
Docker
Creating Structured Containers

</>

CURATED COURSE

NEW

FOR 2016
!

Docker
Creating Structured Containers

A course in five modules

Rethink what's possible with Docker and optimize its power
with your Course Guide Ankita Thakur

Learn to use the next-platform Docker from start to finish!

To contact your Course Guide
Email: ankitat@packtpub.com

BIRMINGHAM - MUMBAI

Meet Your Course Guide
Hello and welcome to this Docker course! You now have a clear pathway to become
proficient in Docker.

This course has been planned and created for you by me
Ankita Thakur – I am your Course Guide, and I am here to
help you have a great journey along the pathways of
learning that I have planned for you.

I've developed and created this course for you and you'll
be seeing me through the whole journey, offering you
my thoughts and ideas behind what you're going to learn
next and why I recommend each step. I'll provide tests
and quizzes to help you reflect on your learning, and code

challenges that will be pitched just right for you through the course.

If you have any questions along the way, you can reach out to me over e-mail or
telephone and I'll make sure you get everything from the course that we've planned.
Details of how to contact me are included on the first page of this course.

What's so cool about Docker?
So hot off the presses, the latest buzz that has been on the tip of everyone's tongues
and the topic of almost any conversation that includes containers these days is
Docker! With this course, you will go from just being the person in the office who
hears that buzz to the one who is tooting it around every day. Your fellow office
workers will be flocking to you for anything related to Docker and shower you with
gifts—well, maybe not gifts, but definitely tapping your brain for knowledge!

The popular Docker containerization platform has come up with an enabling
engine to simplify and accelerate the life cycle management of containers. There are
industry-strength and openly automated tools made freely available to facilitate
the needs of container networking and orchestration. Therefore, producing and
sustaining business-critical distributed applications is becoming easy. Business
workloads are methodically containerized to be easily taken to cloud environments,
and they are exposed for container crafters and composers to bring forth cloud-based
software solutions and services. Precisely speaking, containers are turning out to
be the most featured, favored, and fine-tuned runtime environment for IT and
business services.

What's in it for me – Course Structure
Docker has been a game-changer when it comes to virtualization. It has now grown
to become a key driver of innovation beyond system administration. It is now
having an impact on the world of web development and beyond. But how can you
make sure you're keeping up with the innovations that it's driving? How can you
be sure you're using it to its full potential? This course is meticulously designed and
developed in order to empower developers, cloud architects, sysadmins, business
managers, and strategists, with all the right and relevant information on the Docker
platform and its capacity to power up mission-critical, composite, and distributed
applications across industry verticals.

However, I want to highlight that the road ahead may be bumpy on occasions, and
some topics may be more challenging than others, but I hope that you will embrace
this opportunity and focus on the reward. Remember that we are on this journey
together, and throughout this course, we will add many powerful techniques to your
arsenal that will help us solve the problems.

I've created this learning path for you that consists of five models. Each of these
modules is a mini-course in their own way, and as you complete each one, you'll
have gained key skills and be ready for the material in the next module.

So let's now look at the pathway these modules create—basically all the topics that
will be exploring in this learning journey.

Course Journey
We start the course with our very first module, Learning Docker, to help you get
familiar with Docker. This module is a step-by-step guide that will walk you through
the various features of Docker from Docker software installation to knowing Docker
in detail. It will cover best practices to make sure you're confident with the basics,
such as building, managing, and storing containers, before diving deeper into
advanced topics of Docker.

Docker provides the networking primitives that allow administrators to specify
how different containers network with each application and connect each of its
components, then distribute them across a large number of servers and ensure
coordination between them irrespective of the host or VM they are running in. The
second module, Networking Docker, will show you how to create, deploy, and manage
a virtual network for connecting containers spanning single or multiple hosts.

Next, we come to our third module, Monitoring Docker. This module will show you
how monitoring containers and keeping a keen eye on the working of applications
helps improve the overall performance of the applications that run on Docker.
This module will cover monitoring containers using Docker's native monitoring
functions, various plugins, as well as third-party tools that help in monitoring.

With the rising integration and adoption of Docker containers, there is a growing
need to ensure their security. The purpose of our fourth module, Securing Docker, is
to provide techniques and enhance your skills to secure Docker containers easily and
efficiently. It will share the techniques to configure Docker components securely and
explore the different security measures/methods one can use to secure the kernel.
Furthermore, it will cover the best practices of reporting Docker security findings
and will show you how you can safely report any security findings you come across.

Finally, the last module—Mastering Docker! Now that you've learned the nitty-gritty
of Docker, it's time to take a step ahead and learn some advanced topics. This module
will help you deploy Docker in production. You also learn three interesting GUI
applications: Shipyard, Panamax, and Tutum.

The Course Roadmap and Timeline
Here's a view of the entire course plan before we begin. This grid gives you a topic
overview of the whole course and its modules, so you can see how we will move
through particular phases of learning to use Docker, what skills you'll be learning
along the way, and what you can do with those skills at each point. I also offer you
an estimate of the time you might want to take for each module, although a lot
depends on your learning style how much you're able to give the course each week!

[i]

Table of Contents

Course Module 1: Learning Docker

Chapter 1: Getting Started with Docker 5
An introduction to Docker 6
Docker on Linux 7
Differentiating between containerization and virtualization 8

The convergence of containerization and virtualization 9
Containerization technologies 10

Docker networking/linking 11
Installing Docker 12

Installing Docker from the Ubuntu package repository 12
Installing the latest Docker using docker.io script 13
Upgrading Docker 14

Building Docker from source 15
User permissions 16
UFW settings 16
Installing Docker on Mac OS X 17

Installation 17
Installing Docker on Windows 19

Installation 19
Upgrading Docker on Mac OS X and Windows 20

Downloading the first Docker image 20
Running the first Docker container 21
Running a Docker container on Amazon Web Services 21
Troubleshooting 23

Table of Contents

[ii]

Chapter 2: Up and Running 25
Docker terminologies 25

Docker images and containers 26
A Docker layer 28
A Docker container 28
The docker daemon 29
Docker client 29
Dockerfile 29
Docker repository 30

Docker commands 30
The daemon command 30
The version command 31
The info command 32
The run command 32

Running a server 35
The search command 38
The pull command 38
The start command 38
The stop command 39
The restart command 39
The rm command 40
The ps command 40
The logs command 41
The inspect command 41
The top command 43
The attach command 44
The kill command 44
The cp command 45
The port command 46

Running your own project 46
The diff command 47
The commit command 47
The images command 48
The rmi command 50
The save command 50
The load command 50
The export command 51
The import command 51
The tag command 51
The login command 52
The push command 52

Table of Contents

[iii]

The history command 53
The events command 53
The wait command 54
The build command 54
Uploading to Docker daemon 55

Dockerfile 58
The FROM instruction 59
The MAINTAINER instruction 59
The RUN instruction 59
The CMD instruction 60
The ENTRYPOINT instruction 62
The WORKDIR instruction 63
The EXPOSE instruction 64
The ENV instruction 64
The USER instruction 64
The VOLUME instruction 64
The ADD instruction 65
The COPY instruction 66
The ONBUILD instruction 66

Chapter 3: Container Image Storage 71
Docker Hub 71

The Docker Hub location 71
Dashboard 73
Explore the repositories page 74
Organizations 74
The Create menu 76
Settings 77
The Stars page 79

Docker Hub Enterprise 79
Comparing Docker Hub to Docker Subscription 80
Docker Subscription for server 80
Docker Subscription for cloud 80

Chapter 4: Working with Docker containers and images 83
Docker Hub Registry 84

Docker Registry versus Docker Hub 85
Searching Docker images 85

Working with an interactive container 87
Tracking changes inside containers 89
Controlling Docker containers 91
Housekeeping containers 95

Table of Contents

[iv]

Building images from containers 96
Launching a container as a daemon 98

Chapter 5: Publishing Images 101
Pushing images to the Docker Hub 102
Automating the building process for images 107
Private repositories on the Docker Hub 110
Organizations and teams on the Docker Hub 111
The REST APIs for the Docker Hub 112

Chapter 6: Running Your Private Docker Infrastructure 117
The Docker registry and index 118
Docker registry use cases 118
Run your own index and registry 120

Step 1 – Deployment of the index components and the registry
from GitHub 120
Step 2 – Configuration of nginx with the Docker registry 123
Step 3 – Set up SSL on the web server for secure communication 124

Push the image to the newly created Docker registry 127
Chapter 7: Running Services in a Container 131

A brief overview of container networking 132
Envisaging the Container as a Service 135

Building an HTTP server image 135
Running the HTTP server Image as a Service 137
Connecting to the HTTP service 138

Exposing container services 139
Publishing container ports – the -p option 140
Network Address Translation for containers 141
Retrieving the container port 142
Binding a container to a specific IP address 144
Auto-generating the Docker host port 145
Port binding using EXPOSE and the -P option 147

Chapter 8: Sharing Data with Containers 151
The data volume 152
Sharing host data 155

The practicality of host data sharing 159
Sharing data between containers 161

Data-only containers 161
Mounting data volume from other containers 162
The practicality of data sharing between containers 164

Avoiding common pitfalls 167
Directory leaks 167

Table of Contents

[v]

The undesirable effect of data volume 168
Data volume containers 170
Docker volume backups 171

Chapter 9: Docker Machine 173
Installation 173
Using Docker Machine 174

Local VM 174
Cloud environment 174

Docker Machine commands 175
active 176
ip 176
ls 177
scp 177
ssh 178
upgrade 178
url 178
TLS 178

Chapter 10: Docker Compose 181
Linking containers 181
Orchestration of containers 189

Orchestrate containers using docker-compose 192
Installing Docker Compose 192

Installing on Linux 192
Installing on OS X and Windows 193

Docker Compose YAML file 193
The Docker Compose usage 194

The Docker Compose options 195
The Docker Compose commands 196

build 197
kill 197
logs 198
port 199
ps 200
pull 201
restart 202
rm 202
run 203
scale 203
start 204
stop 205

Table of Contents

[vi]

up 206
version 207

Docker Compose – examples 208
image 208
build 213
The last example 213

Chapter 11: Docker Swarm 217
Docker Swarm install 217

Installation 217
Docker Swarm components 218

Swarm 218
Swarm manager 218
Swarm host 218

Docker Swarm usage 219
Creating a cluster 219
Joining nodes 221
Listing nodes 221
Managing a cluster 222

The Docker Swarm commands 224
Options 224
list 225
create 225
manage 225

The Docker Swarm topics 226
Discovery services 226
Advanced scheduling 228
The Swarm API 229

The Swarm cluster example 231
Chapter 12: Testing with Docker 235

A brief overview of the test-driven development 236
Testing your code inside Docker 236

Running the test inside a container 241
Using a Docker container as a runtime environment 243

Integrating Docker testing into Jenkins 246
Preparing the Jenkins environment 246
Automating the Docker testing process 252

Chapter 13: Debugging Containers 261
Process level isolation for Docker containers 262

Control groups 266
Debugging a containerized application 267

Table of Contents

[vii]

The Docker exec command 268
The Docker ps command 269
The Docker top command 270
The Docker stats command 271
The Docker events command 272
The Docker logs command 272

Installing and using nsenter 273

Course Module 2: Networking Docker

Chapter 1: Docker Networking Primer 281
Networking and Docker 282

Linux bridges 283
Open vSwitch 283
NAT 283
IPtables 283
AppArmor/SELinux 283

The docker0 bridge 284
The --net default mode 284
The --net=none mode 284
The --net=container:$container2 mode 284
The --net=host mode 285

Port mapping in Docker container 285
Docker OVS 287
Unix domain socket 288
Linking Docker containers 288

Links 290
What's new in Docker networking? 290

Sandbox 291
Endpoint 291
Network 291

The Docker CNM model 292
Chapter 2: Docker Networking Internals 295

Configuring the IP stack for Docker 296
IPv4 support 296
IPv6 support 296

Configuring a DNS server 298
Communication between containers and external networks 299

Restricting SSH access from one container to another 302

Table of Contents

[viii]

Configuring the Docker bridge 308
Overlay networks and underlay networks 311

Chapter 3: Building Your First Docker Network 317
Introduction to Pipework 317
Multiple containers over a single host 317

Weave your containers 321
Open vSwitch 324

Single host OVS 324
Creating an OVS bridge 325

Multiple host OVS 328
Networking with overlay networks – Flannel 331

Chapter 4: Networking in a Docker Cluster 337
Docker Swarm 337

Docker Swarm setup 339
Docker Swarm networking 342

Kubernetes 346
Deploying Kubernetes on AWS 347
Kubernetes networking and its differences to Docker networking 350
Deploying the Kubernetes pod 352

Mesosphere 355
Docker containers 355
Deploying a web app using Docker 358
Deploying Mesos on AWS using DCOS 360

Chapter 5: Next Generation Networking Stack for
Docker – libnetwork 371

Goal 372
Design 372
CNM objects 373

Sandbox 373
Endpoint 374
Network 375
Network controller 376
CNM attributes 377
CNM lifecycle 377

Driver 379
Bridge driver 380
Overlay network driver 381

Using overlay network with Vagrant 382
Overlay network deployment Vagrant setup 382

Table of Contents

[ix]

Overlay network with Docker Machine and Docker Swarm 386
Prerequisites 386
Key-value store installation 387
Create a Swarm cluster with two nodes 389
Creating an overlay network 391

Creating containers using an overlay network 393
Container network interface 395

CNI plugin 397
Network configuration 397
IP allocation 398
IP address management interface 399

Project Calico's libnetwork driver 402

Course Module 3: Monitoring Docker

Chapter 1: Introduction to Docker Monitoring 415
Pets, Cattle, Chickens, and Snowflakes 416

Pets 417
Cattle 417
Chickens 417
Snowflakes 418
So what does this all mean? 418

Launching a local environment 420
Cloning the environment 421
Running a virtual server 421
Halting the virtual server 425

Chapter 2: Using the Built-in Tools 429
Docker stats 429

Running Docker stats 430
What just happened? 434
What about processes? 435

Docker top 436
Docker exec 437

Chapter 3: Advanced Container Resource Analysis 441
What is cAdvisor? 441
Running cAdvisor using a container 442
Compiling cAdvisor from source 444
Collecting metrics 446

Table of Contents

[x]

The Web interface 447
Overview 448
Processes 448
CPU 450
Memory 451
Network 452
Filesystem 452

Viewing container stats 453
Subcontainers 453
Driver status 453
Images 454

This is all great, what's the catch? 454
Prometheus 455

Launching Prometheus 456
Querying Prometheus 457
Dashboard 458
The next steps 460

Alternatives? 461
Chapter 4: A Traditional Approach to Monitoring Containers 463

Zabbix 463
Installing Zabbix 464

Using containers 464
Using vagrant 469
Preparing our host machine 470
The Zabbix web interface 472

Docker metrics 475
Create custom graphs 476
Compare containers to your host machine 477
Triggers 478

Chapter 5: Querying with Sysdig 481
What is Sysdig? 481
Installing Sysdig 482
Using Sysdig 483

The basics 484
Capturing data 485
Containers 486
Further reading 487

Using Csysdig 487

Table of Contents

[xi]

Chapter 6: Exploring Third Party Options 493
A word about externally hosted services 493

Deploying Docker in the cloud 494
Why use a SaaS service? 495
Sysdig Cloud 496

Installing the agent 497
Exploring your containers 500
Summary and further reading 504

Datadog 504
Installing the agent 505
Exploring the web interface 506
Summary and further reading 510

New Relic 510
Installing the agent 511
Exploring the web interface 512
Summary and further reading 516

Chapter 7: Collecting Application Logs from
within the Container 519

Viewing container logs 520
ELK Stack 521

Starting the stack 522
Logspout 523
Reviewing the logs 524
What about production? 526

Looking at third party options 527
Chapter 8: What Are the Next Steps? 531

Some scenarios 531
Pets, Cattle, Chickens, and Snowflakes 531

Pets 532
Cattle 532
Chickens 533
Snowflakes 533

Scenario one 534
Scenario two 535

A little more about alerting 536
Chickens 537
Cattle and Pets 537
Sending alerts 538

Keeping up 538

Table of Contents

[xii]

Course Module 4: Securing Docker

Chapter 1: Securing Docker Hosts 545
Docker host overview 545
Discussing Docker host 546
Virtualization and isolation 546
Attack surface of Docker daemon 548

Protecting the Docker daemon 549
Securing Docker hosts 552
Docker Machine 552
SELinux and AppArmor 555
Auto-patching hosts 555

Chapter 2: Securing Docker Components 559
Docker Content Trust 559

Docker Content Trust components 560
Signing images 562
Hardware signing 564

Docker Subscription 564
Docker Trusted Registry 566

Installation 567
Securing Docker Trusted Registry 568
Administering 574
Workflow 574

Docker Registry 576
Installation 576
Configuration and security 578

Chapter 3: Securing and Hardening Linux Kernels 583
Linux kernel hardening guides 583

SANS hardening guide deep dive 584
Access controls 586
Distribution focused 588

Linux kernel hardening tools 589
Grsecurity 589
Lynis 590

Chapter 4: Docker Bench for Security 593
Docker security – best practices 594
Docker – best practices 594
CIS guide 594

Host configuration 595

Table of Contents

[xiii]

Docker daemon configuration 595
Docker daemon configuration files 595
Container images/runtime 595
Docker security operations 596

The Docker Bench Security application 596
Running the tool 597

Running the tool – host configuration 598
Running the tool – Docker daemon configuration 599
Running the tool – Docker daemon configuration files 599
Running the tool – container images and build files 601
Running the tool – container runtime 601
Running the tool – Docker security operations 602

Understanding the output 602
Understanding the output – host configuration 603
Understanding the output – the Docker daemon configuration 603
Understanding the output – the Docker daemon configuration files 604
Understanding the output – container images and build files 604
Understanding the output – container runtime 604
Understanding the output – Docker security operations 606

Chapter 5: Monitoring and Reporting Docker Security Incidents 609
Docker security monitoring 610
Docker CVE 610
Mailing lists 611
Docker security reporting 611

Responsible disclosure 611
Security reporting 612

Additional Docker security resources 612
Docker Notary 612
Hardware signing 613
Reading materials 614
Awesome Docker 615

Chapter 6: Using Docker's Built-in Security Features 617
Docker tools 618

Using TLS 618
Read-only containers 622

Docker security fundamentals 624
Kernel namespaces 624
Control groups 624
Linux kernel capabilities 627

Containers versus virtual machines 628

Table of Contents

[xiv]

Chapter 7: Securing Docker with Third-Party Tools 631
Third-party tools 632

Traffic Authorization 632
Summon 633
sVirt and SELinux 634

Other third-party tools 636
dockersh 637
DockerUI 637
Shipyard 639
Logspout 641

Chapter 8: Keeping up Security 645
Keeping up with security 646

E-mail list options 646
The two e-mail lists are as follows: 646

GitHub issues 647
IRC rooms 655
CVE websites 656

Other areas of interest 656

Course Module 5: Mastering Docker

Chapter 1: Docker in Production 663
Where to start? 663

Setting up hosts 663
Setting up nodes 664

Host management 665
Host monitoring 665
Docker Swarm 665
Swarm manager failover 666

Container management 666
Container image storage 666
Image usage 667
The Docker commands and GUIs 667
Container monitoring 667
Automatic restarts 668
Rolling updates 668

Docker Compose usage 669
Developer environments 669
Scaling environments 669

Table of Contents

[xv]

Extending to external platform(s) 670
Heroku 670

Overall security 671
Security best practices 671

DockerUI 672
ImageLayers 678

Chapter 2: Shipyard 687
Up and running 687
Containers 690

Deploying a container 691
IMAGES 692

Pulling an image 693
NODES 694
REGISTRIES 695
ACCOUNTS 696
EVENTS 697
Back to CONTAINERS 698

Chapter 3: Panamax 705
Installing Panamax 705
An example 709

Applications 712
Sources 713
Images 714
Registries 715
Remote Deployment Targets 716
Back to Applications 717
Adding a service 718
Configuring the application 720

Service links 721
Environmental variables 722
Ports 723
Volumes 724
Docker Run Command 725

Chapter 4: Tutum 727
Getting started 727
The tutorial page 728
The Service dashboard 729
The Nodes section 730
Cloud Providers 731
Back to Nodes 735

Table of Contents

[xvi]

Back to the Services section 741
Containers 745
Endpoints 746
Logs 747
Monitoring 748
Triggers 749
Timeline 750
Configuration 751

The Repositories tab 752
Stacks 753

Chapter 5: Advanced Docker 763
Scaling Docker 764
Using discovery services 764

Consul 765
etcd 765

Debugging or troubleshooting Docker 766
Docker commands 766
GUI applications 767
Resources 767

Common issues and solutions 767
Docker images 767
Docker volumes 768
Using resources 769

Various Docker APIs 769
docker.io accounts API 770
Remote API 770

Keeping your containers in check 771
Kubernetes 771
Chef 772
Other solutions 772

Contributing to Docker 772
Contributing to the code 773
Contributing to support 773
Other contributions 774

Advanced Docker networking 774
Installation 774
Creating your own network 777

Table of Contents

[xvii]

Appendix: Reflect and Test Yourself! Answers 783
Module 1: Learning Docker 783

Chapter 1: Getting Started with Docker 783
Chapter 6: Running Your Private Docker Infrastructure 783
Chapter 7: Running Services In a Container 783
Chapter 8: Sharing Data with Containers 784
Chapter 9: Docker Machine 784
Chapter 10: Orchestrating Docker 784
Chapter 11: Docker Swarm 784
Chapter 12: Testing with Docker 784
Chapter 13: Debugging Containers 784

Module 2: Networking Docker 785
Chapter 1: Docker Networking Primer 785
Chapter 2: Docker Networking Internals 785
Chapter 3: Building Your First Docker Network 785
Chapter 4: Networking in a Docker Cluster 785
Chapter 5: Next Generation Networking Stack for Docker – libnetwork 786

Module 3: Monitoring Docker 786
Chapter 1: Introduction to Docker Monitoring 786
Chapter 3: Advanced Container Resource Analysis 786
Chapter 4: A Traditional Approach to Monitoring Containers 786
Chapter 5: Querying with Sysdig 787
Chapter 6: Exploring Third-Party Options 787
Chapter 7: Collecting Application Logs from within the Container 787

Module 4: Securing Docker 787
Chapter 2: Securing Docker Components 787
Chapter 3: Securing and Hardening Linux Kernels 787
Chapter 4, Docker Bench for Security 788
Chapter 5, Monitoring and Reporting Docker Security Incidents 788
Chapter 6, Using Docker's Built-in Security Features 788
Chapter 7, Securing Docker with Third-party Tools 788
Chapter 8, Keeping up Security 788

Module 5: Mastering Docker 789
Chapter 1, Docker in Production 789
Chapter 2, Shipyard 789
Chapter 5, Advanced Docker 789

Bibliography 791

[5]

Getting Started with Docker
These days, Docker technology is gaining more market and more mind shares
among information technology (IT) professionals across the globe. In this chapter,
we would like to shed more light on Docker, and show why it is being touted as
the next best thing for the impending cloud IT era. In order to make this book
relevant to software engineers, we have listed the steps needed for crafting highly
usable application-aware containers, registering them in a public registry repository,
and then deploying them in multiple IT environments (on-premises as well as
off-premises). In this book, we have clearly explained the prerequisites and the most
important details of Docker, with the help of all the education and experiences that
we could gain through a series of careful implementations of several useful Docker
containers in different systems. For doing this, we used our own laptops as well as a
few leading public Cloud Service Providers (CSP).

We would like to introduce you to the practical side of Docker for the game-
changing Docker-inspired containerization movement.

In this chapter, we will cover the following topics:

• An introduction to Docker
• Docker on Linux
• Differentiating between containerization and virtualization
• Installing the Docker engine
• Understanding the Docker setup
• Downloading the first image
• Running the first container
• Running a Docker container on Amazon Web Services (AWS)
• Troubleshooting the Docker containers

Getting Started with Docker

[6]

An introduction to Docker
Due to its overwhelming usage across industry verticals, the IT domain has been
stuffed with many new and path-breaking technologies used not only for bringing
in more decisive automation but also for overcoming existing complexities.

Virtualization has set the goal of bringing forth IT infrastructure optimization and
portability. However, virtualization technology has serious drawbacks, such as
performance degradation due to the heavyweight nature of virtual machines (VM),
the lack of application portability, slowness in provisioning of IT resources, and so
on. Therefore, the IT industry has been steadily embarking on a Docker-inspired
containerization journey. The Docker initiative has been specifically designed for
making the containerization paradigm easier to grasp and use. Docker enables the
containerization process to be accomplished in a risk-free and accelerated fashion.

Precisely speaking, Docker is an open source containerization engine, which
automates the packaging, shipping, and deployment of any software applications
that are presented as lightweight, portable, and self-sufficient containers, that will
run virtually anywhere.

A Docker container is a software bucket comprising everything necessary to run
the software independently. There can be multiple Docker containers in a single
machine and containers are completely isolated from one another as well as from
the host machine.

In other words, a Docker container includes a software component along with
all of its dependencies (binaries, libraries, configuration files, scripts, jars, and so
on). Therefore, the Docker containers could be fluently run on x64 Linux kernel
supporting namespaces, control groups, and file systems, such as Another Union
File System (AUFS). AUFS is a layered copy-on-write file system that shares
common portions of the operating system between containers.

There have been many tools and technologies aimed at making distributed
applications possible, even easy to set up, but none of them have as wide an
appeal as Docker does, which is primarily because of its cross-platform nature and
friendliness towards both system administrators and developers. It is possible to set
up Docker in any OS, be it Windows, OS X, or Linux, and Docker containers work
the same way everywhere. This is extremely powerful, as it enables a write-once-run
anywhere workflow. Docker containers are guaranteed to run the same way, be it
on your development desktop, a bare-metal server, virtual machine, data center, or
cloud. No longer do you have the situation where a program runs on the developer’s
laptop but not on the server.

[7]

In a nutshell, the Docker solution lets us quickly assemble composite, enterprise-scale,
and business-critical applications. For doing this, we can use different and distributed
software components: Containers eliminate the friction that comes with shipping
code to distant locations. Docker also lets us test the code and then deploy it in
production as fast as possible. The Docker solution primarily consists of the following
components:

• The Docker engine
• The Docker Hub

The Docker engine is for enabling the realization of purpose-specific as well as
generic Docker containers. The Docker Hub is a fast-growing repository of the
Docker images that can be combined in different ways for producing publicly
findable, network-accessible, and widely usable containers.

Docker on Linux
Supposethat we want to directly run the containers on a Linux machine. The Docker
engine produces, monitors, and manages multiple containers as illustrated in the
following diagram:

Getting Started with Docker

[8]

The preceding diagram vividly illustrates how future IT systems would have
hundreds of application-aware containers, which would innately be capable of
facilitating their seamless integration and orchestration for deriving modular
applications (business, social, mobile, analytical, and embedded solutions). These
contained applications could fluently run on converged, federated, virtualized,
shared, dedicated, and automated infrastructures.

Differentiating between containerization
and virtualization
It is pertinent, and paramount to extract and expound the game-changing
advantages of the Docker-inspired containerization movement over the widely
used and fully matured virtualization paradigm. In the containerization paradigm,
strategically sound optimizations have been accomplished through a few crucial
and well-defined rationalizations and the insightful sharing of the compute
resources. Some of the innate and hitherto underutilized capabilities of the Linux
kernel have been rediscovered. These capabilities have been rewarded for bringing
in much-wanted automation and acceleration, which will enable the fledgling
containerization idea to reach greater heights in the days ahead, especially those of
the cloud era. The noteworthy business and technical advantages of these include the
bare metal-scale performance, real-time scalability, higher availability, and so on. All
the unwanted bulges and flab are being sagaciously eliminated to speed up the roll-
out of hundreds of application containers in seconds and to reduce the time taken for
marketing and valuing in a cost-effective fashion. The following diagram on the left-
hand side depicts the virtualization aspect, whereas the diagram on the right-hand
side vividly illustrates the simplifications that are being achieved in the containers:

[9]

The following table gives a direct comparison between virtual machines and
containers:

Virtual Machines (VMs) Containers
Represents hardware-level virtualization Represents operating system virtualization
Heavyweight Lightweight
Slow provisioning Real-time provisioning and scalability
Limited performance Native performance
Fully isolated and hence more secure Process-level isolation and hence less secure

The convergence of containerization and
virtualization
A hybrid model, having features from both the virtual machines and that of
containers, is being developed. It is the emergence of system containers, as illustrated
in the preceding right-hand-side diagram. Traditional hypervisors, which implicitly
represent hardware virtualization, directly secure the environment with the help
of the server hardware. That is, VMs are completely isolated from the other VMs
as well as from the underlying system. But for containers, this isolation happens
at the process level and hence, they are liable for any kind of security incursion.
Furthermore, some vital features that are available in the VMs are not available
in the containers. For instance, there is no support for system services like SSH.
On the other hand, VMs are resource-hungry and hence, their performance gets
substantially degraded. Indeed, in containerization parlance, the overhead of a
classic hypervisor and a guest operating system will be eliminated to achieve bare
metal performance. Therefore, a few VMs can be provisioned and made available to
work on a single machine. Thus, on one hand, we have the fully isolated VMs with
average performance and on the other side, we have the containers that lack some
of the key features, but are blessed with high performance. Having understood the
ensuing needs, product vendors are working on system containers. The objective
of this new initiative is to provide full system containers with the performance
that you would expect from bare metal servers, but with the experience of virtual
machines. The system containers in the preceding right-hand-side diagram represent
the convergence of two important concepts (virtualization and containerization) for
smarter IT. We will hear and read more about this blending in the future.

Getting Started with Docker

[10]

Containerization technologies
Having recognized the role and the relevance of the containerization paradigm for
IT infrastructure augmentation and acceleration, a few technologies that leverage the
unique and decisive impacts of the containerization idea have come into existence
and they have been enumerated as follows:

• LXC(Linux Containers): Thisis the father of all kinds of containers and it
represents an operating-system-level virtualization environment for running
multiple isolated Linux systems (containers) on a single Linux machine. The
article LXCon the Wikipedia website states that:

“The Linux kernel provides the cgroups functionality that allows
limitation and prioritization of resources (CPU, memory, block I/O,
network, etc.) without the need for starting any virtual machines,
and namespace isolation functionality that allows complete isolation
of an applications’ view of the operating environment, including
process trees, networking, user IDs and mounted file systems.”

You can get more information from http://en.wikipedia.org/wiki/LXC

• OpenVZ: This is an OS-level virtualization technology based on the Linux
kernel and the operating system. OpenVZ allows a physical server to run
multiple isolated operating system instances, called containers, virtual
private servers (VPSs), or virtual environments (VEs).

• The FreeBSD jail: This is a mechanism that implements an OS-level
virtualization, which lets the administrators partition a FreeBSD-based
computer system into several independent mini-systems called jails.

• The AIX Workload partitions(WPARs): These are the software
implementations of the OS-level virtualization technology, which provide
application environment isolation and resource control.

• Solaris Containers(including Solaris Zones): This is an implementation
of the OS-level virtualization technology for the x86 and SPARC systems.
A Solaris Container is a combination of the system resource controls and
boundary separation provided by zones. Zones act as completely isolated
virtual servers within a single operating system instance.

http://en.wikipedia.org/wiki/LXC

[11]

Docker networking/linking
Another important aspect that needs to be understood is how Docker containers
are networked or linked together. The way they are networked or linked together
highlights another important and large benefit of Docker. When a container is
created, it creates a bridge network adapter for which it is assigns an address; it
is through these network adapters that the communication flows when you link
containers together. Docker doesn’t have the need to expose ports to link containers.
Let’s take a look at it with the help of the following illustration:

In the preceding illustration, we can see that the typical VM has to expose ports
for others to be able to communicate with each other. This can be dangerous if you
don’t set up your firewalls or, in this case with MySQL, your MySQL permissions
correctly. This can also cause unwanted traffic to the open ports. In the case of
Docker, you can link your containers together, so there is no need to expose the
ports. This adds security to your setup, as there is now a secure connection between
your containers.

Getting Started with Docker

[12]

Installing Docker
The Docker engine is built on top of the Linux kernel and it extensively leverages its
features. Therefore, at this point in time, the Docker engine can only be directly run
on Linux OS distributions. Nonetheless, the Docker engine could be run on the Mac
and Microsoft Windows operating systems by using the lightweight Linux VMs with
the help of adapters, such as Boot2Docker. Due to the surging growing of Docker, it
is now being packaged by all major Linux distributions so that they can retain their
loyal users as well as attract new users. You can install the Docker engine by using
the corresponding packaging tool of the Linux distribution; for example, by using
the apt-get command for Debian and Ubuntu, and the yum command for Red Hat,
Fedora, and CentOS. You can look up the instructions for your operating system at
https://docs.docker.com/installation/#installation.

Note that Docker is called docker.io here and just docker on
other platforms since Ubuntu (and Debian) already has a package
named docker. Therefore, all the files with the name docker are
installed as docker.io.
Examples are /usr/bin/docker.io and /etc/bash_
completion.d/docker.io.

Installing Docker from the Ubuntu package
repository
Docker is supported by Ubuntu from Ubuntu 12.04 onwards. Remember that you
still need a 64-bit operating system to run Docker. This section explains the steps
involved in installing the Docker engine from the Ubuntu package repository in
detail. To install the Ubuntu packaged version, follow these steps:

1. The best practice for installing the Ubuntu packaged version is to begin
the installation process by resynchronizing with the Ubuntu package
repository. This step will essentially update the package repository to the
latest published packages, thus we will ensure that we always get the latest
published version by using the command shown here:
$ sudo apt-get update

2. Kick-start the installation by using the following command. This setup will
install the Docker engine along with a few more support files, and it will also
start the docker service instantaneously:
$ sudo apt-get install -y docker.io

[13]

That’s it! You have now installed Docker onto your system. Remember that the
command has been renamed docker.io, so you will have to run all Docker
commands with docker.io instead of docker. However, for your convenience, you
can create a soft link for docker.io called docker. This will enable you to execute
Docker commands as docker instead of docker.io. You can do this by using the
following command:

$ sudo ln -sf /usr/bin/docker.io /usr/local/bin/docker

Downloading the example code
The code files for this course are available at https://github.
com/EdwinMoses/Docker-Code.

Installing the latest Docker using docker.io
script
The official distributions might not package the latest version of Docker. In such
a case, you can install the latest version of Docker either manually or by using the
automated scripts provided by the Docker community.

For installing the latest version of Docker manually, follow these steps:

1. Add the Docker release tool’s repository path to your APT sources,
as shown here:
$ sudo sh -c “echo deb https://get.docker.io/ubuntu \

docker main > /etc/apt/sources.list.d/docker.list”

2. Import the Docker release tool’s public key by running the following
command:
$ sudo apt-key adv --keyserver \

hkp://keyserver.ubuntu.com:80 --recv-keys \

36A1D7869245C8950F966E92D8576A8BA88D21E9

3. Resynchronize with the package repository by using the command
shown here:
$ sudo apt-get update

4. Install docker and then start the docker service.
$ sudo apt-get install -y lxc-docker

https://github.com/EdwinMoses/Docker-Code
https://github.com/EdwinMoses/Docker-Code

Getting Started with Docker

[14]

The lxc-docker command will install the Docker image using
the name docker.

The Docker community has taken a step forward by hiding these details in an
automated install script. This script enables the installation of Docker on most of the
popular Linux distributions, either through the curl command or through the wget
command, as shown here:

• For the curl command:
$ sudo curl -sSL https://get.docker.io/ | sh

• For the wget command:
$ sudo wget -qO- https://get.docker.io/ | sh

The preceding automated script approach enforces AUFS as the
underlying Docker file system. This script probes the AUFS driver,
and then installs it automatically if it is not found in the system.
In addition, it also conducts some basic tests upon installation for
verifying the sanity.

Upgrading Docker
Now that we have Docker installed, we can get going at full steam! There is one
problem though: software repositories like APT are usually behind times and often
have older versions. Docker is a fast-moving project and a lot has changed in the last
few versions. So it is always recommended to have the latest version installed. At the
time of writing this, the latest version of Docker was 1.10.0.

To check and download upgrades, all you have to do is to execute this command
in a terminal:

sudo apt-get update && sudo apt-get upgrade

You can upgrade Docker as and when it is updated in the APT repositories. An
alternative (and better) method is to build from source. The best way to remain
updated is to regularly get the latest version from the public GitHub repository.
Traditionally, building software from a source has been painful and done only by
people who actually work on the project. This is not so with Docker. From Docker
0.6, it has been possible to build Docker in Docker. This means that upgrading
Docker is as simple as building a new version in Docker itself and replacing the
binary. Let’s see how this is done.

[15]

You need to have the following tools installed in a 64-bit Linux machine (VM or
bare-metal) to build Docker:

• Git: It is a free and open source distributed version control system designed
to handle everything from small to very large projects with speed and
efficiency. It is used here to clone the Docker public source code repository.
Check out git-scm.org for more details.

• Make: This utility is a software engineering tool used to manage and
maintain computer programs. Make provides most help when the program
consists of many component files. A Makefile file is used here to kick off the
Docker containers in a repeatable and consistent way.

Building Docker from source
To build Docker in Docker, we will first fetch the source code and then run a few
make commands that will, in the end, create a docker binary, which will replace the
current binary in the Docker installation path.

Run the following command in your terminal:

$ git clone https://git@github.com/dotcloud/docker

This command clones the official Docker source code repository from the GitHub
repository into a directory named docker:

$ cd docker

$ sudo make build

This will prepare the development environment and install all the dependencies
required to create the binary. This might take some time on the first run, so you can
go and have a cup of coffee.

If you encounter any errors that you find difficult to debug, you
can always go to #docker on freenode IRC. The developers and
the Docker community are very helpful.

Now we are ready to compile that binary:

$ sudo make binary

This will compile a binary and place it in the ./bundles/<version>-dev/binary/
directory. And voila! You have a fresh version of Docker ready.

Getting Started with Docker

[16]

Before replacing your existing binary though, run the tests:

$ sudo make test

If the tests pass, then it is safe to replace your current binary with the one you’ve just
compiled. Stop the docker service, create a backup of the existing binary, and then
copy the freshly baked binary in its place:

$ sudo service docker stop

$ alias wd=’which docker’

$ sudo cp $(wd) $(wd)_

$ sudo cp $(pwd)/bundles/<version>-dev/binary/docker-<version>-dev $(wd)

$ sudo service docker start

Congratulations! You now have the up-to-date version of Docker running.

OS X and Windows users can follow the same procedures
as SSH in the boot2Docker VM.

User permissions
Create a group called docker and add your user to that group to avoid having to
add the sudo prefix to every docker command. The reason you need to run a docker
command with the sudo prefix by default is that the docker daemon needs to run
with root privileges, but the docker client (the commands you run) doesn’t. So, by
creating a docker group, you can run all the client commands without using the
sudo prefix, whereas the daemon runs with the root privileges:

$ sudo groupadd docker # Adds the docker group

$ sudo gpasswd -a $(whoami) docker # Adds the current user to the group

$ sudo service docker restart

You might need to log out and log in again for the changes to take effect.

UFW settings
Docker uses a bridge to manage network in the container. Uncomplicated Firewall
(UFW) is the default firewall tool in Ubuntu. It drops all forwarding traffic. You will
need to enable forwarding like this:

$ sudo vim /etc/default/ufw

Change:

[17]

DEFAULT_FORWARD_POLICY=”DROP”

to

DEFAULT_FORWARD_POLICY=”ACCEPT”

Reload the firewall by running the following command:

$ sudo ufw reload

Alternatively, if you want to be able to reach your containers from other hosts, then
you should enable incoming connections on the Docker port (default 2375):

$ sudo ufw allow 2375/tcp

You do not need to follow user permission and UFW
settings if you are using boot2Docker.

Installing Docker on Mac OS X
To be able to use Docker on Mac OS X, we have to run the Docker service inside
a virtual machine (VM) since Docker uses Linux-specific features to run. We
don’t have to get frightened by this since the installation process is very short
and straightforward.

Installation
There is an OS X installer that installs everything we need, that is, VirtualBox,
boot2docker, and Docker.

VirtualBox is a virtualizer in which we can run the lightweight Linux distribution,
and boot2docker is a virtual machine that runs completely in the RAM and occupies
just about 27 MB of space.

The latest released version of the OS X installer can be
found at https://github.com/boot2docker/osx-
installer/releases/latest.

https://github.com/boot2docker/osx-installer/releases/latest
https://github.com/boot2docker/osx-installer/releases/latest

Getting Started with Docker

[18]

Now, let’s take a look at how the installation should be done with the following steps:

1. Download the installer by clicking on the button named Boot2Docker-
1.x.0.pkg to get the .pkg file.

2. Double-click on the downloaded .pkg file and go through with the
installation process.

3. Open the Finder window and navigate to your Applications folder; locate
boot2docker and double-click on it. A terminal window will open and issue
a few commands.
This runs a Linux VM, named boot2docker-vm, that has Docker pre-
installed in VirtualBox. The Docker service in the VM runs in daemon
(background) mode, and a Docker client is installed in OS X, which
communicates directly with the Docker daemon inside the VM via the
Docker Remote API.

4. You will see the following output, which tells you to set some environment
variables:
To connect the Docker client to the Docker daemon, please set:

 export DOCKER_HOST=tcp://192.168.59.103:2376

 export DOCKER_CERT_PATH=/Users/oscarhane/.boot2docker/certs/
boot2docker-vm

 export DOCKER_TLS_VERIFY=1

We open up the ~/.bash_profile file and paste three lines from our output,
as follows, at the end of this file:
export DOCKER_HOST=tcp://192.168.59.103:2376

export.DOCKER_CERT_PATH=/Users/xxx/.boot2docker/certs/boot2docker-
vm

export DOCKER_TLS_VERIFY=1

[19]

The reason why we do this is so that our Docker client knows where to find
the Docker daemon. If you want to find the IP in the future, you can do so by
executing the boot2docker ip command. Adding the preceding lines will
set these variables every time a new terminal session starts. When you’re
done, close the terminal window. Then, open a new window and type echo
$DOCKER_HOST to verify that the environment variable is set as it should be.
You should see the IP and port your boot2docker VM printed.

5. Type docker version to verify that you can use the Docker command,
which will show the Docker version currently installed.

Installing Docker on Windows
Just as we have to install a Linux virtual machine when installing Docker in OS X,
we have to do the same in Windows in order to run Docker because of the Linux
kernel features that Docker builds on. OS X has a native Docker client that directly
communicates with the Docker daemon inside the virtual machine, but there isn’t
one available for Windows yet.

Installation
There is a Windows installer that installs everything we need in order to run
Docker. For this, go to https://github.com/boot2docker/windows-installer/
releases/latest.

Now, let’s take a look at how the installation should be done with the help of the
following steps:

1. Click on the docker-install.exe button to download the .exe file.
2. When the download is complete, run the downloaded installer. Follow

through the installation process, and you will get VirtualBox, msysGit, and
boot2docker installed.

3. Go to your Program Files folder and click on the newly installed
boot2docker to start using Docker. If you are prompted to enter a
passphrase, just press Enter.

4. Type docker version to verify that you can use the Docker command.

Getting Started with Docker

[20]

Upgrading Docker on Mac OS X and Windows
A new software changes often and to keep boot2docker updated, invoke these
commands:

boot2docker stop

boot2docker download

boot2docker start

Downloading the first Docker image
Having installed the Docker engine successfully, the next logical step is to download
the images from the Docker registry. The Docker registry is an application repository,
which hosts a range of applications that vary between basic Linux images and
advanced applications. The docker pull subcommand is used for downloading any
number of images from the registry. In this section, we will download a tiny version of
Linux called the busybox image by using the following command:

$ sudo docker pull busybox

511136ea3c5a: Pull complete

df7546f9f060: Pull complete

ea13149945cb: Pull complete

4986bf8c1536: Pull complete

busybox:latest: The image you are pulling has been verified. Important:
image verification is a tech preview feature and should not be relied on
to provide security.

Status: Downloaded newer image for busybox:latest

Once the images have been downloaded, they can be verified by using the docker
images subcommand, as shown here:

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

busybox latest 4986bf8c1536 12 weeks ago 2.433 MB

[21]

Running the first Docker container
Now, you can start your first Docker container. It is standard practice to start with
the basic Hello World! application. In the following example, we will echo Hello
World! by using a busybox image, which we have already downloaded, as shown
here:

$ sudo docker run busybox echo "Hello World!"

"Hello World!"

Cool, isn't it? You have set up your first Docker container in no time. In the
preceding example, the docker run subcommand has been used for creating a
container and for printing Hello World! by using the echo command.

Running a Docker container on Amazon
Web Services
Amazon Web Services (AWS) announced the availability of Docker containers at the
beginning of 2014, as a part of its Elastic Beanstalk offering. At the end of 2014, they
revolutionized Docker deployment and provided the users with options shown here
for running Docker containers:

• The Amazon EC2 container service (only available in preview mode at the
time of writing this book)

• Docker deployment by using the Amazon Elastic Beans services

The Amazon EC2 container service lets you start and stop the container-enabled
applications with the help of simple API calls. AWS has introduced the concept of
a cluster for viewing the state of your containers. You can view the tasks from a
centralized service, and it gives you access to many familiar Amazon EC2 features,
such as the security groups, the EBS volumes and the IAM roles.

Getting Started with Docker

[22]

Please note that this service is still not available in the AWS console. You need to
install AWS CLI on your machine to deploy, run, and access this service.

The AWS Elastic Beanstalk service supports the following:

• A single container that supports Elastic Beanstalk by using a console.
Currently, it supports the PHP and Python applications.

• A single container that supports Elastic Beanstalk by using a command line
tool called eb. It supports the same PHP and Python applications.

• Use of multiple container environments by using Elastic beanstalk.

Currently, AWS supports the latest Docker version, which is 1.5.

This section provides a step-by-step process to deploy a sample application on a
Docker container running on AWS Elastic Beanstalk.The following are the steps of
deployment:

1. Log in to the AWS Elastic Beanstalk console by using this
https://console.aws.amazon.com/elasticbeanstalk/ URL.

2. Select a region where you want to deploy your application, as shown here:

Vinod Kumar Singh � Singapore � Help �

3. Select the Docker option, which is in the drop down menu, and then click
on Launch Now. The next screen will be shown after a few minutes, as
shown here:

https://console.aws.amazon.com/elasticbeanstalk/

[23]

Now, click on the URL that is next to Default-Environment (Default-
Environment-pjgerbmmjm.elasticbeanstalk.com), as shown here:

Troubleshooting
Most of the time, you will not encounter any issues when installing Docker.
However, unplanned failures might occur. Therefore, it is necessary to discuss
prominent troubleshooting techniques and tips. Let's begin by discussing the
troubleshooting knowhow in this section. The first tip is that the running status of
Docker should be checked by using the following command:

$ sudo service docker status

However, if Docker has been installed by using the Ubuntu package, then you will
have to use docker.io as the service name. If the docker service is running, then
this command will print the status as start/running along with its process ID.

If you are still experiencing issues with the Docker setup, then you could open
the Docker log by using the /var/log/upstart/docker.log file for further
investigation.

Getting Started with Docker

[24]

Up and Running
In the last chapter, we set up Docker in our development setup. In this chapter, we
will explore the Docker command-line interface.

The following topics will be covered:

• Docker terminologies
• Docker commands
• Dockerfiles
• Docker workflow—pull-use-modify-commit-push workflow

Docker terminologies
Before we begin our exciting journey into the Docker sphere, let's understand the
Docker terminologies that will be used in this book a little better. Very similar in
concept to VM images, a Docker image is a snapshot of a system. The difference
between a VM image and a Docker image is that a VM image can have running
services, whereas a Docker image is just a filesystem snapshot, which means that
while you can configure the image to have your favorite packages, you can run
only one command in the container. Don't fret though, since the limitation is one
command, not one process, so there are ways to get a Docker container to do
almost anything a VM instance can.

Docker has also implemented a Git-like distributed version management system for
Docker images. Images can be stored in repositories (called a registry), both locally and
remotely. The functionalities and terminologies borrow heavily from Git—snapshots
are called commits, you pull an image repository, you push your local image to a
repository, and so on.

Up and Running

[26]

Docker images and containers
A Docker image is a collection of all of the files that make up a software application.
Each change that is made to the original image is stored in a separate layer. To
be precise, any Docker image has to originate from a base image according to the
various requirements. Additional modules can be attached to the base image for
deriving the various images that can exhibit the preferred behavior. Each time you
commit to a Docker image, you are creating a new layer on the Docker image, but
the original image and each pre-existing layer remains unchanged. In other words,
images are typically of the read-only type. If they are empowered through the
systematic attachment of newer modules, then a fresh image will be created with a
new name. The Docker images are turning out to be a viable base for developing and
deploying the Docker containers.

A base image has been illustrated here. Debian is the base image, and a variety of
desired capabilities in the form of functional modules can be incorporated on the
base image for arriving at multiple images:

Every image has a unique ID, as explained in the following section. The base images
can be enhanced such that they can create the parent images, which in turn can be
used for creating the child images. The base image does not have any parent, that is,
the parent images sit on top of the base image. When we work with an image and
if we don’t specify that image through an appropriate identity (say, a new name),
then the latest image (recently generated) will always be identified and used by the
Docker engine.

Chapter 2

[27]

As per the Docker home page, a Docker image has a read-only template. For
example, an image could contain an Ubuntu operating system, with Apache and
your web application installed on it. Docker provides a simple way for building
new images or of updating the existing images. You can also download the Docker
images that the other people have already created. The Docker images are the
building components of the Docker containers. In general, the base Docker image
represents an operating system, and in the case of Linux, the base image can be one
of its distributions, such as Debian. Adding additional modules to the base image
ultimately dawns a container. The easiest way of thinking about a container is as the
read-write layer that sits on more read-only images. When the container is run, the
Docker engine not only merges all of the required images together, but it also merges
the changes from the read-write layer into the container itself. This makes it a self-
contained, extensible, and executable system. The changes can be merged by using
the Docker docker commit subcommand. The new container will accommodate all
the changes that are made to the base image. The new image will form a new layer
on top of the base image.

The following diagram will tell you everything clearly. The base image is the Debian
distribution, then there is an addition of two images (the emacs and the Apache
server), and this will result in the container:

Each commit invariably makes a new image. This makes the number of images go
up steadily, and so managing them becomes a complicated affair. However, the
storage space is not a big challenge because the new image that is generated is only
comprised of the newly added modules. In a way, this is similar to the popular object
storage in the cloud environments. Every time you update an object, there will be a
new object that gets created with the latest modification and then it is stored with a
new ID. In the case of object storage, the storage size balloons significantly.

Up and Running

[28]

A Docker layer
A Docker layer could represent either read-only images or read-write images.
However, the top layer of a container stack is always the read-write (writable) layer,
which hosts a Docker container.

A Docker container
From the preceding diagram, it is clear that the read-write layer is the container
layer. There could be several read-only images beneath the container layer. Typically,
a container originates from a read-only image through the act of a commit. When you
start a container, you actually refer to an image through its unique ID. Docker pulls
the required image and its parent image. It continues to pull all the parent images
until it reaches the base image.

A Docker container can be correlated to an instance of a VM. It runs sandboxed
processes that share the same kernel as the host. The term container comes from the
concept of shipping containers. The idea is that you can ship containers from your
development environment to the deployment environment and the applications
running in the containers will behave the same way no matter where you run them.

The following image shows the layers of AUFS:

Application

Host Kernel

Node.js MongoDB

Base Image

This is similar in context to a shipping container, which stays sealed until delivery
but can be loaded, unloaded, stacked, and transported in between.

The visible filesystem of the processes in the container is based on AUFS (although you
can configure the container to run with a different filesystem too). AUFS is a layered
filesystem. These layers are all read-only and the merger of these layers is what is
visible to the processes. However, if a process makes a change in the filesystem, a new
layer is created, which represents the difference between the original state and the new
state. When you create an image out of this container, the layers are preserved. Thus,
it is possible to build new images out of existing images, creating a very convenient
hierarchical model of images.

Chapter 2

[29]

The docker daemon
The docker daemon is the process that manages containers. It is easy to get this
confused with the Docker client because the same binary is used to run both the
processes. The docker daemon, though, needs the root privileges, whereas the
client doesn't.

Unfortunately, since the docker daemon runs with root privileges, it also introduces
an attack vector. Read https://docs.Docker.com/articles/security/ for
more details.

Docker client
The Docker client is what interacts with the docker daemon to start or manage
containers. Docker uses a RESTful API to communicate between the client and
the daemon.

REST is an architectural style consisting of a coordinated set of
architectural constraints applied to components, connectors, and
data elements within a distributed hypermedia system. In plain
words, a RESTful service works over standard HTTP methods
such as the GET, POST, PUT, and DELETE methods.

Dockerfile
A Dockerfile is a file written in a Domain Specific Language (DSL) that contains
instructions on setting up a Docker image. Think of it as a Makefile equivalent
of Docker.

Let's take a look at the following example:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

ADD 000-default.conf /etc/apache2/sites-available/

RUN chown root:root /etc/apache2/sites-available/000-default.conf

EXPOSE 80

CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

https://docs.Docker.com/articles/security/

Up and Running

[30]

The FROM and MAINTAINER fields have information on what image is to be used and
who is the maintainer of that image. The RUN instruction can be used to fetch and
install packages along with other various commands. The ADD instruction allows
you to add files or folders to the Docker image. The EXPOSE instruction allows you
to expose ports from the image to the outside world. Lastly, the CMD instruction
executes the said command and keeps the container alive.

Docker repository
A Docker repository is a namespace that is used for storing a Docker image. For
instance, if your app is named helloworld and your username or namespace for the
Registry is thedockerbook then, in the Docker Repository, where this image would
be stored in the Docker Registry would be named thedockerbook/helloworld.

The base images are stored in the Docker Repository. The base images are the
fountainheads for realizing the bigger and better images with the help of a careful
addition of new modules. The child images are the ones that have their own parent
images. The base image does not have any parent image. The images sitting on a base
image are named as parent images because the parent images bear the child images.

Docker commands
Now let's get our hands dirty on the Docker CLI. We will look at the most common
commands and their use cases. The Docker commands are modeled after Linux and
Git, so if you have used either of these, you will find yourself at home with Docker.

Only the most commonly used options are mentioned here. For the complete
reference, you can check out the official documentation at https://docs.docker.
com/reference/commandline/cli/.

The daemon command
If you have installed the docker daemon through standard repositories, the
command to start the docker daemon would have been added to the init script
to automatically start as a service on startup. Otherwise, you will have to first run
the docker daemon yourself for the client commands to work.

Now, while starting the daemon, you can run it with arguments that control
the Domain Name System (DNS) configurations, storage drivers, and execution
drivers for the containers:

$ export DOCKER_HOST="tcp://0.0.0.0:2375"

$ Docker -d -D -e lxc -s btrfs –-dns 8.8.8.8 –-dns-search example.com

https://docs.docker.com/reference/commandline/cli/
https://docs.docker.com/reference/commandline/cli/

Chapter 2

[31]

You'll need these only if you want to start the daemon yourself.
Otherwise, you can start the docker daemon with $ sudo
service Docker start. For OS X and Windows, you need to
run the commands mentioned in Chapter 1, Installing Docker.

The following table describes the various flags:

Flag Explanation
-d This runs Docker as a daemon.
-D This runs Docker in debug mode.
-e [option] This is the execution driver to be used. The default execution

driver is native, which uses libcontainer.
-s [option] This forces Docker to use a different storage driver. The default

value is "", for which Docker uses AUFS.
--dns [option(s)] This sets the DNS server (or servers) for all Docker containers.
--dns-search
[option(s)]

This sets the DNS search domain (or domains) for all Docker
containers.

-H [option(s)] This is the socket (or sockets) to bind to. It can be one or more of
tcp://host:port, unix:///path/to/socket, fd://*
or fd://socketfd.

If multiple docker daemons are being simultaneously run, the client honors the
value set by the DOCKER_HOST parameter. You can also make it connect to a specific
daemon with the -H flag.

Consider this command:

$ docker -H tcp://0.0.0.0:2375 run -it ubuntu /bin/bash

The preceding command is the same as the following command:

$ DOCKER_HOST="tcp://0.0.0.0:2375" docker run -it ubuntu /bin/bash

The version command
The version command prints out the version information:

$ docker -v
Docker version 1.1.1, build bd609d2

Up and Running

[32]

The info command
The info command prints the details of the docker daemon configuration such
as the execution driver, the storage driver being used, and so on:

$ docker info # Running it in boot2docker on OS X

Containers: 0

Images: 0

Storage Driver: aufs

 Root Dir: /mnt/sda1/var/lib/docker/aufs

 Dirs: 0

Execution Driver: native-0.2

Kernel Version: 3.15.3-tinycore64

Debug mode (server): true

Debug mode (client): false

Fds: 10

Goroutines: 10

EventsListeners: 0

Init Path: /usr/local/bin/docker

Sockets: [unix:///var/run/docker.sock tcp://0.0.0.0:2375]

The run command
The run command is the command that we will be using most frequently. It is used
to run Docker containers:

$ docker run [options] IMAGE [command] [args]

Flags Explanation
-a, --attach=[] Attach to the stdin, stdout, or stderr files (standard input,

output, and error files.).
-d, --detach This runs the container in the background.
-i, --interactive This runs the container in interactive mode (keeps the stdin file

open).
-t, --tty This allocates a pseudo tty flag (which is required if you want

to attach to the container's terminal).
-p, --publish=[] This publishes a container's port to the host

(ip:hostport:containerport).
--rm This automatically removes the container when exited (it cannot

be used with the -d flag).

Chapter 2

[33]

Flags Explanation
--privileged This gives additional privileges to this container.
-v, --volume=[] This bind mounts a volume (from host => /host:/

container; from docker => /container).
--volumes-from=[] This mounts volumes from specified containers.
-w, --workdir="" This is the working directory inside the container.
--name="" This assigns a name to the container.
-h, --hostname="" This assigns a hostname to the container.
-u, --user="" This is the username or UID the container should run on.
-e, --env=[] This sets the environment variables.
--env-file=[] This reads environment variables from a new line-delimited file.
--dns=[] This sets custom DNS servers.
--dns-search=[] This sets custom DNS search domains.
--link=[] This adds link to another container (name:alias).
-c, --cpu-
shares=0

This is the relative CPU share for this container.

--cpuset="" These are the CPUs in which to allow execution; starts with 0.
(For example, 0 to 3).

-m, --memory="" This is the memory limit for this container
(<number><b|k|m|g>).

--restart="" (v1.2+) This specifies a restart policy in case the container
crashes.

--cap-add="" (v1.2+) This grants a capability to a container (refer to Chapter 4,
Security Best Practices).

--cap-drop="" (v1.2+) This blacklists a capability to a container (refer to Chapter
4, Security Best Practices).

--device="" (v1.2+) This mounts a device on a container.

While running a container, it is important to keep in mind that the container's
lifetime is associated with the lifetime of the command you run when you start the
container. Now try to run this:

$ docker run -dt ubuntu ps

b1d037dfcff6b076bde360070d3af0d019269e44929df61c93dfcdfaf29492c9

$ docker attach b1d037

2014/07/16 16:01:29 You cannot attach to a stopped container, start
it first

What happened here? When we ran the simple command, ps, the container ran
the command and exited. Therefore, we got an error.

Up and Running

[34]

The attach command attaches the standard input and output to a
running container.

Another important piece of information here is that you don't need to use the whole
64-character ID for all the commands that require the container ID. The first couple
of characters are sufficient. With the same example as shown in the following code:

$ docker attach b1d03

2014/07/16 16:09:39 You cannot attach to a stopped container, start
it first

$ docker attach b1d0

2014/07/16 16:09:40 You cannot attach to a stopped container, start
it first

$ docker attach b1d

2014/07/16 16:09:42 You cannot attach to a stopped container, start
it first

$ docker attach b1

2014/07/16 16:09:44 You cannot attach to a stopped container, start
it first

$ docker attach b

2014/07/16 16:09:45 Error: No such container: b

A more convenient method though would be to name your containers yourself:

$ docker run -dit --name OD-name-example ubuntu /bin/bash

1b21af96c38836df8a809049fb3a040db571cc0cef000a54ebce978c1b5567ea

$ docker attach OD-name-example

root@1b21af96c388:/#

The -i flag is necessary to have any kind of interaction in the container, and
the -t flag is necessary to create a pseudo-terminal.

The previous example also made us aware of the fact that even after we exit
a container, it is still in a stopped state. That is, we will be able to start the
container again, with its filesystem layer preserved. You can see this by running
the following command:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

eb424f5a9d3f ubuntu:latest ps 1 hour ago Exited OD-name-example

Chapter 2

[35]

While this can be convenient, you may pretty soon have your host's disk space
drying up as more and more containers are saved. So, if you are going to run a
disposable container, you can run it with the –-rm flag, which will remove the
container when the process exits:

$ docker run --rm -it --name OD-rm-example ubuntu /bin/bash

root@0fc99b2e35fb:/# exit

exit

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Running a server
Now, for our next example, we'll try running a web server. This example is chosen
because the most common practical use case of Docker containers is the shipping of
web applications:

$ docker run -it –-name OD-pythonserver-1 --rm python:2.7 \

python -m SimpleHTTPServer 8000;

Serving HTTP on 0.0.0.0 port 8000

Now we know the problem; we have a server running in a container, but since the
container's IP is assigned by Docker dynamically, it makes things difficult. However,
we can bind the container's ports to the host's ports and Docker will take care of
forwarding the networking traffic. Now let's try this command again with the -p flag:

$ docker run -p 0.0.0.0:8000:8000 -it --rm –-name OD-pythonserver-2 \
python:2.7 python -m SimpleHTTPServer 8000;

Serving HTTP on 0.0.0.0 port 8000 ...

172.17.42.1 - - [18/Jul/2014 14:25:46] "GET / HTTP/1.1" 200 -

Now open your browser and go to http://localhost:8000. Voilà!

If you are an OS X user and you realize that you are not able to access http://
localhost:8000, it is because VirtualBox hasn't been configured to respond to
Network Address Translation (NAT) requests to the boot2Docker VM. Adding
the following function to your aliases file (bash_profile or .bashrc) will save a
lot of trouble:

natboot2docker () {
 VBoxManage controlvm boot2docker-vm natpf1 \

Up and Running

[36]

 "$1,tcp,127.0.0.1,$2,,$3";
}

removeDockerNat() {
 VBoxManage modifyvm boot2docker-vm \
 --natpf1 delete $1;
}

After this, you should be able to use the $ natboot2docker mypythonserver
8000 8000 command to be able to access the Python server. But remember to run
the $ removeDockerDockerNat mypythonserver command when you are done.
Otherwise, when you run the boot2Docker VM next time, you will be faced with a
bug that won't allow you to get the IP address or the ssh script into it:

$ boot2docker ssh

ssh_exchange_identification: Connection closed by remote host

2014/07/19 11:55:09 exit status 255

Your browser now shows the /root path of the container. What if you wanted to
serve your host's directories? Let's try mounting a device:

root@eb53f7ec79fd:/# mount -t tmpfs /dev/random /mnt

mount: permission denied

As you can see, the mount command doesn't work. In fact, most kernel capabilities that
are potentially dangerous are dropped, unless you include the --privileged flag.

However, you should never use this flag unless you know what you are doing.
Docker provides a much easier way to bind mount host volumes and bind mount
host volumes with the -v and –volumes options. Let's try this example again in the
directory we are currently in:

$ docker run -v $(pwd):$(pwd) -p 0.0.0.0:8000:8000 -it –rm \

--name OD-pythonserver-3 python:2.7 python -m SimpleHTTPServer 8000;

Serving HTTP on 0.0.0.0 port 8000 ...

10.0.2.2 - - [18/Jul/2014 14:40:35] "GET / HTTP/1.1" 200 -

Chapter 2

[37]

You have now bound the directory you are running the commands from to the
container. However, when you access the container, you still get the directory
listing of the root of the container. To serve the directory that has been bound to
the container, let's set it as the working directory of the container (the directory the
containerized process runs in) using the -w flag:

$ docker run -v $(pwd):$(pwd) -w $(pwd) -p 0.0.0.0:8000:8000 -it \ --name
OD-pythonserver-4 python:2.7 python -m SimpleHTTPServer 8000;

Serving HTTP on 0.0.0.0 port 8000 ...

10.0.2.2 - - [18/Jul/2014 14:51:35] "GET / HTTP/1.1" 200 -

Boot2Docker users will not be able to utilize this yet, unless you use
guest additions and set up shared folders, the guide to which can be
found at https://medium.com/boot2docker-lightweight-
linux-for-docker/boot2docker-together-with-
virtualbox-guest-additions-da1e3ab2465c. Though this
solution works, it is a hack and is not recommended. Meanwhile, the
Docker community is actively trying to find a solution (check out
issue #64 in the boot2Docker GitHub repository and #4023 in the
Docker repository).

Now http://localhost:8000 will serve the directory you are currently running in,
but from a Docker container. Take care though, because any changes you make are
written into the host's filesystem as well.

Since v1.1.1, you can bind mount the root of the host to a container using
$ docker run -v /:/my_host:ro ubuntu ls /my_host, but
mounting on the / path of the container is forbidden.

The volume can be optionally suffixed with the :ro or :rw commands to mount the
volumes in read-only or read-write mode, respectively. By default, the volumes are
mounted in the same mode (read-write or read-only) as they are in the host.

This option is mostly used to mount static assets and to write logs.

But what if I want to mount an external device?

Before v1.2, you had to mount the device in the host and bind mount using the -v
flag in a privileged container, but v1.2 has added a --device flag that you can use
to mount a device without needing to use the --privileged flag.

For example, to use the webcam in your container, run this command:

$ docker run --device=/dev/video0:/dev/video0

https://medium.com/boot2docker-lightweight-linux-for-docker/boot2docker-together-with-virtualbox-guest-additions-da1e3ab2465c
https://medium.com/boot2docker-lightweight-linux-for-docker/boot2docker-together-with-virtualbox-guest-additions-da1e3ab2465c
https://medium.com/boot2docker-lightweight-linux-for-docker/boot2docker-together-with-virtualbox-guest-additions-da1e3ab2465c

Up and Running

[38]

Docker v1.2 also added a --restart flag to specify a restart policy for containers.
Currently, there are three restart policies:

• no: Do not restart the container if it dies (default).
• on-failure: Restart the container if it exits with a non-zero exit code. It can

also accept an optional maximum restart count (for example, on-failure:5).
• always: Always restart the container no matter what exit code is returned.

The following is an example to restart endlessly:

$ docker run --restart=always code.it

The next line is used to try five times before giving up:

$ docker run --restart=on-failure:5 code.it

The search command
The search command allows us to search for Docker images in the public registry.
Let's search for all images related to Python:

$ docker search python | less

The pull command
The pull command is used to pull images or repositories from a registry. By default,
it pulls them from the public Docker registry, but if you are running your own
registry, you can pull them from it too:

$ docker pull python # pulls repository from Docker Hub

$ docker pull python:2.7 # pulls the image tagged 2.7

$ docker pull <path_to_registry>/<image_or_repository>

The start command
We saw when we discussed docker run that the container state is preserved
on exit unless it is explicitly removed. The docker start command starts a
stopped container:

$ docker start [-i] [-a] <container(s)>

Chapter 2

[39]

The stop command
The stop command stops a running container by sending the SIGTERM signal and
then the SIGKILL signal after a grace period:

SIGTERM and SIGKILL are Unix signals. A signal is a form of
interprocess communication used in Unix, Unix-like, and other
POSIX-compliant operating systems. SIGTERM signals the
process to terminate. The SIGKILL signal is used to forcibly
kill a process.

docker run -dit --name OD-stop-example ubuntu /bin/bash

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

679ece6f2a11 ubuntu:latest /bin/bash 5h ago Up 3s OD-stop-example

$ docker stop OD-stop-example

OD-stop-example

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

You can also specify the -t flag or --time flag, which allows you to set the wait time.

The restart command
The restart command restarts a running container:

$ docker run -dit --name OD-restart-example ubuntu /bin/bash

$ sleep 15s # Suspends execution for 15 seconds

$ docker ps

CONTAINER ID IMAGE COMMAND STATUS NAMES

cc5d0ae0b599 ubuntu:latest /bin/bash Up 20s OD-restart-example

$ docker restart OD-restart-example

$ docker ps

CONTAINER ID IMAGE COMMAND STATUS NAMES

cc5d0ae0b599 ubuntu:latest /bin/bash Up 2s OD-restart-example

If you observe the status, you will notice that the container was rebooted.

Up and Running

[40]

The rm command
The rm command removes Docker containers:

$ Docker ps -a # Lists containers including stopped ones

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

cc5d0ae0b599 ubuntu /bin/bash 6h ago Exited OD-restart-example

679ece6f2a11 ubuntu /bin/bash 7h ago Exited OD-stop-example

e3c4b6b39cff ubuntu /bin/bash 9h ago Exited OD-name-example

We seem to be having a lot of containers left over after our adventures. Let's remove
one of them:

$ dockerDocker rm OD-restart-example

cc5d0ae0b599

We can also combine two Docker commands. Let's combine the docker ps -a -q
command, which prints the ID parameters of the containers in the docker ps -a,
and docker rm commands, to remove all containers in one go:

$ docker rm $(docker ps -a -q)

679ece6f2a11

e3c4b6b39cff

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES

This evaluates the docker ps -a -q command first, and the output is used by
the docker rm command.

The ps command
The ps command is used to list containers. It is used in the following way:

$ docker ps [option(s)]

Flag Explanation
-a, --all This shows all containers, including stopped ones.
-q, --quiet This shows only container ID parameters.
-s, --size This prints the sizes of the containers.
-l,
--latest

This shows only the latest container (including stopped containers).

-n="" This shows the last n containers (including stopped containers). Its
default value is -1.

Chapter 2

[41]

Flag Explanation
--before="" This shows the containers created before the specified ID or name.

It includes stopped containers.
--after="" This shows the containers created after the specified ID or name. It

includes stopped containers.

The docker ps command will show only running containers by default. To see all
containers, run the docker ps -a command. To see only container ID parameters,
run it with the -q flag.

The logs command
The logs command shows the logs of the container:

Let us look at the logs of the python server we have been running

$ docker logs OD-pythonserver-4

Serving HTTP on 0.0.0.0 port 8000 ...

10.0.2.2 - - [18/Jul/2014 15:06:39] "GET / HTTP/1.1" 200 -

^CTraceback (most recent call last):

 File ...

 ...

KeyboardInterrupt

You can also provide a --tail argument to follow the output as the container
is running.

The inspect command
The inspect command allows you to get the details of a container or an image.
It returns those details as a JSON array:

$ Docker inspect ubuntu # Running on an image

[{

 "Architecture": "amd64",

 "Author": "",

 "Comment": "",

 "DockerVersion": "0.10.0",

Up and Running

[42]

 "Id":
"e54ca5efa2e962582a223ca9810f7f1b62ea9b5c3975d14a5da79d3bf6020f37",

 "Os": "linux",

 "Parent":
"6c37f792ddacad573016e6aea7fc9fb377127b4767ce6104c9f869314a12041e",

 "Size": 178365

}]

Similarly, for a container we run the following command:

$ Docker inspect OD-pythonserver-4 # Running on a container

[{

 "Args": [

 "-m",

 "SimpleHTTPServer",

 "8000"

],

 "Name": "/OD-pythonserver-4",

 "NetworkSettings": {

 "Bridge": "Docker0",

 "Gateway": "172.17.42.1",

 "IPAddress": "172.17.0.11",

 "IPPrefixLen": 16,

 "PortMapping": null,

 "Ports": {

 "8000/tcp": [

 {

 "HostIp": "0.0.0.0",

 "HostPort": "8000"

 }

]

 }

 },

 "Volumes": {

Chapter 2

[43]

 "/home/Docker": "/home/Docker"

 },

 "VolumesRW": {

 "/home/Docker": true

 }

}]

Docker inspect provides all of the low-level information about a container or image.
In the preceding example, find out the IP address of the container and the exposed
port and make a request to the IP:port. You will see that you are directly accessing
the server running in the container.

However, manually looking through the entire JSON array is not optimal. So the
inspect command provides a flag, -f (or the --format flag), which allows you to
specify exactly what you want using Go templates. For example, if you just want to
get the container's IP address, run the following command:

$ docker inspect -f '{{.NetworkSettings.IPAddress}}' \

OD-pythonserver-4;

172.17.0.11

The {{.NetworkSettings.IPAddress}} is a Go template that was executed over the
JSON result. Go templates are very powerful, and some of the things that you can do
with them have been listed at http://golang.org/pkg/text/template/.

The top command
The top command shows the running processes in a container and their statistics,
mimicking the Unix top command.

Let's download and run the ghost blogging platform and check out what processes
are running in it:

$ docker run -d -p 4000:2368 --name OD-ghost dockerfile/ghost

ece88c79b0793b0a49e3d23e2b0b8e75d89c519e5987172951ea8d30d96a2936

$ docker top OD-ghost-1

PID USER COMMAND

1162 root bash /ghost-start

1180 root npm

1186 root sh -c node index

1187 root node index

http://golang.org/pkg/text/template/

Up and Running

[44]

Yes! We just set up our very own ghost blog, with just one command. This brings
forth another subtle advantage and shows something that could be a future trend.
Every tool that exposes its services through a TCP port can now be containerized
and run in its own sandboxed world. All you need to do is expose its port and bind
it to your host port. You don't need to worry about installations, dependencies,
incompatibilities, and so on, and the uninstallation will be clean because all you
need to do is stop all the containers and remove the image.

Ghost is an open source publishing platform that is beautifully
designed, easy to use, and free for everyone. It is coded in Node.
js, a server-side JavaScript execution engine.

The attach command
The attach command attaches to a running container.

Let's start a container with Node.js, running the node interactive shell as a daemon,
and later attach to it.

Node.js is an event-driven, asynchronous I/O web framework that runs
applications written in JavaScript on Google's V8 runtime environment.

The container with Node.js is as follows:

$ docker run -dit --name OD-nodejs shykes/nodejs node

8e0da647200efe33a9dd53d45ea38e3af3892b04aa8b7a6e167b3c093e522754

$ docker attach OD-nodejs

console.log('Docker rocks!');Docker rocks!

The kill command
The kill command kills a container and sends the SIGTERM signal to the process
running in the container:

Let us kill the container running the ghost blog.

$ docker kill OD-ghost-1

OD-ghost-1

$ docker attach OD-ghost-1 # Verification

Chapter 2

[45]

2014/07/19 18:12:51 You cannot attach to a stopped container, start
it first

The cp command
The cp command copies a file or folder from a container's filesystem to the host path.
Paths are relative to the root of the filesystem.

It's time to have some fun. First, let's run an Ubuntu container with the /bin/
bash command:

$ docker run -it –name OD-cp-bell ubuntu /bin/bash

Now, inside the container, let's create a file with a special name:

touch $(echo -e '\007')

The \007 character is an ASCII BEL character that rings the system bell when printed
on a terminal. You might have already guessed what we're about to do. So let's open
a new terminal and execute the following command to copy this newly created file
to the host:

$ docker cp OD-cp-bell:/$(echo -e '\007') $(pwd)

For the docker cp command to work, both the container path and the
host path must be complete, so do not use shortcuts such as ., ,, *, and
so on.

So we created an empty file whose filename is the BEL character, in a container. Then
we copied the file to the current directory in the host container. Just one last step is
remaining. In the host tab where you executed the docker cp command, run the
following command:

$ echo *

You will hear the system bell ring! We could have copied any file or directory from
the container to the host. But it doesn't hurt to have some fun!

If you found this interesting, you might like to read http://www.
dwheeler.com/essays/fixing-unix-linux-filenames.html.
This is a great essay that discusses the edge cases in filenames, which
can cause simple to complicated issues in a program.

http://www.dwheeler.com/essays/fixing-unix-linux-filenames.html
http://www.dwheeler.com/essays/fixing-unix-linux-filenames.html

Up and Running

[46]

The port command
The port command looks up the public-facing port that is bound to an exposed
port in the container:

$ docker port CONTAINER PRIVATE_PORT

$ docker port OD-ghost 2368

4000

Ghost runs a server at the 2368 port that allows you to write and publish a blog
post. We bound a host port to the OD-ghost container's port 2368 in the example
for the top command.

Running your own project
By now, we are considerably familiar with the basic Docker commands. Let's up the
ante. For the next couple of commands, I am going to use one of my side projects.
Feel free to use a project of your own.

Let's start by listing out our requirements to determine the arguments we must pass
to the docker run command.

Our application is going to run on Node.js, so we will choose the well-maintained
dockerfile/nodejs image to start our base container:

• We know that our application is going to bind to port 8000, so we will
expose the port to 8000 of the host.

• We need to give a descriptive name to the container so that we can reference
it in future commands. In this case, let's choose the name of the application:

$ docker run -it --name code.it dockerfile/nodejs /bin/bash

[root@3b0d5a04cdcd:/data]$ cd /home

[root@3b0d5a04cdcd:/home]$

Once you have started your container, you need to check whether the dependencies
for your application are already available. In our case, we only need Git (apart from
Node.js), which is already installed in the dockerfile/nodejs image.

Now that our container is ready to run our application, all that is remaining is for
us to fetch the source code and do the necessary setup to run the application:

$ git clone https://github.com/shrikrishnaholla/code.it.git

$ cd code.it && git submodule update --init --recursive

Chapter 2

[47]

This downloads the source code for a plugin used in the application.

Then run the following command:

$ npm install

Now all the node modules required to run the application are installed.

Next, run this command:

$ node app.js

Now you can go to localhost:8000 to use the application.

The diff command
The diff command shows the difference between the container and the image it is
based on. In this example, we are running a container with code.it. In a separate
tab, run this command:

$ docker diff code.it

C /home

A /home/code.it

...

The commit command
The commit command creates a new image with the filesystem of the container.
Just as with Git's commit command, you can set a commit message that describes
the image:

$ docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

Flag Explanation
-p, --pause This pause the container during commit (availabe from v1.1.1+

onwards).
-m,
--message=""

This is a commit message. It can be a description of what the
image does.

-a,
--author=""

This displays the author details.

Up and Running

[48]

For example, let's use this command to commit the container we have set up:

$ docker commit -m "Code.it – A browser based text editor and
interpreter" -a "Shrikrishna Holla <s**a@gmail.com>" code.it
shrikrishna/code.it:v1

Replace the author details and the username portion of the image name
in this example if you are copying these examples.

The output will be a lengthy image ID. If you look at the command closely, we have
named the image shrikrishna/code.it:v1. This is a convention. The first part of an
image/repository's name (before the forward slash) is the Docker Hub username of the
author. The second part is the intended application or image name. The third part is a
tag (usually a version description) separated from the second part by a colon.

Docker Hub is a public registry maintained by Docker, Inc. It
hosts public Docker images and provides services to help you
build and manage your Docker environment. More details about
it can be found at https://hub.docker.com.

A collection of images tagged with different versions is a repository. The image
you create by running the docker commit command will be a local one, which
means that you will be able to run containers from it but it won't be available
publicly. To make it public or to push to your private Docker registry, use the
docker push command.

The images command
The images command lists all the images in the system:

$ docker images [OPTIONS] [NAME]

Flag Explanation
-a, --all This shows all images, including intermediate layers.
-f, --filter=[] This provides filter values.
--no-trunc This doesn't truncate output (shows complete ID).
-q, --quiet This shows only the image IDs.

https://hub.docker.com

Chapter 2

[49]

Now let's look at a few examples of the usage of the image command:

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

shrikrishna/code.it v1 a7cb6737a2f6 6m ago 704.4 MB

This lists all top-level images, their repository and tags, and their virtual size.

Docker images are nothing but a stack of read-only filesystem layers. A union
filesystem, such as AUFS, then merges these layers and they appear to be
one filesystem.

In Docker-speak, a read-only layer is an image. It never changes. When running a
container, the processes think that the entire filesystem is read-write. But the changes
go only at the topmost writeable layer, which is created when a container is started.
The read-only layers of the image remain unchanged. When you commit a container,
it freezes the top layer (the underlying layers are already frozen) and turns it into
an image. Now, when a container is started this image, all the layers of the image
(including the previously writeable layer) are read-only. All the changes are now
made to a new writeable layer on top of all the underlying layers. However, because
of how union filesystems (such as AUFS) work, the processes believe that the
filesystem is read-write.

A rough schematic of the layers involved in our code.it example is as follows:

xyz / code it : Our application added

dockerfile / nodejs : With latest version of nodejs

dockerfile / python : With Python and pip

Host Kernel

ubuntu : 14.04 => Base Image

dockerfile / ubuntu : With build-essential, curl, git,
htop, vim, wget

At this point, it might be wise to think just how much effort is to
be made by the union filesystems to merge all of these layers and
provide a consistent performance. After some point, things inevitably
break. AUFS, for instance, has a 42-layer limit. When the number of
layers goes beyond this, it just doesn't allow the creation of any more
layers and the build fails. Read https://github.com/docker/
docker/issues/1171 for more information on this issue.

https://github.com/docker/docker/issues/1171
https://github.com/docker/docker/issues/1171

Up and Running

[50]

The following command lists the most recently created images:

$ docker images | head

The -f flag can be given arguments of the key=value type. It is frequently used
to get the list of dangling images:

$ docker images -f "dangling=true"

This will display untagged images, that is, images that have been committed or
built without a tag.

The rmi command
The rmi command removes images. Removing an image also removes all the
underlying images that it depends on and were downloaded when it was pulled:

$ docker rmi [OPTION] {IMAGE(s)]

Flag Explanation
-f, --force This forcibly removes the image (or images).
--no-prune This command does not delete untagged parents.

This command removes one of the images from your machine:

$ docker rmi test

The save command
The save command saves an image or repository in a tarball and this streams to
the stdout file, preserving the parent layers and metadata about the image:

$ docker save -o codeit.tar code.it

The -o flag allows us to specify a file instead of streaming to the stdout file. It is
used to create a backup that can then be used with the docker load command.

The load command
The load command loads an image from a tarball, restoring the filesystem layers
and the metadata associated with the image:

$ docker load -i codeit.tar

Chapter 2

[51]

The -i flag allows us to specify a file instead of trying to get a stream from the
stdin file.

The export command
The export command saves the filesystem of a container as a tarball and streams
to the stdout file. It flattens filesystem layers. In other words, it merges all the
filesystem layers. All of the metadata of the image history is lost in this process:

$ sudo Docker export red_panda > latest.tar

Here, red_panda is the name of one of my containers.

The import command
The import command creates an empty filesystem image and imports the contents of
the tarball to it. You have the option of tagging it the image:

$ docker import URL|- [REPOSITORY[:TAG]]

URLs must start with http.

$ docker import http://example.com/test.tar.gz # Sample url

If you would like to import from a local directory or archive, you can use the -
parameter to take the data from the stdin file:

$ cat sample.tgz | docker import – testimage:imported

The tag command
You can add a tag command to an image. It helps identify a specific version of
an image.

For example, the python image name represents python:latest, the latest version
of Python available, which can change from time to time. But whenever it is updated,
the older versions are tagged with the respective Python versions. So the python:2.7
command will have Python 2.7 installed. Thus, the tag command can be used to
represent versions of the images, or for any other purposes that need identification
of the different versions of the image:

$ docker tag IMAGE [REGISTRYHOST/][USERNAME/]NAME[:TAG]

Up and Running

[52]

The REGISTRYHOST command is only needed if you are using a private registry of
your own. The same image can have multiple tags:

$ docker tag shrikrishna/code.it:v1 shrikrishna/code.it:latest

Whenever you are tagging an image, follow the username/
repository:tag convention.

Now, running the docker images command again will show that the same image
has been tagged with both the v1 and latest commands:

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

shrikrishna/code.it v1 a7cb6737a2f6 8 days ago 704.4 MB

shrikrishna/code.it latest a7cb6737a2f6 8 days ago 704.4 MB

The login command
The login command is used to register or log in to a Docker registry server. If no
server is specified, https://index.docker.io/v1/ is the default:

$ Docker login [OPTIONS] [SERVER]

Flag Explanation
-e, --email="" Email
-p, --password="" Password
-u, --username="" Username

If the flags haven't been provided, the server will prompt you to provide the details.
After the first login, the details will be stored in the $HOME/.dockercfg path.

The push command
The push command is used to push an image to the public image registry or a
private Docker registry:

$ docker push NAME[:TAG]

https://index.docker.io/v1/

Chapter 2

[53]

The history command
The history command shows the history of the image:

$ docker history shykes/nodejs

IMAGE CREATED CREATED BY SIZE

6592508b0790 15 months ago /bin/sh -c wget http://nodejs. 15.07 MB

0a2ff988ae20 15 months ago /bin/sh -c apt-get install ... 25.49 MB

43c5d81f45de 15 months ago /bin/sh -c apt-get update 96.48 MB

b750fe79269d 16 months ago /bin/bash 77 B

27cf78414709 16 months ago 175.3 MB

The events command
Once started, the events command prints all the events that are handled by the
docker daemon, in real time:

$ docker events [OPTIONS]

Flag Explanation
--since="" This shows all events created since timestamp (in Unix).
--until="" This stream events until timestamp.

For example the events command is used as follows:

$ docker events

Now, in a different tab, run this command:

$ docker start code.it

Then run the following command:

$ docker stop code.it

Up and Running

[54]

Now go back to the tab running Docker events and see the output. It will be along
these lines:

[2014-07-21 21:31:50 +0530 IST]
c7f2485863b2c7d0071477e6cb8c8301021ef9036afd4620702a0de08a4b3f7b: (from
dockerfile/nodejs:latest) start

[2014-07-21 21:31:57 +0530 IST]
c7f2485863b2c7d0071477e6cb8c8301021ef9036afd4620702a0de08a4b3f7b: (from
dockerfile/nodejs:latest) stop

[2014-07-21 21:31:57 +0530 IST]
c7f2485863b2c7d0071477e6cb8c8301021ef9036afd4620702a0de08a4b3f7b: (from
dockerfile/nodejs:latest) die

You can use flags such as --since and --until to get the event logs of
specific timeframes.

The wait command
The wait command blocks until a container stops, then prints its exit code:

$ docker wait CONTAINER(s)

The build command
The build command builds an image from the source files at a specified path:

$ Docker build [OPTIONS] PATH | URL | -

Flag Explanation
-t, --tag="" This is the repository name (and an optional tag) to be applied to

the resulting image in case of success.
-q, --quiet This suppresses the output, which by default is verbose.
--rm=true This removes intermediate containers after a successful build.
--force-rm This always removes intermediate containers, even after

unsuccessful builds.
--no-cache This command does not use the cache while building the image.

This command uses a Dockerfile and a context to build a Docker image.

Chapter 2

[55]

A Dockerfile is like a Makefile. It contains instructions on the various configurations
and commands that need to be run in order to create an image. We will look at
writing Dockerfiles in the next section.

It would be a good idea to read the section about Dockerfiles first and
then come back here to get a better understanding of this command
and how it works.

The files at the PATH or URL paths are called context of the build. The context is used
to refer to the files or folders in the Dockerfile, for instance in the ADD instruction
(and that is the reason an instruction such as ADD ../file.txt won't work. It's
not in the context!).

When a GitHub URL or a URL with the git:// protocol is given, the repository is
used as the context. The repository and its submodules are recursively cloned in your
local machine, and then uploaded to the docker daemon as the context. This allows
you to have Dockerfiles in your private Git repositories, which you can access from
your local user credentials or from the Virtual Private Network (VPN).

Uploading to Docker daemon
Remember that Docker engine has both the docker daemon and the Docker client.
The commands that you give as a user are through the Docker client, which then
talks to the docker daemon (either through a TCP or a Unix socket), which does
the necessary work. The docker daemon and Docker host can be in different hosts
(which is the premise with which boot2Docker works), with the DOCKER_HOST
environment variable set to the location of the remote docker daemon.

When you give a context to the docker build command, all the files in the local
directory get tared and are sent to the docker daemon. The PATH variable specifies
where to find the files for the context of the build in the docker daemon. So when
you run docker build ., all the files in the current folder get uploaded, not just the
ones listed to be added in the Dockerfile.

Since this can be a bit of a problem (as some systems such as Git and some IDEs such
as Eclipse create hidden folders to store metadata), Docker provides a mechanism
to ignore certain files or folders by creating a file called .dockerignore in the PATH
variable with the necessary exclusion patterns. For an example, look up https://
github.com/docker/docker/blob/master/.dockerignore.

If a plain URL is given or if the Dockerfile is streamed through the stdin file, then
no context is set. In these cases, the ADD instruction works only if it refers to a remote
URL.

https://github.com/docker/docker/blob/master/.dockerignore
https://github.com/docker/docker/blob/master/.dockerignore

