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Dedication



This book is dedicated in loving memory of Dr Pallavolu Maheswara Reddy, whose passing on October 25, 2023, deeply grieved the global biological nitrogen fixation community. Dr Reddy, affiliated with The Energy and Resources Institute, New Delhi, India, was a luminary in the field, leaving an indelible mark through his numerous contributions.

Born in Bangalore, India in 1947, Dr. Reddy earned his Ph.D. in microbial ecology from Banaras University, Varanasi in 1978. His doctoral research, which delved into the biochemical control of heterocyst formation in blue-green algae, marked the beginning of a distinguished scientific journey. His groundbreaking investigations encompassed the genetic potential of rice in forming nitrogen-fixing symbiosis with rhizobia, pioneering studies that illuminated rice's ability to perceive and transduce rhizobial Nod signals, akin to legume nodulation. Additionally, his discovery of rice's homologues of legume nodulation genes revolutionized our understanding of this crucial biological process. Dr. Reddy's pioneering research continues to inform and inspire scientific research worldwide, particularly in enhancing rice's symbiotic relationship with rhizobia.

Beyond his scientific ability, Dr. Reddy was renowned for his kindness, strength and unwavering spirit. His exceptional professional achievements were paralleled by his ability to forge deep connections with colleagues and students alike, leaving an enduring impact on all who crossed his path. His legacy extends through the ongoing work of his graduate students and colleagues, who continue to champion biological nitrogen fixation for sustainable agricultural development.

In honoring Dr Reddy's memory, we pay tribute to a brilliant scientist and an extraordinary human being whose legacy will continue to inspire generations to come.


Introduction

In the last 60 years fertiliser use in agriculture has increased by 900%. However, it’s been reported that up to 80% of these fertilisers are not utilised by crops but are lost to the environment as nitrous oxide, ammonia and nitrate. Improving nitrogen use efficiency is recognised as one possible solution to reducing the sector’s environmental impact and optimising its productivity and sustainability in the face of increasing pressure to feed a growing population.

This volume reviews recent advances in understanding nitrogen cycling in soil, best practices to assess crop nitrogen status and different ways of optimising nitrogen use efficiency. The chapters are split into three parts: Part 1 chapters explore topics such as nitrogen cycling in soil, nitrogen use efficiency and crop plant growth, breeding and other molecular interventions for improving crop nitrogen use efficiency, and improving nitrogen use efficiency in major field crops. Chapters in Part 2 discuss developments in proximal sensors to detect crop nitrogen, synchronising nitrogen fertiliser application with crop nitrogen needs, and enhanced efficiency nitrogen fertilisers, as well as deep banding and sub-surface nitrogen fertiliser application, modelling and decision support systems for optimising nitrogen application, and economic perspectives on nitrogen cropping systems. Finally, Part 3 chapters review optimising livestock manure as a source of nitrogen, improving soil management to optimise nitrogen use, optimising service crops as a source of nitrogen, and the role of rotations and break crops in optimising nitrogen.

Part 1 Understanding nitrogen cycling in crop production

The first chapter of the book focuses on the advances in understanding nitrogen (N) cycling in soil. Chapter 1 begins by describing the knowledge surrounding nitrogen cycling processes and bringing into focus the main issues researchers and farmers face when attempting to optimise productivity while minimising adverse nitrogen losses. This covers: nitrogen fixation, mineralisation, plant nitrogen uptake, volatilisation, nitrification, nitrate leaching, and denitrification. Next, three case studies focusing on the use of cover crop mixtures to mitigate nitrate leaching are explored. These are: the response of soil N-cycling genes to nitrification and urease inhibitors, field-scale nitrous oxide fluxes and microbial processes under two management systems, and finally, nitrous oxide flux during spring thaw.

Chapter 2 examines the role of ammonium transport proteins in improving nitrogen use efficiency in crop production. The chapter begins with a description of setting up the nodule nitrogen-fixing system which is followed by sections covering transport activities of the symbiosome membrane, nitrogen fixation and delivery in nodules, and the requirement for ammonium transporters. Next, the chapter explores ammonium transport in legumes, ammonium transporter functionality from Arabidopsis thaliana, and altered ammonium transporter activity in plants. A section on the ammonium major facilitator is also included. Finally, the chapter explores the physiological role of the ammonium major facilitator in root nodules.

The following chapter concerns molecular interventions for improving crop nitrogen use efficiency, specifically trends, opportunities and challenges in rice. Chapter 3 begins by detailing a selection of nitrogen use efficiency indices, which is followed by a description of nitrogen management practices for improved nitrogen use efficiency. Next, biological intervention for nitrogen use efficiency improvement is explored, covering: nitrogen use efficiency phenotypes, quantitative trail loci mapping, whole genome re-sequencing and genome-wide association study for nitrogen use efficiency candidates. Genetic manipulation of genes involved in nitrogen use efficiency is also reviewed. Biological processes regulated by nitrogen use efficiency genes are also covered alongside genetic and genomic strategies for manipulation of nitrogen use efficiency genes, and molecular markers for nitrogen use efficiency genes in rice.

The final chapter of Part 1 discusses improving the effective use of nitrogen on major field crops across the globe. Chapter 4 begins with an outline of the traditional nitrogen framework for targeting optimal nitrogen supply before detailing a more functional nitrogen indicator for evaluating different genotype–environment–management scenarios. A section regarding the interactions of plant nitrogen status with other nutrients and water is also included, as well as a section on the potential use of the nitrogen nutrition index across genotype–environment–management scenarios. This is followed by a retrospective analysis of true gains of nitrogen over time for major field crop and an exploration of a path forward for enhancing nitrogen uptake and improve yields. Finally, the chapter examines using the nitrogen nutrition index as a holistic approach to defining crop nitrogen status.

Part 2 Monitoring and optimising nitrogen use

Part 2 opens with a chapter about developments in proximal sensors to detect crop nitrogen status. Chapter 5 begins with an exploration of the principles of proximal sensing, and proximal sensor types and applications for crop nitrogen status assessment. The sensors examined are the leaf colour chart, chlorophyll meters, fluorescence meters, and reflectance sensors. A section on the integration of crop data to develop algorithms to predict nitrogen requirements is also included.

The subject of Chapter 6 is synchronising nitrogen fertiliser application to crop nitrogen needs. It begins with an explanation of the asynchrony between crop nitrogen demand, soil nitrogen supply and fertiliser nitrogen application. The chapter then moves on to discuss improving fertiliser nitrogen use efficiency through synchronising fertiliser nitrogen application with soil nitrogen and crop nitrogen demand. After this, a series of innovative nitrogen management strategies are explored, including: in-season monitoring of crop nitrogen and/or biomass status, site-specific nutrient management using split applications, management zones, and enhanced efficiency fertilisers.

Chapter 7 highlights developments in the use of enhanced efficiency nitrogen fertilisers. It starts with a discussion of enhanced efficiency fertilisers, covering urease inhibitors, nitrification inhibitors and controlled-release fertilisers. Next the chapter examines the performance of these enhanced efficiency fertilisers using insights from meta-analyses, whilst also taking into account the need to design new enhanced efficiency fertilisers. Finally, the societal costs and benefits of enhanced efficiency fertiliser adoption are considered.

The next chapter covers banding nitrogen fertilisers and the implications for enhanced efficiency fertiliser technology. Chapter 8 begins by describing the nitrogen dynamics within bands of urea, going over the initial reactions on urea fertiliser in soil, the impact of banding on urea-nitrogen reactions, factors that influence the ‘band effect’, and the implications for nitrogen use efficiency and nitrogen losses. This is followed by a section on the nitrogen dynamics and implications for controlled-release fertilisers, reviewing synthetic polymer and biodegradable coatings. The chapter then moves on to discuss chemically-stabilised fertilisers, in particular synthetic polymer coatings and nitrification inhibitors. Finally, a case study of plant uptake and soil nitrogen dynamics from banded enhanced efficiency fertilisers is examined.

The subject of Chapter 9 is addressing the complexities of nitrogen management in maize production using dynamic models. The chapter begins by outlining the complexity of nitrogen management, covering 4R decision support, nitrogen rate and precision, computing optimum rates, and factors that affect optimum nitrogen rate. Next, the chapter brings focus to improved nitrogen rate prediction technologies, such as adaptive approaches and dynamic simulations models that incorporate the complexity of production environments. Finally, an Adapt-N case study is explored.

The final chapter of Part 2 draws attention to the economics of nitrogen in farming systems and beyond. Chapter 10 opens with an investigation of the economics of nitrogen as an input to production and nitrogen and economic risk at the farm level. The economics of nitrogen fixation by legumes is then examined, followed by the existence of flat payoff functions, which often allow flexibility in decisions about nitrogen fertiliser rates. After this, the chapter offers explanations for the over-application of nitrogen fertilisers by some farmers, the market for nitrogen fertiliser, and, finally, the economics of nitrogen pollution. 

Part 3 Organic sources of nitrogen

Part 3 begins with a chapter on optimising livestock manure as a source of nitrogen and other nutrients. Chapter 11 provides a comprehensive overview of manure management. The basics of manure composition, collection, storage, and application are summarised with an emphasis on both scientific and practical considerations. Following this, long-standing challenges in manure management and the history of responses are reviewed, as well as two case studies which examine managing high carbon horse manure and reducing ammonia volatilisation. 

Chapter 12 focuses on characterising soil nitrogen availability to improve nitrogen fertiliser recommendations. This chapter reviews a series of studies aiming to understand how inherent soil nitrogen supply might supplement the need for nitrogen fertiliser inputs in corn and forage management systems. The chapter also discusses research on the correlation and calibration of soil-test biological activity with soil nitrogen availability. Laboratory incubations, greenhouse growth trials and yield response trials in the field are also outlined, as well as a new approach for adjusting nitrogen fertiliser recommendations in the light of soil-available nitrogen.

Chapter 13 concerns service crops (which commonly include cover crops) as a source of nitrogen in temperate Europe. The chapter includes a discussion on service crops grown in the period between two main crops and those intercropped with the main crop. It also describes the effects of service crops on yields, covering undersown service crops and the effects on the main crop, pre-emptive competition effects on the following main crop, and as living mulches. Next, the residual effects of service crops are examined, followed by a section on nitrate leaching.

The final chapter of the book reviews how crop rotations affect nitrogen flows in organic farming. Chapter 14 begins by outlining the relationship between crop rotations and nitrogen flows, then introduces a comprehensive case study assessing 91 temperate field studies published between 1990 and 2020 that included at least one organic production system. The case study collates nitrogen input, output, and balance for the whole crop rotation and uses this data to analyse the nitrogen use efficiency of organic farming under different management regimes. Finally, the chapter offers ways of improving the use of rotations to optimise nitrogen flows and nitrogen use efficiency.
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 1Introduction

Scientific advances in understanding nitrogen cycling within agricultural soils have centered around the overriding challenge of optimizing crop production while minimizing environmental consequences. Despite dinitrogen being a dominant gas in the atmosphere, accounting for 78% of dry air by volume, fixed organic nitrogen and ammonium are often the limiting factors for primary productivity (Tate, 2020). The evolution of microbial metabolic pathways, including fixation, mineralization, and nitrification, supports the movement of nitrogen through the atmosphere, hydrosphere, and lithosphere alongside primary production (i.e. biosphere) (Canfield et al., 2010). However, increasing demand for crop production since the nineteenth century has resulted in anthropogenic alterations to the nitrogen cycle, such as the application of anthropogenic fertilizers, which have increased the supply of reactive nitrogen (Galloway et al., 2013). Despite this, crops’ nitrogen use efficiency (NUE) has remained relatively constant at 50% (Fageria and Baligar, 2005). Consequently, nitrogen loss via ammonia volatilization, nitrate leaching, and nitrous oxide emissions have increased, presenting environmental concerns (Fowler et al., 2013).

Re-synchronizing the nitrogen supply with crop nitrogen requirements in agricultural systems will support increased productivity, reduced economic losses, and environmental remediation. To accomplish this, researchers and farmers require a detailed understanding of nitrogen fixation, mineralization, plant nitrogen uptake, volatilization, nitrification, and denitrification, to predict the natural supply and losses of nitrogen to the system. This chapter outlines current knowledge, recent advances in these research areas, and the main issues researchers and farmers are presented with when attempting to optimize productivity while minimizing environmental impacts.

1.1 Nitrogen fixation: moving nitrogen (N2) from the atmosphere to the lithosphere

The fixation of nitrogen is the transformation of dinitrogen (N2) to ammonium (NH4+), which can be carried out by the Haber–Bosch process or through biological nitrogen fixation (BNF) by free-living, associative, or symbiotic diazotrophs.

The Haber–Bosch process replicates the natural biological nitrogen fixation reaction using high temperature and pressure systems alongside iron oxide (Fe3O4) as a catalyst to replicate the biological process (McLaren and Cameron, 1996).





The increased use of synthetic nitrogen fertilizers has directly altered the rate at which nitrogen enters the soil system. By increasing the nitrogen input, crop production has significantly risen, with synthetic fertilizer use supporting 48% of the global food supply in 2008 (Erisman et al., 2008). However, the low NUE and fertilizer recovery rate of key crops mean that approximately 57% of applied nitrogen is lost via nitrate leaching and gaseous emissions (Udvardi et al., 2021, Zhang et al., 2015). Therefore, recent literature has suggested that utilizing BNF as a natural source of nitrogen in the soil can reduce the requirement for fertilizer inputs while maintaining productivity.

Several bacterial groups contain the nitrogenase enzyme, which catalyzes the energy-expensive reduction of N2 to NH3.





Free-living diazotrophs, including Azotobacter, Bacillus, and Clostridium species, source carbon through the oxidation of organic molecules released by other organisms and plants or through chemolithotrophic capabilities, which allow for the utilization of inorganic molecules. However, due to the scarcity of suitable carbon sources, these species' contribution to global agricultural nitrogen fixation remains relatively low (Wagner, 2011; Norman and Friesen, 2017). Similar limitations occur with associative BNF, observed through species of Azospirillum which form associations with several grasses, including rice, wheat, and corn (Vlassak and Reynders, 1979).

Symbiotic nitrogen fixation is the direct exchange of carbon and nitrogen between a bacteria species and a host plant. A series of complex signal transfers ensure that the two organisms are compatible, a biological mechanism to control the energy-expensive nodulation process further described in Ferguson et al. (2010) and Sprent et al. (2017). Following root nodulation, the bacteria infect the host plant root system, from which nitrogen fixation and the passive diffusion of essential nutrients can occur (Udvardi and Day, 1997). The dominant symbiotic relationship within global agricultural systems is between legume plants and Rhizobium bacteria (Ray and Daniel, 2004; Lugtenberg, 2016).

Global estimates of nitrogen input via BNF are challenging to obtain and often have significant uncertainty. Recent literature indicates that the likely range is between 52 Tg and 130 Tg N per year, with the majority of legume BNF occurring in tropical or subtropical regions (Davies-Barnard and Friedlingstein, 2020; Herridge et al., 2008). The input through agriculture is reported at 50–70 Tg N per year (Zeng et al., 2022).

Utilizing BNF within a cropping system can be achieved through several methods, including crop rotations, simultaneous cropping, legumes as a cover or catch crop, and green manures (Reinprecht et al., 2020; Kebede, 2021). The current challenge, however, is understanding how the rate of BNF is impacted by soil and environmental conditions and ensuring that the production and environmental benefits outweigh the increased costs associated with the above practices.

High concentrations of readily available nitrogen suppress the rate of BNF, acting as a biological control to limit the occurrence of the energy-expensive process (Zheng et al., 2019). A multi-year study observed that the application of 100 kg N ha−1 reduced the percentage of nitrogen derived from BNF from common bean (Phaseolus vulgaris L.) by 47% in the first year and 55% in the second and third years (Reinprecht et al., 2020). Additional studies have observed similar reductions alongside decreased nodule numbers and weight across several legume species and fertilizer rates (Argaw and Muleta, 2018; Chekanai et al., 2018; Pereira and Bliss, 1989). Reducing fertilizer application rate to optimize BNF has been shown to have either a negligible or positive impact on crop yield production (Mesfin et al., 2020; Peoples et al., 1995). However, post-harvest increases in nitrogen losses have been observed following the decomposition of legume residue due to its high nitrogen content (Jensen and Hauggaard-Nielsen, 2003; Tamagno et al., 2018). Considerable research has also focused on the response of BNF bacteria to soil water content, nutrient levels, pH, texture, salinity, temperature, and soil organic matter (SOM) content (Rice et al., 1977; Khosro et al., 2012; Vitousek et al., 2013). Understanding BNF's spatial and temporal variations are critical to achieving accurate fertilizer budgets.

Further advancements are required to assess the economic and environmental benefits of improved BNF utilization on an annual farm scale, accounting for the increased labor, machine use, and potential post-harvest nitrogen loss. Current research also focuses on understanding mycorrhizae's role in the symbiotic relationship, nodulation genetic regulations, and the potential to promote BNF within non-legume species (Rosenblueth et al., 2018; Khosro et al., 2012).

1.2 Mineralization: changing nitrogen forms in the lithosphere

Nitrogen mineralization and immobilization processes maintain the interchange between organic and inorganic forms of nitrogen.





Soil nitrogen is dominantly found in the organic form, as SOM, following animal manure or plant residue (legume and non-legume) addition. However, as plants can only utilize a small portion of low-molecular-weight organic compounds, converting organic N to inorganic N through mineralization is critical for ecosystem productivity (Li et al., 2019). Therefore, accurately predicting the mineralization rate and plant nitrogen requirements across various environmental conditions will provide a significant stepping stone for re-synchronizing nitrogen supply to plant demand, reducing fertilizer requirements, and ultimately improving NUE.

Heterotrophic microorganisms carry out mineralization using enzymes to break down SOM, assimilate organic nitrogen compounds to produce microbial tissue, and utilize carbon as an energy source. If the nitrogen content of SOM exceeds microbial assimilation needs, excess nitrogen is released as ammonia (NH3) via ammonification and rapidly converted from NH4+ to nitrate (NO3−) via nitrification (Janssen, 1996; Ma et al., 1999; Zhang et al., 2019). Immobilization occurs when the nitrogen content of SOM does not meet microbial assimilation requirements. Consequently, inorganic nitrogen in the soil is absorbed by microbes and utilized to synthesize proteins and other nitrogen-containing compounds, decreasing the plant available soil nitrogen content. This continuous transfer of nitrogen through mineralization and immobilization is often referred to as mineralization-immobilization turnover, with net mineralization occurring when the rate of gross mineralization exceeds that of gross immobilization (Benbi and Richter, 2002).

Over time, the view of nitrogen mineralization has shifted from an extracellular process controlling nitrogen cycling to an intracellular process driven by microbial nitrogen demand and soil nitrogen supply. Therefore, the microbial NUE has become a critical tool for estimating the total nitrogen availability for plants and potential ecosystem losses (Mooshammer et al., 2014). Under nitrogen-limiting conditions, most acquired organic nitrogen is utilized for microbial growth and biomass, leading to a high NUE and immobilization to meet assimilation demands. Meanwhile, a low microbial NUE has been observed under excess nitrogen, or carbon limiting, conditions resulting in high mineralization rates. Ensuring the regulation of microbial NUE is critical to controlling mineralization and immobilization rates, system productivity, and environmental losses of inorganic nitrogen (Li et al., 2019; Mooshammer et al., 2014; Zhang et al., 2019). The challenge being tackled by researchers and crop producers is how to manage microbial mineralization to optimize plant nitrogen supply under a variety of field conditions.

The mineralization rate is a central supply of inorganic nitrogen to the soil and, therefore, a critical factor in determining fertilizer requirements. Understanding how soil, environmental, and management factors impact the natural supply of inorganic nitrogen is essential to reassessing fertilizer requirements for cropping systems at a localized scale.

The composition of organic residue within a system impacts the direction of the mineralization-immobilization reaction. A carbon-to-nitrogen (C:N) ratio of 24:1 for plant residue is considered optimum for stimulating net mineralization, reducing fertilizer requirements, and maintaining a soil-protection residue cover (Ma et al., 1999; Cabrera et al., 2005). Low C:N ratios promote net mineralization; however, the increased decomposition rates will lessen the soil-protection period. Meanwhile, crops with high C:N ratios will stimulate net immobilization and potentially require the addition of nitrogen fertilizers to maintain production. Additional factors regarding plant residue that impact the mineralization rate are pH, salinity, heavy metal concentration, and different compounds present in organic residues, such as proteins, lignin or cellulose-like compounds, and soluble carbohydrates. The impact of these factors is discussed in the literature and often results in the rate of mineralization varying between residues despite the same C:N ratio (Khan and Scullion, 2002; Rowell et al., 2001).

Variations in mineralization rates are also attributed to soil characteristics such as clay content impacting the rate of organic nitrogen adsorption, aeration in sandier soils, variations in microbial populations, and salinity (Cabrera et al., 2005). Several studies have assessed the relationship between net mineralization rates and soil water content or temperature. Under favorable conditions, net mineralization increases with the soil temperature reaching an optimum rate at 25–35°C, depending on soil nitrogen availability and microbial community dynamics (Chapin et al., 2002; Guntiñas et al., 2012). The relationship between soil water holding capacity (WHC) and mineralization is linear, increasing to an optimum rate at 60% WHC with thresholds below 20% and above 80% WHC (Li et al., 2014). The interaction between soil moisture, residue composition, mineralization, and immobilization is complex and strongly affected by management practices (Benbi and Richter, 2002; Janssen, 1996). These interactions must be studied further and appropriately modeled for accurate mineralization and immobilization rate predictions.

The influence of synthetic fertilizer use on the nitrogen mineralization rate is debated in the literature. Stoichiometric decomposition theory predicts an immediate positive increase in mineralization following fertilizer application owing to increased microbial biomass and activity (Harris, 2003; Chen et al., 2014). In addition, increased rhizodeposition and the positive priming of microbes following fertilizer application have also been linked to increased net primary productivity (NPP) (Cheng, 2009). However, literature has indicated that this increase in NPP can result in reduced soil moisture and temperature, decreasing SOM mineralization. Similarly, the theory of microbial nitrogen mining suggests that fertilizer use will decrease the decomposition of energy-poor SOM substrates, thereby decreasing total mineralization (Moorhead and Sinsabaugh, 2006; Craine et al., 2007). Mahal et al. (2019) studied the effect of fertilizer use on SOM mineralization in two long-term experiments, observing that synthetic fertilizers caused a reduction in total SOM mineralization. However, it suggested that using fertilizers that do not contain NH4+ had a less significant impact. The prioritization of mineralization as a source of inorganic nitrogen, and reduction in fertilizer use, can result in reduced soil nitrogen and carbon (SOC) concentrations. While fertilization can provide an opportunity to increase SOC, Mahal et al. (2019) noted that this was due to reduced mineralization.

The variation in methods used to estimate fertilizer NUE (FNUE), and their accuracy, has been attributed to the conflicting results regarding the response in mineralization rate to fertilizer application. Studies either use an indirect N difference method (Varvel and Peterson, 1990), in which differences in nitrogen uptake between fertilized and unfertilized crops are recorded, or a direct 15N tracer method (Hauck and Bremner, 1976), recording plant uptake of isotopically labeled fertilizer. However, under and over-estimations are associated with each measurement technique; therefore, future research is required to achieve accurate mineralization measurements.

1.3 Plant nitrogen uptake: moving nitrogen (NH4+, NO3−) from the lithosphere to the biosphere

Once mineralization has occurred, and nitrogen is available in the soil, it can be removed via plant uptake, volatilization, leaching, or denitrification. The latter three processes are linked to environmental consequences and economic losses; therefore, the issue presented is how to maximize plant uptake of nitrogen. Confronting this issue requires a detailed understanding of how field conditions impact nitrogen uptake processes.

In nitrogen-limiting conditions, soil temperature indirectly affects plant uptake of nitrogen via alterations in plant roots' growth and physiological characteristics and directly affects the biogeochemical processes regulating nitrogen and soil water availability (Bassirirad, 2000; Laine et al., 1993). Several studies have observed increases in soil temperature correlating with improved nutrient uptake and changes in NH4+ root transport properties (Bassirirad et al., 1993; Cleve et al., 1990). However, the mechanisms responsible for these variations have not been identified. Increased root respiration under higher temperatures has been suggested as a controlling mechanism, owing to its role in mediating ion movement across the root. However, it cannot be solely responsible, as increased temperatures alter several additional root functions (Glass, 2003). Additional factors such as salinity, water content, and pH have also been shown to alter plant nitrogen uptake (Pessarakli, 2019).

Understanding environmental and soil conditions’ impact on plant nitrogen uptake is critical for modeling nutrient processes. However, these factors have large spatial and temporal variability, which creates difficulty in modeling these processes in time for fertilizer application. Therefore the utilization of enhanced efficiency fertilizers (EEF), such as nitrification and urease inhibitors (NUI), and software for precision agriculture provides an opportunity to re-synchronize nitrogen supply and demand in a more straightforward format. In addition, these practices aim to reduce the percentage of fertilizer nitrogen lost following an application by slowing the release of NH4+ and NO3− into the soil system following application and improving fertilizer requirement calculations.

Detailed digital soil mapping of farm properties provides information on changes in soil properties, mineralization rates, and, therefore, fertilizer requirements at a smaller scale (Sela et al., 2016; Melkonian et al., 2008). This ensures that fertilizer is applied at a rate suitable for current growing conditions rather than the ideal ones. However, the significant knowledge gap regarding how various soil conditions impact the mineralization rate and plant nutrient uptake provides limitations regarding this software. Additional information about digital soil mapping and precision agriculture, alongside enhanced efficacy fertilizers, and their role in improving FNUE is discussed in the following chapters.

1.4 Volatilization: moving nitrogen (NH3) from the lithosphere to the atmosphere

The volatilization of ammonia (NH3) into the atmosphere occurs following nitrogen fertilizer application to agricultural soils. Urea applied to the soil is rapidly hydrolyzed to ammonium carbonate ((NH4)2CO3) by the urease enzyme; owing to the unstable nature of (NH4)2CO3, it is decomposed to form NH3 gas, which is emitted into the atmosphere (Sherlock, 1984).









The emission of NH3 is dominantly an economic loss for cropping systems, as the environmental consequences of air pollution and ground level smog are considered less significant compared to nitrate leaching or nitrous oxide emissions (Sharpe and Harper, 1995). Therefore, managing systems to reduce the ammonia volatilization rate provides an economic benefit by reducing the net nitrogen loss from the system. However, this subsequently increases the concentration of NO3−, requiring careful management of nitrification and denitrification processes in parallel.

Volatilization is a dominantly physical process, with the rate, source, and placement of nitrogen impacting the rate of nitrogen conversion and soil pH and buffering capacity controlling the rate of NH3 loss. Reducing fertilizer application rates to meet plant demand and reduce excess NH4+ provides the largest reduction in NH3 volatilization (Wan et al., 2021). Therefore, understanding and measuring nitrogen supply alongside plant requirements is critical to mitigating volatilization and increasing NUE. In addition, EEF using urease inhibitors has also shown significant reductions in volatilization rates and improved NUE owing to the slowing of the release of NH4+ and synchronizing the release with plant demand (Christianson et al., 1993). These concepts are discussed in further chapters

While not the only soil characteristic influencing NH3 emissions, soil pH is essential in controlling the equilibrium between NH4+ and NH3 in solution, with higher soil pH corresponding to increased NH3 concentrations and, therefore, volatilization. Several studies have assessed the change in NH3 concentration with pH, showing the percentage of un-ionized NH3 at pH 6, 7, 8, and 9 being approximately 0.1%, 1%, 10%, and 50%, respectively (Freney et al., 1981). Within cropping soils, the soil pH is typically lower than that required for high concentrations of NH3 emissions. However, temporary increases in soil pH following the application of urea-based fertilizers stimulate the volatilization process, accounting for 19–23% of agricultural NH3 emissions (Rochette et al., 2009; Skorupka and Nosalewicz, 2021). This increase in pH around fertilizer granules can be resisted through the soil-buffering capacity and cation exchange capacity (CEC). Soils with high clay and organic matter content can buffer pH; a high CEC can reduce volatilization by lowering the concentration of NH4+ in soil solution (Keller and Mengel, 1986).

The current knowledge surrounding volatilization is extensive because the process is dominantly physical and primarily associated with fertilizer applications. Reducing the volatilization rate requires a detailed understanding of crop fertilizer requirements and using EEF. The direct implication of reducing volatilization and the NUE of cropping systems is favorable; however, increased soil NH4+ concentration indirectly increases the risk of nitrate leaching and nitrous oxide emissions. Therefore, managing nitrification and denitrification processes is critical to advancing our knowledge about nitrogen cycling and environmental losses, alongside increasing the NUE of agricultural systems.

1.5 Nitrification: changing nitrogen forms in the lithosphere

Nitrification, the oxidation of NH4+ to NO3–, is a central component of the nitrogen cycle as it links plant nitrogen uptake and nitrogen losses from the system. Nitrate is more mobile in soil solution than NH4+, resulting in improved nitrogen transport to root surfaces. However, this also means NO3– can be readily leached from the soil system or utilized by microorganisms to produce and emit N2O. Therefore, appropriately managing nitrification within a system is critical to maximizing productivity while minimizing adverse environmental consequences. A detailed understanding of the nitrification pathway, including the response of microbe abundance, community structure, and relative contribution of nitrification in different field conditions, is critical to confronting this challenge.

The large body of literature surrounding nitrification discusses the two-step process driven by ammonia-oxidizing bacteria (AOB) and archaea (AOA) alongside nitrite-oxidizing bacteria (NOB). However, several additional nitrification pathways have been identified within the literature, including heterotrophic nitrification and comammox. Heterotrophic nitrification is performed by a wide range of eukaryotes and bacteria but does not contribute significantly to the soil NO3– pool in cropping systems as the process is not required for microbe energy conservation (De Boer and Kowalchuk, 2001). Single microorganisms of the Nitrospira genus carry the required enzymes to complete both processes of the nitrification reaction, resulting in the development of the comammox nitrification pathway (Hu and He, 2017; Daims et al., 2015; Van Kessel et al., 2015). Under low nitrogen conditions, comammox bacteria have a competitive advantage due to lower energy requirements and N2O production; however, no literature has identified the pathways as a significant NO3– contributor in agricultural systems (Costa et al., 2006). The continual advancement in knowledge of the nitrification process highlights the evolution of individual pathways to ensure efficiency in all ecosystems. While also providing expanding research gaps surrounding how to manage nitrification to re-synchronize plant nitrogen supply and uptake.

The microbial pathways involved in the two-step nitrification process, divided by primary and secondary nitrification, are well discussed in the literature. Ammonia is oxidized to hydroxylamine (NH2OH), catalyzed by the ammonia monooxygenase (AMO) enzyme, during primary nitrification (Arp et al., 2002). Within agricultural systems, the AOB populations, namely Nitrosopira and Nitrosomonas genera (Hayatsu et al., 2021), are dominant nitrifiers as synthetic fertilizers suppress the AOA population (Di and Cameron, 2016). Hydroxylamine is further reduced to nitrite (NO2–) by the hydroxylamine oxidoreductase enzyme (HAO), with nitroxyl produced as an intermediate product (Caranto and Lancaster, 2017). Nitrate-oxidizing bacteria carry out secondary nitrification in which NO2– is converted to NO3– by the nitrite oxidoreductase enzyme (NXR). The NOB population is a phylogenetically diverse function group in which Nitrobacter and Nitrospira are typically in greater abundance within agricultural soils (Han et al., 2018). The role of secondary nitrification and NOB populations within the nitrogen cycle is critical for providing plant-available NO3– and regulating the soil NO2– concentrations, the latter of which is toxic to aquatic life and inhibits bacterial growth (Daims et al., 2016). Nitrous oxide is also a by-product of nitrification through abiotic reactions involving NH2OH, NO2−, and NO (Charpentier et al., 2007; Kozlowski et al., 2014).





As nitrification is a microbial process, its rate is strongly impacted by several soil and environmental conditions, with soil aeration being a significant controlling factor. The relative activity of nitrifying microbes increases between water-filled pore space (WFPS) of 10% and 60%, with the optimum water content varying with soil texture, 55% WFPS in fine-textured soils, and approximately 40% WFPS in coarse-textured soils (Robertson and Groffman, 2015; Norton and Ouyang, 2019). Soil aeration also impacts each microbial community's relative contribution toward total nitrification rates, with AOA populations having the highest affinity for oxygen, followed by AOB and NOB (Wen et al., 2020). Understanding the role of soil aeration and water content in determining the nitrification rate is critical for improving NUE and reducing the risk of fertilizer loss via leaching or denitrification.

The nitrification process can occur across various soil pH values due to the ecological and physiological variation between different nitrifying microorganisms. Nevertheless, it is important to note that soil pH has a significant influence on the extent to which the populations of AOB, AOA, or comammox bacteria contribute to the overall process of nitrification. The ionization of NH3 to NH4+ and each species' affinity for NH4+ dictate the activity of each nitrifying population; therefore, soil pH commonly has a similar impact on nitrification rates and nitrifier niche separation as synthetic fertilizer use. In low nitrogen or pH environments, AOA and comammox populations are the dominant nitrifiers, often resulting in a lower total nitrification rate (Hu et al., 2013; Prosser and Nicol, 2012). Therefore, in environmental systems with no anthropogenic nitrogen additions, AOA populations have a high contribution to total nitrification as the supply of nitrogen is provided slowly through mineralization (Ouyang et al., 2017; Hayatsu et al., 2021). The increased use of synthetic fertilizer has shifted AOB populations into the dominating nitrifiers and increased total nitrification rates, resulting in NO3- supply surpassing plant requirements (Di et al., 2016).

Owing to the variety of nitrification pathways and microbial species involved, significant research gaps remain about how the total nitrification rates vary under different field conditions and the impact of management practices on the bacterial community structure. A discussion surrounding EEF, specially NUI additives, is supplied in later chapters, providing insight into the suitability of these management practices to improve the NUE of cropping systems. These products work by either slowing the release of nitrogen into the soil system following application or temporally inhibiting nitrifying microbes, respectively (Akiyama et al., 2010; Cameron and Di, 2002). Literature has identified potential decreases in environmental losses of nitrogen, alongside yield increases, as a result of appropriate utilization of these products (Halvorson et al., 2014; Linquist et al., 2013). However, evidence also shows that these practices' suitability and success are strongly dictated by soil temperature, water content, texture, fertilization rates, and the type of EEF or NI used (Gilsanz et al., 2016; Misselbrook et al., 2014; Shepherd et al., 2014; Woodward et al., 2016; Tindaon et al., 2013).

1.6 Nitrate leaching: moving nitrogen (NO3–) from the lithosphere to the hydrosphere

Nitrate leaching is the downward movement of NO3– anions through the soil profile following significant water input events such as rainfall, snow melt, or irrigation. Negatively charged surfaces of clay minerals and SOM repel the water-soluble anion allowing for its rapid displacement and leaching into groundwater systems following large water fluxes (Padilla et al., 2018). This has a significant environmental concern due to the eutrophication of surface water systems. Eutrophication is the increase in one or more growth factors required for photosynthesis, consequently increasing algae and macrophyte production, resulting in depleted dissolved oxygen levels and the deterioration of water quality (Schindler, 2006). Increased NO3– concentrations also alter the ecological balance of water systems, having toxic impacts on fish, invertebrates, ruminants, and infants (Kirchmann et al., 2002; Beauchemin et al., 2020).

In addition to water movement through the soil profile, the dominant conditions dictating leaching rates are the supply of NO3– and its rate of utilization by plants. Yang et al. (2013) observed that residual soil nitrogen doubled, and leaching losses increased by 42% nationally in Canada between 1981 and 2006 due to large increases in fertilizer use without significant increases in crop nitrogen uptake. Eggleston et al. (2006) recorded the estimated fraction of nitrogen lost via leaching as 0.3 kg per kg N applied. The literature identifying the relationship between nitrogen fertilizer use and leaching is extensive (Sacco et al., 2003; Perego et al., 2012; Mantovi et al., 2006); identifying methods to improve the NUE and recovery of nitrogen fertilizers is critical to reducing the rate of nitrate leaching.

Late autumn and winter are critical for nitrate leaching in humid, temperate climates. During this time, the rate of precipitation typically exceeds evapotranspiration resulting in saturated soils and downward water movement. At the same time, reduced temperatures and post-harvest fallow reduce crop growth, causing the rate of mineralization and nitrification to exceed crop nitrogen uptake. Therefore, large concentrations of excess NO3- are readily displaced following the heavy rainfalls associated with these seasons (Kirchmann et al., 2002). Various studies have identified that periods of abnormally high rainfalls, which coincide with summer fallow, also result in increased nitrate leaching (Wang et al., 2014, 2013). Therefore, when implementing management practices to alter the nitrification rate and supply of NO3- to the soil system, such as EEFs, the seasonal variation in nitrate leaching must be understood. Crop rooting depth influences the length of time in which NO3- can be utilized by plants and, therefore, not leached. Cropping systems with a greater density of low rooting depth crops typically experience higher leaching losses as NO3- is moved below the root system faster than in a field with deeper rooting systems (Wang and Li, 2019). Leaching losses are also lower in fine-textured soils than in coarse-textured soils, as slower drainage provides a greater opportunity for plant uptake or nitrogen loss via denitrification (Padilla et al., 2018).

Improving the NUE of cropping systems will decrease the nitrate leaching rate; however, variations in soil hydrological, topographic, and management properties between farms and fields mean that nitrate leaching mitigation must be developed and implemented on a site-specific basis to account for spatial variation in the nitrogen cycle (Kirchmann et al., 2002). Current research focuses on mitigating and reducing leaching losses within agricultural systems, including improved nitrogen recovery, crop diversification through catch crops, and nitrification inhibitors. Each of these practices aims to synchronize the supply of NO3– with plant uptake, reducing excess anions in the soil solution.

1.7 Denitrification: moving nitrogen (N2O, N2) from the lithosphere to the atmosphere

Denitrification is the reduction of NO3– or NO2– to N2O or N2, which occurs as either a biological or chemical process. Within agricultural soils, biological or heterotrophic denitrification is the dominant pathway, involving the reduction of NO3– under anaerobic soil conditions. The low oxygen availability and redox potential of anaerobic soils result in specific heterotrophic bacteria and fungi utilizing NO3– as an alternate electron acceptor, allowing respiration and microbial growth to continue (Clough, 1994; McLaren and Cameron, 1996).





A complex multisite metalloenzyme catalyzes each step within the sequential denitrification reaction scheme. The nitrate reductase (nar), nitrite reductase (nir), nitric oxide reductase (nor), and nitrous oxide reductase (nos) enzymes each have different eco-physical characteristics allowing each one to catalyze a specific stage of the reaction (Robertson and Groffman, 2015; Samad et al., 2016). These variations also cause a lag time between the production and consumption of intermediate substrates. The occurrence and duration of this lag time are significant contributors to incomplete denitrification, the emission of N2O before its reduction (Bothe et al., 2006; Haynes, 1986).

A secondary denitrification pathway called nitrifier denitrification has been identified as having a critical role within the nitrogen cycle, ensuring that the production of N2 continues under various environmental conditions. Nitrifier denitrification is carried out by specific nitrifying bacteria containing the denitrification reductase enzymes, allowing NO2− reduction directly following the oxidation of NH4+ (Kool et al., 2011). Identifying the nitrifier denitrification pathway provides a critical understanding of how each phase of the nitrogen cycle is connected and how the cycle has evolved to fill each ecological niche.

Research focused on determining the relative proportion of N2 and N2O emitted from denitrification is limited owing to the high atmospheric N2 concentration introducing uncertainties into measurement procedures. However, the current literature indicated that up to 90% of the global denitrification flux from agricultural soils results in the emission of N2 (Weitzman et al., 2021; Scheer et al., 2020). While the emission of N2O from incomplete denitrification accounts for a small percentage of the total denitrification flux, its properties as a potent greenhouse gas mean the environmental concerns of N2O emissions are disproportionate to the emission rate. Nitrous oxide has a global warming potential 298 times that of carbon dioxide (CO2) over 100 years (Liu et al., 2017). The increased rate of N2O emission into the atmosphere has also been identified as the most significant threat to the ozone layer in the twenty-first century (Myers et al., 2017; Pachauri et al., 2014; Ravishankara et al., 2009). Therefore, management practices must aim to balance NO3− supply with plant demand, for example, the application of nitrification inhibitors, or alter the N2O:N2 ratio by increasing the rate of complete denitrification.

The latter of these methods is complex due to high variability in the field conditions controlling microbial denitrification process. This variability across a spatial and temporal scale can result in temporary increases in N2O emission, commonly described as ‘hot spots’ and ‘hot moments’, respectively (Wagner-Riddle et al., 2020). Practices which temporarily alter the chemical and physical properties of soils, such as irrigation, fertilizer application, and cultivation, can result in changes in N2O emissions (Chahal et al., 2021) by creating or removing hot spots and hot moments. Understanding these impacts are critical to improving on-farm management practices alongside increasing the accuracy of management and environmental-based models. Monitoring the occurrence of high denitrification and N2O emissions provides important guidelines for assessing the most suitable times and rates of fertilizer application to increase crop NUE.

Spatial changes in aeration status, microbial population, and mineralizable carbon and nitrogen content influence the occurrence of hot spots, with soil aeration being the primary factor dictating denitrification rates. As NO3− is a less efficient electron acceptor than oxygen, the biosynthesis of each denitrifying enzyme is suppressed in well-aerated systems. The sensitivity of each enzyme to oxygen increases along the reaction scheme, with nor and nos enzymes inhibited at lower oxygen contents compared to nar and nir enzymes (Haynes, 1986). This biological control ensures that nitrification and aerobic respiration, the more energy-efficient pathways, occur in optimum conditions. The trigger point for heterotrophic denitrification is 60% WFPS, with the rate significantly increasing beyond a WFPS of 80%. Nitrifier denitrification occurs between WFPS of 50% and 70%, ensuring constant nitrogen cycling as the dominance of nitrification and denitrification switch (Kool et al., 2011). Between a WFPS of 60% and 90%, incomplete denitrification occurs in soils owing to the high sensitivity of nos to oxygen. For the nos enzyme to be activated, WFPS must be higher than 90% and held for an extended period, ensuring that activating the enzyme will result in a net energy gain (Freney and Simpson, 1983). As most agriculturally managed soil supports short periods of waterlogging via drainage systems, the N2O:N2 ratio favors N2O production. The waterlogged soil conditions associated with denitrification typically occur following a significant rainfall or irrigation event. However, denitrification can occur within aerobic soils due to anaerobic microsites (Groffman et al., 2009).

Variations in microbial community sizes, mineralizable carbon, and NO3− concentration across a spatial scale also influence the spatial variability in the denitrification rate. Management practices, including fertilizer applications, NI use, cultivation, and crop diversification, have been shown to influence each of these factors, as discussed in several case studies. Typically, the denitrification rate increases with carbon and NO3− concentrations; however, high concentrations of NO3− in agriculturally managed soil have an inhibitory effect on the nos enzyme, resulting in incomplete denitrification (Freney and Simpson, 1983). Therefore, implementing practices to reduce the release of NO3− into the soil system improves NUE and increases the N2O:N2 ratio.

Hot moments for N2O emissions occur due to sudden changes in the rate of denitrification through either management or weather events. The use of nitrogen fertilizer is a dominant source of N2O hot moments, with large surface fluxes being recorded several days following application. Nitrous oxide emissions from agricultural soils contribute approximately 50% to the total global anthropogenic flux, with nitrogen fertilizers and animal manures being the dominant N2O sources (Shcherbak et al., 2014; Bouwman et al., 2002). Weather-driven hot moments result from freeze-thaw (FT) and wet-dry (WD) cycles, in which N2O emissions may increase up to 1000-fold and 4500-fold, respectively, compared to pre-event rates (Kim et al., 2012). Large N2O pulses following WD cycles are attributed to the onset of anaerobic conditions combined with accumulated substrates over prolonged dry periods, creating conditions conductive to denitrification. Therefore, estimating and mitigating DW-related N2O emissions require detailed knowledge of how soil moisture, temperature, and substrate concentration are impacted under different field and management conditions.

In cold climates where soils experience a prolonged freezing period during the winter, FT cycles are a significant source of N2O emissions. Two dominant mechanisms contribute to FT cycle-related N2O emissions, the physical release of previously trapped N2O produced in the unfrozen soil subsurface and enhanced denitrification due to the release of substrates with aggregate breakdown or microbial lysis and increased soil water content following snow melt (Risk et al., 2013; Teepe et al., 2001; King et al., 2021). These FT cycles represent 17–28% of global agricultural N2O emissions; however, significant knowledge gaps exist surrounding how these FT emissions mechanisms may vary over a spatial and temporal context (Wagner-Riddle et al., 2017).

The implementation of management practices, such as crop diversification that alter the concentration of available nitrogen in the soil system before winter freezing and global climate change, which is predicted to increase winter temperatures and reduce snowpack depth, are both expected to alter the pattern and rate of FT-induced N2O emissions (Brin et al., 2018; Kaye and Quemada, 2017; Li et al., 2016; Ruan et al., 2017). Therefore, advancing knowledge within this area of the nitrogen cycle is critical to improving N2O emission models, providing a tool to enhance the accuracy of greenhouse gas budgets and nitrogen loss pathways.

 2Case studies

The body of literature surrounding the nitrogen cycling process is extensive and ongoing. Continual advancements in the knowledge of each process from the microbial to production scale are being made, alongside developments in practices to improve NUE and mitigate environmental losses of nitrogen. Here, we discuss case studies focusing on the different knowledge gaps examined previously.

2.1 The use of cover crop mixtures to mitigate nitrate leaching

The environmental and production concerns associated with high concentrations of soil NO3− coinciding with drainage events are discussed earlier. Previous literature has focused on potential growing season (GS) reductions in NO3− leaching with the use of a leguminous/non-leguminous cover crop mixture, disregarding the substantial amount of leaching that occurs during the non-growing season (NGS) in cold and humid environments (Abdalla et al., 2019). Developing strategies to reduce surplus water and NO3− within the soil system during the NGS is a significant advancement in increasing the NUE of cropping systems.

Lapierre et al. (2022) observed that utilizing a leguminous/non-leguminous cover crop mixture had no annual effect on soil drainage, unlike previous studies; however, substantial reductions in NO3-− concentrations were observed across the whole profile when cover crop establishment was successful. An 80% reduction in NO3− concentration at 90 cm, the depth used for leaching calculations, was observed across soil types between after-harvest and pre-planting of annual crops with the inclusion of a cover crop mixture compared to no cover crops. This reduction in post-harvest soil NO3− was attributed to enhanced root uptake of NO3− and the cover crop mixture's high C:N ratio. Additional benefits of cover crop utilization were increased surface soil temperature during the winter due to the insulation effect of crop residue. Providing an insulating layer to the soil surface was also attributed to potential reductions in mineralization rates and microbial cytoplasmatic release owing to the regulation of soil freezing and thawing events.

Reductions in soil NO3− concentrations with cover crop use translated to an average of 67% decrease in NO3− leaching (across two soil types). A cover crop mixture provided a two-fold benefit as the non-leguminous crops provided a larger leaching reduction benefit than legumes alone, owing to the lack of biological nitrogen fixation. In contrast, the leguminous crop can prevent a potential reduction in succeeding cash crop yield due to the natural supply of nitrogen via BNF. Across the annual experiment, winter and spring-thaw measurements accounted for 54–90% of the total leaching losses, highlighting the critical nature of accurately measuring NGS nitrogen losses. Ultimately, using cover crops in cold and humid environments significantly reduces NO3− leaching, thereby improving water quality and NUE of systems. Further advancements in this area of research should focus on enhancing cover crop establishment through cold short-season cultivars and improved agronomic practices.

2.1.1 Soil N-cycling genes response to nitrification and urease inhibitors

Understanding how NUI impact nitrogen losses provides information surrounding the potential to increase NUE or reduce environmental outputs through management practices. Therefore, conducting research assessing soil microbial communities and N-cycling groups’ responses to these practices is essential to understanding their short- and long-term efficacy. Tosi et al. (2020) conducted a single-year study to measure the short-term changes in N-cycling genes and transcripts from fertilizer corn with and without the addition of common urease and nitrification inhibitors, and compare the differences in microbial dynamics to N2O emissions.

The application of urease and nitrification inhibitors aimed to delay the NH4+ transformation process, inhibiting urea hydrolysis and NH4+ oxidation, respectively. The overall decrease in field-scale N2O emissions from NUI-treated plots was 68%, with the most significant reduction in emission duration and magnitude observed between 5 days and 8 days after fertilization. Low abundance and transcription of nir:nos genes were observed during moments of peak N2O emissions. However, this may have resulted from unmeasured N2 emissions or a lag time between N2O surface flux and transcript detection. The application of the NUI also resulted in a 45–57% reduction in clade II nosZ transcripts, recorded 9 days after application. The delay in microbial response to NUI may have resulted from the variation in measurement methods, with N2O measurements reflecting microbial activity at the field scale while microbial measurements were only taken between crop rows and side-dressed fertilizer lines.

Comparing N-cycling gene activity to N2O emissions can be challenging owing to alternative, non-target N-transformation pathways, primer specificity and coverage limitations, and large temporal variability in microbial activity and emissions. However, these studies are essential to understanding the link between soil microbial communities and ecosystem functions.

 2.1.2 Field-scale N2O fluxes and microbial processes under two management systems

Crop residue provides a critical opportunity to manage N-cycling processes and N2O emissions from cropping systems. Removing residue from systems has been identified as a potential direct and indirect source of N2O. Meanwhile, incorporating residue into the soil or leaving residue as a ground cover post-harvest may provide the system with an organic nitrogen source, reducing fertilizer requirements. The study by Congreves et al. (2017) aimed to understand how residue management impacts direct N2O emission from cropping systems during the spring thaw and how results varied across different tillage systems.

Irrespective of residue management and tillage systems, overwinter, and spring-thaw N2O emissions were large contributors to the total annual emissions (28–77%). Micrometeorological data showed that no-tillage practices resulted in lower N2O emissions over 5 years, with differences in N2O production mechanisms occurring between seasons. During winter and spring thaw, increased de novo denitrification was responsible for N2O production and surface flux; meanwhile, enhanced nitrification-denitrification following fertilizer application in spring was observed as the major N2O source. Consequently, showing that nitrifier communities are more affected by the cold temperatures and that N2O response to tillage and residue practices may result from seasonal domination of microbial pathways. Removing residue increased N2O emissions in both tillage systems; however, to a greater extent in conventional tillage systems, attributed to the difference in soil temperature and moisture dynamics.

An additional study by Németh et al. (2014), conducted at the same research site, focused on assessing nitrifiers’' and denitrified communities’' abundance and gene expression during the FT cycle. Reductions in amoA gene expression in plots with crop residue removed were attributed to lower dissolved organic carbon (DOC) and inorganic nitrogen concentrations in the soil. No difference in nir gene copies was observed, but nosZ communities were lower in the residue-removed plots. The dominance of de novo denitrification as an N2O production mechanism at spring thaw was confirmed through a temporary increase in the denitrifier population containing nosZ. Meanwhile, the rise in nosZ denitrifiers in plots where residue was not removed indicates that the lower N2O emissions may be a result of increased reduction of N2O to N2

Overall, overwinter and spring thaw N2O emissions were greater in conventional tillage systems where crop residue was removed following harvest. A shift in the primary N2O production pathway may be why these differences were only observed during the NGS, highlighting the requirements for year-round measurements. Keeping crop residue on the soil surface reduced N2O emissions by providing an insulation layer to the soil overwinter and altering microbial community abundance and gene expression. Further studies assessing the relationship between crop residue management, nitrifier and denitrifier microbal activity, and N2O emissions are required across various soil types, and management practices.

 2.1.3 Nitrous oxide flux during spring thaw

Studies aimed at increasing the understanding of N2O freeze-thaw cycle mechanisms are critical to improving process-based modeling of national and global N2O emissions. The physical release of trapped N2O gas upon thawing and de novo denitrification following soil thawing have been proposed mechanisms; however, they are very different processes. Linking N2O surface fluxes during spring thaw to each mechanism provides an opportunity to advance knowledge of N2O flux events, annual emissions, and temporal variation.

The physical release process involves microbial processes; however, the processes occur over the entire time of freezing, with N2O accumulation occurring at depth and in unfrozen water films. Meanwhile, enhanced denitrification is observed through increased biological activity in the top layer of soil following thaw. Wagner-Riddle et al. (2008) applied a 15N tracer to different depths in the soil column, and soil gas samples at depth were collected alongside surface flux data. The 15N tracer allowed N2O fluxes to be traced to an origin depth while also identifying the dominant mechanisms responsible for N2O production.

Peak N2O fluxes occurred following the thawing of surface soil layers, despite the soil remaining frozen at depth. This increase in N2O emission was attributed to production at the surface soil layer, with fluxes being 1.5–5 times greater than when the tracer had been applied to the deeper soil layer. The 15N2O flux data indicate that the high 15N2O concentrations at depth made a limited contribution to the surface flux. While conditions were conducive for denitrification at both the soil surface and at depth, the results of this study identified that enhanced denitrification in the soil surface layer during thaw is the dominant mechanism resulting in peak surface N2O fluxes. Meanwhile, N2O trapped at depth in the profile was likely further reduced to N2 as it diffused from the profile or could have potentially been lost through leaching while contributing minimally to the surface flux.

This study saw results similar to the literature, in which no-tillage significantly reduced N2O emissions during the thaw by decreasing soil freezing and improving soil insulation. However, there is a knowledge gap surrounding the quantification of each N2O production mechanism to the total surface flux and how this is altered under different management practices. For example, utilizing cover crops to absorb excess NO3– post-harvest may reduce the contribution of de novo denitrification to the N2O surface flux event. In addition, research assessing the spatial and temporal variations in N2O production mechanisms during spring thaw is limited. Advancement in this knowledge area is required to improve N2O modeling and FTC emission factors.

 3Conclusion and future research trends

Optimizing productivity while reducing cropping systems’ environmental footprint proves to be a complex challenge. Manipulations made to one part of the nitrogen cycle, such as increased fertilizer application or reduced volatilization rates, have a flow-on effect that must be understood and considered with all management changes to a system.

The rate, source, placement, and timing of nitrogen application to the soil system, alongside soil water content, are the dominant factors influencing the microbial, chemical, and physical processes that make up the agricultural nitrogen cycle. Understanding how these properties alter nitrogen fixation, mineralization, nitrification, and denitrification reactions creates a fundamental opportunity to identify critical knowledge gaps and potentially re-synchronize the nitrogen supply with crop demand.

Management practices such as urease and nitrification inhibitors, enhanced efficiency fertilizers, and precision agricultural tools provide an opportunity to improve the NUE of cropping systems while reducing nitrate leaching and nitrous oxide losses. However, further understanding and modeling of spatial and temporal changes in nitrogen cycling processes are required to appropriately allocate management practices at a field- or farm-based scale. Similarly, the complex interactions between soil and environmental properties that result in significant variations in nitrate and nitrous oxide production must be studied to assess the potential synergistic effects of how multiple management practices enhance NUE.

 4Where to look for further information

• A comprehensive introduction to nitrogen cycling processes is ‘Mineral nitrogen in the plant-soil system’, by Haynes, R. J. (1986), Academic Press, 482 pp.

• An overview of the nitrogen cycle and potential future concerns is Nitrogen in the Environment, 2nd edition, by Hatfield, J. L. and Follett, R. F. (2008), Academic Press, 702 pp.

• A study comparing fertilizer management practices’ impact on NUE is ‘Comparing soluble to controlled-release nitrogen fertilizers: storage cabbage yield, profit margins, and N use efficiency’, in Canadian Journal of Plant Science 98, 815–829, by Van Eerd, L. L., Turnbull, J. J. D., Bakker, C. J., Vyn, R. J., McKeown, A. W. and Westerveld, S. M. (2017).

• A review of nitrogen loss processes is ‘Nitrogen losses from the soil/plant system: a review’, in Annals of Applied Biology 162, 145–173 by Cameron, K. C., Di, H. J. and Moir, J. L. (2013).
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