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Introduction

ALL BRANCHES OF SCIENCE can trace their origins far back into the mists of history, but in most subjects the history is qualified by ‘we now know this was wrong’ or ‘this was along the right lines, but today’s view is different’. For example, the Greek philosopher Aristotle thought that a trotting horse can never be entirely off the ground, which Eadweard Muybridge disproved in 1878 using a line of cameras linked to tripwires. Aristotle’s theories of motion were completely overturned by Galileo Galilei and Isaac Newton, and his theories of the mind bear no useful relation to modern neuroscience and psychology.

Mathematics is different. It endures. When the ancient Babylonians worked out how to solve quadratic equations – probably around 2000 BC, although the earliest tangible evidence dates from 1500 BC – their result never became obsolete. It was correct, and they knew why. It’s still correct today. We express the result symbolically, but the reasoning is identical. There’s an unbroken line of mathematical thought that goes all the way back from tomorrow to Babylon. When Archimedes worked out the volume of a sphere, he didn’t use algebraic symbols, and he didn’t think of a specific number π as we now do. He expressed the result geometrically, in terms of proportions, as was Greek practice then. Nevertheless, his answer is instantly recognisable as being equivalent to today’s 4/3πr3.

To be sure, a few ancient discoveries outside mathematics have been similarly long-lived. Archimedes’s Principle that an object displaces its own weight of liquid is one, and his law of the lever is another. Some parts of Greek physics and engineering live on too. But in those subjects, longevity is the exception, whereas in mathematics it’s closer to the rule. Euclid’s Elements, laying out a logical basis for geometry, still repays close examination. Its theorems remain true, and many remain useful. In mathematics, we move on, but we don’t discard our history.

Before you all start to think that mathematics is burying its head in the past, I need to point out two things. One is that the perceived importance of a method or a theorem can change. Entire areas of mathematics have gone out of fashion, or become obsolete as the frontiers shifted or new techniques took over. But they’re still true, and from time to time an obsolete area has undergone a revival, usually because of a newly discovered connection with another area, a new application, or a breakthrough in methodology. The second is that as mathematicians have developed their subject, they’ve not only moved on; they’ve also devised a gigantic amount of new, important beautiful, and useful mathematics.

That said, the basic point remains unchallenged: once a mathematical theorem has been correctly proved, it becomes something that we can build on – forever. Even though our concept of proof has tightened up considerably since Euclid’s day, to get rid of unstated assumptions, we can fill in what we now see as gaps, and the results still stand.

[image: images]

Significant Figures investigates the almost mystical process that brings new mathematics into being. Mathematics doesn’t arise in a vacuum: it’s created by people. Among them are some with astonishing originality and clarity of mind, the people we associate with great breakthroughs – the pioneers, the trailblazers, the significant figures. Historians rightly explain that the work of the greats depended on a vast supporting cast, contributing tiny bits and pieces to the overall puzzle. Important or fruitful questions can be stated by relative unknowns; major ideas can be dimly perceived by people who lack the technical ability to turn them into powerful new methods and viewpoints. Newton remarked that he ‘stood on the shoulders of giants’. He was to some extent being sarcastic; several of those giants (notably Robert Hooke) were complaining that Newton was not so much standing on their shoulders as treading on their toes, by not giving them fair credit, or by taking the credit in public despite citing their contributions in his writings. However, Newton spoke truly: his great syntheses of motion, gravity, and light depended on a huge number of insights from his intellectual predecessors. Nor were they exclusively giants. Ordinary people played a significant part too.

Nevertheless, the giants stand out, leading the way while the rest of us follow. Through the lives and works of a selection of significant figures, we can gain insight into how new mathematics is created, who created it, and how they lived. I think of them not just as pioneers who showed the rest of us the way, but as trailblazers who hacked traversable paths through the tangled undergrowth of the sprawling jungle of mathematical thought. They spent much of their time struggling through thorn bushes and swamps, but from time to time they came across a Lost City of the Elephants or an El Dorado, uncovering precious jewels hidden among the undergrowth. They penetrated regions of thought previously unknown to humankind.

Indeed, they created those regions. The mathematical jungle isn’t like the Amazon Rainforest or the African Congo. The mathematical trailblazer isn’t a David Livingstone, hacking a route along the Zambezi or hunting for the source of the Nile. Livingstone was ‘discovering’ things that were already there. Indeed, the local inhabitants knew they were there. But in those days, Europeans interpreted ‘discovery’ as ‘Europeans bringing things to the attention of other Europeans.’ Mathematical trailblazers don’t merely explore a pre-existing jungle. There’s a sense in which they create the jungle as they proceed; as if new plants are springing to life in their footsteps, rapidly becoming saplings, then mighty trees. However, it feels as if there’s a pre-existing jungle, because you don’t get to choose which plants spring to life. You choose where to tread, but you can’t decide to ‘discover’ a clump of mahogany trees if what actually turns up there is a mangrove swamp.

This, I think, is the source of the still popular Platonist view of mathematical ideas: that mathematical truths ‘really’ exist, but they do so in an ideal form in some sort of parallel reality, which has always existed and always will. In this view, when we prove a new theorem we just find out what has been there all along. I don’t think that Platonism makes literal sense, but it accurately describes the process of mathematical research. You don’t get to choose: all you can do is shake the bushes and see if anything drops out. In What is Mathematics, Really? Reuben Hersh offers a more realistic view of mathematics: it’s a shared human mental construct. In this respect it’s much like money. Money isn’t ‘really’ lumps of metal or pieces of paper or numbers in a computer; it’s a shared set of conventions about how we exchange lumps of metal, pieces of paper, and numbers in a computer, for each other or for goods.

Hersh outraged some mathematicians, who zoomed in on ‘human construct’ and complained that mathematics is by no means arbitrary. Social relativism doesn’t hack it. This is true, but Hersh explained perfectly clearly that mathematics isn’t any human construct. We choose to tackle Fermat’s Last Theorem, but we don’t get to choose whether it’s true or false. The human construct that is mathematics is subject to a stringent system of logical constraints, and something gets added to the construct only if it respects those constraints. Potentially, the constraints allow us to distinguish truth from falsity, but we don’t find out which of those applies by declaiming loudly that only one of them is possible. The big question is: which one? I’ve lost count of the number of times someone has attacked some controversial piece of mathematics that they dislike by pointing out that mathematics is a tautology: everything new is a logical consequence of things we already know. Yes, it is. The new is implicit in the old. But the hard work comes when you want to make it explicit. Ask Andrew Wiles; it’s no use telling him that the status of Fermat’s Last Theorem was always predetermined by the logical structure of mathematics. He spent seven years finding out what its predetermined status is. Until you do that, being predetermined is as useful as asking someone the way to the British Library and being told that it’s in Britain.
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Significant Figures isn’t an organised history of the whole of mathematics, but I’ve tried to present the mathematical topics that arise in a coherent manner, so that the concepts build up systematically as the book proceeds. On the whole, this requires presenting everything in roughly chronological order. Chronological order by topic would be unreadable, because we’d be perpetually hopping from one mathematician to another, so I’ve ordered the chapters by birth date and provided occasional cross-references.1

My significant figures are 25 in number, ancient and modern, male and female, eastern and western. Their personal histories begin in ancient Greece, with the great geometer and engineer Archimedes, whose achievements ranged from approximating π and calculating the area and volume of a sphere, to the Archimedean screw for raising water and a crane-like machine for destroying enemy ships. Next come three representatives of the far east, where the main mathematical action of the Middle Ages took place: the Chinese scholar Liu Hui, the Persian mathematician Muhammad ibn Musa Al-Khwarizmi, whose works gave us the words ‘algorithm’ and ‘algebra’, and the Indian Madhava of Sangamagrama, who pioneered infinite series for trigonometric functions, rediscovered in the west by Newton a millennium later.

The main action in mathematics returned to Europe during the Italian Renaissance, where we encounter Girolamo Cardano, one of the biggest rogues ever to grace the mathematical pantheon. A gambler and brawler, Cardano also wrote one of the most important algebra texts ever printed, practised medicine, and led a life straight out of the tabloid press. He cast horoscopes, too. In contrast, Pierre de Fermat, famous for his Last Theorem, was a lawyer with a passion for mathematics that often led him to neglect his legal work. He turned number theory into a recognised branch of mathematics, but also contributed to optics and developed some precursors to calculus. That subject was brought to fruition by Newton, whose masterwork is his Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), usually abbreviated to Principia. In it, he stated his laws of motion and gravity, and applied them to the motion of the solar system. Newton marks a tipping point in mathematical physics, turning it into an organised mathematical study of what he called the ‘System of the World’.

For a century after Newton, the focus of mathematics shifted to continental Europe and Russia. Leonhard Euler, the most prolific mathematician in history, turned out important papers at a journalistic rate, while systematising many areas of mathematics in a series of elegant, clearly written textbooks. No field of mathematics evaded his scrutiny. Euler even anticipated some of the ideas of Joseph Fourier, whose investigation of the transmission of heat led to one of the most important techniques in the modern engineer’s handbook: Fourier analysis, which represents a periodic waveform in terms of the basic trigonometric functions ‘sine’ and ‘cosine’. Fourier was also the first to understand that the atmosphere plays an important role in the Earth’s heat balance.

Mathematics enters the modern era with the peerless researches of Carl Friedrich Gauss, a strong contender for the greatest mathematician of all time. Gauss began in number theory, sealed his reputation in celestial mechanics by predicting the reappearance of the newly discovered asteroid Ceres, and made major advances regarding complex numbers, least-squares data fitting, and non-Euclidean geometry, though he published nothing on the latter because he feared it was too far ahead of its time and would attract ridicule. Nikolai Ivanovich Lobachevsky was less diffident, and published extensively on an alternative geometry to that of Euclid, now called hyperbolic geometry. He and Janós Bolyai are now recognised as the rightful founders of non-Euclidean geometry, which can be interpreted as the natural geometry of a surface with constant curvature. Gauss was basically right to believe that the idea was ahead of its time, however, and neither Lobachevsky nor Bolyai was appreciated during his lifetime. We round off this era with the tragic story of the revolutionary Évariste Galois, killed at the age of twenty in a duel over a young woman. He made major advances in algebra, leading to today’s characterisation of the vital concept of symmetry in terms of transformation groups.

A new theme now enters the story, a trail blazed by the first female mathematician we encounter. Namely, the mathematics of computation. Augusta Ada King, Countess of Lovelace, acted as assistant to Charles Babbage, a single-minded individual who understood the potential power of calculating machines. He envisaged the Analytical Engine, a programmable computer made of ratchets and cogwheels, now the central gimmick of steampunk science fiction. Ada is widely credited with being the first computer programmer, although that claim is controversial. The computer theme continues with George Boole, whose Laws of Thought laid down a fundamental mathematical formalism for the digital logic of today’s computers.

As mathematics becomes more diverse, so does our tale, hacking its way into new regions of the ever-growing jungle. Bernhard Riemann was brilliant at uncovering simple, general ideas behind apparently complex concepts. His contributions include the foundations of geometry, especially the curved ‘manifolds’ upon which Albert Einstein’s revolutionary theory of gravitation, General Relativity, depends. But he also made huge steps in the theory of prime numbers by relating number theory to complex analysis through his ‘zeta function’. The Riemann Hypothesis, about the zeros of this function, is one of the greatest and most important unsolved problems in the whole of mathematics, with a million-dollar prize for its solution.

Next comes Georg Cantor, who changed the way mathematicians think about the foundations of their subject by introducing set theory, and defined infinite analogues of the counting numbers 1, 2, 3, …, leading to the discovery that some infinities are bigger than others – in a rigorous, meaningful, and useful sense. Like many innovators, Cantor was misunderstood and ridiculed during his lifetime.

Our second woman mathematician now appears on the scene, the prodigiously talented Sofia Kovalevskaia. Her life was rather complicated, tied up with Russian revolutionary politics and the obstacles that male-dominated society placed in the path of brilliant female intellectuals. It’s amazing that she accomplished anything in mathematics at all. In fact, she made remarkable discoveries in the solution of partial differential equations, the motion of a rigid body, the structure of the rings of Saturn, and the refraction of light by a crystal.

The story now gathers pace. Around the turn of the nineteenth century, one of the world’s leading mathematicians was the Frenchman Henri Poincaré. An apparent eccentric, he was actually extremely shrewd. He recognised the importance of the nascent area of topology – ‘rubber-sheet geometry’ in which shapes can be distorted continuously – and extended it from two dimensions to three and beyond. He applied it to differential equations, studying the three-body problem for Newtonian gravitation. This led him to discover the possibility of deterministic chaos, apparently random behaviour in a non-random system. He also came close to discovering Special Relativity before Einstein did.

As a German counterpart to Poincaré we have David Hilbert, whose career divides into five distinct periods. First, he took up a line of thought that originated with Boole, about ‘invariants’ – algebraic expressions that remain the same despite changes in coordinates. He then developed a systematic treatment of core areas of number theory. After that, he revisited Euclid’s axioms for geometry, found them wanting, and added extra ones to plug the logical gaps. Next, he moved into mathematical logic and foundations, initiating a programme to prove that mathematics can be placed on an axiomatic basis, and that this is both consistent (no logical deduction can lead to a contradiction) and complete (every statement can either be proved or disproved). Finally, he turned to mathematical physics, coming close to beating Einstein to General Relativity, and introducing the notion of a Hilbert space, central to quantum mechanics.

Emmy Noether is our third and final female mathematician, who lived at a time when the participation of women in academic matters was still frowned upon by most of the incumbent males. She began, like Hilbert, in invariant theory, and later worked with him as a colleague. Hilbert made strenuous attempts to smash the glass ceiling and secure her a permanent academic position, with partial success. Noether blazed the trail of abstract algebra, pioneering today’s axiomatic structures such as groups, rings, and fields. She also proved a vital theorem relating the symmetries of laws of physics to conserved quantities, such as energy.

By now the story has moved into the twentieth century. To show that great mathematical ability is not confined to the educated classes of the western world, we follow the life and career of the self-taught Indian genius Srinivasa Ramanujan, who grew up in poverty. His uncanny ability to intuit strange but true formulas was rivalled, if at all, only by giants such as Euler and Carl Jacobi. Ramanujan’s concept of proof was hazy, but he could find formulas that no one else would ever have dreamed of. His papers and notebooks are still being mined today for fresh ways of thinking.

Two mathematicians with a philosophical bent return us to the foundations of the subject and its relation to computation. One is Kurt Gödel, whose proof that any axiom system for arithmetic must be incomplete and undecidable demolished Hilbert’s programme to prove the opposite. The other is Alan Turing, whose investigations into the abilities of a programmable computer led to a simpler and more natural proof of these results. He is, of course, famous for his codebreaking work at Bletchley Park during World War II. He also proposed the Turing test for artificial intelligence, and after the war he worked on patterns in animal markings. He was gay, and died in tragic and mysterious circumstances.

I decided not to include any living mathematicians, but to end with two recently deceased modern mathematicians: one pure and the other applied (but also unorthodox). The latter is Benoit Mandelbrot, widely known for his work on fractals, geometric shapes that have detailed structure on all scales of magnification. Fractals often model nature far better than traditional smooth surfaces such as spheres and cylinders. Although several other mathematicians worked on structures that we now see as fractal, Mandelbrot made a great leap forward by recognising their potential as models of the natural world. He wasn’t a theorem-proof type of mathematician; instead, he had an intuitive visual grasp of geometry, which led him to see relationships and state conjectures. He was also a bit of a showman, and an energetic promoter of his ideas. That didn’t endear him to some in the mathematical community, but you can’t please everyone.

Finally, I’ve chosen a (pure) mathematician’s mathematician, William Thurston. Thurston, too, had a deep intuitive grasp of geometry, in a broader and deeper sense than Mandelbrot. He could do theorem-proof mathematics with the best of them, though as his career advanced he tended to focus on the theorems and sketch the proofs. In particular he worked in topology, where he noticed an unexpected connection with non-Euclidean geometry. Eventually, this circle of ideas motivated Grigori Perelman to prove an elusive conjecture in topology, due to Poincaré. His methods also proved a more general conjecture of Thurston that provides unexpected insights into all three-dimensional manifolds.
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In the final chapter, I’ll pick up some of the threads that weave their way through the 25 stories of these astonishing individuals, and explore what they teach us about pioneering mathematicians – who they are, how they work, where they get their crazy ideas, what drives them to be mathematicians in the first place.

For now, however, I’d just like to add two warnings. The first is that I’ve necessarily been selective. There isn’t enough space to provide comprehensive biographies, to survey everything that my trailblazers worked on, or to enter into fine details of how their ideas evolved and how they interacted with their colleagues. Instead, I’ve tried to offer a representative selection of their most important – or interesting – discoveries and concepts, with enough historical detail to paint a picture of them as people and locate them in their society. For some mathematicians of antiquity, even that has to be very sketchy, because few records about their lives (and often no original documents about their works) have survived.

The second is that the 25 mathematicians I’ve chosen are by no means the only significant figures in the development of mathematics. I made my choices for many reasons – the importance of the mathematics, the intrinsic interest of the area, the appeal of the human story, the historical period, diversity, and that elusive quality, ‘balance’. If your favourite mathematician is omitted, the most likely reason is limited space, coupled with a wish to choose representatives that are widely distributed in the three-dimensional manifold whose coordinates are geography, historical period, and gender. I believe that everyone in the book fully deserves inclusion, although one or two may be controversial. I have no doubt at all that many others could have been selected with comparable justification.






1

Do Not Disturb My Circles
 Archimedes
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Archimedes of Syracuse
 Born: Syracuse, Sicily, c. 287 BC
 Died: Syracuse, c. 212 BC



THE YEAR: 1973. The place: Skaramagas naval base, near Athens. All eyes are focused on a plywood mock-up of a Roman ship. Also focused on the ship: the rays of the Sun, reflected from seventy copper-coated mirrors fifty metres away, each a metre wide and half as high again.

Within a few seconds, the ship catches fire.

Ioannis Sakkas, a modern Greek scientist, is recreating a possibly mythical piece of ancient Greek science. In the second century AD the Roman author Lucian wrote that at the Siege of Syracuse, around 214–212 BC, the engineer and mathematician Archimedes invented a device to destroy enemy ships by fire. Whether this device existed, and if so, how it worked, is highly obscure. Lucian’s story could just be a reference to the common use of fire arrows or burning rags shot from a catapult, but it’s hard to see why this would have been presented as a new invention. In the sixth century, Anthemius of Tralles suggested, in his Burning Glasses, that Archimedes had used a huge lens. But in the most prevalent legend, Archimedes used a giant mirror, or possibly an array of mirrors arranged in an arc to form a rough parabolic reflector.

The parabola is a U-shaped curve, well known to Greek geometers. Archimedes certainly knew about its focal property: all lines parallel to the axis, when reflected in the parabola, pass through the same point, called the focus. Whether anyone realised that a parabolic mirror would focus light (and heat) from the Sun in the same way is less certain, because Greek understanding of light was rudimentary. But, as Sakkas’s experiment shows, Archimedes wouldn’t actually have needed a parabolic arrangement. A lot of soldiers, each armed with a reflecting shield, independently aiming it to direct the Sun’s rays towards the same part of the ship, would have been just as effective.

The practicality of what is often called ‘Archimedes’s heat ray’ has been hotly debated. The philosopher René Descartes, a pioneer in optics, didn’t believe it could have worked. Sakkas’s experiment suggests it might have done, but his fake plywood ship was flimsy, and coated in a tar-based paint, so it would burn easily. On the other hand, in Archimedes’s time it was common to coat ships with tar to protect their hulls. In 2005 a bunch of MIT students repeated Sakkas’s experiment, eventually setting a wooden mock-up of a ship on fire – but only after focusing the Sun’s rays on it for ten minutes while it remained totally stationary. They tried it again for the TV show Mythbusters using a fishing boat in San Francisco, and managed to char the wood and produce a few flames, but it didn’t ignite. Mythbusters concluded that the myth was bust.
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Archimedes was a polymath: astronomer, engineer, inventor, mathematician, physicist. He was probably the greatest scientist (to use the modern term) of his age. As well as important mathematical discoveries, he produced inventions that are breathtaking in their scope – the Archimedean screw for raising water, block-and-tackle pulleys to lift heavy weights – and he discovered Archimedes’s principle on floating bodies and the law (though not the apparatus, which appeared much earlier) of the lever. He’s also credited with a second war-machine, the claw. Allegedly he used this crane-like device at the Battle of Syracuse to lift enemy ships from the water and sink them. The 2005 television documentary Superweapons of the Ancient World built its own version of the device, and it worked. Ancient texts contain many other tantalising references to theorems and inventions attributed to Archimedes. Among them is a mechanical planetary calculator, much like the famed Antikythera mechanism of around 100 BC, discovered in a shipwreck in 1900– 1901 and only recently understood.

We know very little about Archimedes. He was born in Syracuse (Siracusa), a historic Sicilian city located towards the southern end of the island’s east coast. It was founded in either 734 or 733 BC by Greek colonists, supposedly under the semi-mythical Archias when he exiled himself from Corinth. According to Plutarch, Archias had become infatuated with Actaeon, a handsome boy. When his advances were rejected he tried to kidnap the lad, and in the struggle, Actaeon was torn to pieces. His father Melissus’s pleas for justice went unanswered, so he climbed to the top of a temple of Poseidon, called upon the god to avenge his son, and flung himself onto the rocks below. A severe drought and famine followed these dramatic events, and the local oracle declared that only vengeance would propitiate Poseidon. Archias got the message, exiled himself voluntarily to avoid being sacrificed, headed for Sicily, and founded Syracuse. Later his past caught up with him anyway when Telephus, who as a boy had also been an object of Archias’s desires, killed him.

The land was fertile, the natives friendly, and Syracuse soon became the most prosperous and powerful Greek city in the entire Mediterranean. In The Sand Reckoner, Archimedes says that his father was Phidias, an astronomer. According to Plutarch’s Parallel Lives, he was a distant relative of Hiero II, tyrant of Syracuse. As a young man, Archimedes is thought to have studied in the Egyptian city of Alexandria on the coast of the Nile delta, where he encountered Conon of Samos and Eratosthenes of Cyrene. Among the evidence is his statement that Conon was a friend; also the introductions to his books The Method of Mechanical Theorems and the Cattle Problem are addressed to Eratosthenes.

There are some tales about his death, too, and we’ll come to those in due course.
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Archimedes’s mathematical reputation rests on those works that have survived – all as later copies. Quadrature of the Parabola, which takes the form of a letter to his friend Dositheus, contains 24 theorems about parabolas, the final one giving the area of a parabolic segment in terms of a related triangle. The parabola figures prominently in his work. It’s a type of conic section, a family of curves that played a major role in Greek geometry. To create a conic section, use a plane to cut a double cone, formed by joining two identical cones at their tips. There are three main types: the ellipse, a closed oval; the parabola, a U-shaped curve; and the hyperbola, two U-shaped curves back to back.
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The three main types of conic section.



On Plane Equilibria consists of two separate books. It establishes some fundamental results about what we now call statics: the branch of mechanics that analyses conditions under which a body remains at rest. The further development of this topic underpins the whole of civil engineering, making it possible to calculate the forces that act on the structural elements of buildings and bridges, to ensure that they really do remain at rest, rather than buckling or collapsing.

The first book concentrates on the law of the lever, which Archimedes states as: ‘Magnitudes are in equilibrium at distances reciprocally proportional to their weights.’ One consequence is that a long lever amplifies a small force. Plutarch tells us that Archimedes dramatised this in a letter to King Heiron: ‘Give me a place to stand, and I will move the Earth.’ He’d have needed a very long, perfectly rigid, lever, but the main downside of levers is that although the applied force is amplified, the far end of the lever travels a much smaller distance than the force does. Archimedes could have moved the Earth through the same (very tiny) distance just by jumping. Nonetheless, a lever is very effective, and so is a variant that Archimedes also understood, the pulley. When a sceptical Heiron asked him to demonstrate, Archimedes


fixed accordingly upon a ship of burden out of the king’s arsenal, which could not be drawn out of the dock without great labour and many men; and, loading her with many passengers and a full freight, sitting himself the while far off, with no great endeavour, but only holding the head of the pulley in his hand and drawing the cords by degrees, he drew the ship in a straight line, as smoothly and evenly as if she had been in the sea.



The second book is mainly about finding the centre of gravity of various shapes – triangle, parallelogram, trapezium, and segment of a parabola.

On the Sphere and Cylinder contains results of which Archimedes was so proud that he had them inscribed on his tomb. He proved, rigorously, that the surface area of a sphere is four times that of any great circle (such as the equator of a spherical Earth); that its volume is two thirds that of a cylinder fitting tightly round the sphere; and that the area of any segment of the sphere cut off by a plane is the same as the corresponding segment of such a cylinder. His proof used a convoluted method known as exhaustion, which was introduced by Eudoxus to deal with proportions involving irrational numbers, which can’t be represented exactly as a fraction. In modern terms, he proved that the surface area of a sphere of radius r is 4πr2 and its volume is 4/3πr3.

Mathematicians have a habit of presenting their final polished results in beautifully organised fashion, while concealing the often messy and muddled process that led to them. We’re fortunate to have some extra insight into how Archimedes made his discoveries about the sphere, recorded in The Method of Mechanical Theorems. This work was long thought to be lost, but in 1906 the Danish historian Johan Heiberg discovered an incomplete copy, the Archimedes palimpsest. A palimpsest is a text that was rubbed out or washed off in antiquity to allow the parchment or paper to be reused. The works of Archimedes were collected together by Isidorus of Miletus around 530 in Constantinople (modern Istanbul), capital of the Byzantine Empire. They were copied in 950 by some Byzantine scribe, at a time when Leo the Geometer was running a mathematical school studying Archimedes’s works. The manuscript made its way to Jerusalem, where in 1229 it was disassembled, washed (not very effectively), folded in half, and rebound to make a 177-page Christian liturgy.

In the 1840s the biblical scholar Constantin von Tischendorf came across this text, by now back in a Greek orthodox library in Constantinople, and noticed faint traces of Greek mathematics. He took one page away and deposited it in Cambridge University Library. In 1899 Athanasios Papadopoulos-Kerameus, cataloguing the Library’s manuscripts, translated part of it. Heiberg realised it was by Archimedes, and tracked the page back to Constantinople, where he was allowed to photograph the entire document. He then transcribed it, publishing the results between 1910 and 1915, and Thomas Heath translated the text into English. After a complicated series of events, including an auction contested by a lawsuit over ownership, it was sold to an anonymous American for two million dollars. The new owner made it available for study, and it was subjected to a variety of digital imaging techniques to bring out the underlying text.

The technique of exhaustion requires advance knowledge of the answer, and scholars had long wondered how Archimedes guessed the rules for the area and volume of a sphere. The Method provides an explanation:


Certain things first became clear to me by a mechanical method, although they had to be proved by geometry afterwards because their investigation by the said method did not furnish an actual proof. But it is of course easier, when we have previously acquired, by the method, some knowledge of the questions, to supply the proof than it is to find it without any previous knowledge.



Archimedes imagines hanging a sphere, a cylinder, and a cone on a balance, and then cutting them into infinitely thin slices, which are redistributed in a way that keeps the balance level. He then uses the law of the lever to relate the three volumes (those of the cylinder and cone were known) and deduces the required quantities. It has been suggested that Archimedes was pioneering the use of actual infinities in mathematics. This may be reading too much into an obscure document, but it’s clear that The Method anticipates some ideas of calculus.

[image: images]

Archimedes’s other works illustrate how diverse his interests were. On Spirals proves some fundamental results about lengths and areas related to the Archimedean spiral, the curve described by a point moving at uniform speed along a line rotating at uniform speed. On Conoids and Spheroids studies the volumes of segments of solids formed by rotating conic sections about an axis.

On Floating Bodies is the earliest work in hydrostatics, equilibrium positions of floating objects. It includes Archimedes’s principle: a body immersed in a liquid is subjected to a buoyancy force equal to the weight of fluid displaced. This principle is the subject of a famous anecdote in which Archimedes is asked to devise a method to determine whether a votive crown made for King Hiero II is truly made of gold. Sitting in his bath, he is suddenly struck with inspiration, becoming so excited that he rushes off down the street crying ‘Eureka!’ (I’ve found it!) – omitting to get dressed first. Public nudity would not have been particularly scandalous in ancient Greece, mind you. The technical high point of the book is a condition for a floating paraboloid to be stable, a forerunner of basic ideas in naval architecture on the stability and capsizing of ships.

Measurement of a Circle applies the method of exhaustion to prove that the area of a circle is half the radius times the circumference – πr2 in modern terms. To prove this, Archimedes inscribes and circumscribes regular polygons with 6, 12, 24, 48, and 96 sides. By considering the 96-gons, he proves a result equivalent to an estimate for the value of π: it lies between 31/7 and 310/71.

The Sand Reckoner is addressed to Gelo II, tyrant of Syracuse, the son of Heiro II. This adds evidence that Archimedes had royal connections. He explains its objective:


There are some, king Gelo, who think that the number of the sand is infinite in multitude … But I will try to show you … that, of the numbers named by me and given in the work which I sent to Zeuxippus, some exceed not only the number of the mass of sand equal in magnitude to the Earth filled up, but also that of the mass equal in magnitude to the universe.



Here Archimedes is promoting his new system for naming large numbers by combating the common misuse of the term ‘infinite’ to mean ‘very large’. He has a clear sense of the distinction. His text combines two main ideas. The first is an extension of the standard Greek number words to allow much larger numbers than a myriad myriad (100 million, 108). The second is an estimate for the size of the universe, which he bases on the heliocentric (Sun-centred) theory of Aristarchus. His final result is that, in today’s notation, it would take at most 1063 sand grains to fill the universe.

[image: images]

There’s a long recreational tradition in mathematics, featuring games and puzzles. Sometimes these are just fun, and sometimes they’re light-hearted problems that illuminate more serious concepts. The Cattle Problem raises questions that are still studied today. In 1773 Gotthold Lessing, a German librarian, came across a Greek manuscript: a 44-line poem inviting the reader to calculate how many cattle there are in the Sun god’s herd. The title of the poem presents it as a letter from Archimedes to Eratosthenes. It begins:


Compute, O friend, the number of the cattle of the Sun which once grazed upon the plains of Sicily, divided according to colour into four herds, one milk-white, one black, one dappled and one yellow. The number of bulls is greater than the number of cows, and the relations between them are as follows.



It then lists seven equations along the lines of


[image: images]



and continues:


If thou canst give, O friend, the number of each kind of bulls and cows, thou art no novice in numbers, yet cannot be regarded as of high skill. Consider, however, the following additional relations between the bulls of the Sun:

White bulls + black bulls = a square number,

Dappled bulls + yellow bulls = a triangular number. If thou hast computed these also, O friend, and found the total number of cattle, then exult as a conqueror, for thou hast proved thyself most skilled in numbers.



Square numbers are 1, 4, 9, 16, and so on, found by multiplying a whole number by itself. Triangular numbers are 1, 3, 6, 10 and so on, formed by adding consecutive whole numbers – for instance, 10 = 1 + 2 + 3 + 4. These conditions constitute what we now call a system of Diophantine equations, named after Diophantus of Alexandria, who wrote about them around AD 250 in Arithmetica. The solution must be given in whole numbers, since the Sun god would be unlikely to have half a cow in his herd.

The first set of conditions leads to an infinite number of possible solutions, the smallest giving 7,460,514 black bulls and comparable numbers of the other animals. The supplementary conditions select among those solutions, and lead to a type of Diophantine equation known as the Pell equation (Chapter 6). This asks for integers x and y such that nx2 + 1 = y2 where n is a given integer. For example, when n = 2 the equation is 2x2 + 1 = y2, with solutions such as x = 2, y = 3 and x = 12, y = 17. In 1965 Hugh Williams, R.A. German, and Charles Zarnke found the smallest solution consistent with the two extra conditions, using two IBM computers. It’s approximately 7·76×10206544.

There’s no way Archimedes could have found this number by hand, and there’s no evidence that he had anything to do with the problem, beyond the poem’s title. The cattle problem still attracts the attention of number theorists, and has inspired new results on the Pell equation.
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The historical record of Archimedes’s life is flimsy, but we know a little more about his death, assuming any of the tales is accurate. They probably contain at least a grain of truth.

In the Second Punic War, around 212 BC, the Roman general Marcus Claudius Marcellus besieged Syracuse, capturing it after two years. Plutarch relates that the elderly Archimedes was looking at a geometric diagram in the sand. The general sent a soldier to tell Archimedes to meet him, but the mathematician protested that he hadn’t finished working on his problem. The soldier lost his temper and killed Archimedes with his sword; the sage’s last words were allegedly ‘Do not disturb my circles!’ Knowing mathematicians, I find this entirely plausible, but Plutarch gives another version in which Archimedes tries to surrender to a soldier, who thinks the mathematical instruments he is carrying are valuable and slaughters him to steal them. In both versions, Marcellus was somewhat peeved at the death of this revered mechanical genius.

Archimedes’s tomb was decorated with a sculpture depicting his favourite theorem, from On the Sphere and Cylinder: a sphere inscribed in a cylinder has two thirds its volume and the same surface area. More than a century after Archimedes’s death, the Roman orator Cicero was a quaestor (state-appointed auditor) in Sicily. Hearing of the tomb, he eventually found it in a dilapidated state near the Agrigentine gate in Syracuse. He ordered its restoration, which let him read some of its inscriptions, including a diagram of the sphere and cylinder.

Today, the location of the tomb is unknown, and nothing appears to have survived. But Archimedes lives on through his mathematics, much of it still important more than two thousand years later.
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Master of the Way
 Liu Hui
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Liu Hui
 Flourished: Cao Wei, China, third century AD



THE ZHOU BI SUAN JING (Arithmetical Classic of the Gnomon and the Circular Paths of Heaven) is the most ancient known Chinese mathematical text, dating from the period of the Warring States, 400–200 BC. It opens with a neat piece of educational propaganda:


Long ago, Rong Fang asked Chen Zi ‘Master, I have recently heard something about your Way. Is it really true that your way is able to comprehend the height and size of the Sun, the area illuminated by its radiance, the amount of its daily motion, the figures for its greatest and least distances, the extent of human vision, the limits of the four poles, the constellations into which the stars are ordered, and the length and breadth of heaven and Earth?’

‘It is true,’ said Chen Zi.

Rong Fang asked, ‘Although I am not intelligent, Master, I would like you to favour me with an explanation. Can someone like me be taught this Way?’

Chen Zi replied, ‘Yes. All things can be attained to you by mathematics. Your ability in mathematics is sufficient to understand such matters if you sincerely give repeated thought to them.’



The book goes on to derive a figure for the distance from the Earth to the Sun, using geometry. Its cosmological model was primitive: a flat Earth beneath a plane circular sky. But its mathematics was quite sophisticated. Essentially it used the geometry of similar triangles, applied to shadows cast by the Sun.

The Zhou Bi shows the advanced state of Chinese mathematics around the time of the Greek Hellenistic period, from the death of Alexander the Great in 323 BC to 146 BC when the Republic of Rome added Greece to its empire. This period was the peak of ancient Greek intellectual dominance; the time of most of the great geometers, philosophers, logicians, and astronomers of the classical world. Even under Roman dominion, Greece continued to make cultural and scientific advances until about AD 600, but the centres of mathematical innovation moved to China, Arabia, and India. The cutting edge of mathematical progress didn’t return to Europe until the Renaissance, although the ‘dark ages’ weren’t as dark as they’re sometimes painted, and lesser advances were made in Europe too.

The Chinese advances were stunning. Until recently most histories of mathematics adopted a Eurocentric viewpoint and ignored them, until George Gheverghese Joseph wrote about the early mathematics of the Far East in The Crest of the Peacock. Among the greatest of the ancient Chinese mathematicians was Liu Hui. A descendant of the Marquis of Zixiang of the Han dynasty, he lived in the state of Cao Wei during the Three Kingdoms period. In 263, he edited and published a book with solutions to mathematical problems presented in the famous Chinese mathematics book Jiuzhang Suanshu (Nine Chapters on the Mathematical Art).

His works include a proof of Pythagoras’s Theorem, theorems in solid geometry, an improvement on Archimedes’s approximation to π, and a systematic method for solving linear equations in several unknowns. He also wrote about surveying, with especial application to astronomy. He probably visited Luoyang, one of the four ancient capitals of China, and measured the Sun’s shadow.

[image: images]

Evidence for the earliest history of China comes from a few later texts, such as the Han dynasty scribe Sima Qian’s vast Records of the Grand Historian (around 110 BC) and the Bamboo Annals, a historical chronicle written on slips of bamboo, buried in the grave of King Xiang of Wei in 296 BC and dug up again in AD 281. According to these sources, Chinese civilisation began in the third millennium BC with the Xia Kingdom. Written records start with the Shang dynasty, which ruled from 1600–1046 BC and left the earliest evidence of Chinese counting in the form of oracle bones – marked bones used for fortune-telling. A successful invasion by the Zhou led to a more stable state with a feudal structure, which began to fall apart three centuries later as other groups tried to muscle in.

By 476 BC virtual anarchy ruled, a period known as the Warring States that lasted over two centuries. The Zhou Bi was written during these turbulent times. Its main mathematical contents are what we now call Pythagoras’s Theorem, fractions, and arithmetic; it also includes a lot of astronomy. Pythagoras’s Theorem is presented in a conversation between Duke Chou Kung and the noble Shang Kao. Their discussion of right triangles leads to a statement of the famous theorem and a geometric proof. For a time historians thought that this discovery beat Pythagoras by half a millennium. The general view today is that it was an independent discovery, predating Pythagoras, but not by much.

An important successor from the same general period is the aforementioned Jiuzhang, which contains a wealth of material such as the extraction of roots, solution of simultaneous equations, areas and volumes, and again right triangles. A commentary by Chang Heng in AD 130 gives the approximation [image: images]. Chao Chun Chin’s commentary on Zhou Bi some time in the third century AD added a method for solving quadratic equations. The most influential development from Jiuzhang was made by China’s greatest mathematician of antiquity, Liu Hui in AD 263. He introduced the book with an explanation:


In the past, the tyrant Qin burnt written documents, which led to the destruction of classical knowledge. Later, Zhang Cang, Marquis of Peiping, and Geng Shouchang, Vice-President of the Ministry of Agriculture, both became famous through their talent for calculation. Because the ancient texts had deteriorated, Zhang Cang and his team produced a new version removing the poor parts and filling in the missing parts. Thus, they revised some parts, with the result that these were different from the old parts.



In particular, Liu Hui provided proofs that the book’s methods work, using techniques that today we wouldn’t consider rigorous, akin to those of Archimedes in The Method. And he supplied additional material on surveying, also published separately as Haidao Suanjing (Sea Island Mathematical Manual).

[image: images]

The first chapter of the Jiuzhang explains how to calculate the areas of fields of various shapes, such as rectangles, triangles, trapeziums, and circles. Its rules are correct, except for the circle. Even here the recipe is right: multiply the radius by half the circumference. However, the circumference is calculated as 3 times the diameter, in effect taking π = 3. As a practical matter, the rule underestimates the area by less than 5 per cent.

Late in the first century BC the ruler Wang Mang instructed the astronomer and calendar-maker Liu Hsing to come up with a standard measure for volume. Liu Hsing made a very accurate cylindrical bronze vessel, to act as a standard reference measure. Thousands of copies were used all over China. The original vessel is now in a museum in Beijing, and its dimensions have led some to suggest that Liu Hsing in effect used a value for π somewhere around 3·1547. (Quite how the figure can be obtained to this degree of accuracy by measuring a bronze pot is unclear, to me at least.) The Sui Shu (official history of the Sui dynasty) contains a statement equivalent to Liu Hsing having found a new value for π. Liu Hui remarked that around the same time, the court astrologer Chang Heng proposed taking π to be the square root of 10, which is 3·1622. Clearly improved values for π were in the air.

In his commentary on the Jiuzhang, Liu Hui points out that the traditional ‘π = 3’ rule is wrong: instead of the circumference of the circle, it gives the perimeter of an inscribed hexagon, which is visibly smaller. He then calculated a more accurate value for the circumference (and, implicitly, for π). In fact, he went further, describing a computational method to estimate π to arbitrary accuracy. His approach was similar to that of Archimedes: approximate the circle by regular polygons with 6, 12, 24, 48, 96, … sides. In order to apply the method of exhaustion, Archimedes used one sequence of approximating polygons inscribed in the circle, and a second sequence fitting outside it. Liu Hui used only inscribed polygons, but at the end of the calculation he gave a geometric argument to place both lower and upper bounds on the true value of π. This method gives arbitrarily accurate approximations to π using nothing more difficult than square roots. These can be calculated systematically; the method is laborious but no more complex than long multiplication. A skilled arithmetician could obtain ten decimal places of π in a day.

Later, around AD 469, Tsu Ch’ung Chih extended the calculation to show that

3·1415926 < π < 3·1415927

The result was recorded, but his method, which may have been explained in his lost work Su Shu (Method of Interpolation), was not. It could have been done by continuing Liu Hui’s calculation, but the book’s title suggests it involved estimating a more accurate value from a pair of approximations, one too small and the other too big. Methods like that can be found in mathematics right up to the present day. Not so long ago they were taught in schools, for use with tables of logarithms. Tsu came up with two simple fractions approximating π: the Archimedean 22/7, accurate to two decimal places, and 355/113; accurate to six decimal places. The first is widely used today, and the second is well known to mathematicians.
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One reconstruction of Liu Hui’s proof of Pythagoras’s Theorem, based on the instructions in his book, is an ingenious and unusual dissection. The right triangle is shown in black. The square on one side is split in two by a diagonal (light grey). The other square is cut into five pieces: one small square (dark grey), a pair of symmetrically arranged triangles the same shape and size as the original right triangle (medium grey) and a pair of symmetrically arranged triangles filling the remaining space (white). Then all seven pieces are assembled to make the square on the hypotenuse.

Other, simpler dissections can also be used to prove this theorem.


[image: images]

Possible reconstruction of Liu Hui’s proof of Pythagoras’s Theorem.



The ancient Chinese mathematicians were every bit as capable as their Greek contemporaries, and the course of Chinese mathematics after Liu Hui’s period includes many discoveries that predate their appearance in European mathematics. For example, the estimates for π found by Liu Hui and Tsu Ch’ung Chih were not bettered for a thousand years.

Joseph examines whether some of their ideas might have been transmitted to India and Arabia alongside trade goods, and thence possibly even to Europe. If so, the later European rediscoveries might not have been entirely independent. There were Chinese diplomats in India in the sixth century, and Chinese translations of Indian mathematics and astronomy books were made in the seventh century. As regards Arabia, the Prophet Muhammad issued a hadith – a pronouncement with religious significance – saying ‘Seek learning, though it be as far away as China.’ In the fourteenth century Arab travellers report formal trade links with China, and the Moroccan traveller and scholar Muhammad ibn Battuta wrote about Chinese science and technology, as well as culture, in Rihla (Journey).

We know that ideas from India and Arabia made their way to medieval Europe, as the next two chapters illustrate. So it’s by no means impossible that Chinese knowledge did likewise. The Jesuit presence in China in the seventeenth and eighteenth centuries inspired some of Leibniz’s philosophy, by way of Confucius. There may well have been a complex network, transmitting mathematics, science, and much more, between Greece, the Middle East, India, and China. If so, the conventional history of western mathematics may require some revision.
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