

 [image: B15559_MockupCover_Highres-01.png]

 Mastering Kubernetes

 Third Edition

 Level up your container orchestration skills with Kubernetes to build, run, secure, and observe large-scale distributed apps

 Gigi Sayfan

 [image:]

 BIRMINGHAM - MUMBAI

 Mastering Kubernetes

 Third Edition

 Copyright © 2020 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Producers: Ben Renow-Clarke, Aarthi Kumaraswamy

 Acquisition Editor – Peer Reviews: Suresh Jain

 Content Development Editor: Kate Blackham

 Technical Editor: Gaurav Gavas

 Project Editor: Carol Lewis

 Proofreader: Safis Editing

 Indexer: Pratik Shirodkar

 Presentation Designer: Sandip Tadge

 First published: May 2017

 Second edition: April 2018

 Third edition: June 2020

 Production reference: 1260620

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham B3 2PB, UK.

 ISBN 978-1-83921-125-6

 www.packt.com

 [image:]

 packt.com

 Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

 	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

 	Learn better with Skill Plans built especially for you

 	Get a free eBook or video every month

 	Fully searchable for easy access to vital information

 	Copy and paste, print, and bookmark content

 Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.Packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

 At www.Packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

 Gigi Sayfan has been developing software professionally for more than 20 years in domains as diverse as instant messaging, morphing, chip fabrication process control, embedded multimedia applications for game consoles, brain-inspired machine learning, custom browser development, web services for 3D distributed game platforms, IoT sensors, virtual reality, and genomics. He has written production code in many programming languages, such as Go, Python, C, C++, C#, Java, Delphi, JavaScript, and even Cobol and PowerBuilder for operating systems such as Windows (3.11 through 7), Linux, macOS, Lynx (embedded), and Sony PlayStation. His technical expertise includes databases, low-level networking, distributed systems, unorthodox user interfaces, DevOps, and the general software development life cycle.

 Gigi is also a longtime author who has published multiple books and hundreds of technical articles and blogs.

 About the reviewer

 Onur Yilmaz is a senior software engineer at a multinational enterprise software company. He is a Certified Kubernetes Administrator (CKA) and works on Kubernetes and cloud management systems. He is a keen supporter of cutting-edge technologies including Docker, Kubernetes, and cloud-native applications. He is the author of multiple books, including Introduction to DevOps with Kubernetes, Kubernetes Design Patterns and Extensions, Serverless Architectures with Kubernetes, and Cloud-Native Continuous Integration and Delivery. He has one master's and two bachelor's degrees in the engineering field.

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Download the example code files

 	Download the color images

 	Conventions used

 	Get in touch

 	Reviews

 	Understanding Kubernetes Architecture

 	What is Kubernetes?

 	What Kubernetes is not

 	Understanding container orchestration

 	Physical machines, virtual machines, and containers

 	The benefits of containers

 	Containers in the cloud

 	Cattle versus pets

 	Kubernetes concepts

 	Clusters

 	Nodes

 	The master

 	Pods

 	Labels

 	Annotations

 	Label selectors

 	Services

 	Volume

 	Replication controllers and replica sets

 	StatefulSet

 	Secrets

 	Names

 	Namespaces

 	Diving into Kubernetes architecture in depth

 	Distributed system design patterns

 	The sidecar pattern

 	The ambassador pattern

 	The adapter pattern

 	Multi-node patterns

 	The Kubernetes APIs

 	Resource categories

 	Kubernetes components

 	Master components

 	Node components

 	Kubernetes runtimes

 	The container runtime interface (CRI)

 	Docker

 	rkt

 	App container

 	CRI-O

 	Hyper containers

 	Frakti

 	Stackube

 	Continuous integration and deployment

 	What is a CI/CD pipeline?

 	Designing a CI/CD pipeline for Kubernetes

 	Summary

 	Creating Kubernetes Clusters

 	Overview

 	Creating a single-node cluster with Minikube

 	Meet kubectl

 	Quick introduction to Minikube

 	Getting ready

 	On Windows

 	On macOS

 	Creating the cluster

 	Troubleshooting

 	Checking out the cluster

 	Doing work

 	Examining the cluster with the dashboard

 	Creating a multi-node cluster with KinD

 	Quick introduction to KinD

 	Installing KinD

 	Creating the cluster with KinD

 	Doing work with KinD

 	Accessing Kubernetes services locally though a proxy

 	Creating a multi-node cluster with k3d

 	Quick introduction to k3s and k3d

 	Installing k3d

 	Creating the cluster with k3d

 	Comparing Minikube, KinD, and k3d

 	Creating clusters in the cloud (GCP, AWS, Azure)

 	The cloud-provider interface

 	GCP

 	AWS

 	Kubernetes on EC2

 	AWS EKS

 	Fargate

 	Azure

 	Other cloud providers

 	Once upon a time in China

 	IBM Kubernetes Service

 	Oracle Container Service

 	Creating a bare-metal cluster from scratch

 	Use cases for bare metal

 	When should you consider creating a bare-metal cluster?

 	Understanding the process

 	Using virtual private cloud infrastructure

 	Building your own cluster with Kubespray

 	Building your cluster with KRIB

 	Building your cluster with RKE

 	Bootkube

 	Summary

 	References

 	High Availability and Reliability

 	High availability concepts

 	Redundancy

 	Hot swapping

 	Leader election

 	Smart load balancing

 	Idempotency

 	Self-healing

 	High availability best practices

 	Creating highly available clusters

 	Making your nodes reliable

 	Protecting your cluster state

 	Clustering etcd

 	Verifying the etcd cluster

 	Protecting your data

 	Running redundant API servers

 	Running leader election with Kubernetes

 	Making your staging environment highly available

 	Testing high availability

 	High availability, scalability, and capacity planning

 	Installing the cluster autoscaler

 	Considering the vertical pod autoscaler

 	Live cluster updates

 	Rolling updates

 	Complex deployments

 	Blue-green deployments

 	Canary deployments

 	Managing data-contract changes

 	Migrating data

 	Deprecating APIs

 	Large cluster performance, cost, and design trade-offs

 	Availability requirements

 	Best effort

 	Maintenance windows

 	Quick recovery

 	Zero downtime

 	Site reliability engineering

 	Performance and data consistency

 	Summary

 	References

 	Securing Kubernetes

 	Understanding Kubernetes security challenges

 	Node challenges

 	Network challenges

 	Image challenges

 	Configuration and deployment challenges

 	Pod and container challenges

 	Organizational, cultural, and process challenges

 	Hardening Kubernetes

 	Understanding service accounts in Kubernetes

 	How does Kubernetes manage service accounts?

 	Accessing the API server

 	Authenticating users

 	Authorizing requests

 	Using admission control plugins

 	Securing pods

 	Using a private image repository

 	ImagePullSecrets

 	Specifying a security context

 	Protecting your cluster with AppArmor

 	Pod security policies

 	Authorizing pod security policies via RBAC

 	Managing network policies

 	Choosing a supported networking solution

 	Defining a network policy

 	Limiting egress to external networks

 	Cross-namespace policies

 	Using secrets

 	Storing secrets in Kubernetes

 	Configuring encryption at rest

 	Creating secrets

 	Decoding secrets

 	Using secrets in a container

 	Running a multi-user cluster

 	The case for a multi-user cluster

 	Using namespaces for safe multi-tenancy

 	Avoiding namespace pitfalls

 	Summary

 	References

 	Using Kubernetes Resources in Practice

 	Designing the Hue platform

 	Defining the scope of Hue

 	Smart reminders and notifications

 	Security, identity, and privacy

 	Hue components

 	Hue microservices

 	Planning workflows

 	Automatic workflows

 	Human workflows

 	Budget-aware workflows

 	Using Kubernetes to build the Hue platform

 	Using kubectl effectively

 	Understanding kubectl resource configuration files

 	ApiVersion

 	Kind

 	Metadata

 	Spec

 	Deploying long-running microservices in pods

 	Creating pods

 	Decorating pods with labels

 	Deploying long-running processes with deployments

 	Updating a deployment

 	Separating internal and external services

 	Deploying an internal service

 	Creating the Hue-reminders service

 	Exposing a service externally

 	Ingress

 	Advanced scheduling

 	Node selector

 	Taints and tolerations

 	Node affinity and anti-affinity

 	Pod affinity and anti-affinity

 	Using namespaces to limit access

 	Using kustomization for hierarchical cluster structures

 	Understanding the basics of kustomize

 	Configuring the directory structure

 	Applying kustomizations

 	Patching

 	Kustomizing the entire staging namespace

 	Launching jobs

 	Running jobs in parallel

 	Cleaning up completed jobs

 	Scheduling cron jobs

 	Mixing non-cluster components

 	Outside-the-cluster-network components

 	Inside-the-cluster-network components

 	Managing the Hue platform with Kubernetes

 	Using liveness probes to ensure your containers are alive

 	Using readiness probes to manage dependencies

 	Employing init containers for orderly pod bring-up

 	Pod readiness and readiness gates

 	Sharing with DaemonSet pods

 	Evolving the Hue platform with Kubernetes

 	Utilizing Hue in an enterprise

 	Advancing science with Hue

 	Educating the kids of the future with Hue

 	Summary

 	References

 	Managing Storage

 	Persistent volumes walkthrough

 	Volumes

 	Using emptyDir for intra-pod communication

 	Using HostPath for intra-node communication

 	Using local volumes for durable node storage

 	Provisioning persistent volumes

 	Provisioning persistent volumes externally

 	Creating persistent volumes

 	Capacity

 	Volume mode

 	Access modes

 	Reclaim policy

 	Storage class

 	Volume type

 	Mount options

 	Making persistent volume claims

 	Mounting claims as volumes

 	Raw block volumes

 	Storage classes

 	Default storage class

 	Demonstrating persistent volume storage end to end

 	Public cloud storage volume types – GCE, AWS, and Azure

 	Amazon EBS

 	Amazon EFS

 	GCE persistent disk

 	Azure data disk

 	Azure Files

 	GlusterFS and Ceph volumes in Kubernetes

 	Using GlusterFS

 	Creating endpoints

 	Adding a GlusterFS Kubernetes service

 	Creating pods

 	Using Ceph

 	Connecting to Ceph using RBD

 	Connecting to Ceph using CephFS

 	Flocker as a clustered container data volume manager

 	Integrating enterprise storage into Kubernetes

 	Rook – the new kid on the block

 	Projecting volumes

 	Using out-of-tree volume plugins with FlexVolume

 	The Container Storage Interface

 	Volume snapshotting and cloning

 	Volume snapshots

 	Volume cloning

 	Summary

 	Running Stateful Applications with Kubernetes

 	Stateful versus stateless applications in Kubernetes

 	Understanding the nature of distributed data-intensive apps

 	Why manage state in Kubernetes?

 	Why manage state outside of Kubernetes?

 	Shared environment variables versus DNS records for discovery

 	Accessing external data stores via DNS

 	Accessing external data stores via environment variables

 	Consuming a ConfigMap as an environment variable

 	Using a redundant in-memory state

 	Using DaemonSet for redundant persistent storage

 	Applying persistent volume claims

 	Utilizing StatefulSets

 	Running a Cassandra cluster in Kubernetes

 	Quick introduction to Cassandra

 	The Cassandra Docker image

 	Hooking up Kubernetes and Cassandra

 	Creating a Cassandra headless service

 	Using StatefulSets to create the Cassandra cluster

 	Summary

 	Deploying and Updating Applications

 	Horizontal pod autoscaling

 	Declaring an HPA

 	Custom metrics

 	Autoscaling with Kubectl

 	Performing rolling updates with autoscaling

 	Handling scarce resources with limits and quotas

 	Enabling resource quotas

 	Resource quota types

 	Compute resource quota

 	Storage resource quota

 	Object count quota

 	Quota scopes

 	Resource quotas and priority classes

 	Requests and limits

 	Working with quotas

 	Using namespace-specific context

 	Creating quotas

 	Using limit ranges for default compute quotas

 	Choosing and managing the cluster capacity

 	Choosing your node types

 	Choosing your storage solutions

 	Trading off cost and response time

 	Using multiple node configurations effectively

 	Benefiting from elastic cloud resources

 	Autoscaling instances

 	Mind your cloud quotas

 	Manage regions carefully

 	Considering container-native solutions

 	Pushing the envelope with Kubernetes

 	Improving the performance and scalability of Kubernetes

 	Caching reads in the API server

 	The pod lifecycle event generator

 	Serializing API objects with protocol buffers

 	etcd3

 	Other optimizations

 	Measuring the performance and scalability of Kubernetes

 	The Kubernetes SLOs

 	Measuring API responsiveness

 	Measuring end-to-end pod startup time

 	Testing Kubernetes at scale

 	Introducing the Kubemark tool

 	Setting up a Kubemark cluster

 	Comparing a Kubemark cluster to a real-world cluster

 	Summary

 	Packaging Applications

 	Understanding Helm

 	The motivation for Helm

 	The Helm 2 architecture

 	Helm 2 components

 	The Tiller server

 	The Helm client

 	Helm 3

 	Using Helm

 	Installing Helm

 	Installing the Helm client

 	Installing the Tiller server for Helm 2

 	Finding charts

 	Adding repositories

 	Installing packages

 	Checking the installation status

 	Customizing a chart

 	Additional installation options

 	Upgrading and rolling back a release

 	Deleting a release

 	Working with repositories

 	Managing charts with Helm

 	Taking advantage of starter packs

 	Creating your own charts

 	The Chart.yaml file

 	Versioning charts

 	The appVersion field

 	Deprecating charts

 	Chart metadata files

 	Managing chart dependencies

 	Managing dependencies with requirements.yaml

 	Utilizing special fields in requirements.yaml

 	Using templates and values

 	Writing template files

 	Testing and troubleshooting your charts

 	Embedding built-in objects

 	Feeding values from a file

 	Scope, dependencies, and values

 	Summary

 	Exploring Advanced Networking

 	Understanding the Kubernetes networking model

 	Intra-pod communication (container to container)

 	Inter-pod communication (pod to pod)

 	Pod-to-service communication

 	External access

 	Kubernetes networking versus Docker networking

 	Lookup and discovery

 	Self-registration

 	Services and endpoints

 	Loosely coupled connectivity with queues

 	Loosely coupled connectivity with data stores

 	Kubernetes ingress

 	Kubernetes network plugins

 	Basic Linux networking

 	IP addresses and ports

 	Network namespaces

 	Subnets, netmasks, and CIDRs

 	Virtual Ethernet devices

 	Bridges

 	Routing

 	Maximum transmission unit

 	Pod networking

 	Kubenet

 	Container networking interface

 	Kubernetes networking solutions

 	Bridging on bare metal clusters

 	Contiv

 	Open vSwitch

 	Nuage networks VCS

 	Flannel

 	Calico

 	Romana

 	Weave Net

 	Using network policies effectively

 	Understanding the Kubernetes network policy design

 	Network policies and CNI plugins

 	Configuring network policies

 	Implementing network policies

 	Load balancing options

 	External load balancer

 	Configuring an external load balancer

 	Finding the load balancer IP addresses

 	Preserving client IP addresses

 	Understanding even external load balancing

 	Service load balancing

 	Ingress

 	HAProxy

 	MetalLB

 	Keepalived VIP

 	Traefic

 	Writing your own CNI plugin

 	First look at the loopback plugin

 	Building on the CNI plugin skeleton

 	Reviewing the bridge plugin

 	Summary

 	Running Kubernetes on Multiple Clouds and Cluster Federation

 	The history of cluster federation on Kubernetes

 	Understanding cluster federation

 	Important use cases for cluster federation

 	Capacity overflow

 	Sensitive workloads

 	Avoiding vendor lock-in

 	Geo-distributing high availability

 	Learning the basics of Kubernetes federation

 	Defining basic concepts

 	Federation building blocks

 	Federation features

 	The KubeFed control plane

 	The federation API server

 	The federation controller manager

 	The hard parts

 	Federated unit of work

 	Location affinity

 	Cross-cluster scheduling

 	Federated data access

 	Federated auto-scaling

 	Managing a Kubernetes Cluster Federation

 	Installing kubefedctl

 	Creating clusters

 	Configuring the Host Cluster

 	Registering clusters with the federation

 	Working with federated API types

 	Federating resources

 	Federating an entire namespace

 	Checking the status of federated resources

 	Using overrides

 	Using placement to control federation

 	Debugging propagation failures

 	Employing higher-order behavior

 	Utilizing multi-cluster Ingress DNS

 	Utilizing multi-cluster Service DNS

 	Utilizing multi-cluster scheduling

 	Introducing the Gardener project

 	Understanding the terminology of Gardener

 	Understanding the conceptual model of Gardener

 	Diving into the Gardener architecture

 	Managing cluster state

 	Managing the control plane

 	Preparing the infrastructure

 	Using the Machine controller manager

 	Networking across clusters

 	Monitoring clusters

 	The gardenctl CLI

 	Extending Gardener

 	Gardener ring

 	Summary

 	Serverless Computing on Kubernetes

 	Understanding serverless computing

 	Running long-running services on "serverless" infrastructure

 	Running FaaS on "serverless" infrastructure

 	Serverless Kubernetes in the cloud

 	Don't forget the cluster autoscaler

 	Azure AKS and Azure Container Instances

 	AWS EKS and Fargate

 	Google Cloud Run

 	Knative

 	Knative Serving

 	The Knative Service object

 	The Knative Route object

 	The Knative Configuration object

 	The Knative Revision object

 	Knative Eventing

 	Getting familiar with Knative Eventing terminology

 	The architecture of Knative Eventing

 	Taking Knative for a ride

 	Installing Knative

 	Deploying a Knative service

 	Invoking a Knative service

 	Checking the scale-to-zero option in Knative

 	Kubernetes FaaS frameworks

 	Fission

 	Fission Workflows

 	Experimenting with Fission

 	Kubeless

 	Kubeless architecture

 	Playing with Kubeless

 	Using the Kubeless UI

 	Kubeless with the serverless framework

 	Knative and riff

 	Understanding riff runtimes

 	Installing riff with Helm 2

 	Summary

 	Monitoring Kubernetes Clusters

 	Understanding observability

 	Logging

 	Log format

 	Log storage

 	Log aggregation

 	Metrics

 	Distributed tracing

 	Application error reporting

 	Dashboards and visualization

 	Alerting

 	Logging with Kubernetes

 	Container logs

 	Kubernetes component logs

 	Centralized logging

 	Choosing a log collection strategy

 	Cluster-level central logging

 	Remote central logging

 	Dealing with sensitive log information

 	Using Fluentd for log collection

 	Collecting metrics with Kubernetes

 	Monitoring with the metrics server

 	Exploring your cluster with the Kubernetes dashboard

 	The rise of Prometheus

 	Installing Prometheus

 	Interacting with Prometheus

 	Incorporating kube-state-metrics

 	Utilizing the node exporter

 	Incorporating custom metrics

 	Alerting with Alertmanager

 	Visualizing your metrics with Grafana

 	Considering Loki

 	Distributed tracing with Jaeger

 	What is OpenTracing?

 	OpenTracing concepts

 	Introducing Jaeger

 	Jaeger architecture

 	Installing Jaeger

 	Troubleshooting problems

 	Taking advantage of staging environments

 	Detecting problems at the node level

 	Problem daemons

 	Dashboards versus alerts

 	Logs versus metrics versus error reports

 	Detecting performance and root cause with distributed tracing

 	Summary

 	Utilizing Service Meshes

 	What is a service mesh?

 	Control plane and data plane

 	Choosing a service mesh

 	Envoy

 	Linkerd 2

 	Kuma

 	AWS App Mesh

 	Maesh

 	Istio

 	Incorporating Istio into your Kubernetes cluster

 	Understanding the Istio architecture

 	Envoy

 	Pilot

 	Mixer

 	Citadel

 	Galley

 	Preparing a minikube cluster for Istio

 	Installing Istio

 	Installing Bookinfo

 	Traffic management

 	Security

 	Istio identity

 	Istio PKI

 	Istio authentication

 	Istio authorization

 	Policies

 	Monitoring and observability

 	Logs

 	Metrics

 	Distributed tracing

 	Visualizing your service mesh with Kiali

 	Summary

 	Extending Kubernetes

 	Working with the Kubernetes API

 	Understanding OpenAPI

 	Setting up a proxy

 	Exploring the Kubernetes API directly

 	Using Postman to explore the Kubernetes API

 	Filtering the output with HTTPie and jq

 	Creating a pod via the Kubernetes API

 	Accessing the Kubernetes API via the Python client

 	Dissecting the CoreV1API group

 	Listing objects

 	Creating objects

 	Watching objects

 	Invoking Kubectl programmatically

 	Using Python subprocesses to run Kubectl

 	Extending the Kubernetes API

 	Understanding Kubernetes extension points and patterns

 	Extending Kubernetes with plugins

 	Extending Kubernetes with the cloud controller manager

 	Extending Kubernetes with webhooks

 	Extending Kubernetes with controllers and operators

 	Extending Kubernetes scheduling

 	Extending Kubernetes with custom container runtimes

 	Introducing custom resources

 	Developing custom resource definitions

 	Integrating custom resources

 	Dealing with unknown fields

 	Finalizing custom resources

 	Adding custom printer columns

 	Understanding API server aggregation

 	Utilizing the service catalog

 	Writing Kubernetes plugins

 	Writing a custom scheduler

 	Understanding the design of the Kubernetes scheduler

 	Scheduling pods manually

 	Preparing our own scheduler

 	Assigning pods to the custom scheduler

 	Verifying that the pods were scheduled using the correct scheduler

 	Writing Kubectl plugins

 	Understanding Kubectl plugins

 	Managing Kubectl plugins with Krew

 	Creating your own Kubectl plugin

 	Kubectl plugin gotchas

 	Don't forget your shebangs!

 	Naming

 	Overriding existing Kubectl commands

 	Flat namespace for Krew plugins

 	Employing access control webhooks

 	Using an authentication webhook

 	Using an authorization webhook

 	Using an admission control webhook

 	Configuring a webhook admission controller on the fly

 	Providing custom metrics for horizontal pod autoscaling

 	Extending Kubernetes with custom storage

 	Summary

 	The Future of Kubernetes

 	The Kubernetes momentum

 	The importance of the CNCF

 	Project curation

 	Certification

 	Training

 	Community and education

 	Tooling

 	The rise of managed Kubernetes platforms

 	Public cloud Kubernetes platforms

 	Bare-metal, private clouds, and Kubernetes on the edge

 	Kubernetes Platform as a Service (PaaS)

 	Upcoming trends

 	Security

 	Networking

 	Custom hardware and devices

 	Service mesh

 	Serverless computing

 	Kubernetes on the Edge

 	Native CI/CD

 	Operators

 	Summary

 	References

 	Other Books You May Enjoy

 	Index

 Preface

 Kubernetes is an open source system that automates the deployment, scaling, and management of containerized applications. If you are running more than just a few containers or want to automate the management of your containers, you need Kubernetes. This book focuses on guiding you through the advanced management of Kubernetes clusters.

 The book begins by explaining the fundamentals behind Kubernetes' architecture and covers Kubernetes' design in detail. You will discover how to run complex stateful microservices on Kubernetes, including such advanced features as horizontal pod autoscaling, rolling updates, resource quotas, and persistent storage backends. Using real-world use cases, you will explore the options for network configuration and understand how to set up, operate, secure, and troubleshoot Kubernetes clusters. Finally, you will learn about advanced topics such as custom resources, API aggregation, service meshes, and serverless computing. All the content is up to date and complies with Kubernetes 1.18. By the end of this book, you'll know everything you need to know to go from intermediate to advanced level.

 Who this book is for

 The book is for system administrators and developers who have intermediate-level knowledge about Kubernetes and are now waiting to master its advanced features. You should also have basic networking knowledge. This advanced-level book provides a pathway to master Kubernetes.

 What this book covers

 Chapter 1, Understanding Kubernetes Architecture, in this chapter, we will build together the foundation necessary to utilize Kubernetes to its full potential. We will start by understanding what Kubernetes is, what Kubernetes isn't, and what container orchestration means exactly. Then we will cover important Kubernetes concepts that will form the vocabulary we will use throughout the book.

 Chapter 2, Creating Kubernetes Clusters, in this chapter, we will roll up our sleeves and build some Kubernetes clusters using minikube, KinD, and k3d. We will discuss and evaluate other tools such as Kubeadm, Kube-spray, bootkube, and stackube. We will also look into deployment environments such as local, cloud, and bare metal.

 Chapter 3, High Availability and Reliability, in this chapter, we will dive into the topic of highly available clusters. This is a complicated topic. The Kubernetes project and the community haven't settled on one true way to achieve high-availability nirvana. There are many aspects to highly available Kubernetes clusters, such as ensuring that the control plane can keep functioning in the face of failures, protecting the cluster state in etcd, protecting the system's data, and recovering capacity and/or performance quickly. Different systems will have different reliability and availability requirements.

 Chapter 4, Securing Kubernetes, in this chapter, we will explore the important topic of security. Kubernetes clusters are complicated systems composed of multiple layers of interacting components. Isolation and compartmentalization of different layers is very important when running critical applications. To secure the system and ensure proper access to resources, capabilities, and data, we must first understand the unique challenges facing Kubernetes as a general-purpose orchestration platform that runs unknown workloads. Then we can take advantage of various securities, isolation, and access control mechanisms to make sure the cluster, the applications running on it, and the data are all safe. We will discuss various best practices and when it is appropriate to use each mechanism.

 Chapter 5, Using Kubernetes Resources in Practice, in this chapter, we will design a fictional massive-scale platform that will challenge Kubernetes' capabilities and scalability. The Hue platform is all about creating an omniscient and omnipotent digital assistant. Hue is a digital extension of you. Hue will help you do anything, find anything, and, in many cases will do a lot on your behalf. It will obviously need to store a lot information, integrate with many external services, respond to notifications and events, and be smart about interacting with you.

 Chapter 6, Managing Storage, in this chapter, we'll look at how Kubernetes manages storage. Storage is very different from compute, but at a high level they are both resources. Kubernetes as a generic platform takes the approach of abstracting storage behind a programming model and a set of plugins for storage providers.

 Chapter 7, Running Stateful Applications with Kubernetes, in this chapter, we will learn how to run stateful applications on Kubernetes. Kubernetes takes a lot of work out of our hands by automatically starting and restarting pods across the cluster nodes as needed, based on complex requirements and configurations such as namespaces, limits, and quotas. But when pods run storage-aware software, such as databases and queues, relocating a pod can cause the system to break.

 Chapter 8, Deploying and Updating Applications, in this chapter, we will explore the automated pod scalability that Kubernetes provides, how it affects rolling updates, and how it interacts with quotas. We will touch on the important topic of provisioning and how to choose and manage the size of the cluster. Finally, we will go over how the Kubernetes team improved the performance of Kubernetes and how they test the limits of Kubernetes with the Kubemark tool.

 Chapter 9, Packaging Applications, in this chapter, we are going to look into Helm, the Kubernetes package manager. Every successful and non-trivial platform must have a good packaging system. Helm was developed by Deis (acquired by Microsoft on April 4, 2017) and later contributed to the Kubernetes project directly. It became a CNCF project in 2018. We will start by understanding the motivation for Helm, its architecture, and its components.

 Chapter 10, Exploring Advanced Networking, in this chapter, we will examine the important topic of networking. Kubernetes as an orchestration platform manages containers/pods running on different machines (physical or virtual) and requires an explicit networking model.

 Chapter 11, Running Kubernetes on Multiple Clouds and Cluster Federation, in this chapter, we'll take it to the next level, with running Kubernetes on multiple clouds, multiple clusters, and cluster federation. A Kubernetes cluster is a closely-knit unit where all the components run in relative proximity and are connected by a fast network (typically a physical data center or cloud provider availability zone). This is great for many use cases, but there are several important use cases where systems need to scale beyond a single cluster.

 Chapter 12, Serverless Computing on Kubernetes, in this chapter, we will explore the fascinating world of serverless computing in the cloud. The term "serverless" is getting a lot of attention, but it is a misnomer used to describe two different paradigms. A true serverless application runs as a web application in the user's browser or a mobile app and only interacts with external services. The types of serverless systems we build on Kubernetes are different.

 Chapter 13, Monitoring Kubernetes Clusters, in this chapter, we're going to talk about how to make sure your systems are up and running and performing correctly and how to respond when they aren't. In Chapter 3, High Availability and Reliability, we discussed related topics. The focus here is about knowing what's going on in your system and what practices and tools you can use.

 Chapter 14, Utilizing Service Meshes, in this chapter, we will learn how service meshes allow you to externalize cross-cutting concerns like monitoring and observability from the application code. The service mesh is a true paradigm shift in the way you can design, evolve, and operate distributed systems on Kubernetes. I like to think of it as aspect-oriented programming for cloud-native distributed systems.

 Chapter 15, Extending Kubernetes, in this chapter, we will dig deep into the guts of Kubernetes. We will start with the Kubernetes API and learn how to work with Kubernetes programmatically via direct access to the API, the Python client, and automating Kubectl. Then, we'll look into extending the Kubernetes API with custom resources. The last part is all about the various plugins Kubernetes supports. Many aspects of Kubernetes operation are modular and designed for extension. We will examine the API aggregation layer and several types of plugins, such as custom schedulers, authorization, admission control, custom metrics, and volumes. Finally, we'll look into extending Kubectl and adding your own commands.

 Chapter 16, The Future of Kubernetes, in this chapter, we'll look at the future of Kubernetes from multiple angles. We'll start with the momentum of Kubernetes since its inception, across dimensions such as community, ecosystem, and mindshare. Spoiler alert: Kubernetes won the container orchestration wars by a land slide. As Kubernetes grows and matures, the battle lines shift from beating competitors to fighting against its own complexity. Usability, tooling, and education will play a major role as container orchestration is still new, fast-moving, and not a well-understood domain. Then we will take a look at some very interesting patterns and trends, and finally, we will review my predictions from the 2nd edition and I will make some new predictions.

 To get the most out of this book

 To follow the examples in each chapter, you need a recent version of Docker and Kubernetes installed on your machine, ideally Kubernetes 1.18. If your operating system is Windows 10 Professional, you can enable hypervisor mode; otherwise, you will need to install VirtualBox and use a Linux guest OS. If you use macOS then you're good to go.

 Download the example code files

 You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you.

 You can download the code files by following these steps:

 	Log in or register at http://www.packtpub.com.

 	Select the SUPPORT tab.

 	Click on Code Downloads & Errata.

 	Enter the name of the book in the Search box and follow the on-screen instructions.

 Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

 	WinRAR / 7-Zip for Windows

 	Zipeg / iZip / UnRarX for macOS

 	7-Zip / PeaZip for Linux

 The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Mastering-Kubernetes-Third-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781839211256_ColorImages.pdf.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: If you chose HyperKit instead of VirtualBox, you need to add the flag --vm-driver=hyperkit when starting the cluster.

 A block of code is set as follows:

 apiVersion: "etcd.database.coreos.com/v1beta2"
kind: "EtcdCluster"
metadata:
 name: "example-etcd-cluster"
spec:
 size: 3
 version: "3.2.13"

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 apiVersion: "etcd.database.coreos.com/v1beta2"
kind: "EtcdCluster"
metadata:
 name: "example-etcd-cluster"
spec:
 size: 3
 version: "3.2.13"

 Any command-line input or output is written as follows:

 $ k get pods
NAME READY STATUS RESTARTS AGE
echo-855975f9c-r6kj8 1/1 Running 0 2m11s

 Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example: "Select System info from the Administration panel."

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com, and mention the book's title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book we would be grateful if you would report this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Reviews

 Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

 For more information about Packt, please visit packtpub.com.

 1

 Understanding Kubernetes Architecture

 In one sentence, Kubernetes is a platform to orchestrate the deployment, scaling, and management of container-based applications. You have probably read about Kubernetes, and maybe even dipped your toes in and used it in a side project or maybe even at work. But to understand what Kubernetes is all about, how to use it effectively, and what the best practices are requires much more.

 Kubernetes is a big open source project and ecosystem with a lot of code and a lot of functionality. Kubernetes came out of Google, but joined the Cloud Native Computing Foundation (CNCF) and became the clear leader in the space of container-based applications.

 In this chapter, we will build the foundation necessary to utilize Kubernetes to its full potential. We will start by understanding what Kubernetes is, what Kubernetes isn't, and what container orchestration means exactly. Then we will cover important Kubernetes concepts that will form the vocabulary we will use throughout the book. After that, we will dive into the architecture of Kubernetes proper and look at how it enables all the capabilities it provides for its users. Then, we will discuss the various runtimes and container engines that Kubernetes supports (Docker is just one option), and finally, we will discuss the role of Kubernetes in the full continuous integration and deployment pipeline.

 At the end of this chapter, you will have a solid understanding of container orchestration, what problems Kubernetes addresses, the rationale of Kubernetes design and architecture, and the different runtimes it supports. You'll also be familiar with the overall structure of the open source repository and be ready to jump in and find answers to any questions.

 What is Kubernetes?

 Kubernetes is a platform that encompasses a huge number of services and capabilities that keeps growing. The core functionality is scheduling workloads in containers across your infrastructure, but it doesn't stop there. Here are some of the other capabilities Kubernetes brings to the table:

 	Mounting storage systems

 	Distributing secrets

 	Checking application health and readiness

 	Replicating application instances

 	Using the Horizontal Pod Autoscaler

 	Using Cluster Autoscaling

 	Naming and service discovery

 	Balancing loads

 	Rolling updates

 	Monitoring resources

 	Accessing and ingesting logs

 	Debugging applications

 	Providing authentication and authorization

 We will cover all these capabilities in great detail throughout the book. At this point, just absorb and appreciate how much value Kubernetes can add to your system.

 Kubernetes has impressive scope, but it is also important to understand what Kubernetes explicitly doesn't provide.

 What Kubernetes is not

 Kubernetes is not a Platform as a Service (PaaS). It doesn't dictate many important aspects that are left to you or to other systems built on top of Kubernetes, such as Deis, OpenShift, and Eldarion; for example:

 	Kubernetes doesn't require a specific application type or framework

 	Kubernetes doesn't require a specific programming language

 	Kubernetes doesn't provide databases or message queues

 	Kubernetes doesn't distinguish apps from services

 	Kubernetes doesn't have a click-to-deploy service marketplace

 	Kubernetes doesn't provide a built-in function as a service solution

 	Kubernetes doesn't mandate a logging, monitoring, and alerting system

 Now that we have a clear idea about the boundaries of Kubernetes, let's dive into its primary responsibility – container orchestration.

 Understanding container orchestration

 The primary responsibility of Kubernetes is container orchestration. That means making sure that all the containers that execute various workloads are scheduled to run on physical or virtual machines. The containers must be packed efficiently following the constraints of the deployment environment and the cluster configuration. In addition, Kubernetes must keep an eye on all running containers and replace dead, unresponsive, or otherwise unhealthy containers. Kubernetes provides many more capabilities, which you will learn about in the following chapters. In this section, the focus is on containers and their orchestration.

 Physical machines, virtual machines, and containers

 It all starts and ends with hardware. In order to run your workloads, you need some real hardware provisioned. That includes actual physical machines with certain compute capabilities (CPUs or cores), memory, and some local persistent storage (spinning disks or SSDs). In addition, you will need some shared persistent storage and to hook up all these machines using networking, so they can find and talk to each other. At this point, you run multiple virtual machines on the physical machines or stay at the bare-metal level (real hardware only – no virtual machines). Kubernetes can be deployed on a bare-metal cluster or on a cluster of virtual machines. Kubernetes, in turn, can orchestrate the containers it manages directly on bare metal or on virtual machines. In theory, a Kubernetes cluster can be composed of a mix of bare-metal and virtual machines, but this is not very common.

 The benefits of containers

 Containers represent a true paradigm shift in the development and operation of large, complicated software systems. Here are some of the benefits compared to more traditional models:

 	Agile application creation and deployment

 	Continuous development, integration, and deployment

 	Dev and Ops separation of concerns

 	Environmental consistency across development, testing, staging, and production

 	Cloud and OS distribution portability

 	Application-centric management (dependencies are packaged with the application)

 	Resource isolation (container CPU and memory can be limited)

 	Resource utilization (multiple containers can be deployed on the same node)

 The benefits of container-based development and deployment are significant in many contexts, but are particularly significant if you deploy your system to the cloud.

 Containers in the cloud

 Containers are ideal to package microservices because while providing isolation to the microservice, they are very lightweight and you don't incur a lot of overhead when deploying many microservices as you do with virtual machines. That makes containers ideal for cloud deployment, where allocating a whole virtual machine for each microservice would be cost-prohibitive.

 All major cloud providers, such as Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft's Azure, provide container hosting services these days. Many other companies have jumped on the Kubernetes wagon and offer managed Kubernetes services, including:

 	IBM IKS

 	Alibaba Cloud

 	DigitalOcean DKS

 	Oracle OKS

 	OVH Managed Kubernetes

 	Rackspace KaaS

 The Google Kubernetes Engine (GKE) was always based on Kubernetes. Amazon's Elastic Kubernetes Service (EKS) was added in addition to the proprietary AWS ECS orchestration solution. Microsoft Azure's container service used to be based on Apache Mesos but later switched to Kubernetes with Azure Kubernetes Service (AKS). You could always deploy Kubernetes on all the cloud platforms, but it wasn't deeply integrated with other services. However, at the end of 2017, all cloud providers announced direct support for Kubernetes. Microsoft's launched AKS, AWS released EKS, and Alibaba Cloud started working on a Kubernetes controller manager to integrate Kubernetes seamlessly.

 Cattle versus pets

 In the olden days, when systems were small, each server had a name. Developers and users knew exactly what software was running on each machine. I remember that, in many of the companies I worked for, we had multi-day discussions to decide on a naming theme for our servers. For example, composers and Greek mythology characters were popular choices. Everything was very cozy. You treated your servers like beloved pets. When a server died it was a major crisis. Everybody scrambled to try to figure out where to get another server, what was even running on the dead server, and how to get it working on the new server. If the server stored some important data, then hopefully you had an up-to-date backup and maybe you'd even be able to recover it.

 Obviously, that approach doesn't scale. When you have tens or hundreds of servers, you must start treating them like cattle. You think about the collective and not individuals. You may still have some pets like your CI/CD machines (although managed CI/CD solutions are becoming more common), but your web servers and backend services are just cattle.

 Kubernetes takes the cattle approach to the extreme and takes full responsibility for allocating containers to specific machines. You don't need to interact with individual machines (nodes) most of the time. This works best for stateless workloads. For stateful applications, the situation is a little different, but Kubernetes provides a solution called StatefulSet, which we'll discuss soon.

 In this section, we covered the idea of container orchestration and discussed the relationships between hosts (physical or virtual) and containers, as well as the benefits of running containers in the cloud, and finished with a discussion about cattle versus pets. In the following section, we will get to know the world of Kubernetes and learn its concepts and terminology.

 Kubernetes concepts

 In this section, I'll briefly introduce many important Kubernetes concepts and give you some context as to why they are needed and how they interact with other concepts. The goal is to get familiar with these terms and concepts. Later, we'll see how these concepts are woven together and organized into API groups and resource categories to achieve awesomeness. You can consider many of these concepts as building blocks. Some of the concepts, such as nodes and masters, are implemented as a set of Kubernetes components. These components are at a different abstraction level, and I discuss them in detail in a dedicated section later in this chapter – Kubernetes components.

 Here is the famous Kubernetes architecture diagram:

 [image:]
 Figure 1.1: Kubernetes architecture diagram

 Clusters

 A cluster is a collection of hosts (nodes) that provide compute, memory, storage, and networking resources. Kubernetes uses these resources to run the various workloads that comprise your system. Note that your entire system may consist of multiple clusters. We will discuss this advanced use case of federation in detail in Chapter 11, Running Kubernetes on Multiple Clouds and Cluster Federation.

 Nodes

 A node is a single host. It may be a physical or virtual machine. Its job is to run pods. Each Kubernetes node runs several Kubernetes components, such as the kubelet, the container runtime, and kube-proxy. Nodes are managed by a Kubernetes master. The nodes are the worker bees of Kubernetes and shoulder all the heavy lifting. In the past, they were called minions. If you read some old documentation or articles, don't get confused. Minions are just nodes.

 The master

 The master is the control plane of Kubernetes. It consists of several components, such as an API server, a scheduler, and a controller manager. The master is responsible for the global state of the cluster, cluster-level scheduling of pods, and handling of events. Usually, all the master components are set up on a single host. When considering high-availability scenarios or very large clusters, you will want to have master redundancy. We will discuss highly available clusters in detail in Chapter 4, Securing Kubernetes.

 Pods

 A pod is the unit of work in Kubernetes. Each pod contains one or more containers. Containers in pods are always scheduled together (always run on the same machine). All the containers in a pod have the same IP address and port space; they can communicate using localhost or standard inter-process communication. In addition, all the containers in a pod can have access to shared local storage on the node hosting the pod. Containers don't get access to local storage or any other storage by default. Volumes of storage must be mounted into each container inside the pod explicitly. Pods are an important feature of Kubernetes. It is possible to run multiple applications inside a single Docker container by having something like supervisord as the main Docker process that runs multiple processes, but this practice is often frowned upon for the following reasons:

 	Transparency: Making the containers within the pod visible to the infrastructure enables the infrastructure to provide services to those containers, such as process management and resource monitoring. This facilitates a number of conveniences for users.

 	Decoupling software dependencies: The individual containers may be versioned, rebuilt, and redeployed independently. Kubernetes may even support live updates of individual containers someday.

 	Ease of use: Users don't need to run their own process managers, worry about signal and exit-code propagation, and so on.

 	Efficiency: Because the infrastructure takes on more responsibility, containers can be more lightweight.

 Pods provide a great solution for managing groups of closely related containers that depend on each other and need to co-operate on the same host to accomplish their purpose. It's important to remember that pods are considered ephemeral, throwaway entities that can be discarded and replaced at will. Any pod storage is destroyed with its pod. Each pod gets a unique ID (UID), so you can still distinguish between them if necessary.

 Labels

 Labels are key-value pairs that are used to group together sets of objects – very often pods. This is important for several other concepts, such as replication controllers, replica sets, deployments, and services that operate on dynamic groups of objects and need to identify the members of the group. There is an N × N relationship between objects and labels. Each object may have multiple labels, and each label may be applied to different objects. There are certain restrictions on labels by design. Each label on an object must have a unique key. The label key must adhere to a strict syntax. It has two parts: prefix and name. The prefix is optional. If it exists then it is separated from the name by a forward slash (/) and it must be a valid DNS sub-domain. The prefix must be 253 characters long at most. The name is mandatory and must be 63 characters long at most. Names must start and end with an alphanumeric character (a-z, A-Z, 0-9) and contain only alphanumeric characters, dots, dashes, and underscores. Values follow the same restrictions as names. Note that labels are dedicated to identifying objects and not for attaching arbitrary metadata to objects. This is what annotations are for.

 Annotations

 Annotations let you associate arbitrary metadata with Kubernetes objects. Kubernetes just stores the annotations and makes their metadata available. Annotations, like labels, are key-value pairs where the key may have an optional prefix and is separated from the key name by a forward slash (/). The name and prefix (if provided) must follow strict rules. For details, check out https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/#syntax-and-character-set.

 In my experience, you always need such metadata for complicated systems, and it's nice that Kubernetes recognizes this need and provides it out of the box so you don't have to come up with your own separate metadata store and mapping object for their metadata. While annotations are useful, their lack of structure can pose some problems when trying to process annotations in a generic way. Custom resource definitions are often touted as an alternative. We'll cover those later, in Chapter 15, Extending Kubernetes.

 Label selectors

 Label selectors are used to select objects based on their labels. Equality-based selectors specify a key name and a value. There are two operators, = (or ==) and !=, for equality or inequality based on the value; for example:

 role = webserver

 This will select all objects that have that label key and value.

 Label selectors can have multiple requirements separated by a comma; for example:

 role = webserver, application != foo

 Set-based selectors extend the capabilities, and allow selection based on multiple values:

 role in (webserver, backend)

 Services

 Services are used to expose some functionality to users or other services. They usually encompass a group of pods, usually identified by – you guessed it – a label. You can have services that provide access to external resources, or to pods you control directly at the virtual IP level. Native Kubernetes services are exposed through convenient endpoints. Note that services operate at layer 3 (TCP/UDP). Kubernetes 1.2 added the Ingress object, which provides access to HTTP objects. More on that later. Services are published or discovered via one of two mechanisms: DNS or environment variables. Services can be load-balanced by Kubernetes. However, developers can choose to manage load balancing themselves in the case of services that use external resources or require special treatment.

 There are many gory details associated with IP addresses, virtual IP addresses, and port spaces. We will discuss them in depth in Chapter 10, Exploring Advanced Networking.

 Volume

 Local storage on the pod is ephemeral and goes away with the pod. Sometimes that's all you need if the goal is just to exchange data between containers of the node, but sometimes it's important for the data to outlive the pod, or it's necessary to share data between pods. The volume concept supports that need. Note that, while Docker has a volume concept too, it's quite limited (although getting more powerful). Kubernetes uses its own separate volumes. Kubernetes also supports additional container runtimes, so it can't rely on Docker volumes even in principle.

 There are many volume types. Kubernetes currently directly supports many volume types, but the modern approach to extending Kubernetes with more volume types is through the Container Storage Interface (CSI), which we'll discuss in detail later. The built-in volume types will be gradually phased out in favor of out-of-tree plugins available through the CSI.

 Replication controllers and replica sets

 Replication controllers and replica sets both manage a group of pods identified by a label selector and ensure that a certain number are always up and running. The main difference between them is that replication controllers test for membership by name equality and replica sets can use set-based selection. Replica sets are the way to go as they are a superset of replication controllers. I expect replication controllers to be deprecated at some point. Kubernetes guarantees that you will always have the same number of pods running as you specified in a replication controller or a replica set. Whenever the number drops due to a problem with the hosting node or the pod itself, Kubernetes will fire up new instances. Note that, if you manually start pods and exceed the specified number, the replica set controller will kill some extra pods.

 Replication controllers used to be central to many workflows, such as rolling updates and running one-off jobs. As Kubernetes evolved, it introduced direct support for many of these workflows, with dedicated objects such as Deployment, Job, CronJob, and DaemonSet. We will meet them all later.

 StatefulSet

 Pods come and go, and if you care about their data then you can use persistent storage. That's all good. But sometimes you want Kubernetes to manage a distributed data store such as Cassandra or MySQL Galera. These clustered stores keep the data distributed across uniquely identified nodes. You can't model that with regular pods and services. Enter StatefulSet. If you remember, earlier we discussed pets versus cattle and how the cattle mindset is the way to go.

 Well, StatefulSet sits somewhere in the middle. StatefulSet ensures (similar to a replication set) that a given number of instances with unique identities are running at any given time. StatefulSet members have the following properties:

 	A stable hostname, available in DNS

 	An ordinal index

 	Stable storage linked to the ordinal and hostname

 StatefulSet can help with peer discovery as well as adding or removing members safely.

 Secrets

 Secrets are small objects that contain sensitive info such as credentials and tokens. They are stored by default as plaintext in etcd, accessible by the Kubernetes API server, and can be mounted as files in pods (using dedicated secret volumes that piggyback on regular data volumes) that need access to them. The same secret can be mounted in multiple pods. Kubernetes itself creates secrets for its components, and you can create your own secrets. Another approach is to use secrets as environment variables. Note that secrets in a pod are always stored in memory (tmpfs in the case of mounted secrets) for better security.

 Names

 Each object in Kubernetes is identified by a UID and a name. The name is used to refer to the object in API calls. Names should be up to 253 characters long and use lowercase alphanumeric characters, a dash (-), and a dot (.). If you delete an object, you can create another object with the same name as the deleted object, but the UIDs must be unique across the lifetime of the cluster. The UIDs are generated by Kubernetes, so you don't have to worry about it.

 Namespaces

 A namespace is a kind of virtual cluster. You can have a single physical cluster that contains multiple virtual clusters segregated by namespaces. By default, pods in one namespace can access pods and services in other namespaces. In multi-tenancy scenarios where it's important to totally isolate namespaces, you can do it with proper network policies. Note that node objects and persistent volumes don't live in a namespace. Kubernetes may schedule pods from different namespaces to run on the same node. Likewise, pods from different namespaces can use the same persistent storage.

 When using namespaces, you have to consider network policies and resource quotas to ensure proper access and distribution of the physical cluster resources.

 We've covered most of Kubernetes' primary concepts; there are a few more I mentioned briefly. In the next section, we will continue our journey into Kubernetes architecture by looking into its design motivations, the internals and implementation, and we'll even pick at the source code.

 Diving into Kubernetes architecture in depth

 Kubernetes has very ambitious goals. It aims to manage and simplify the orchestration, deployment, and management of distributed systems across a wide range of environments and cloud providers. It provides many capabilities and services that should work across all that diversity while evolving and remaining simple enough for mere mortals to use. This is a tall order. Kubernetes achieves this by following a crystal-clear, high-level design and well-thought-out architecture that promotes extensibility and pluggability. Many parts of Kubernetes are still hardcoded or environment-aware, but the trend is to refactor them into plugins and keep the core small, generic, and abstract. In this section, we will peel Kubernetes like an onion, starting with various distributed system design patterns and how Kubernetes supports them, then go over the surface of Kubernetes, which is its set of APIs, and then take a look at the actual components that comprise Kubernetes. Finally, we will take a quick tour of the source-code tree to gain an even better insight into the structure of Kubernetes itself.

 At the end of this section, you will have a solid understanding of Kubernetes architecture and implementation, and why certain design decisions were made.

 Distributed system design patterns

 All happy (working) distributed systems are alike, to paraphrase Tolstoy in Anna Karenina. That means that to function properly, all well-designed distributed systems must follow some best practices and principles. Kubernetes doesn't want to be just a management system; it wants to support and enable these best practices and provide high-level services to developers and administrators. Let's look at some of those best practices, described as design patterns.

 The sidecar pattern

 The sidecar pattern is about co-locating another container in a pod in addition to the main application container. The application container is unaware of the sidecar container and just goes about its business. A great example is a central logging agent. Your main container can just log to stdout, but the sidecar container will send all logs to a central logging service where they will be aggregated with the logs from the entire system. The benefits of using a sidecar container versus adding central logging to the main application container are enormous. First, applications are not burdened anymore with central logging, which could be a nuisance. If you want to upgrade or change your central logging policy or switch to a totally new provider, you just need to update the sidecar container and deploy it. None of your application containers change, so you can't break them by accident. The Istio service mesh uses the sidecar pattern to inject its proxies into each pod.

 The ambassador pattern

 The ambassador pattern is about representing a remote service as if it were local and possibly enforcing some policy. A good example of the ambassador pattern is if you have a Redis cluster with one master for writes and many replicas for reads. A local ambassador container can serve as a proxy and expose Redis to the main application container on the localhost. The main application container simply connects to Redis on localhost:6379 (Redis default port), but it connects to the ambassador running in the same pod, which filters the requests, and sends write requests to the real Redis master and read requests randomly to one of the read replicas. Just like with the sidecar pattern, the main application has no idea what's going on. That can help a lot when testing against a real local Redis. Also, if the Redis cluster configuration changes, only the ambassador needs to be modified; the main application remains blissfully unaware.

 The adapter pattern

 The adapter pattern is about standardizing output from the main application container. Consider the case of a service that is being rolled out incrementally: it may generate reports in a format that doesn't conform to the previous version. Other services and applications that consume that output haven't been upgraded yet. An adapter container can be deployed in the same pod with the new application container and massage the output to match the old version until all consumers have been upgraded. The adapter container shares the filesystem with the main application container, so it can watch the local filesystem, and whenever the new application writes something, it immediately adapts it.

 Multi-node patterns

 Single-node patterns are all supported directly by Kubernetes via pods. Multi-node patterns such as leader election, work queues, and scatter-gather are not supported directly, but composing pods with standard interfaces to accomplish them is a viable approach with Kubernetes.

 Many tools, frameworks, and add-ons that integrate deeply with Kubernetes utilize these design patterns. The beauty of these patterns is that they are all loosely coupled and don't require Kubernetes to be modified or even be aware of the presence of these integrations. The vibrant ecosystem around Kubernetes is a direct result of its architecture. Let's dig one level deeper and get familiar with the Kubernetes APIs.

 The Kubernetes APIs

 If you want to understand the capabilities of a system and what it provides, you must pay a lot of attention to its API. The API provides a comprehensive view of what you can do with the system as a user. Kubernetes exposes several sets of REST APIs for different purposes and audiences via API groups. Some of the APIs are used primarily by tools and some can be used directly by developers. An important aspect of the APIs is that they are under constant development. The Kubernetes developers keep it manageable by trying to extend (adding new objects and new fields to existing objects) and avoid renaming or dropping existing objects and fields. In addition, all API endpoints are versioned and often have an alpha or beta notation too; for example:

 /api/v1
/api/v2alpha1

 You can access the API through the kubectl CLI, via client libraries, or directly through REST API calls. There are elaborate authentication and authorization mechanisms we will explore in a later chapter. If you have the right permissions, you can list, view, create, update, and delete various Kubernetes objects. At this point, let's get a glimpse of the surface area of the APIs. The best way to explore the API is via API groups. Some API groups are enabled by default. Other groups can be enabled/disabled via flags. For example, to disable the batch V1 group and enable the batch V2 Alpha group, you can set the --runtime-config flag when running the API server as follows:

 --runtime-config=batch/v1=false,batch/v2alpha=true

 The following resources are enabled by default in addition to the core resources:

 	DaemonSets

 	Deployments

 	HorizontalPodAutoscalers

 	Ingress

 	Jobs

 	ReplicaSets

 In addition to API groups, another useful classification of available APIs is by functionality. Enter resource categories...

 Resource categories

 The Kubernetes API is huge, and breaking it down into categories helps a lot when you're trying to find your way around. Kubernetes defines the following resource categories:

 	Workloads: Objects you use to manage and run containers in the cluster

 	Discovery and Load Balancing: Objects you use to expose your workloads to the world as externally accessible, load-balanced services

 	Config and Storage: Objects you use to initialize and configure your applications, and to persist data that's outside the container

 	Cluster: Objects that define how the cluster itself is configured; these are typically used only by cluster operators

 	Metadata: Objects you use to configure the behavior of other resources within the cluster, such as HorizontalPodAutoscaler for scaling workloads

 In the following sub-sections, I'll list the resources that belong to each group with the API group they belong to in the following format: <resource name>: <API group>; for example, Container: core, where the resource is Container and the API group is core. I will not specify the version here because APIs move rapidly from alpha to beta to GA (general availability) and from V1 to V2, and so on.

 The workloads API

 The workloads API contains many resources. Here is a list of all the resources with the API groups they belong to:

 	Container: core

 	CronJob: batch

 	DaemonSet: apps

 	Deployment: apps

 	Job: batch

 	Pod: core

 	ReplicaSet: apps

 	ReplicationController: core

 	StatefulSet: apps

 Containers are created by controllers through pods. Pods run containers and provide environmental dependencies such as shared or persistent storage volumes and configuration or secret data injected into the container.

 Here is an example of the detailed documentation of one of the most common operations – getting a list of all the pods as a REST API:

 GET /api/v1/pods

 It accepts various query parameters (all optional):

 	pretty: If true, the output is pretty printed

 	labelSelector: A selector expression to limit the result

 	watch: If true, watch for changes and return a stream of events

 	resourceVersion: With watch, returns only events that occurred after that version

 	timeoutSeconds: Timeout for the list or watch operation

 The next category of resources deals with high-level networking.

 Discovery and Load Balancing

 This category is also known as service APIs. By default, workloads are only accessible within the cluster, and they must be exposed externally using either a LoadBalancer or NodePort Service.

 For development, internally accessible workloads can be accessed via proxy through the API master using the kubectl proxy command:

 	Endpoints: core

 	Ingress: networking.k8s.io

 	Service: core

 The next category of resources deals with storage and internal state management.

 Config and Storage

 Dynamic configuration without redeployment is a cornerstone of Kubernetes and running complex distributed applications on your Kubernetes cluster. Storing data is another paramount concern for any non-trivial system. The config and storage category provides multiple resources to address these concerns:

 	ConfigMap: core

 	CSIDriver: storage.k8s.io

 	CSINode: storage.k8s.io

 	Secret: core

 	PersistentVolumeClaim: core

 	StorageClass: storage.k8s.io

 	Volume: storage.k8s.io

 	VolumeAttachment: storage.k8s.io

 The next category of resources deals with helper resources that are usually part of other high-level resources.

 Metadata

 The metadata resources typically show up as sub-resources of the resources of the configuration. For example, a limit range will be part of a pod configuration. You will not interact with these objects directly most of the time. There are many metadata resources – there isn't much point in listing all of them. You can find the complete list here: https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.16/#-strong-metadata-apis-strong-.

 Clusters

 The resources in the cluster category are designed for use by cluster operators as opposed to developers. There are many resources in this category as well. Here are some of the most important resources:

 	Namespace: core

 	Node: core

 	PersistentVolume: core

 	ResourceQuota: core

 	Role: rbac.authorization.k8s.io

 	RoleBinding: rbac.authorization.k8s.io

 	ClusterRole: rbac.authorization.k8s.io

 	ClusterRoleBinding: rbac.authorization.k8s.io

 	NetworkPolicy: networking.k8s.io

 Now that we understand how Kubernetes organizes and exposes its capabilities via API groups and resource categories, let's see how it manages the physical infrastructure and keeps it up with the state of the cluster.

 Kubernetes components

 A Kubernetes cluster has several master components used to control the cluster, as well as node components that run on each worker node. Let's get to know all these components and how they work together.

 Master components

 The master components can all run on one node, but in a highly available setup or a very large cluster, they may be spread across multiple nodes.

 The API server

 The Kubernetes API server exposes the Kubernetes REST API. It can easily scale horizontally as it is stateless and stores all the data in the etcd cluster. The API server is the embodiment of the Kubernetes control plane.

 Etcd

 Etcd is a highly reliable distributed data store. Kubernetes uses it to store the entire cluster state. In a small, transient cluster a single instance of etcd can run on the same node with all the other master components. But for more substantial clusters, it is typical to have a three-node or even five-node etcd cluster for redundancy and high availability.

 The Kube controller manager

 The Kube controller manager is a collection of various managers rolled up into one binary. It contains the replication controller, the pod controller, the services controller, the endpoints controller, and others. All these managers watch over the state of the cluster via the API and their job is to steer the cluster into the desired state.

 Cloud controller managers

 When running in the cloud, Kubernetes allows cloud providers to integrate their platform for the purpose of managing nodes, routes, services, and volumes. The cloud provider code interacts with the Kubernetes code. It replaces some of the functionality of the Kube controller manager. When running Kubernetes with a cloud controller manager, you must set the Kube controller manager flag --cloud-provider to "external". This will disable the control loops that the cloud controller manager is taking over. The cloud controller manager was introduced in Kubernetes 1.6 and it's being used by multiple cloud providers already, such as:

 	GCP

 	AWS

 	Azure

 	Baidu Cloud

 	DigitalOcean

 	Oracle

 	Linode

 A quick note about Go to help you parse the code: the method name comes first, followed by the method's parameters in parentheses. Each parameter is a pair, consisting of a name followed by its type. Finally, the return values are specified. Go allows multiple return types. It is very common to return an error object in addition to the actual result. If everything is OK, the error object will be nil.

 Here is the main interface of the cloudprovider package:

 package cloudprovider
import (
 "errors"
 "fmt"
 "strings"
 "k8s.io/api/core/v1"
 "k8s.io/apimachinery/pkg/types"
 "k8s.io/client-go/informers"
 "k8s.io/kubernetes/pkg/controller"
)
// Interface is an abstract, pluggable interface for cloud providers.
type Interface interface {
 Initialize(clientBuilder controller.ControllerClientBuilder)
 LoadBalancer() (LoadBalancer, bool)
 Instances() (Instances, bool)
 Zones() (Zones, bool)
 Clusters() (Clusters, bool)
 Routes() (Routes, bool)
 ProviderName() string
 HasClusterID() bool
}

 Most of the methods return other interfaces with their own method. For example, here is the LoadBalancer interface:

 type LoadBalancer interface {
GetLoadBalancer(clusterName string,
 service *v1.Service) (status *v1.LoadBalancerStatus,
 exists bool,
 err error)
EnsureLoadBalancer(clusterName string,
 service *v1.Service,
 nodes []*v1.Node) (*v1.LoadBalancerStatus, error)
UpdateLoadBalancer(clusterName string, service *v1.Service, nodes []*v1.Node) error
EnsureLoadBalancerDeleted(clusterName string, service *v1.Service) error
}

 The cloud controller manager is instrumental in bringing Kubernetes to all the major cloud providers, but the heart and soul of Kubernetes is the scheduler.

 kube-scheduler

 Kube-scheduler is responsible for scheduling pods into nodes. This is a very complicated task as it needs to consider multiple interacting factors, such as the following:

 	Resource requirements

 	Service requirements

 	Hardware/software policy constraints

 	Node affinity and anti-affinity specifications

 	Pod affinity and anti-affinity specifications

 	Taints and tolerations

 	Data locality

 	Deadlines

 If you need some special scheduling logic not covered by the default kube-scheduler, you can replace it with your own custom scheduler. You can also run your custom scheduler side by side with the default scheduler and have your custom scheduler schedule only a subset of the pods.

 DNS

 Starting with Kubernetes 1.3, a DNS service is part of the standard Kubernetes cluster. It is scheduled as a regular pod. Every service (except headless services) receives a DNS name. Pods can receive a DNS name too. This is very useful for automatic discovery.

 Node components

 Nodes in the cluster need a couple of components to interact with the cluster master components, receive workloads to execute, and update the Kubernetes API server regarding their status.

 Proxy

 Kube-proxy does low-level network housekeeping on each node. It reflects the Kubernetes services locally and can perform TCP and UDP forwarding. It finds cluster IPs via environment variables or DNS.

 Kubelet

 The kubelet is the Kubernetes representative on the node. It oversees communicating with the master components and manages the running pods. That includes the following:

 	Receiving pod specs

 	Downloading pod secrets from the API server

 	Mounting volumes

 	Running the pod's containers (via the configured runtime)

 	Reporting the status of the node and each pod

 	Running the container startup, liveness, and readiness probes

 In this section, we dug into the guts of Kubernetes and explored its architecture from a very high level of vision and supported design patterns, through its APIs and the components used to control and manage the cluster. In the next section, we will take a quick look at the various runtimes that Kubernetes supports.

 Kubernetes runtimes

 Kubernetes originally only supported Docker as a container runtime engine. But that is no longer the case. Kubernetes now supports several different runtimes:

 	Docker (via a CRI shim)

 	rkt (direct integration to be replaced with Rktlet)

 	CRI-O

 	Frakti (Kubernetes on the Hypervisor, previously Hypernetes)

 	rktlet (CRI implementation for rkt)

 	CRI-containerd

 The major design policy is that Kubernetes itself should be completely decoupled from specific runtimes. The Container Runtime Interface (CRI) enables it.

 In this section, you'll get a closer look at the CRI and get to know the individual runtime engines. At the end of this section, you'll be able to make a well-informed decision about which runtime engine is appropriate for your use case and under what circumstances you may switch or even combine multiple runtimes in the same system.

 The container runtime interface (CRI)

 The CRI is a collection of a gRPC API, specifications/requirements, and libraries for container runtimes to integrate with a kubelet on a node. In Kubernetes 1.7, the internal Docker integration in Kubernetes was replaced with a CRI-based integration. This is a big deal. It opened the door to multiple implementations that can take advantage of advances in the container world. The kubelet doesn't need to interface directly with multiple runtimes. Instead, it can talk to any CRI-compliant container runtime. The following diagram illustrates the flow:

 [image:]
 Figure 1.2: The container runtime interface (CRI) flow diagram

 There are two gRPC service interfaces, ImageService and RuntimeService, that CRI container runtimes (or shims) must implement. ImageService is responsible for managing images. Here is the gRPC/protobuf interface (this is Google's Protobuf specification language and not Go):

 service ImageService {
 rpc ListImages(ListImagesRequest) returns (ListImagesResponse) {}
 rpc ImageStatus(ImageStatusRequest) returns (ImageStatusResponse) {}
 rpc PullImage(PullImageRequest) returns (PullImageResponse) {}
 rpc RemoveImage(RemoveImageRequest) returns (RemoveImageResponse) {}
 rpc ImageFsInfo(ImageFsInfoRequest) returns (ImageFsInfoResponse) {}
}

 RuntimeService is responsible for managing pods and containers. Here is the gRPC/protobuf interface:

 service RuntimeService {
 rpc Version(VersionRequest) returns (VersionResponse) {}
 rpc RunPodSandbox(RunPodSandboxRequest) returns (RunPodSandboxResponse) {}
 rpc StopPodSandbox(StopPodSandboxRequest) returns (StopPodSandboxResponse) {}
 rpc RemovePodSandbox(RemovePodSandboxRequest) returns (RemovePodSandboxResponse) {}
 rpc PodSandboxStatus(PodSandboxStatusRequest) returns (PodSandboxStatusResponse) {}
 rpc ListPodSandbox(ListPodSandboxRequest) returns (ListPodSandboxResponse) {}
 rpc CreateContainer(CreateContainerRequest) returns (CreateContainerResponse) {}
 rpc StartContainer(StartContainerRequest) returns (StartContainerResponse) {}
 rpc StopContainer(StopContainerRequest) returns (StopContainerResponse) {}
 rpc RemoveContainer(RemoveContainerRequest) returns (RemoveContainerResponse) {}
 rpc ListContainers(ListContainersRequest) returns (ListContainersResponse) {}
 rpc ContainerStatus(ContainerStatusRequest) returns (ContainerStatusResponse) {}
 rpc UpdateContainerResources(UpdateContainerResourcesRequest) returns (UpdateContainerResourcesResponse) {}
 rpc ExecSync(ExecSyncRequest) returns (ExecSyncResponse) {}
 rpc Exec(ExecRequest) returns (ExecResponse) {}
 rpc Attach(AttachRequest) returns (AttachResponse) {}
 rpc PortForward(PortForwardRequest) returns (PortForwardResponse) {}
 rpc ContainerStats(ContainerStatsRequest) returns (ContainerStatsResponse) {}
 rpc ListContainerStats(ListContainerStatsRequest) returns (ListContainerStatsResponse) {}
 rpc UpdateRuntimeConfig(UpdateRuntimeConfigRequest) returns (UpdateRuntimeConfigResponse) {}
 rpc Status(StatusRequest) returns (StatusResponse) {}
}

 The data types used as arguments and return types are called messages and are also defined as part of the API. Here is one of them:

 message CreateContainerRequest {
 string pod_sandbox_id = 1; ContainerConfig config = 2; PodSandboxConfig sandbox_config = 3;
}

 As you can see, messages can be embedded inside each other. The CreateContainerRequest message has one string field and two other fields, which are themselves messages: ContainerConfig and PodSandboxConfig.

 Now that you are familiar at the code level with what Kubernetes considers a runtime engine, let's look at the individual runtime engines briefly.

 Docker

 Docker is, of course, the 800-pound gorilla of containers. Kubernetes was originally designed to manage only Docker containers. The multi-runtime capability was first introduced in Kubernetes 1.3 and the CRI in Kubernetes 1.5. Until then, Kubernetes could only manage Docker containers.

 I assume you're very familiar with Docker and what it brings to the table if you are reading this book. Docker enjoys tremendous popularity and growth, but there is also a lot of criticism of it. Critics often mention the following concerns:

 	Security

 	Difficulty setting up multi-container applications (in particular, networking)

 	Development, monitoring, and logging

 	The limitations of Docker containers running one command

 	Releasing half-baked features too fast

 Docker is aware of the criticisms and has addressed some of these concerns. In particular, Docker invested in its Docker Swarm product. Docker Swarm is a Docker-native orchestration solution that competes with Kubernetes. It is simpler to use than Kubernetes, but it's not as powerful or mature.

 Starting with Docker 1.12, swarm mode is included in the Docker daemon natively, which upset some people due to bloat and scope creep. As a result, more people turned to CoreOS rkt as an alternative solution.

 Starting with Docker 1.11, released in April 2016, Docker has changed the way it runs containers. The runtime now uses containerd and runC to run Open Container Initiative (OCI) images in containers:

 [image:]
 Figure 1.3: Architecture of Docker 1.11 after building it on runC and containerd

 rkt

 rkt is a container manager from CoreOS (the developers of the CoreOS Linux distro, etcd, flannel, and more). It is not developed anymore as CoreOS was acquired by Red Hat, who was later acquired by IBM. However, the legacy of rkt is the proliferation of multiple container runtimes beyond Docker and pushing Docker toward the standardized OCI effort.

 The rkt runtime prides itself on its simplicity and a strong emphasis on security and isolation. It doesn't have a daemon like Docker Engine and relies on the OS init system, such as systemd, to launch the rkt executable. rkt can download images (both App Container (appc) images and OCI images), verify them, and run them in containers. Its architecture is much simpler.

 App container

 CoreOS started a standardization effort in December 2014 called appc. This includes a standard image format (ACI – Application Container Image), runtime, signing, and discovery. A few months later, Docker started its own standardization effort with OCI. At this point, it seems these efforts will converge. This is a great thing as tools, images, and runtime will be able to interoperate freely. We're not there yet.

 CRI-O

 CRI-O is a Kubernetes incubator project. It is designed to provide an integration path between Kubernetes and OCI-compliant container runtimes like Docker. CRI-O provides the following capabilities:

 	Support for multiple image formats, including the existing Docker image format

 	Support for multiple means to download images, including trust and image verification

 	Container image management (managing image layers, overlay filesystems, and so on)

 	Container process lifecycle management

 	Monitoring and logging required to satisfy the CRI

 	Resource isolation as required by the CRI

 It supports runc and Kata containers right now, but any OCI-compliant container runtime can be plugged in and be integrated with Kubernetes.

 Hyper containers

 Hyper containers are another option. A Hyper container has a lightweight VM (its own guest kernel) and it can run on bare metal. Instead of relying on Linux cgroups for isolation, it relies on a hypervisor. This approach presents an interesting mix compared to standard bare-metal clusters, which are difficult to set up, and public clouds, where containers are deployed on heavyweight VMs.

 Frakti

 Frakti lets Kubernetes use hypervisors via the OCI-compliant runV project to run its pods and containers. It's a lightweight, portable, and secure approach that provides strong isolation with its own kernel compared to the traditional Linux namespace-based approaches, but not as heavyweight as a full-fledged VM.

 Stackube

 Stackube (previously called Hypernetes) is a multi-tenant distribution that uses Hyper containers as well as some OpenStack components for authentication, persistent storage, and networking. Since containers don't share the host kernel, it is safe to run containers of different tenants on the same physical host. Stackube uses Frakti, of course, as its container runtime.

 In this section, we've covered the various runtime engines that Kubernetes supports as well as the trend toward standardization, convergence, and externalizing the runtime support from core Kubernetes. In the next section, we'll take a step back and look at the big picture, and how Kubernetes fits into the CI/CD pipeline.

 Continuous integration and deployment

 Kubernetes is a great platform for running your microservice-based applications. But, at the end of the day, it is an implementation detail. Users, and often most developers, may not be aware that the system is deployed on Kubernetes. But Kubernetes can change the game and make things that were too difficult before possible.

 In this section, we'll explore the CI/CD pipeline and what Kubernetes brings to the table. At the end of this section, you'll be able to design CI/CD pipelines that take advantage of Kubernetes properties such as easy scaling and development-production parity to improve the productivity and robustness of day-to-day development and deployment.

 What is a CI/CD pipeline?

 A CI/CD pipeline is a set of tools and steps that takes a set of changes by developers or operators that modify the code, data, or configuration of a system, tests them, and deploys them to production (and possibly other environments). Some pipelines are fully automated and some are semi-automated with human checks. In large organizations, there may be test and staging environments that changes are deployed to automatically, but release to production requires manual intervention. The following diagram depicts a typical pipeline:

 [image:]
 Figure 1.4: Diagram representing CI/CD pipeline

 It may be worth mentioning that developers can be completely isolated from production infrastructure. Their interface is just a Git workflow, where a good example is Deis Workflow (PaaS on Kubernetes, similar to Heroku).

 Designing a CI/CD pipeline for Kubernetes

 When your deployment target is a Kubernetes cluster, you should rethink some traditional practices. For starters, the packaging is different. You need to bake images for your containers. Reverting code changes is super easy and instantaneous by using smart labeling. It gives you a lot of confidence that, if a bad change slips through the testing net somehow, you'll be able to revert to the previous version immediately. But you want to be careful there. Schema changes and data migrations can't be automatically rolled back.

 Another unique capability of Kubernetes is that developers can run a whole cluster locally. That takes some work when you design your cluster, but since the microservices that comprise your system run in containers, and those containers interact via APIs, it is possible and practical to do. As always, if your system is very data-driven, you will need to accommodate that and provide data snapshots and synthetic data that your developers can use.

 There are many commercial CI/CD solutions that support Kubernetes, but there are also several Kubernetes-native solutions, such as Tekton, Argo CD, and Jenkins X.

 A Kubernetes-native CI/CD solution runs inside your cluster, is specified using Kubernetes CRDs, and uses containers to execute the steps. By using a Kubernetes-native CI/CD solution, you get to benefit from Kubernetes managing and easily scaling your CI/CD pipelines, which is otherwise often a non-trivial task.

 Summary

 In this chapter, we covered a lot of ground, and you got to understand the design and architecture of Kubernetes. Kubernetes is an orchestration platform for microservice-based applications running as containers. Kubernetes clusters have master and worker nodes. Containers run within pods. Each pod runs on a single physical or virtual machine. Kubernetes directly supports many concepts, such as services, labels, and persistent storage. You can implement various distributed system design patterns on Kubernetes. Container runtimes just need to implement the CRI. Docker, rkt, hyper containers, and more are supported.

 In Chapter 2, Creating Kubernetes Clusters, we will explore the various ways to create Kubernetes clusters, discuss when to use different options, and build a multi-node cluster.

OEBPS/Images/Image1045.png

OEBPS/Images/B15559_01_04.png
tests

User acceptance

Automated
acceptance tests

Build & unit
tests

Version control

Delivery team

Foedback

OEBPS/Images/B15559_01_01.png
hubect (ser conmronds)

Pod

=)

[}

Maste companents
Colocated, o proa cros macnes,
6 e by chitr 7.

OEBPS/Images/lightbulb.png

OEBPS/Images/Information_Box_Icon.png

OEBPS/Images/Image1052.png
Packh

OEBPS/Images/B15559_01_03.png
Same Docker Ul and commands

Docker Engine User interacts with Docker Engine
containerd Engine communicates with containerd

containerd spins up runc or other “OCI”
“complaint” runtime to run containers

OEBPS/Images/B15559_01_02.png
CRI
protobuf

_ //_.,‘ﬁ
client '

OEBPS/Images/cover.png
EXPERT INSIGHT

Mastering
Kubernetes

Level up your container orchestration skills with £
Kubernetes to build, run, secure, and observe 7
large-scale distributed apps

Third Edition ‘a9

Gigi Sayfan Packt>

