

Oracle Coherence 3.5

Create Internet-scale applications using
Oracle's high-performance data grid

Aleksandar Seović

Mark Falco

Patrick Peralta

 BIRMINGHAM - MUMBAI

Oracle Coherence 3.5

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1240310

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-12-5

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Authors
Aleksandar Seović

Mark Falco

Patrick Peralta

Reviewers
Rob Harrop

Jimmy Nilsson

Patrick Peralta

Steve Samuelson

Robert Varga

Acquisition Editor
James Lumsden

Development Editor
Dilip Venkatesh

Technical Editor
Arani Roy

Indexer
Rekha Nair

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Srimoyee Ghoshal

Proofreader
Chris Smith

Graphics
Geetanjali Sawant

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

Foreword

There are a few timeless truths of software development that are near-universally
accepted, and have become the basis for many a witty saying over the years. For
starters, there's Zymurgy's First Law of Evolving Systems Dynamics, which states:

Once you open a can of worms, the only way to re-can them is to use a bigger can.

And Weinberg's Second Law, which postulates that,

If builders built buildings the way that programmers wrote programs, the first
woodpecker to come along would destroy civilization.

There is true brilliance in this timeless wit, enjoyed and appreciated by generation
after generation of software developers.

The largest set of challenges that the modern programmer faces, and thus the source
of most of the wit that we as programmers revel in, revolves around the seemingly
boundless growth of complexity. Hardware becomes more complex. Operating
systems become more complex. Programming languages and APIs become more
complex. And the applications that we build and evolve, become more and
more complex.

The complexity of a system always seems to hover ever so slightly on the far side
of manageable, just slightly over the edge of the cliff. And while our work reality is
a world full of complexity—or perhaps because of that complexity—we gravitate
toward the pristine and the simple. While our day-to-day lives may be focused
on diagnosing failures in production systems, our guiding light is the concept of
continuous availability. While we may have to manually correct data when things
go wrong, our aspirations remain with data integrity and information reliability.
While the complexity of the legacy applications that we manage forces us to adopt
the most expensive means of adding capacity, our higher thoughts are focused on
commodity scale-out and linear scalability. And while the complex, layered, and
often twisted system designs result in hopelessly slow responses to user actions, we
fundamentally believe that users should experience near-instant responses for almost
any conceivable action they take.

In a word, we believe in the ilities.

Availability. Reliability. Scalability. Performance. These are attributes that we
wish to endow each and every one of our systems with. If a system lacks continuous
availability, its users will be directly impacted by failures within the system. If a
system lacks information reliability, then users will never know if the information
they are using can be trusted. If a system lacks scalability, its growing popularity
will overwhelm and kill it—it will fail just as it begins to succeed! If a system
lacks performance, it will inflict a dose of pain upon its users with each and
every interaction.

We wish to achieve these ilities because we wish for our labors to be beneficial to
others, and we hope that the value that we provide through these systems endures
far longer than the passing whims and fads of technology and industry.

Perhaps no greater revolution has occurred in our industry than the World Wide
Web. Suddenly, the systems we provide had a limitless audience, with instant access
to the latest and greatest versions of our software. Users are so accustomed to instant
responses from one application that failure to achieve the same will cause them to
quickly abandon another. Downtime no longer represents an inconvenience—for
major websites, their online foibles have become headline news on the printed pages
of the Wall Street Journal!

At the same time, the competitive landscape has forced companies, and thus
their IT departments, to act and react far more quickly than before. The instant
popularity of a particular good, service, or website can bring mind-boggling hordes
of unexpected—though generally not undesired—users. Companies must be able to
roll out new features and capabilities quickly, to grow their capacity dynamically in
order to match the increase in users, and to provide instantaneous responsiveness
with correct and up-to-date information to each and every user.

These are the systems that Oracle Coherence was designed to enable. These are the
systems that this book will help you build.

If there was only one piece of advice that I could instill into the mind of a software
architect or developer responsible for one of these systems, it would be this:
architecture matters, and in systems of scale and systems that require availability,
architecture matters absolutely! Failure to achieve a solid architecture will doom in
advance any hope of significant scalability, and will leave the effects of failure within
the system to pure chance.

No amount of brilliant programming can make up for a lack of architectural foresight.
Systems do not remain available by accident, nor do they scale by accident. Achieving
information reliability in a system that remains continuously available and provides
high performance under varying degrees of load and scale is an outcome that
results only when a systematic and well-conceived architecture has been laid down.
Availability, reliability, scalability, and performance must be the core tenets of an
architecture, and they must be baked into and throughout that architecture.

If there were a second piece of advice that I could confer, it would be this: as a
craftsman or craftswoman, know your tools, and know them well. Using Oracle
Coherence as part of a system does not ensure any of the ilities by itself; it is simply a
powerful tool for simultaneously achieving those ilities as part of a great architecture.
This book is an effort to condense a huge amount of experience and knowledge into
a medium of transfer that you can rehydrate into instant knowledge for yourself.

And the last piece of advice is this: don't believe it until you see it; make sure that
you push it until it fails. While testing, if you don't overload the system until it
breaks, then you can't be certain that it will work. If you don't pull the plug while
it's running, then you can't be certain that it will handle failure when it truly matters.
Don't be satisfied until you understand the limits of your systems, and until you
appreciate and understand what lies beyond those boundaries.

A word about the author
I first met Aleks Seović in 2005. I was attending the Javapolis (now Devoxx)
conference in Antwerp with the express purpose of persuading Aleks to create
the .NET implementation of Coherence. I had known of him through his work in
creating the Spring.NET framework, and knew that there was only one person
whom I wanted to lead the creation of our own product for .NET. As they say, the
rest is history: We hit it off smashingly, and found a great deal of common ground
in our experiences with enterprise systems, the challenges of distributed computing,
architecting for scalable performance and high availability, and the need for seamless
and reliable information exchange between Java and .NET applications.

Aleks has such a great ability to understand complex systems, and such a compelling
manner of reducing complexity into simple concepts, that I was ecstatic when he told
me that he was writing this book. Starting a book is no challenge at all, but finishing
a book is a great feat. Many years of work have gone into these pages. May you
enjoy and profit from this book as deeply as I have enjoyed and profited from my
conversations with Aleks over these past years.

Cameron Purdy
Lexington, MA
January 2010

About the author

Aleksandar Seović is the founder of and managing director at S4HC, Inc., where
he leads professional services practice. He works with customers throughout the
world to help them solve performance and scalability puzzles and implement
innovative solutions to complex business and technical problems.

Aleksandar lead the implementation of Oracle Coherence for .NET, a client
library that allows applications written in any .NET language to access data and
services provided by an Oracle Coherence data grid. He was also one of the key
people involved in the design and implementation of Portable Object Format
(POF), a platform-independent object serialization format that allows seamless
interoperability of Coherence-based Java, .NET, and C++ applications.

Aleksandar is Oracle ACE Director for Fusion Middleware, and frequently
speaks about and evangelizes Coherence at conferences, Java and .NET user
group events, and Coherence SIGs. He blogs about Coherence and related topics
at http://coherence.seovic.com.

Acknowledgements

First and foremost, I'd like to thank Cameron Purdy and Alex Gleyzer for giving me
the opportunity to work on Coherence. It has been quite a journey—I still remember
the day when we got a .NET application to connect to the cluster for the first time.
Guys, it has been a privilege working with you all these years to make a great
product even better.

I've heard many times that a book is never a single person's creation. Only now, after
I have written one myself, I truly understand what that means.

I cannot thank enough my co-authors, Mark Falco and Patrick Peralta, members of
the Coherence engineering team, who contributed two great chapters to the book.
Patrick's chapter covers pretty much everything you need to know in order to
integrate Coherence with persistent data sources. As for Mark's chapter on using
the Coherence C++ client, well, let's just say that I would've had a really hard time
writing that one myself J.

The sample application for the book is the result of the hard work of my colleagues
from Solutions for Human Capital: Ivan Cikić, Nenad Dobrilović, Marko Dumić, and
Aleksandar Jević. They managed to deliver (once again) on a very tight schedule,
and I am very proud of the final result. Thank you for all the help and for putting up
with my last minute change requests—I know it wasn't easy at times, but you have
done a wonderful job.

I can honestly say (and everyone who saw the first draft is my witness) that this book
was significantly improved based on the feedback from many reviewers. The official
reviewers for the book were Rob Harrop, Jimmy Nilsson, Patrick Peralta, Steve
Samuelson, and Robert Varga, but Mark Falco, Cameron Purdy, Cristobal Soto, Phil
Wheeler, and Andrew Wilson also provided invaluable feedback. Jimmy, it is mostly
your "fault" that there is a sample application now demonstrating (among other
things) how to build a clean, testable domain model that works well with Coherence.

Many members of Coherence engineering and Oracle's Architecture team were only
an e-mail or phone call away when I had questions: Noah Arliss, Simon Bisson,
Gene Gleyzer, Jason Howes, Rob Misek, Andy Nguyen, Brian Oliver, Jon Purdy,
and Randy Stafford all helped at one point or another, whether they know it or not.
Thank you for that, and thank you for building such a great product.

James Lumsden, Dilip Venkatesh, Rajashree Hamine, and Srimoyee Ghoshal from
Packt Publishing provided necessary support when I needed it and helped me
reach the finish line. James, I know the journey was much longer than either of us
expected. Thank you for believing in me even when I didn't.

My partners at Solutions for Human Capital, Snejana Sevak, Aleksandar Jević, and
Nebojša Peruničić, helped more than they realize by shielding me from the daily
disturbances of running a business and allowing me to focus my energy on writing,
and I thank them for that.

I would also like to thank all the clients and colleagues I worked with over the years.
I learned something new from each one of you, and for that I am grateful.

Most importantly, I would like to thank my family. My wife Marija supported
me from the moment I decided to work on this book, even though she knew that
my already busy schedule would only get busier because of it. People who think
astronauts' wives have it rough have never met the wife of a traveling geek who
decides to write a book. Хвала, љубави.

To my children, Ana Maria and Novak, I am sorry I couldn't play with you as
much as we all wanted, and promise to make it up to you. You are too young to
understand why daddy was sleeping during the day and working at night, but
that doesn't matter now. Daddy is back and loves you both very much!

About the co-authors

Mark Falco is a Consulting Member of Technical Staff at Oracle. He has been part
of the Coherence development team since 2005 where he has specialized in the areas
of clustered communication protocols as well as the Coherence for C++ object model.
Mark holds a B.S. in computer science from Stevens Institute of Technology.

I would like to thank Aleks for the opportunity to contribute to this
book and Tangosol for the years of fun and interesting work. Thank
you Otti, Erika, and Mia for your encouragement and support.

Patrick Peralta is a Senior Software Engineer for Oracle (formerly Tangosol)
specializing in Coherence and middleware Java. He wears many hats in Coherence
engineering, including development, training, documentation, and support. He has
extensive experience in supporting and consulting customers in fields such as retail,
hospitality, and finance.

As an active member of the Java developer community he has spoken at user groups
and conferences across the US including Spring One and Oracle Open World. Prior
to joining Oracle, Patrick was a senior developer at Symantec, working on Java/J2EE
based services, web applications, system integrations, and Swing desktop clients.
Patrick has a B.S. in computer science from Stetson University in Florida.

He currently maintains a blog on Coherence and other software development topics
at http://blackbeanbag.net.

I would like to express my appreciation and gratitude to those that
provided valuable feedback, including Aleks Seović, Gene Gleyzer,
Andy Nguyen, Pas Apicella, and Shaun Smith. Many thanks as
well to my family, including my parents, siblings, and especially my
wonderful wife Maria and son Isaac for providing me with joy and
perspective on what is truly important in life.

About the reviewers

Rob Harrop is a respected speaker, author, entrepreneur, and technologist.

As Lead Engineer of SpringSource dm Server, Rob is driving SpringSource's
enterprise middleware product line and ensuring that the company continues
to deliver high-performance, highly scalable enterprise solutions.

With a thorough knowledge of both Java and .NET, Rob has successfully deployed
projects across both platforms. He has extensive experience across a variety of
sectors, in particular banking, retail, and government. Prior to joining SpringSource,
he co-founded the UK-based software company Cake Solutions Limited and worked
as a Lead Developer for a successful dotcom start-up.

Rob is the author of five books, including Pro Spring, a widely acclaimed,
comprehensive resource on the Spring Framework.

Jimmy Nilsson has been working as a developer/architect for over 20 years.

He has authored Applying Domain-Driven Design and Patterns and
.NET Enterprise Design.

Steve Samuelson has worked in IT for over 20 years across various industries
including home building, finance, and education. Although experienced with
Windows deployment and hardware, Steve prefers custom software development.
Currently, Steve is the Chief Architect for an international education provider where
he works with multiple technologies running under Unix and Windows. Steve's
primary interest lies in Microsoft .NET development and tools, but he makes sure to
keep up on emerging Java and Oracle technologies among others.

Robert Varga is a Lead Software Engineer at EPAM Systems. He has worked in
various roles from Developer to Enterprise Architect on several large projects for
various customers, mostly in the areas of insurance, online betting, online auctions,
and finance. He is also an Oracle ACE since 2008.

Robert has worked on Java-based enterprise systems since 1998 and on various
projects with the Coherence data grid since 2005. He is among the most active
contributors to the Oracle Coherence support forums helping developers with
questions about Oracle Coherence.

Table of Contents
Preface	 1
Chapter 1: Achieving Performance, Scalability,
and Availability Objectives	 13

Achieving performance objectives	 13
Dealing with latency	 14
Minimizing bandwidth usage	 15
Coherence and performance	 16

Achieving scalability	 17
Stateless services do not exist	 17
Scaling a database is hard	 18
Database scale-out approaches	 19

Master-slave replication	 19
Database clustering	 20
Database sharding	 21

Return of the state	 23
Using Coherence to reduce database load	 25

Coherence and master-slave databases	 25
Coherence and database clusters	 25
Coherence and database sharding	 26

Coherence and scalability	 26
Achieving high availability	 26

Adding redundancy to the system	 28
Redundancy is not enough	 28
Coherence and availability	 29

Putting it all together	 30
Design for performance and scalability	 30
Set performance goals at each level	 31
Measure and monitor	 32
Educate your team	 33

Summary	 33

Table of Contents

[ii]

Chapter 2: Getting Started	 35
Installing Coherence	 35
What's in the box?	 37
Starting up the Coherence cluster	 37

Troubleshooting cluster start-up	 39
Multicast issues	 39
Binding issues	 42

Accessing the data grid	 42
Coherence console	 42

Creating caches	 43
Working with the cache	 43

Configuring the development environment	 46
Referencing necessary JAR files	 46
Enabling IntelliSense for configuration files	 47
Starting Coherence nodes within the IDE	 48
Creating a private cluster	 50

Configuring Coherence	 51
Operational configuration	 52
Configuring logging	 53
Configuring a private cluster	 54

Using the Coherence API	 56
The basics: NamedCache and CacheFactory	 56
The "Hello World" example	 57
Coherence API in action: Implementing the cache loader	 63

Testing and debugging Coherence applications	 72
Summary	 75

Chapter 3: Planning Your Caches	 77
Anatomy of a clustered cache	 78
Clustered cache topologies	 79

Replicated Cache service	 81
Read performance	 82
Write performance	 82
Data set size	 83
Fault tolerance	 85
When to use it?	 85

Partitioned Cache service	 86
Read performance	 86
Write performance	 87
Data set size	 89
Fault tolerance	 90
When to use it?	 90

Near cache	 90
Near cache invalidation strategies	 91
When to use it?	 94

Table of Contents

[iii]

Continuous Query Cache	 94
Backing maps	 95

Local cache	 95
External backing map	 96
Paged external backing map	 97
Overflow backing map	 97
Read-write backing map	 98
Partitioned backing map	 99

Cache configuration	 100
Caching schemes 	 101

Distributed cache scheme	 101
Local cache scheme	 103
Near cache scheme	 104
Read-write backing map scheme	 105
Partitioned backing map	 106
Partitioned read-write backing map	 108

Cache mappings	 109
Sample cache configuration	 110

Summary	 112
Chapter 4: Implementing Domain Objects	 113

Introducing the Coherent Bank sample application	 114
Coherent Bank requirements	 115
Coherent Bank domain model	 116

Domain model building blocks	 116
Entities and aggregates	 117

Implementing entities	 118
Value objects	 128

Implementing the Money value object	 128
Value objects as identifiers	 130

Services	 130
Implementing the CurrencyConverter service	 131

Factories	 132
Repositories	 134

Implementing object serialization	 137
POF basics	 137
POF context	 139

ConfigurablePofContext	 140
Implementing serialization code	 142
PortableObject or PofSerializer?	 145
Collection serialization with POF	 150

Table of Contents

[iv]

Adding support for schema evolution	 151
Implementing Evolvable objects	 152
Implementing serialization for Evolvable objects	 155

Summary	 160
Chapter 5: Querying the Data Grid	 161

Built-in filters	 162
Value extractors	 164

Reflection extractor	 165
Other built-in value extractors	 167

IdentityExtractor	 167
ChainedExtractor and MultiExtractor	 167
PofExtractor	 168

Implementing a custom value extractor	 169
Simplifying Coherence queries	 171

Filter builder	 171
Obtaining query results	 174

Controlling query scope using data affinity	 176
Querying near cache	 177
Sorting the results	 178
Paging over query results	 178

Using indexes to improve query performance	 179
Anatomy of an Index	 180
Creating indexes	 181

Coherence query limitations	 183
Aggregators	 183

Built-in aggregators	 187
Using aggregators	 189
Implementing LookupValuesAggregator	 189

Summary	 190
Chapter 6: Parallel and In-Place Processing	 191

Entry processors	 192
In-place processing	 196

Implementing WithdrawalProcessor	 197
Cache service re-entrancy	 198

Accessing the backing map directly	 199
Built-in entry processors	 200

VersionedPut and VersionedPutAll	 201
PriorityProcessor	 202
ExtractorProcessor	 202
UpdaterProcessor	 202

Table of Contents

[�]

Invocation service	 203
Configuring the invocation service	 203
Implementing agents	 204
Executing agents	 205

CommonJ Work Manager	 206
Work Manager API basics	 207

Defining work	 207
Scheduling work	 209
Processing the results	 210

Coherence Work Manager limitations	 211
Coherence Incubator	 211
Summary	 212

Chapter 7: Processing Data Grid Events	 213
Cache events	 213

Registering map listeners	 215
Programmatic listener registration	 215
Registering listeners within the cache configuration file	 220

Making any map observable	 221
Backing map events	 222

Implementing a low-balance listener	 223
AbstractBackingMapListener	 223
Low-balance listener	 225

Registering a backing map listener	 226
Map triggers	 228

Using map triggers for data validation	 229
Data validation framework	 230
Implementing validation trigger	 232
Registering map triggers	 233

Continuous query cache 	 233
Observing a continuous query cache	 234
Using a continuous query cache as a substitute for a replicated cache	 234

Summary	 235
Chapter 8: Implementing the Persistence Layer	 237

Cache aside	 238
Read-through caching	 239
Implementing read through	 240

Introducing the read-write backing map	 242
Using Spring Framework with a read-write backing map	 243
Refresh ahead	 248

Using refresh ahead to pre-fetch exchange rates	 249
Additional considerations	 251

Table of Contents

[vi]

Write through	 252
Write behind	 254

Using write behind for accounts and transactions	 255
Write behind and storeAll	 256
Handling write-through/write-behind failures	 259

Cluster member failures	 259
Store failures	 259

Write behind and eviction	 260
Write behind and deletes	 261

Configuring backup with a read-write backing map	 261
Backup with read through	 261
Backup with write behind	 262

Built-in CacheStore implementations	 262
Using the Coherence JPA CacheStore	 262

Summary	 266
Chapter 9: Bridging Platform and Network Boundaries 	 267

Coherence networking	 268
Coherence*Extend overview	 270
Configuring Coherence*Extend	 271

Configuring proxy servers	 271
Configuring clients	 274

Configuring remote cache scheme	 274
Mapping cache names to caches	 275
Configuring a remote invocation service	 277
Address providers	 277
Handling connection or proxy server failure	 278

Coherence*Extend limitations	 279
Explicit concurrency control	 279
Executing invocable agents via Coherence*Extend	 281

Securing proxy servers	 281
Using network filters	 284

Built-in network filters	 284
Compression filter	 286
Symmetric encryption filter	 287

Implementing a custom network filter	 289
Summary	 290

Chapter 10: Accessing Coherence from .NET	 291
.NET client configuration	 291

Coherence configuration files in .NET	 292
Operational descriptor	 293
Cache configuration	 294
POF configuration	 295

Table of Contents

[vii]

Resource loading in Coherence for .NET	 296
Protocols and resource loader	 297

Approaches to .NET client configuration	 298
Convention-based configuration	 298
Explicit configuration	 298
Programmatic configuration	 300

Implementing the client application	 301
Basic Cache Operations	 301
Implementing data objects	 302

Implementing the IPortableObject interface	 303
Implementing the external serializer	 304

Executing queries 	 305
Implementing filters and value extractors	 306

Executing the aggregators and entry processors	 310
Listening for cache events	 312

Cache listeners	 313
Event marshalling in Windows Forms applications	 315
Continuous Query Cache	 316

Summary	 322
Chapter 11: Accessing Coherence from C++	 323

Configuring Coherence C++	 323
Managed object model	 325

Handles, Views, and Holders	 325
Managed object creation	 326
Casting and type checking	 326
Handling exceptions	 327
Class hierarchy namespaces	 328

Implementing a Coherence C++ client application	 329
Implementing Cacheable C++ Data Objects	 330

Managed adapter	 332
Data object serialization	 334

Implementing managed classes	 335
Understanding specifications	 338
Factory methods	 339
Member variables	 340
Implementing constructors	 341
Implementing methods	 342
Implementing the PortableObject interface	 342
Implementing external serializer	 343

Executing queries	 345
Value extractors	 346
Filters	 348
Performing a query in C++	 348

Table of Contents

[viii]

Executing aggregators and entry processors	 349
Implementing DepositProcessor in C++	 350

Listening for cache events	 351
Cache listeners	 352

Standard type integration	 354
Summary	 356

Chapter 12: The Right Tool for the Job	 357
Appendix: Coherent Bank Sample Application	 361

Prerequisites	 362
Installation	 364
Deploying the Java Application	 364
Deploying the C++ Application	 367
Deploying the .NET Application	 368
Shutting everything down	 368
Review the code	 370

Index	 371

Preface
As an architect of a large, mission-critical website or enterprise application, you need
to address at least three major non-functional requirements: performance, scalability,
and availability.

Performance is defined as the amount of time that an operation takes to complete.
In a web application, it is usually measured as "time to last byte" (TTLB)—the
amount of time elapsed from the moment the web server received a request, until
the moment the last byte of response has been sent back to the client. Performance is
extremely important, because experience has shown us that no matter how great and
full-featured an application is, if it is slow and unresponsive, the users will hate it.

Scalability is the ability of the system to maintain acceptable performance as
the load increases, or to support additional load by adding hardware resources.
While it is relatively simple to make an application perform well in a single-user
environment, it is significantly more difficult to maintain that level of performance as
the number of simultaneous users increases to thousands, or in the case of very large
public websites, to tens or even hundreds of thousands. The bottom line is, if your
application doesn't scale well, its performance will degrade as the load increases and
the users will hate it.

Finally, availability is measured as the percentage of time an application is available
to the users. While some applications can crash several times a day without causing
major inconvenience to the user, most mission-critical applications simply cannot
afford that luxury and need to be available 24 hours a day, every day. If your
application is mission critical, you need to ensure that it is highly available or the
users will hate it. To make things even worse, if you build an e-commerce website
that crashes during the holiday season, your investors will hate you as well.

Preface

[�]

The moral of the story is that in order to keep your users happy and avoid all that
hatred, you as an architect need to ensure that your application is fast, remains
fast even under heavy load, and stays up and running even when the hardware or
software components that it depends on fail. Unfortunately, while it is relatively
easy to satisfy any one of these three requirements individually and not too difficult
to comply with any two of them, it is considerably more difficult to fulfill all three at
the same time.

Introducing Oracle Coherence
Over the last few years, In-Memory Data Grids have become an increasingly
popular way to solve many of the problems related to performance and scalability,
while improving availability of the system at the same time.

Oracle Coherence is an In-Memory Data Grid that allows you to eliminate single
points of failure and single points of bottleneck in your application by distributing your
application's objects and related processing across multiple physical servers.

There are several important points in the definition above:

•	 Coherence manages application objects, which are ready for use within the
application. This eliminates the need for repeated, and often expensive,
loading and transformation of the raw data into objects.

•	 Coherence distributes application objects across many physical servers
while ensuring that a coherent, Single System Image (SSI) is presented
to the application.

•	 Coherence ensures that no data or in-flight operations are lost by assuming
that any node could fail at any time and by ensuring that every piece of
information is stored in multiple places.

•	 Coherence stores data in memory in order to achieve very high
performance and low latency for data access.

•	 Coherence allows you to distribute not only application objects, but also
the processing that should be performed on these objects. This can help
you eliminate single points of bottleneck.

The following sections provide a high-level overview of Coherence features; the
remainder of the book will teach you "how", and more importantly, "when" to
use them.

Preface

[�]

Distributed caching
One of the easiest ways to improve application performance is to bring data closer to
the application, and keep it in a format that the application can consume more easily.

Most enterprise applications are written in one of the object-oriented languages,
such as Java or C#, while most data is stored in relational databases, such as Oracle,
MySql or SQL Server. This means that in order to use the data, the application
needs to load it from the database and convert it into objects. Because of the
impedance mismatch between tabular data in the database and objects in memory,
this conversion process is not always simple and introduces some overhead, even
when sophisticated O-R mapping tools, such as Hibernate or EclipseLink are used.

Caching objects in the application tier minimizes this performance overhead by
avoiding unnecessary trips to the database and data conversion. This is why all
production-quality O-R mapping tools cache objects internally and short-circuit
object lookups by returning cached instances instead, whenever possible.

However, when you scale out your application across multiple servers, you will
start running into cache synchronization issues. Each server will cache its own copy
of the data, and will have no way of knowing if that same data has been changed
on another server—in this case, the locally cached copy should be invalidated and
evicted from the cache.

Oracle Coherence solves this problem by allowing you to distribute your cache
across a cluster of machines, while providing a unified, fully coherent view of the
data. This means that you can configure Coherence as an L2 cache for Hibernate or
EclipseLink, and forget about distributed cache synchronization!

If this was all Coherence did, it would be impressive enough. However, it actually
does so much more that I don't recommend using it purely as an L2 cache, unless
you have an existing application that you need to scale out. While Coherence works
like a charm as an L2 cache behind an O-R mapper, this architecture barely scratches
the surface of what Coherence can do. It is like "killing an ox for a pound of meat", as
the Serbian proverb says.

It is much more powerful to use Coherence as a logical persistence layer of your
application, which sits between the application logic and the physical data store.
Whenever the application needs data, it asks Coherence for it. If the data is not
already in the cache, Coherence will transparently load it from the data store, cache
it, and return it to the application. Similarly, when the application needs to store
data, it simply puts objects into the cache, and Coherence updates the underlying
data store automatically.

Preface

[�]

This architecture is depicted in the following diagram and is the basis for the
architecture we will use throughout the book:

Although Coherence is not really a persistent store in the preceding scenario, the fact
that the application thinks that it is decouples the application from the data store and
enables you to achieve very high scalability and availability. You can even configure
Coherence so the application will be isolated from a complete data store failure.

Distributed queries
Having all the data in the world is meaningless unless there is a way to find the
information you need, when you need it. One of the many advantages of In-Memory
Data Grids over clustered caches, such as Memcached, is the ability to find data
not just by the primary key, but also by executing queries and aggregations against
the cache.

Coherence is no exception—it allows you to execute queries and aggregations in
parallel, across all the nodes in the cluster. This allows for the efficient processing of
large data sets within the grid and enables you to improve aggregation and query
performance by simply adding more nodes to the cluster.

Preface

[�]

In-place and parallel processing
In many situations, you can improve performance enormously if you perform the
processing where the data is stored, instead of retrieving the data that needs to be
processed. For example, while working with a relational database, you can use bulk
update or a stored procedure to update many records without moving any data
across the network.

Coherence allows you to achieve the same thing. Instead of retrieving the whole
dataset that needs to be processed and iterating over it on a single machine, you can
create an entry processor—a class that encapsulates the logic you want to execute for
each object in a target dataset. You can then submit an instance of the processor into
the cluster, and it will be executed locally on each node. By doing so, you eliminate
the need to move a large amount of data across the network. The entry processor
itself is typically very small and allows processing to occur in parallel.

The performance benefit of this approach is tremendous. Entry processors, just like
distributed queries, execute in parallel across grid nodes. This allows you to improve
performance by simply spreading your data across more nodes.

Coherence also provides a grid-enabled implementation of CommonJ Work
Manager, which is the basis for JSR-237. This allows you to submit a collection of
work items that Coherence will execute "in parallel" across the grid. Again, the more
nodes you have in the grid, the more work items can be executed in parallel, thereby
improving the overall performance.

Cache events
In many applications, it is useful to know when a particular piece of data changes.
For example, you might need to update a stock price on the screen as it changes, or
alert the user if a new workflow task is assigned to them.

The easiest and the most common solution is to periodically poll the server to see if
the information on the client needs to be updated. This is essentially what Outlook
does when it checks for new e-mail on the POP3 mail server, and you (the user)
control how often the polling should happen.

The problem with polling is that the more frequently it occurs, the more load it
puts on the server, decreasing its scalability, even if there is no new information
to be retrieved.

On the other hand, if the server knows which information you are interested in,
it can push that information to you. This is how Outlook works with Exchange
Server—when the new mail arrives, the Exchange Server notifies Outlook about
this event, and Outlook displays the new message in your inbox.

Preface

[�]

Coherence allows you to register interest in a specific cache, a specific item, or even
a specific subset of the data within the cache using a query. You can specify if you
are interested in cache insertions, updates or deletions only, as well as whether you
would like to receive the old and the new cache value with the event.

As the events occur in the cluster, your application is notified and can take the
appropriate action, without the need to poll the server.

Coherence within the Oracle ecosystem
If you look at Oracle marketing material, you will find out that Coherence is a
member of the Oracle Fusion Middleware product suite. However, if you dig a
bit deeper, you will find out that it is not just another product in the suite, but a
foundation for some of the high-profile initiatives that have been announced by
Oracle, such as Oracle WebLogic Application Grid and Complex Event Processing.

Coherence is also the underpinning of the "SOA grid"—a next-generation SOA
platform that David Chappell, vice president and chief technologist for SOA at
Oracle, wrote about for The SOA Magazine [SOAGrid1&2].

I believe that over the next few years, we will see Coherence being used more and
more as an enabling technology within various Oracle products, because it provides
an excellent foundation for fast, scalable, and highly-available solutions.

Coherence usage scenarios
There are many possible uses for Coherence, some more conventional than
the others.

It is commonly used as a mechanism to off-load expensive, difficult-to-scale
backend systems, such as databases and mainframes. By fronting these systems
with Coherence, you can significantly improve performance and reduce the cost
of data access.

Another common usage scenario is eXtreme Transaction Processing (XTP). Because
of the way Coherence partitions data across the cluster, you can easily achieve
throughput of several thousand transactions per second. What's even better is that
you can scale the system to support an increasing load by simply adding new nodes
to the cluster.

Preface

[�]

As it stores all the data in memory and allows you to process it in-place and in
parallel, Coherence can also be used as a computational grid. In one such application,
a customer was able to reduce the time it took to perform risk calculation from
eighteen hours to twenty minutes.

Coherence is also a great integration platform. It allows you to load data from
multiple data sources (including databases, mainframes, web services, ERP, CRM,
DMS, or any other enterprise system), providing a uniform data access interface to
client applications at the same time.

Finally, it is an excellent foundation for applications using the Event Driven
Architecture, and can be easily integrated with messaging, ESB, and Complex Event
Processing (CEP) systems.

That said, for the remainder of the book I will use the "conventional" web application
architecture described earlier, to illustrate Coherence features—primarily because
most developers are already familiar with it and also because it will make the text
much easier to follow.

Oracle Coherence editions
Coherence has three different editions—Standard, Enterprise, and Grid Editions. As
is usually the case, each of these editions has a different price point and feature set,
so you should evaluate your needs carefully before buying.

The Coherence client also has two different editions—Data Client and Real-Time
Client. However, for the most part, the client edition is determined by the server
license you purchase—Standard and Enterprise Edition give you a Data Client
license, whereas the Grid Edition gives you a Real-Time Client license.

A high-level overview of edition differences can be found at http://www.oracle.
com/technology/products/coherence/coherencedatagrid/coherence_
editions.html, but you are likely to find the following documents available in the
Coherence Knowledge Base much more useful:

•	 The Coherence Ecosystem, available at http://coherence.oracle.com/
display/COH35UG/The+Coherence+Ecosystem

•	 Coherence Features by Edition, available at http://coherence.oracle.
com/display/COH35UG/Coherence+Features+by+Edition

Throughout the book, I will assume that you are using the Grid Edition and
Real-Time Client Edition, which provide access to all Coherence features.

Preface

[�]

The important thing to note is that when you go to Oracle's website to download
Coherence for evaluation, you will find only one download package for Java, one for
.NET, and one for each supported C++ platform. This is because all the editions are
included into the same binary distribution; choosing the edition you want to use is
simply a matter of obtaining the appropriate license and specifying the edition in the
configuration file.

By default, Grid Edition features are enabled on the server and Real-Time Client
features on the client, which is exactly what you will need in order to run the
examples given in the book.

What this book covers
Chapter 1, Achieving Performance, Scalability, and Availability Objectives discusses
obstacles to scalability, performance, and availability and also some common
approaches that are used to overcome these obstacles. It also talks about how these
solutions can be improved using Coherence.

Chapter 2, Getting Started teaches you how set up Coherence correctly in a
development environment, and the basics of how to access Coherence caches,
both by using the supplied command-line client and programmatically.

Chapter 3, Planning Your Caches covers various cache topologies supported by
Coherence and provides guidance on when to use each one and how to
configure them.

Chapter 4, Implementing Domain Objects introduces the sample application we will be
building throughout the book and shows you how to design your domain objects to
take full advantage of Coherence.

Chapter 5, Querying the Data Grid teaches you how to use Coherence queries and
aggregators to retrieve data from the cache in parallel.

Chapter 6, Parallel and In-Place Processing covers Coherence features that allow you to
perform in-place or parallel processing within a data grid.

Chapter 7, Processing Data Grid Events shows you how to use powerful event
mechanisms provided by Coherence.

Chapter 8, Implementing Persistence Layer discusses options for integration with
various data repositories, including relational databases.

Chapter 9, Bridging Platform and Network Boundaries covers the Coherence*Extend
protocol, which allows you to access a Coherence cluster from remote clients
and from platforms and languages other than Java, such as .NET and C++.

Preface

[�]

Chapters 10, Accessing Coherence from .NET and Chapter 11, Accessing Coherence from
C++ teach you how to access Coherence from .NET and C++ clients, respectively.

Chapter 12, The Right Tool for the Job, provides some parting thoughts and reiterates
practices you should apply when building scalable applications.

Appendix, Coherent Bank Sample Application, describes how to set up the sample
application that accompanies the book in your environment.

The main goal of this book is to provide the missing information that puts various
Coherence features into context and teaches you when to use them. As such, it does
not cover every nook and cranny Coherence has to offer, and you are encouraged to
refer to the Coherence product ����������������������������������� documentation���������������������� [CohDoc] for details.

On the other hand, real-world applications are not developed using a single
technology, no matter how powerful that one technology is. While the main focus
of the book is Coherence, it will also discuss how Coherence fits into the overall
application architecture, and show you how to integrate Coherence with some
popular open source frameworks and tools.

You are encouraged to read this book in the order it was written, as the material in
each chapter builds on the topics that were previously discussed.

What you need for this book
In addition to some spare time, an open mind, and a desire to learn, you will need
to have Java SDK 1.5 or higher in order to run Coherence and the examples given
in this book. While Coherence itself will run just fine on Java 1.4, the examples
use some features that are only available in Java 1.5 or higher, such as enums
and generics.

To run .NET examples from ��� Chapter 10��������������������������������������� , you will need .NET Framework 3.5 and
Visual Studio 2008. Although you can access Coherence using .NET Framework 1.1
and higher, the examples use features such as generics and Windows Presentation
Foundation, which are only available in the more recent releases of the .NET
Framework.

Finally, to run the C++ examples from Chapter 11, you need an appropriate version
of the C++ compiler and related tools depending on your platform (for details
check http://download.oracle.com/docs/cd/E14526_01/coh.350/e14513/
cpprequire.htm#BABDCDFG), a fast machine to compile and link examples on,
and a lot of patience!

Preface

[10]

Who this book is for
The primary audience for this book is experienced architects and developers who
are interested in, or responsible for, the design and implementation of scalable,
high-performance systems using Oracle Coherence.

However, Coherence has features that make it useful even in smaller applications,
such as applications based on Event Driven Architecture, or Service Oriented
Applications that would benefit from the high-performance, platform-independent
binary protocol built into Coherence.

Finally, this book should be an interesting read for anyone who wants to learn more
about the implementation of scalable systems in general, and how Oracle Coherence
can be used to remove much of the pain associated with the endeavor.

Who this book is not for
This book is not for a beginner looking forward to learning how to write computer
software. While I will try to introduce the concepts in a logical order and provide
background information where necessary, for the most part I will assume that you,
the reader, are an experienced software development professional with a solid
knowledge of object-oriented design, Java, and XML.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "As a matter of fact, such a class already
exists within coherence.jar, and is called AbstractEvolvable".

A block of code is set as follows:

public interface QueryMap extends Map {
 Set keySet(Filter filter);
 Set entrySet(Filter filter);
 Set entrySet(Filter filter, Comparator comparator);
 ...
}

Preface

[11]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Filter filter = new BetweenFilter(
 new PropertyExtractor("time"),
 from, to);

Any command-line input or output is written as follows:

$. bin/multicast-test.sh –ttl 0

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the ok button finishes the installation".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail to suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Preface

[12]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/6125_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Achieving Performance,
Scalability, and Availability

Objectives
Building a highly available and scalable system that performs well is no trivial task.
In this chapter, we will look into the reasons why this is the case, and discuss what
can be done to solve some of the problems.

I will also explain how Coherence can be used to either completely eliminate or
significantly reduce some of these problems and why it is a great foundation for
scalable applications.

Achieving performance objectives
There are many factors that determine how long a particular operation takes.
The choice of the algorithm and data structures that are used to implement it
will be a major factor, so choosing the most appropriate ones for the problem
at hand is important.

However, when building a distributed system, another important factor we need to
consider is network latency. The duration of every operation is the sum of the time
it takes to perform the operation, and the time it takes for the request to reach the
application and for the response to reach the client.

In some environments, latency is so low that it can often be ignored. For example,
accessing properties of an object within the same process is performed at in-memory
speed (nanoseconds), and therefore the latency is not a concern. However, as soon as
you start making calls across machine boundaries, the laws of physics come into
the picture.

Achieving Performance, Scalability, and Availability Objectives

[14]

Dealing with latency
Very often developers write applications as if there is no latency. To make things
even worse, they test them in an environment where latency is minimal, such as
their local machine or a high-speed network in the same building.

When they deploy the application in a remote datacenter, they are often surprised by
the fact that the application is much slower than what they expected. They shouldn't
be, they should have counted on the fact that the latency is going to increase and
should have taken measures to minimize its impact on the application performance
early on.

To illustrate the effect latency can have on performance, let's assume that we have
an operation whose actual execution time is 20 milliseconds. The following table
shows the impact of latency on such an operation, depending on where the server
performing it is located. All the measurements in the table were taken from my
house in Tampa, Florida.

Location Execution
time (ms)

Average
latency (ms)

Total time
(ms)

Latency
(% of total time)

Local host 20 0.067 20.067 0.3%
VM running on the local host 20 0.335 20.335 1.6%
Server on the same LAN 20 0.924 20.924 4.4%
Server in Tampa, FL, US 20 21.378 41.378 51.7%
Server in Sunnyvale, CA, US 20 53.130 73.130 72.7%
Server in London, UK 20 126.005 146.005 86.3%
Server in Moscow, Russia 20 181.855 201.855 90.1%
Server in Tokyo, Japan 20 225.684 245.684 91.9%
Server in Sydney, Australia 20 264.869 284.869 93.0%

As you can see from the previous table, the impact of latency is minimal on the local
host, or even when accessing another host on the same network. However, as soon
as you move the server out of the building it becomes significant. When the server is
half way around the globe, it is the latency that pretty much determines how long an
operation will take.

Of course, as the execution time of the operation itself increases, latency as a
percentage of the total time will decrease. However, I have intentionally chosen
20 milliseconds for this example, because many operations that web applications
typically perform complete in 20 milliseconds or less. For example, on my
development box, retrieval of a single row from the MySQL database using
EclipseLink and rendering of the retrieved object using FreeMarker template
takes 18 milliseconds on an average, according to the YourKit Profiler.

Chapter 1

[15]

On the other hand, even if your page takes 700 milliseconds to render and your
server is in Sydney, your users in Florida could still have a sub-second response
time, as long as they are able to retrieve the page in a single request. Unfortunately, it
is highly unlikely that one request will be enough. Even the extremely simple Google
front page requires four HTTP requests, and most non-trivial pages require 15 to 20,
or even more. Each image, external CSS style sheet, or JavaScript file that your page
references, will add latency and turn your sub-second response time into 5 seconds
or more.

You must be wondering by now whether you are reading a book about website
performance optimization and what all of this has to do with Coherence. I have used
a web page example in order to illustrate the effect of extremely high latencies on
performance, but the situation is quite similar in low-latency environments as well.

Each database query, each call to a remote service, and each Coherence cache access
will incur some latency. Although it might be only a millisecond or less for each
individual call, it quickly gets compounded by the sheer number of calls.

With Coherence for example, the actual time it takes to insert 1,000 small objects into
the cache is less than 50 milliseconds. However, the elapsed wall clock time from a
client perspective is more than a second. Guess where the millisecond per insert
is spent.

This is the reason why you will often hear advice such as "make your remote
services coarse grained" or "batch multiple operations together". As a matter of fact,
batching 1,000 objects from the previous example, and inserting them all into the
cache in one call brings total operation duration, as measured from the client, down
to 90 milliseconds!

The bottom line is that if you are building a distributed application, and if you are
reading this book you most likely are, you need to consider the impact of latency on
performance when making design decisions.

Minimizing bandwidth usage
In general, bandwidth is less of an issue than latency, because it is subject to Moore's
Law. While the speed of light, the determining factor of latency, has remained
constant over the years and will likely remain constant for the foreseeable future,
network bandwidth has increased significantly and continues to do so.

However, that doesn't mean that we can ignore it. As anyone who has ever tried to
browse the Web over a slow dial-up link can confirm, whether the images on the
web page are 72 or 600 DPI makes a big difference in the overall user experience.

Achieving Performance, Scalability, and Availability Objectives

[16]

So, if we learned to optimize the images in order to improve the bandwidth
utilization in front of the web server, why do we so casually waste the bandwidth
behind it? There are two things that I see time and time again:

The application retrieving a lot of data from a database, performing some
simple processing on it, and storing it back in a database.
The application retrieving significantly more data than it really needs. For
example, I've seen large object graphs loaded from database using multiple
queries in order to populate a simple drop-down box.

The first scenario above is an example of the situation where moving the processing
instead of data makes much more sense, whether your data is in a database or in
Coherence (although, in the former case doing so might have a negative impact on
the scalability, and you might actually decide to sacrifice performance in order to
allow the application to scale).

The second scenario is typically a consequence of the fact that we try to reuse the
same objects we use elsewhere in the application, even when it makes no sense to do
so. If all you need is an identifier and a description, it probably makes sense to load
only those two attributes from the data store and move them across the wire.

In any case, keeping an eye on how network bandwidth is used both on the frontend
and on the backend is another thing that you, as an architect, should be doing
habitually if you care about performance.

Coherence and performance
Coherence has powerful features that directly address the problems of latency
and bandwidth.

First of all, by caching data in the application tier, Coherence allows you to avoid
disk I/O on the database server and transformation of retrieved tabular data into
objects. In addition to that, Coherence also allows you to cache recently used data
in-process using its �� near caching�� feature, thus eliminating the latency associated
with a network call that would be required to retrieve a piece of data from a
distributed cache.

Another Coherence feature that can significantly improve performance is its ability
to execute tasks in parallel, across the data grid, and to move processing where the
data is, which will not only decrease latency, but preserve network bandwidth
as well.

Leveraging these features is important. It will be much easier to scale the application
if it performs well—you simply won't have to scale as much.

•

•

Chapter 1

[17]

Achieving scalability
There are two ways to achieve scalability: by scaling up or scaling out.

You can scale an application up by buying a bigger server or by adding more CPUs,
memory, and/or storage to the existing one. The problem with scaling up is that
finding the right balance of resources is extremely difficult. You might add more
CPUs only to find out that you have turned memory into a bottleneck. Because
of this, the law of diminishing returns kicks in fairly quickly, which causes the
cost of incremental upgrades to grow exponentially. This makes scaling up a
very unattractive option, when the cost-to-benefit ratio is taken into account.

Scaling out, on the other hand, implies that you can scale the application by adding
more machines to the system and allowing them to share the load. One common
scale-out scenario is a farm of web servers fronted by a load balancer. If your site
grows and you need to handle more requests, you can simply add another server to
the farm. Scaling out is significantly cheaper in the long run than scaling up and is
what we will discuss in the remainder of this section.

Unfortunately, designing an application for scale-out requires that you remove all
single points of bottleneck from the architecture and make some significant design
compromises. For example, you need to completely remove the state from the
application layer and make your services stateless.

Stateless services do not exist
Well, I might have exaggerated a bit to get your attention. It is certainly possible to
write a completely stateless service:

public class HelloWorldService {
 public String hello() {
 return "Hello world!";
 }
}

However, most "stateless"�� ��� services I've seen follow a somewhat different pattern:

public class MyService {
 public void myServiceMethod() {
 loadState();
 doSomethingWithState();
 saveState();
 }
}

Achieving Performance, Scalability, and Availability Objectives

[18]

Implementing application services this way is what allows us to scale the application
layer out, but the fact that our service still needs state in order to do anything
useful doesn't change. We haven't removed the �������������������������� need���������������������� —we have simply moved
the ��� responsibility��� for state management further down the stack.

The problem with that approach is that it usually puts more load on the resource that
is the most difficult and expensive to scale—a relational database.

Scaling a database is hard
In order to provide ACID (atomicity, consistency, isolation, and durability)
guarantees, a relational database needs to perform quite a bit of locking and log all
mutating operations. Depending on the database, locks might be at the row level,
page level, or even table level. Every database request that needs to access locked
data will essentially have to wait for the lock to be released.

In order to improve concurrency, you need to ensure that each database write is
committed or rolled back as fast as possible. This is why there are so many rules
about the best ways to organize the disk subsystem on a database server. Whether
it's placing log files on a different disk or partitioning large tables across multiple
disks, the goal is to optimize the performance of the disk I/O as it should be. Because
of durability requirements, database writes are ultimately disk bound, so making
sure that the disk subsystem is optimally configured is extremely important.

However, no matter how fast and well-optimized your database server is, as the
number of users increases and you add more web/application servers to handle the
additional load, you will reach a point where the database is simply overwhelmed.
As the data volume and the number of transactions increase, the response time will
increase exponentially, to the point where your system will not meet its performance
objectives anymore.

When that happens, you need to scale the database.

The easiest and the most intuitive approach to database scaling is to scale up by
buying a bigger server. That might buy you some time, but guess what—if your
load continues to increase, you will soon need an even bigger server. These big
servers tend to be very expensive, so over time this becomes a losing proposition.
One company I know of eventually reached the point where the incremental cost
to support each additional user became greater than the revenue generated by that
same user. The more users they signed up, the more money they were losing.

So if scaling �� up�� is not an answer, how do we scale the database ����out�?

Chapter 1

[19]

Database scale-out approaches
There are three main approaches to database scale-out: master-slave replication,
clustering, and sharding. We will discuss the pros and cons of each in the
following sections.

Master-slave replication
Master-slave replication is the easiest of the three to configure and requires minimal
modifications to application logic. In this setup, a single master server is used to
handle all write operations, which are then replicated to one or more slave servers
asynchronously, typically using log shipping:

This allows you to spread the read operations across multiple servers, which reduces
the load on the master server.

From the application perspective, all that you need to do is to modify the code that
creates the database connections to implement a load balancing algorithm. Simple
round-robin server selection for read operations is typically all you need.

However, there are two major problems with this approach:

There is a lag between a write to the master server and the replication.
This means that your application could update a record on the master and
immediately after that read the old, incorrect version of the same record from
one of the slaves, which is often undesirable.
You haven't really scaled out. Although you have given your master server
some breathing room, you will eventually reach the point where it cannot
handle all the writes. When that happens, you will be on your vendor's
website again, configuring a bigger server.�

•

•

Achieving Performance, Scalability, and Availability Objectives

[20]

Database clustering
The second approach to database scale-out is database clustering, often referred to
as the shared everything approach. The best known example of a database that uses
this strategy is Oracle RAC.

This approach allows you to configure many database instances that access a shared
storage device:

In the previous architecture, every node in the cluster can handle both reads and
writes, which can significantly improve throughput.

From the application perspective, nothing needs to change, at least in theory. Even
the load balancing is automatic.

However, database clustering is not without its own set of problems:

Database writes require synchronization of in-memory data structures
such as caches and locks across all the nodes in the cluster. This increases
the duration of write operations and introduces even more contention.
In the worst-case scenario, you might even experience negative scalability
as you add nodes to the cluster (meaning that as you add the nodes, you
actually decrease the number of operations you can handle).

•

