_db2inst1_1

60001/tcp DB2_db2inst1_2

60002/tcp DB2_db2inst1_END	60003/tcp

The structure of db2nodes.cfg, in some cases, can be further elaborated with optional 
information such as resourcenames or netnames; in our case being a simple setup used 
for demonstration purpose we have defined only the nodes, hostnames, and the logical ports.

Under Unix and Linux, db2nodes has the following complete format:

dbpartitionnum hostname logicalport netname resourcesetname

Under MS Windows, db2nodes has the following complete format:

dbpartitionnum hostname computername logicalport netname resourcesetname

There's more...
DB2 has two utilities to verify that communication between nodes is working: db2_all and 
rah. You can also issue practically any administrative command (backup, restore, setting 
parameters, and so on) across the database partitions with these utilities.

An example of using db2_all for verification:

[db2instp@nodedb21 ~]$ db2_all uptime

  11:54:02 up 17:11,	 1 user,	 load average: 0.07, 0.03, 0.00 

nodedb21: uptime completed ok

  11:54:03 up 17:11,	 0 users,	 load average: 0.10, 0.03, 0.01 

nodedb22: uptime completed ok



Chapter 1

21

  11:54:03 up 17:11,	 1 user,	 load average: 0.07, 0.03, 0.00 
nodedb21: uptime completed ok

The same using rah:

[db2instp@nodedb21 ~]$ rah uptime

  14:56:19 up 35 days, 18:09,	 1 user,   load average: 0.08, 0.02, 0.01 
nodedb21: uptime completed ok

  14:56:20 up 35 days, 18:09,	 0 users,  load average: 0.00, 0.00, 0.00 
nodedb22: uptime completed ok

  14:56:20 up 35 days, 18:09,	 1 user,   load average: 0.08, 0.02, 0.01 
nodedb21: uptime completed ok

Obviously, there is also a possibility of using a shared disk, formatted with a concurrent file 
system, such as, IBM's GPFS or Red Hat GFS, for instance home, and used for sharing across 
the nodes instead of using NFS exports.

On Windows, it is not recommended to edit the db2nodes.cfg file manually; use the

The following  commands instead:

ff db2nlist—to list database partitions

ff db2ncrt—to add a database partition server to an instance

ff db2ndrop—to drop a database partition server to an instance

ff db2nchg—to modify a database partition server configuration

See also
The Converting a non-partitioned database to a multipartitioned database on MS Windows 
recipe in Chapter 3, DB2 Multipartitioned Databases—Administration and Configuration

Starting and stopping instances
There are several situations in which an instance must be stopped and started, for example, 
after you change some parameters that are not dynamic, or after applying a fixpack.

Getting ready
We have, at disposal, a couple of different ways to start or stop an instance. We can use, 
say, db2start for starting and db2stop for stopping; these commands are available for 
execution in the command line or from DB2 CLI. We can also start or stop an instance from 
the Control Center. In Windows, you can also start and stop an instance by starting and 
stopping the service associated with it.



DB2 Instance—Administration and Configuration

22

How to do it...
1.	 The current instance is set by the environment variable DB2INSTANCE or the global 

registry variable DB2INSTDEF, in case DB2INSTANCE is not set. This is applicable 
mostly for Microsoft Windows platforms where there could be more than one instance 
per user.

�� On Microsoft Windows:
C:\Documents and Settings>db2ilist

DB2_02

DB2WIN

C:\Documents and Settings>set DB2INSTANCE

DB2INSTANCE=DB2_02

Now, if we issue db2stop or db2start, only instance DB2_02 will be affected.

�� On our Linux server nodedb21:

		  [db2inst1@nodedb21 ~]$ echo $DB2INSTANCE

		  db2inst1

2.	 As the db2inst1 instance owner, stop instance db2inst1 with the db2stop 
command, and start it with db2start:
[db2inst1@nodedb21 ~]$ db2stop

06/09/2011 17:55:21     0   0   SQL1064N  DB2STOP processing was  
  successful.

SQL1064N  DB2STOP processing was successful.

[db2inst1@nodedb21 ~]$ db2start

06/09/2011 17:55:29     0   0   SQL1063N  DB2START processing was  
  successful.

SQL1063N  DB2START processing was successful.

3.	 As the multipartitioned instance owner db2instp, stop instance db2instp with the 
db2stop command, and start it with db2start:
[db2instp@nodedb21 sqllib]$ db2stop

06/09/2011 19:03:47     1   0   SQL1064N  DB2STOP processing was  
  successful.

06/09/2011 19:03:48     0   0   SQL1064N  DB2STOP processing was  
  successful.

06/09/2011 19:03:49     2   0   SQL1064N  DB2STOP processing was  
  successful.

SQL1064N  DB2STOP processing was successful.

[db2instp@nodedb21 sqllib]$ db2start



Chapter 1

23

06/09/2011 19:04:02     1   0   SQL1063N  DB2START processing was  
  successful.

06/09/2011 19:04:06     2   0   SQL1063N  DB2START processing was  
  successful.

06/09/2011 19:04:06     0   0   SQL1063N  DB2START processing was  
  successful.

SQL1063N  DB2START processing was successful.

4.	 Using the Control Center, right-click on db2inst1 and issue stop and start.

How it works...
In the process of starting an instance, memory structures are allocated and the instance 
starts listening for connections on the ports assigned by the SVCENAME database manager 
configuration parameter. At stop, existing connections are disconnected and memory  
is deallocated.

There's more...
Other options that can be used to start and stop an instance are the DB2 CLI commands, 
START DATABASE MANAGER and STOP DATABASE MANAGER. For Windows, we have as 
alternate option to start or stop the service associated with the instance. To set the instance 
for automatic start on Linux or Unix, at system boot, you can use the instance-level registry 
variable DB2AUTOSTART=YES or the db2iauto –on <instance name> command.

Configuring SSL for client-server instance 
communication

Databases can contain sensitive information; these days, the main concern is related to 
the security of data stored in tables as well as those sent over the network. One method 
of securing network communication between server and client is SSL, which is actually an 
abbreviation for Secure Socket Layer. We do not delve further into too much theory. Mainly, 
SSL addresses the following important security considerations: authentication, confidentiality, 
and integrity. Mainly SSL encryption and other network communication or also named  
data in transit encryption methods protects against unauthorized packet interception and 
analysis performed by an interposed person between a client and a server, also known  
as eavesdropping.

The DB2 instance has built-in support for SSL. DB2 relies on Global Security Kit for 
implementing SSL. GSKit is included in the IBM DB2 ESE software installation kit or is 
downloadable for free from IBM's website. Next, we'll show how to implement a secure 
connection between a DB2 server and a DB2 client.



DB2 Instance—Administration and Configuration

24

Getting ready
For the next recipe, we will use nodedb21 (db2inst1 instance) as server and nodedb22 
(db2clnt1 instance) as client, where we have installed DB2 Client in previous recipes. You 
need to ensure that you have GSKit libraries in LD_LIBRARY_PATH. In our case, the libraries 
that are located in /home/db2inst1/sqllib/lib64 are pointing to the /opt/ibm/db2/
V9.7/lib64 location.

How to do it...
1.	 The first step is to add the gsk8capicmd_64 executable in our PATH.

Include the following in .bash_profile:
PATH=$PATH:$HOME/bin:$HOME/sqllib/gskit/bin

Execute source .bash_profile to reinitialize the user environment.

2.	 To create a key database on the server, execute the following (for more information 
about gsk8capicmd_64, execute gsk8capicmd_64 –help):
[db2inst1@nodedb21 ~]$ gsk8capicmd_64 -keydb -create -db "/home/
db2inst1/keystoredb2inst1.kdb" -pw "db2cookbook" -stash

[db2inst1@nodedb21 ~]$

3.	 Create a self-signature and self-sign the key database on the server:
[db2inst1@nodedb21 ~]$ gsk8capicmd_64 -cert -create -db "/
home/db2inst1/keystoredb2inst1.kdb" -pw "db2cookbook" -label 
"db2cookbooksignature" -dn "CN=www.packtpub.com,O=Packt 
Publishing,OU=Packt Publishing"

[db2inst1@nodedb21 ~]$

4.	 Extract the signature for signing the client key database:
[db2inst1@nodedb21 ~]$ gsk8capicmd_64 -cert -extract -db "/home/
db2inst1/keystoredb2inst1.kdb" -label "db2cookbooksignature" 
-target "/home/db2inst1/db2cookbook.arm" -format ascii -fips -pw 
"db2cookbook"

[db2inst1@nodedb21 ~]$

5.	 Next, create the client key database:
[db2inst1@nodedb21 ~]$ gsk8capicmd_64 -keydb -create -db "/home/
db2inst1/keystoreclientdb2inst1.kdb" -pw "db2ckbk" –stash

[db2inst1@nodedb21 ~]$



Chapter 1

25

6.	 Import the self-signed certificate into the client key database:
[db2inst1@nodedb21 ~]$ gsk8capicmd_64 -cert -add -db "/home/
db2inst1/keystoreclientdb2inst.kdb" -pw "db2ckbk" -label 
"db2cookbooksignature" -file "/home/db2inst1/db2cookbook.arm" 
-format ascii –fips

[db2inst1@nodedb21 ~]$

7.	 To enable SSL as communication protocol on nodedb21, execute the following:
[db2inst1@nodedb21 ~]$ db2set DB2COMM=tcpip,ssl –i

[db2inst1@nodedb21 ~]$

8.	 Enable SSL as communication protocol also on the client side:
[db2clnt1@nodedb21 ~]$ db2set DB2COMM=tcpip,ssl –i 

[db2clnt1@nodedb21 ~]$

9.	 Next, on nodedb21, set SSL-related parameters on the server instance; then, stop 
and start the instance:
[db2inst1@nodedb21 ~]$ db2 "update dbm cfg using ssl_svr_keydb /
home/db2inst/keystoredb2inst1.kdb"

DB20000I  The UPDATE DATABASE MANAGER CONFIGURATION command 
completed

successfully.

[db2inst1@nodedb21 ~]$ db2 "update dbm cfg using ssl_svr_stash /
home/db2inst/keystoredb2inst1.sth"

DB20000I  The UPDATE DATABASE MANAGER CONFIGURATION command 
completed

successfully.

[db2inst1@nodedb21 ~]$ db2 "update dbm cfg using ssl_svr_label 
db2cookbooksignature"

DB20000I  The UPDATE DATABASE MANAGER CONFIGURATION command 
completed

successfully.

[db2inst1@nodedb21 ~]$ db2 "update dbm cfg using ssl_svcename 
50004"

DB20000I  The UPDATE DATABASE MANAGER CONFIGURATION command 
completed

successfully.

[db2inst1@nodedb21 ~]$ db2stop

06/09/2011 19:08:39     0   0   SQL1064N  DB2STOP processing was 
successful.

SQL1064N  DB2STOP processing was successful.

[db2inst1@nodedb21 ~]$ db2start

06/09/2011 19:08:45     0   0   SQL1063N  DB2START processing was 
successful.

SQL1063N  DB2START processing was successful.



DB2 Instance—Administration and Configuration

26

Description of SSL-related parameters used on the server side:
ff SSL_SVR_KEYDB specifies a fully qualified filepath of the 

key file to be used for SSL setup at server side

ff SSL_SVR_STASH—specifies a fully qualified filepath of 
the stash file to be used for SSL setup at server side

ff SSL_SVR_LABEL—specifies a label of the personal 
certificate of the server in the key database

ff SSL_SVCENAME—specifies the name of the port that 
a database server uses to await communications from 
remote client nodes using SSL protocol

ff Be careful to set the correct paths, otherwise SSL  
won't work.

10.	 Copy /home/db2inst1/keystoreinstclient.kdb and /home/db2clnt1/
keystoreinstclient.sth to nodedb22.

11.	 On nodedb22, set SSL DB2 client instance-related parameters:
[db2clnt1@nodedb22 ~]$ db2 "update dbm cfg using SSL_CLNT_KEYDB /
home/db2clnt1/keystoreclientdb2inst.kdb"

DB20000I  The UPDATE DATABASE MANAGER CONFIGURATION command  
  completed successfully.

[db2clnt1@nodedb22 ~]$  db2 "update dbm cfg using SSL_CLNT_STASH /
home/db2clnt1/keystoreclientdb2inst.sth"

DB20000I  The UPDATE DATABASE MANAGER CONFIGURATION command  
  completed successfully.

Description of SSL-related parameters on the client side:
SSL_CLNT_KEYDB specifies the fully qualified filepath of the 
key file to be used for SSL connection at the client side
SSL_CLNT_STASH specifies the fully qualified filepath of the 
stash file to be used for SSL connections at the client side

12.	 Next, copy GSKit libraries to the client's DB2HOME/lib64 directory:

[root@nodedb22 ~]# cp /opt/ibm/db2/V9.7_part/lib64/libgsk8* /opt/
ibm/db2/V9.7/lib64/

[root@nodedb22 ~]#



Chapter 1

27

How it works...
SSL establishes the connection between client and server using a mechanism called 
handshake. There is a lot of information on the Internet about SSL and its working.  
Briefly, these are the steps for SSL handshake:

1.	 The client requests an SSL connection, listing its SSL version and supported  
cipher suites.

2.	 The server responds with a selected cipher suite.

3.	 The server sends its digital certificate to the client.

4.	 The client verifies the validity of the server's certificate (server authentication).

5.	 Client and server securely negotiate a session key.

6.	 Client and server securely exchange information using the key selected previously.

There's more...
In this recipe, we used a self signed certificate, which is fine for testing or internal use. 
For production environments, you should use trusted certificates signed by a third-party 
certification authority.

Other methods for encrypting data in transit can be implemented by using DATA_ENCRYPT 
and DATA_ENCRYPT_CMP as authentication methods. Also using port forwarding with SSH 
tunnels is a good option.

See also 
Chapter 10, DB2 Security

Listing and attaching to instances
On a server environment, you may have many instances belonging to one DB2 installation or 
DB2HOME; obviously, you need to know about them and their name. For this purpose, you 
have the ability to use some specific commands to list them.

You also need to connect to these instances from remote locations to perform administration 
tasks; this, in the DB2 world, is called attaching.

Getting ready
In this recipe, we'll show how to list instances and attach to local and remote instances. Again, 
we'll use nodedb21 as server and nodedb22 as client.



DB2 Instance—Administration and Configuration

28

How to do it...
Commands related to creating an instance are performed by the root user; listing is no 
exception and must be performed as root. 

Listing instances
1.	 The command to list current instances is db2ilist. It lists the instances that belong 

to one DB2 copy. List instances created in DBCOPY1: 
	 [root@nodedb21 ~]# /opt/ibm/db2/V9.7/instance/db2ilist

	 db2inst1

	 db2inst2

2.	 The same command from multipartitioned DB2HOME or DBCOPY2:
	 [root@nodedb21 ~]# /opt/ibm//db2/V9.7_part/instance/db2ilist

	 db2instp

Attaching to instances
1.	 On nodedb22, catalog db2inst1 both as TCPIP and SSL, on our client instance 

db2clnt1, created before. Because we set up SSL as a separate communication 
method for the db2inst1 instance, we have to specify it as the security method 
when cataloging the node (security SSL) with the SSL dedicated port. Catalog the 
nodes, as follows:
[db2clnt1@nodedb22 db2dump]$ db2 "CATALOG TCPIP NODE NODE21_S 
REMOTE nodedb21 SERVER 50004 SECURITY SSL REMOTE_INSTANCE  
db2inst1 SYSTEM  nodedb21 OSTYPE  LINUXX8664"

DB20000I  The CATALOG TCPIP NODE command completed successfully.

DB21056W  Directory changes may not be effective until the  
  directory cache is refreshed.

[db2clnt1@nodedb22 db2dump]$ db2 "CATALOG TCPIP NODE NODE21_1 
REMOTE nodedb21 SERVER 50001 REMOTE_INSTANCE  db2inst1 SYSTEM  
nodedb21 OSTYPE  LINUXX8664"

DB20000I  The CATALOG TCPIP NODE command completed successfully.

DB21056W  Directory changes may not be effective until the  
  directory cache is refreshed.

2.	 List the cataloged nodes:
[db2clnt1@nodedb22 ~]$ db2 "list node directory"

 Node Directory

 Number of entries in the directory = 2



Chapter 1

29

Node 1 entry:

Node name                      = NODE21_S

 Comment                        =

 Directory entry type           = LOCAL

 Protocol                       = TCPIP

 Hostname                       = nodedb21

 Service name                   = 50004

 Security type                  = SSL

 Remote instance name           = db2inst1

 System                         = nodedb21

 Operating system type          = LINUXX8664

Node 2 entry:

 Node name                      = NODE21_1

 Comment                        =

 Directory entry type           = LOCAL

 Protocol                       = TCPIP

 Hostname                       = nodedb21

 Service name                   = 50001

 Remote instance name           = db2inst1

 System                         = nodedb21

 Operating system type          = LINUXX8664

3.	 Attach to instance db2inst1, using first the SSL port, and next the TCP/IP port:
[db2clnt1@nodedb22 ~]$ db2 "attach to NODE21_S user db2inst1 
using db2inst1"

   Instance Attachment Information

 Instance server        = DB2/LINUXX8664 9.7.4

 Authorization ID       = DB2INST1

 Local instance alias   = NODE21_S

[db2clnt1@nodedb22 ~]$ db2 " attach to node21_1 user db2inst1 
using db2inst1"

   Instance Attachment Information



DB2 Instance—Administration and Configuration

30

 Instance server        = DB2/LINUXX8664 9.7.4

 Authorization ID       = DB2INST1

 Local instance alias   = NODE21_1

4.	 Attaching to an instance with the Control Center:

In Control Center navigate to instance db2inst1, right-click, and choose Attach.

How it works...
Instances are registered in a file named global register. This file is always updated when an 
instance is created or dropped.

When you attach to an instance from a client, you can see that the port on the server is 
changing its status from listening to established:

[root@nodedb21 ~]# netstat -nlpta | grep 5000*

tcp        0      0 0.0.0.0:50001               0.0.0.0:*                   
LISTEN      19974/db2sysc 0

tcp        0      0 0.0.0.0:50003               0.0.0.0:*                   
LISTEN      26082/db2sysc 0

tcp        0      0 0.0.0.0:50004               0.0.0.0:*                   
LISTEN      19974/db2sysc 0

tcp        0      0 10.231.56.117:50001         10.231.56.118:49321         
TIME_WAIT   -

tcp        0      0 10.231.56.117:50004         10.231.56.118:48187         
ESTABLISHED 19974/db2sysc 0

This appears on nodedb21, after attaching to instance db2inst1, using the SSL port 50004.

There's more...
There is a straightforward method to verify that one instance is listening on its assigned port 
from a client. For this purpose, you can try to connect with telnet on that port:

[db2inst1@nodedb22 ~]$ telnet nodedb21 50004

Trying 10.231.56.117...

Connected to nodedb21.

Escape character is ‘^]'.

This means that our port assigned to SSL is listening. To detach from an instance, simply 
issue the DETACH command.



Chapter 1

31

Another indirect method to list instances on a server is to use the discovery process provided 
by Configuration Assistant or Control Center locally or remotely.

See also 
Chapter 11, Using DB2 Discovery 

Dropping instances
There could be situations when it is necessary to drop an instance. An instance might be 
dropped by using the db2idrop command.

Getting ready
In this recipe, we will drop the instance db2inst2, created previously.

How to do it...
1.	 The command for dropping an instance is db2idrop. You have to be user root 

to drop an instance. First, we need to ensure that the instance is not active. If the 
instance has active connections and it is active, the db2idrop command fails.

2.	 Stop the instance by force:
	 [db2inst2@nodedb21 ~]$ db2stop force

	 07/12/2011 16:38:27     0   0   SQL1064N  DB2STOP processing was  
	 successful.

	 SQL1064N  DB2STOP processing was successful.

	 [db2inst2@nodedb21 ~]$

If the instance hangs for some reason, the db2_kill 
command might be used. It will bring down the instance 
abruptly. However, be careful running this, because your 
databases running under this instance remain in an 
inconsistent mode.

3.	 As the user root, issue the following command to drop db2inst2:

	 [root@nodedb21 ~]# /opt/ibm/db2/V9.7/instance/db2idrop db2inst2

	 DBI1070I  Program db2idrop completed successfully.



DB2 Instance—Administration and Configuration

32

How it works...
On Linux and Unix, db2idrop actually deletes the sqllib directory from the instance owner 
home. Therefore, it is recommended to save anything you have placed in this directory such 
as UDFs or external programs.

On Windows, db2idrop removes the service associated with the instance.

There's more…
As a best practice, before the instance is dropped, it is recommended to save the  
information related to that instance in a server profile file. In case you plan to recreate  
the instance and configure it as before, you can simply import the server profile after the 
instance is created again.

To export the instance profile, use Control Center | Tools | Configuration assistant |  
Export profile | Customize.

In the Export tab, you have plenty of options to export; choose anything you consider  
worth being saved.



2
Administration and 

Configuration of the 
DB2 Non-partitioned 

Database

In this chapter, we will cover:

ff Creating and configuring DB2 non-partitioned databases

ff Using configuration advisor 

ff Creating a database from an existing backup

ff Configuring automatic database maintenance

ff Managing federated databases, connecting to Oracle and MSSQL

ff Altering databases

ff Dropping databases

Introduction
This chapter provides recipes in order to create a database and get operational in simple and 
easy steps. We will do so in a manner that respects best practices in the industry. 

You have created an instance named db2inst1 on nodedb21, in the previous chapter. You 
will prepare for available disk space. You will then be able to configure your database for its 
mission and prepare it for automatic maintenance, so its operation is worry free.



Administration and Configuration of the DB2 Non-partitioned Database

34

While the nature of these recipes makes them useful right away, it is strongly recommended 
that they be attempted in a test environment first. We suggest you execute the commands 
individually, so you can learn as you go along.

Creating and configuring DB2 
non-partitioned databases

We will discuss here how to create a single-partitioned database, which is sufficient  
for most database applications and is the most common configuration for small- to  
medium-sized databases.

If you plan on having a Business Intelligence (BI) database, you should be planning for a 
partitioned database. You can estimate one processor core for every 300 GB of data. We  
will cover this topic in Chapter 3, DB2 Multi-partitioned Databases—Administration  
and Configuration.

Getting ready
Gather as much technical information as you can about the hardware or virtual machine(s) 
you have at your disposal, for this database. Identify in which instance you will create your 
database, and ensure you will have enough memory and disk space for what you need.

Identify the location where you will create the table spaces (filesystems for Unix platforms, 
disk drives on Windows servers) and how much available space you will have. Make sure the 
instance owner has read and write permission in the directory that you will specify for your 
new database.

Best practices in the industry recommend separating data, indexes, lobs, and transaction logs 
on separate filesystems (or disk drives, on Windows systems). Depending on your installation, 
a filesystem can be defined as a single virtual disk on a NAS/SAN RAID 5 device, or a logical 
volume, spread on many physical disk drives. Check with your storage administrator for the 
best configuration—get as many disks/spindles as possible.

Decide on a data strategy—consider the database's mission and growth potential. Allow for 
possible partitioning, or table partitioning. MDC could also be a possible avenue. Decide on 
a naming convention for mount points and databases. The effort you spend on planning will 
save much time and money down the road.

Now perhaps you just want to get to the matter right away. We'll create a simple database; I'll 
explain the details as we go along.



Chapter 2

35

How to do it...
1.	 Log in as the target instance owner.

Start Control Center and make sure the instance is started. Or, start the instance 
from the command line:

	 [db2inst1@nodedb21 ~]$ db2start

	 SQL1063N  DB2START processing was successful.

2.	 Choose the instance.

Expand the All Systems node in the left pane of the Control Center. Choose the 
node and instance.

3.	 Create the database.

Right-click on the Databases folder. A pop-up menu appears; select Create Database 
and start with the Standard option. We'll use default options for now.


