

 [image: Pragmatic Bookshelf]

Domain Modeling Made Functional

Tackle Software Complexity with Domain-Driven Design and F#

by Scott Wlaschin

Version: P1.0 (January 2018)

Copyright © 2018 The Pragmatic Programmers, LLC.
 This book is licensed to
 the individual who purchased it. We don't copy-protect it
 because that would limit your ability to use it for your
 own purposes. Please don't break this trust—you can use
 this across all of your devices but please do not share this copy
 with other members of your team, with friends, or via
 file sharing services. Thanks.

 Many of the designations used by manufacturers and
 sellers to distinguish their products are claimed as
 trademarks. Where those designations appear in this book,
 and The Pragmatic Programmers, LLC was aware of a
 trademark claim, the designations have been printed in
 initial capital letters or in all capitals. The Pragmatic
 Starter Kit, The Pragmatic Programmer, Pragmatic
 Programming, Pragmatic Bookshelf and the linking g
 device are trademarks of The Pragmatic Programmers,
 LLC.

 Every precaution was taken in the preparation of this book.
 However, the publisher assumes no responsibility for errors
 or omissions, or for damages that may result from the use
 of information (including program listings) contained
 herein.

About the Pragmatic Bookshelf

 The Pragmatic Bookshelf is an agile publishing company.
 We’re here because we want to improve the lives of developers.
 We do this by creating timely, practical titles, written by programmers for programmers.

 Our Pragmatic courses, workshops, and other products can
 help you and your team create better software and have more
 fun. For more information, as well as the latest Pragmatic
 titles, please visit us at http://pragprog.com.

 Our ebooks do not contain any Digital Restrictions
 Management, and have always been DRM-free. We pioneered the
 beta book concept, where you can purchase and read a book
 while it’s still being written, and provide feedback to the
 author to help make a better book for everyone. Free
 resources for all purchasers include source code downloads
 (if applicable), errata and discussion forums, all
 available on the book's home page at pragprog.com. We’re
 here to make your life easier.

New Book Announcements

 Want to keep up on our latest titles and announcements, and
 occasional special offers? Just create an account on
 pragprog.com (an email address and a password is all it takes)
 and select the checkbox to receive newsletters. You can
 also follow us on twitter as @pragprog.

About Ebook Formats

 If you buy directly from
 pragprog.com, you get
 ebooks in all available formats for one price. You can
 synch your ebooks amongst all your devices (including
 iPhone/iPad, Android, laptops, etc.) via Dropbox.
 You get free updates for the life of the edition. And, of
 course, you can always come back and re-download your books
 when needed. Ebooks bought from the Amazon Kindle store are
 subject to Amazon's polices. Limitations in Amazon's file
 format may cause ebooks to display differently on different
 devices. For more information, please see our FAQ at
 pragprog.com/frequently-asked-questions/ebooks. To learn
 more about this book and access the free resources, go to
 https://pragprog.com/book/swdddf, the book's homepage.

 Thanks for your continued support,

 Andy Hunt

 The Pragmatic Programmers

The team that produced this book includes: Andy Hunt (Publisher)Janet Furlow (VP of Operations)Brian MacDonald (Managing Editor)Jacquelyn Carter (Supervising Editor)Molly McBeath (Copy Editor)Potomac Indexing, LLC (Indexing)Gilson Graphics (Layout)

 For customer support, please contact
 support@pragprog.com.

 For international rights, please contact
 rights@pragprog.com.

Table of Contents
	 Preface	Who Is This Book For?
	What’s in This Book?
	Other Approaches to Domain Modeling
	Working with the Code in This Book
	Questions or Suggestions?
	Credits
	Acknowledgments

	Part I. Understanding the Domain	1. Introducing Domain-Driven Design	The Importance of a Shared Model
	Understanding the Domain Through Business Events
	Partitioning the Domain into Subdomains
	Creating a Solution Using Bounded Contexts

Copyright © 2018, The Pragmatic Bookshelf.

 Early praise for Domain Modeling Made Functional

 Scott Wlaschin is one of the most important communicators in practical, applied programming today. In this book, he brings clarity and simplicity to the process of bridging the gap between requirements, customers, and concrete designs and code. Enjoy!

	→ 	Don Syme
	
	Researcher, Microsoft U.K.

 Many books explain functional programming, but few describe domain modeling from a functional perspective. Scott Wlaschin’s book is a brilliant extension of the concepts of domain-driven design to a contemporary context.

	→ 	Michael Feathers
	
	Director, R7K Research and Conveyance

 A few years ago, Scott’s blog was my first encounter with domain modeling in a functional language—and it’s still my favorite. He has a knack for expressing abstract topics in a clear and approachable way.

	→ 	Mathias Verraes
	
	Domain-Driven Design Europe

 This is a fantastic book that takes you through the process of making software from start to finish, both on a technical and a functional level. I loved reading it!

	→ 	Gien Verschatse
	
	Owner, Eight Point Squared

 Domain Modeling Made Functional is easy to read and engaging—but it doesn’t miss a beat for technical thoroughness or depth. I highly recommend this book as an introduction to both functional programming and domain-driven design.

	→ 	Chris Krycho
	
	Senior Software Engineer, Olo

 This book crystallizes Domain-Driven Design in a refreshingly pragmatic way. The author’s ability to present key ideas by example rather than theory make this a must-read for any developer interested in DDD.

	→ 	Devon Burriss
	
	Technical Pathfinder, Coolblue B.V.

Preface

Many people think of functional programming as being all about mathematical abstractions and incomprehensible code.
In this book, I aim to show that functional programming is in fact an excellent choice for domain modeling, producing designs that are both clear and concise.

Who Is This Book For?

This book is for experienced software developers who want to add some new tools to their programming tool belt. You should read this book if:
	
You are curious to see how you can model and implement a domain using only types and functions.

	
You want a simple introduction to domain-driven design and want to learn how it is different from object-oriented design or database-first design.

	
You are an experienced domain-driven design practitioner who wants to learn why DDD is a great fit with functional programming.

	
You want to learn about functional programming, but have been put off by too much theory and abstraction.

	
You want to see how F# and functional programming can be applied to real-world domains.

You don’t need to have prior knowledge of domain-driven design or functional programming in order to read this book. This is an introductory book and all the important concepts will be explained as we need them.

What’s in This Book?

This book is divided into three parts:
	Understanding the domain
	Modeling the domain
	Implementing the model

Each part builds on the previous one, so it’s best if you read them in order.

In the first part, Understanding the Domain, we’ll look at the ideas behind domain-driven design and the importance of having a shared understanding of a domain. We’ll have a brief look at techniques that help to build this shared understanding, such as Event Storming, and then we’ll look at decomposing a large domain into smaller components that we can implement and evolve independently.

To be clear, this book is not meant to be a thorough exploration of domain-driven design. That’s a large topic that many excellent books and websites cover in detail. Instead, the goal of this book is to introduce you to domain-driven design as a partner to functional domain modeling. We will cover the most important concepts of domain-driven design, of course, but rather than diving deeply into the subject, we’ll stay at a high level and stress two things: (a) the importance of communication with domain experts and other non-technical team members and (b) the value of a shared domain model based on real-world concepts.

In the second part, Modeling the Domain, we’ll take one workflow from the domain and model it in a functional way. We’ll see how the functional decomposition of a workflow differs from an object-oriented approach, and we’ll learn how to use types to capture requirements. By the end, we’ll have written concise code that does double-duty: first as readable documentation of the domain but also as a compilable framework that the rest of the implementation can build upon.

In the third part, Implementing the Model, we’ll take that same modeled workflow and implement it. In the process of doing that, we’ll learn how to use common functional programming techniques such as composition, partial application, and the scary-sounding “monad.”

This book is not intended to be a complete guide to functional programming. We’ll cover just what we need in order to model and implement the domain, and we won’t cover more advanced techniques. Nevertheless, by the end of Part III, you’ll be familiar with all the most important functional programming concepts and you’ll have acquired a toolkit of skills that you can apply to most programming situations.

As sure as the sun rises, requirements will change, so in the final chapter we’ll look at some common directions in which the domain might evolve and how our design can adapt in response.

Other Approaches to Domain Modeling

This book focuses on the “mainstream” way of doing domain modeling, by defining data structures and the functions that act on them, but other approaches might be more applicable in some situations. I’ll mention two of them here in case you want to explore them further.
	
If the domain revolves around semistructured data, then the kinds of rigid models discussed in this book are not suitable and a better approach would be to use flexible structures such as maps (also known as dictionaries) to store key-value pairs. The Clojure community has many good practices here.

	
If the emphasis of the domain is on combining elements together to make other elements, then it’s often useful to focus on what these composition rules are (the so-called “algebra”) before focusing on the data. Domains like this are widespread, from financial contracts to graphic design tools, and the principle of “composition everywhere” makes them especially suitable for being modeled with a functional approach. Unfortunately, due to space limitations, we will not be covering these kinds of domains here.

Working with the Code in This Book

This book will use the F# programming language to demonstrate the concepts and techniques of functional programming.
The code has been tested with the latest version of F# as of June 2017, which is F# 4.1 (available in Visual Studio 2017 or installable separately). All the code will work with earlier versions of F# as well, and any important differences will be pointed out in the text.

One of the great features of F# is that it can be used like a scripting language. If you are playing with the example code in conjunction with reading this book, I suggest that you type it into a file and evaluate it interactively rather than compiling it. For how to do this, search the Internet for “F# scripting tips.”

All the code in this book is available on this book’s page on the Pragmatic Programmers website.[1]
Getting Started with F#

If you are new to F#, here’s some helpful information:
	
F# is an open-source, cross-platform language. Details of how to download and install it are available at fsharp.org.[2]

	
Many free development environments are available for F#. The most popular are Visual Studio[3] (for Windows and Mac) and Visual Studio Code with the Ionide plugin.[4] (all platforms)

	
For help learning F#, there is StackOverflow (using the “F#” tag) as well as the Slack forums run by the F# Software Foundation.[5] The F# community is very friendly and will be happy to help if you have questions.

	
For F# news, follow the “#fsharp” tag on Twitter and read the F# Weekly newsletter.[6]

This book uses only a small set of features from F#, and most of the syntax will be explained as we go. If you need a fuller overview of F# syntax, I suggest searching the Internet for “F# cheat sheet” or “F# syntax.”

Questions or Suggestions?

I would love to get your feedback, so if you have questions or suggestions, please participate in the PragProg community forum for this book.[7] And if you find any specific problems with the text, please use the errata submission form there.

Credits

All diagrams were created by the author using Inkscape. The clipart is from openclipart.org. The script typeface (“KitType”) used in the diagrams was created by Kenneth Lamug.[8]

Acknowledgments

I’d like to thank the reviewers of this book for their very helpful comments and feedback: Gien Verschatse, Mathias Brandewinder, Jérémie Chassaing, Clément Boudereau, Brian Schau, Nick McGinness, Tibor Simic, Vikas Manchanda, Stephen Wolff, Colin Yates, Gabor Hajba, Jacob Chae, Nouran Mhmoud and the early access commenters on the book’s forum page.

I’d also like to thank my editor, Brian MacDonald, for his editorial feedback and for keeping me on track, and the rest of the PragProg team for making the publishing process so smooth.

Finally, I’d like to thank you, dear reader, for devoting some of your precious time to this book. I hope you find it useful.

Footnotes

	[1]
	
https://pragprog.com/titles/swdddf/source_code

	[2]
	
http://fsharp.org/

	[3]
	
https://code.visualstudio.com/

	[4]
	
http://ionide.io/

	[5]
	
http://fsharp.org/guides/slack/

	[6]
	
https://sergeytihon.com/category/f-weekly/

	[7]
	
https://forums.pragprog.com/forums/457

	[8]
	
https://www.dafont.com/kittype.font

Copyright © 2018, The Pragmatic Bookshelf.

Part 1
Understanding the Domain

In this first part, we’ll look at the ideas behind domain-driven design and the importance of a shared understanding of a domain. We’ll have a brief look at techniques that help to build this shared understanding, such as Event Storming, and then we’ll look at decomposing a large domain into smaller components that we can implement and evolve independently.

 Chapter
 1
Introducing Domain-Driven Design

As a developer, you may think that your job is to write code.

I disagree. A developer’s job is to solve a problem through software, and coding is just one aspect of software development.
Good design and communication are just as important, if not more so.

If you think of software development as a pipeline with an input (requirements) and an output (the final deliverable), then the “garbage in, garbage out” rule applies. If the input is bad (unclear requirements or a bad design), then no amount of coding can create a good output.

In the first part of this book we’ll look at how to minimize the “garbage in” part by using a design approach focused on clear communication and shared domain knowledge: domain-driven design, or DDD.

In this chapter, we’ll start by discussing the principles of DDD and by showing how they can be applied to a particular domain.
DDD is a large topic, so we won’t be exploring it in detail (for more detailed information on DDD, visit dddcommunity.org[9]). However, by the end of this chapter you should at least have a good idea of how domain-driven design works and how it is different from database-driven design and object-oriented design.

Domain-driven design is not appropriate for all software development, of course. There are many types of software (systems software, games, and so on) that can be built using other approaches. However, it is particularly useful for business and enterprise software, where developers have to collaborate with other nontechnical teams, and that kind of software will be the focus of this book.

The Importance of a Shared Model

Before attempting to solve a problem it’s important that we understand the problem correctly. Obviously, if our understanding of the problem is incomplete or distorted, then we won’t to be able to provide a useful solution. And sadly, of course, it’s the developers’ understanding, not the domain experts’ understanding, that gets released to production!

So how can we ensure that we, as developers, do understand the problem?

Some software development processes address this by using written specifications or requirements documents to try to capture all the details of a problem.
Unfortunately, this approach often creates distance between the people who understand the problem best and the people who will implement the solution. We’ll call the latter the “development team,” by which we mean not just developers but also UX and UI designers, testers, and so on. And we’ll call the former “domain experts.” I won’t attempt to define “domain expert” here—I think you’ll know one when you see one!
[image: images/mental-model1.png]

In a children’s game called “Telephone,” a message is whispered from person to person along a chain of people. With each retelling the message gets more and more distorted, with comic results.

It’s not so funny in a real-world development project. A mismatch between the developer’s understanding of the problem and the domain expert’s understanding of the problem can be fatal to the success of the project.

A much better solution is to eliminate the intermediaries and encourage the domain experts to be intimately involved with the development process, introducing a feedback loop between the development team and the domain expert.
The development team regularly delivers something to the domain expert, who can quickly correct any misunderstandings for the next iteration.
[image: images/mental-model2.png]

This kind of iterative process is at the core of “agile” development processes.

However, even this approach has its problems. The developer acts as a translator, translating the domain expert’s mental model into code. But as in any translation, this process can result in distortion and loss of important subtleties.
If the code doesn’t quite correspond to the concepts in the domain, then future developers working on the codebase without input from a domain expert can easily misunderstand what’s needed and introduce errors.

But there is a third approach. What if the domain experts, the development team, other stakeholders, and (most importantly) the source code itself all share the same model? In this case, there is no translation from the domain expert’s requirements to the code. Rather, the code is designed to reflect the shared mental model directly.

And that is the goal of domain-driven design.
[image: images/mental-model3.png]

Aligning the software model with the business domain has a number of benefits:
	
Faster time to market. When the developer and the codebase share the same model as the person who has the problem, the team is more likely to develop an appropriate solution quickly.

	
More business value. A solution that is accurately aligned with the problem means happier customers and less chance of going offtrack.

	
Less waste. Clearer requirements means less time wasted in misunderstanding and rework. Furthermore, this clarity often reveals which components are high value so that more development effort can be focused on them and less on the low-value components.

	
Easier maintenance and evolution. When the model expressed by the code closely matches the domain expert’s own model, making changes to the code is easier and less error-prone. Furthermore, new team members are able to come up to speed faster.

The Insanely Effective Delivery Machine

Dan North, the well-known developer and promoter of Behavior-Driven Development, described his experience with a shared mental model in his talk “Accelerating Agile.” He joined a small team at a trading firm, which he described as the most insanely effective delivery machine he’d ever been a part of. In that firm, a handful of programmers produced state-of-the-art trading systems in weeks rather than months or years.

One of the reasons for the success of this team was that the developers were trained to be traders alongside the real traders. That is, they became domain experts themselves.
This in turn meant that they could communicate very effectively with the traders, due to the shared mental model, and build exactly what their domain experts (the traders) wanted.

So we need to create a shared model. How can we do this?
The domain-driven design community has developed some guidelines to help us here. They are as follows:
	Focus on business events and workflows rather than data structures.
	Partition the problem domain into smaller subdomains.
	Create a model of each subdomain in the solution.
	Develop a common language (known as the “Ubiquitous Language”) that is shared between everyone involved in the project and is used everywhere in the code.

Let’s look at these in turn.

Understanding the Domain Through Business Events

A DDD approach to gathering requirements will emphasize building a shared understanding between developers and domain experts.
But where should we start in order to develop this understanding?

Our first guideline says to focus on business events rather than data structures. Why is that?

Well, a business doesn’t just have data, it transforms it somehow. That is, you can think of a typical business process as a series of data or document transformations.
The value of the business is created in this process of transformation, so it is critically important to understand how these transformations work and how they relate to each other.

Static data—data that is just sitting there unused—is not contributing anything.
So what causes an employee (or automated process) to start working with that data and adding value?
Often it’s an outside trigger (a piece of mail arriving or your phone ringing), but it can also be a time-based trigger (you do something every day at 10 a.m.) or an observation (there are no more orders in the inbox to process, so do something else).

Whatever it is, it’s important to capture it as part of the design.
We call these things Domain Events.

Domain Events are the starting point for almost all of the business processes we want to model.
For example, “new order form received” is a Domain Event that will kick off the order-taking process.

Domain Events are always written in the past tense—something
happened—because it’s a fact that can’t be changed.
Using Event Storming to Discover the Domain

There are a number of ways to discover events in a domain, but one that is particularly suitable for a DDD approach is Event Storming, which is a collaborative process for discovering business events and their associated workflows.

In Event Storming, you bring together a variety of people (who understand different parts of the domain) for a facilitated workshop. The attendees should include not just developers and domain experts but all the other stakeholders who have an interest in the success of the project: as event stormers like to say, “anyone who has questions and anyone who has answers.” The workshop should be held in a room that has a lot of wall space, and the walls should be covered with paper or whiteboard material so that the participants can post sticky notes or draw on them.
At the end of a successful session, the walls will be covered with hundreds of these notes.

During the workshop, people write down business events on the sticky notes and post them on the wall.
Other people may respond by posting notes summarizing the business workflows that are triggered by these events. These workflows, in turn, often lead to other business events being created. In addition, the notes can often be organized into a timeline, which may well trigger further discussion in the group.
The idea is to get all the attendees to participate in posting what they know and asking questions about what they don’t know.
It’s a highly interactive process that encourages everyone to be involved.
For more detail on Event Storming in practice, see the EventStorming book by Alberto Brandolini,[10] the creator of this technique.
Discovering the Domain: An Order-Taking System

In this book, we’ll take a realistic business problem—an order-taking
system—and use it to explore design, domain modeling, and implementation.

Say that we are called in to help a small manufacturing company, Widgets Inc, to automate its order-taking workflow.
Max, the manager at Widgets, explains:

“We’re a tiny company that manufactures parts for other companies: widgets, gizmos, and the like. We’ve been growing quite fast, and our current processes are not able to keep up. Right now, everything we do is paper-based, and we’d like to computerize all that so that our staff can handle larger volumes of orders.
In particular, we’d like to have a self-service website so that customers can do some tasks themselves. Things like placing an order, checking order status, and so on.”

Sounds good. So now what do we do? Where should we start?

The first guideline says “focus on business events,” so let’s use an event-storming session for that. Here’s how one might start out at Widgets.

You: “Someone start by posting a business event!”

Ollie: “I’m Ollie from the order-taking department. Mostly we deal with orders and quotes coming in.”

You: “What triggers this kind of work?”

Ollie: “When we get forms sent to us by the customer in the mail.”

You: “So the events would be something like ‘Order form received’ and ‘Quote form received’?”

Ollie: “Yes. Let me put those up on the wall then.”

Sam: “I’m Sam from the shipping department. We fulfill those orders when they’re signed off.”

You: “And how do you know when to do that?”

Sam: “When we get an order from the order-taking department.”

You: “What would you call that as an event?”

Sam: “How about ‘Order available’?”

Ollie: “We call an order that’s completed and ready to ship a ‘Placed order.’ Can we agree on using that term everywhere?”

Sam: “So ‘Order placed’ would be the event we care about, yes?”

You get the idea. After a while, we might have list of posted events like this:
	Order form received
	Order placed
	Order shipped
	Order change requested
	Order cancellation requested
	Return requested
	Quote form received
	Quote provided
	New customer request received
	New customer registered

Here’s what the wall might look like at this point:
[image: images/eventstorming1.png]

Some of the events have business workflows posted next to them, such as “Place order” and “Ship order,” and we’re beginning to see how the events connect up into larger workflows.

We can’t cover a full event-storming session in detail, but let’s look at some of the aspects of requirements gathering that Event Storming facilitates:
	A shared model of the business

 As well as revealing the events, a key benefit of Event Storming is that the participants develop a shared understanding of the business, because everyone is seeing the same thing on the big wall. Just like DDD, Event Storming has an emphasis on communication and shared models and avoiding “us” vs. “them” thinking. Not only will attendees learn about unfamiliar aspects of the domain, but they might realize that their assumptions about other teams are wrong or perhaps even develop insights that can help the business improve.
	Awareness of all the teams

 Sometimes it’s easy to focus on just one aspect of the business—the one that you are involved in—and forget that other teams are involved and may need to consume data that you produce. If all the stakeholders are in the room, anyone who is being overlooked can speak out.

“I’m Blake from the billing department. Don’t forget about us. We need to know about completed orders too, so we can bill people and make money for the company! So we need to get an ‘order placed’ event as well.”

	Finding gaps in the requirements

 When the events are displayed on a wall in a timeline, missing requirements often become very clear:

Max: “Ollie, when you’ve finished preparing an order, do you tell the customer? I don’t see that on the wall.”

Ollie: “Oh, yes. I forgot. When the order has been placed successfully, we send an email to the customer saying that we got it and are about to ship it. That’s another event, I suppose: ‘Order acknowledgment sent to customer’.”

If the question doesn’t have a clear answer, then the question itself should be posted on the wall as a trigger for further discussion.
 And if a particular part of the process creates debate or disagreement, don’t treat it as a problem, treat it as an opportunity! You’ll learn a lot by drilling into these areas. It’s common for the requirements to be fuzzy at the beginning of a project, so documenting the questions and debate in this visible way makes it clear more work needs to be done, and it discourages starting the development process prematurely.
	Connections between teams

 The events can be grouped in a timeline, which often makes it clear that one team’s output is another team’s input.

For example, when the order-taking team has finished processing an order, they need to signal that a new order has been placed.
 This “Order placed” event becomes the input for the shipping and billing teams:
[image: images/eventstorming2.png]

The technical details of how the teams are connected is not relevant at this stage. We want to focus on the domain, not the pros and cons of message queues vs. databases.
	Awareness of reporting requirements

It’s easy to focus only on processes and transactions when trying to understand the domain. But any business needs to understand what happened in the past—reporting is always part of the domain! Make sure that reporting and other read-only models (such as view models for the UI) are included in the event-storming session.

scenariosdefinition
use casesdefinition
business processes
processesbusiness
workflowsdefinition
Workflows, Scenarios, and Use Cases

We have many different words to describe business activities: “workflows,” “scenarios,” “use cases,” “processes,” and so on.
They’re often used interchangeably; but in this book, we’ll try to be a bit more precise.

	

A scenario describes a goal that a customer (or other user) wants to achieve, such as placing an order. It is similar to a “story” in agile development. A use case is a more detailed version of a scenario, which describes in general terms the user interactions and other steps that the user needs to take to accomplish a goal. Both scenario and use case are user-centric concepts, focused on how interactions appear from the user’s point of view.

	

A business process describes a goal that the business (rather than an individual user) wants to achieve. It’s similar to a scenario but has a business-centric focus rather than a user-centric focus.

	

A workflow is a detailed description of part of a business process. That is, it lists the exact steps that an employee (or software component) needs to do to accomplish a business goal or subgoal. We’ll limit a workflow to what a single person or team can do, so that when a business process is spread over multiple teams (as the ordering process is), we can divide the overall business process into a series of smaller workflows, which are then coordinated in some way.

Expanding the Events to the Edges

It is often useful to follow the chain of events out as far as you can, to the boundaries of the system. To start, you might ask if any events occur before the leftmost event.

You: “Ollie, what triggers the ‘Order form received’ event? Where does that come from?”

Ollie: “We open the mail every morning, and the customers send in order forms on paper, which we open up and classify as orders or quotes.”

You: “So it looks like we need a ‘Mail received’ event as well?”

In the same way, we might extend the events on the shipping side of the business.

You: “Sam, are there any possible events after you ship the order to the customer?”

Sam: “Well, if the order is “Signed for delivery,” we’ll get a notification from the courier service. So let me add a ‘Shipment received by customer’ event.”

Extending the events out as far as you can in either direction is another great way of catching missing requirements. You might find that the chain of events ends up being longer than you expect.
[image: images/eventstorming3.png]

Notice that the domain expert is talking about paper forms and printed mail. The system that we want to replace this with will be computerized, but we can learn a lot by thinking about paper-based systems in terms of workflow, prioritization, edge cases, and so on. Let’s focus on understanding the domain for now; only when we understand it thoroughly should we think about how to implement a digital equivalent.

Indeed, in many business processes the whole paper vs. digital distinction is irrelevant—understanding the high-level concepts of the domain does not depend on any particular implementation at all. The domain of accounting is a good example; the concepts and terminology have not changed for hundreds of years.

Also, when converting a paper-based system to a computerized system, there’s often no need to convert all of it at once. We should look at the system as a whole and start by converting only the parts that would benefit most.
Documenting Commands

Once we have a number of these events on the wall, we might ask, “What made these Domain Events happen?” Somebody or something wanted an activity to happen. For example, the customer wanted us to receive an order form, or your boss asked you to do something.

We call these requests commands in DDD terminology (not be confused with the Command pattern used in OO programming). Commands are always written in the imperative: “Do this for me.”

Of course, not all commands actually succeed—the order form might have gotten lost in the mail, or you’re too busy with something more important to help your boss. But if the command does succeed, it will initiate a workflow that in turn will create corresponding Domain Events. Here are some examples:
	
If the command was “Make X happen,” then, if the workflow made X happen, the corresponding Domain Event would be “X happened.”

	
If the command was “Send an order form to Widgets Inc,” then, if the workflow sent the order, the corresponding Domain Event would be “Order form sent.”

	
Command: “Place an order”; Domain Event: “Order placed.”

	
Command: “Send a shipment to customer ABC”; Domain Event: “Shipment sent.”

In fact, we will try to model most business processes in this way.
An event triggers a command, which initiates some business workflow. The output of the workflow is some more events. And then, of course, those events can trigger further commands.
[image: images/command-event1.png]

This way of thinking about business processes—a pipeline with an input and some outputs—is an excellent fit with the way that functional programming works, as we will see later.

Using this approach, then, the order-taking process looks like this:
[image: images/command-event2.png]

For now, we’ll assume that every command succeeds and the corresponding event happens.
Later on, in Chapter 10, ​Implementation: Working with Errors​, we’ll see how to model failure—how to handle the cases when things go wrong and commands do not succeed.

By the way, not all events need be associated with a command. Some events might be triggered by a scheduler or monitoring system, such as MonthEndClose for an accounting system or OutOfStock for a warehouse system.

Partitioning the Domain into Subdomains

We now have a list of events and commands, and we have a good understanding of what the various business processes are.
But the big picture is still quite chaotic. We’ll have to tame it before we start writing any code.

This brings us to our second guideline: “Partition the problem domain into smaller subdomains.”
When faced with a large problem, it’s natural to break it into smaller components that can be addressed separately.
And so it is here. We have a large problem: organizing the events around order taking. Can we break it into smaller pieces?

Yes, we can. It’s clear that various aspects of the “order-taking process” can be separated: the order taking, the shipping, the billing, and so on. As we know, the business already has separate departments for these areas, and that’s a pretty strong hint that we can follow that same separation in our design.
We will call each of these areas a domain.

Now domain is a word with many meanings, but in the world of domain-driven design, we can define a “domain” as “an area of coherent knowledge.”
Unfortunately that definition is too vague to be useful, so here’s an alternative definition of a domain: a “domain” is just that which a “domain expert” is expert in!
This is much more convenient in practice: rather than struggling to provide a dictionary definition of what “billing” means, we can just say that “billing” is what people in the billing department—the domain experts—do.

We all know what a “domain expert” is; as programmers we ourselves are often experts in a number of domains.
For example, you could be an expert in the use of a particular programming language or in a particular area of programming, such as games or scientific programming.
And you might have knowledge of areas such as security or networking or low-level optimizations. All these things are “domains.”

Within a domain might be areas that are distinctive as well. We call these subdomains—a smaller part of a larger domain that has its own specialized knowledge.
For example, “web programming” is a subdomain of “general programming.” And “JavaScript programming” is a subdomain of web programming (at least, it used to be).

Here’s a diagram showing some programming-related domains:
[image: images/programming-domains.png]

You can see that domains can overlap. For example, the “CSS” subdomain could be considered part of the “web programming” domain but also part of the “web design” domain.
So we must be careful when partitioning a domain into smaller parts: it’s tempting to want clear, crisp boundaries, but the real world is fuzzier than that.

If we apply this domain-partitioning approach to our order-taking system, we have something like this:
[image: images/order-taking-domains1.png]

The domains overlap a little bit. An order-taker must know a little bit about how the billing and shipping departments work, a shipper must know a little bit about how the order-taking and billing departments work, and so on.

As we have stressed before, if you want be effective when developing a solution, you need become a bit of a domain expert yourself. That means that, as developers, we’ll need to make an effort to understand the domains above more deeply than we have done so far.

But let’s hold off on that for now and move on to the guidelines for creating a solution.

Creating a Solution Using Bounded Contexts

Understanding the problem doesn’t mean that building a solution is easy.
The solution can’t possibly represent all the information in the original domain, nor would we want it to.
We should only capture the information that is relevant to solving a particular problem. Everything else is irrelevant.

We therefore need to create a distinction between a “problem space” and a “solution space,” and they must be treated as two different things. To build the solution we will create a model of the problem domain, extracting only the aspects of the domain that are relevant and then re-creating them in our solution space as shown in the figure.
[image: images/order-taking-domains2.png]

In the solution space, you can see that the domains and subdomains in the problem space are mapped to what DDD terminology calls bounded contexts—a kind of subsystem in our implementation.
Each bounded context is a mini domain model in its own right.
We use the phrase bounded context instead of something like subsystem because it helps us stay focused on what’s important when we design a solution: being aware of the context and being aware of the boundaries.

Why context? Because each context represents some specialized knowledge in the solution. Within the context, we share a common language and the design is coherent and unified. But, just as in the real world, information taken out of context can be confusing or unusable.

Why bounded? In the real world, domains have fuzzy boundaries, but in the world of software we want to reduce coupling between separate subsystems so that they can evolve independently.
We can do this using standard software practices, such as having explicit APIs between subsystems and avoiding dependencies such as shared code.
This means, sadly, that our domain model will never be as rich as the real world, but we can tolerate this in exchange for less complexity and easier maintenance.

A domain in the problem space does not always have a one-to-one relationship to a context in the solution space. Sometimes, for various reasons, a single domain is broken into multiple bounded contexts—or more likely—multiple domains in the problem space are modeled by only one bounded context in the solution space. This is especially common when you need to integrate with a legacy software system.

For example, in an alternate world, Widgets Inc might already have installed a software package that did order taking and billing together in one system.
If you needed to integrate with this legacy system, you would probably need to treat it as a single bounded context, even though it covers multiple domains as shown in the figure.
[image: images/order-taking-domains2.png]

However you partition the domain, it’s important that each bounded context have a clear responsibility, because when we come to implement the model, a bounded context will correspond exactly to some kind of software component.
The component could be implemented as a separate DLL, or as a standalone service, or just as a simple namespace.
The details don’t matter right now, but getting the partitioning right is important.

Getting the Contexts Right

Defining these bounded contexts sounds straightforward, but it can be tricky in practice.
Indeed, one of the most important challenges of a domain-driven design is to get these context boundaries right.
This is an art, not a science, but here are some guidelines that can help:

	
Listen to the domain experts. If they all share the same language and focus on the same issues, they are probably working in the same subdomain (which maps to a bounded context).

	
Pay attention to existing team and department boundaries. These are strong clues to what the business considers to be domains and subdomains. Of course, this is not always true: sometimes people in the same department are working at odds with each other. Conversely, people in different departments may collaborate very closely, which in turn may mean they’re working in the same domain.

	
Don’t forget the “bounded” part of a bounded context. Watch out for scope creep when setting boundaries. In a complex project with changing requirements, you need to be ruthless about preserving the “bounded” part of the bounded context. A boundary that is too big or too vague is no boundary at all. As the saying goes, “Good fences make good neighbors.”

	
Design for autonomy.
If two groups contribute to the same bounded context, they might end up pulling the design in different directions as it evolves.
Think of a three-legged race: two runners tied at the leg are much slower than two runners free to run independently.
And so it is with a domain model. It’s always better to have separate and autonomous bounded contexts that can evolve independently than one mega-context that tries to make everyone happy.

	
Design for friction-free business workflows. If a workflow interacts with multiple bounded contexts and is often blocked or delayed by them, consider refactoring the contexts to make the workflow smoother, even if the design becomes “uglier.” That is, always focus on business and customer value rather than any kind of “pure” design.

Finally, no design is static, and any model must need to evolve over time as the business requirements change. We will discuss this further in Chapter 13, ​Evolving a Design and Keeping It Clean​, where we will demonstrate various ways to adapt the order-taking domain to new demands.
Creating Context Maps

Once we have defined these contexts, we need a way to communicate the interactions between them—the big picture—without getting bogged down in the details of a design. In DDD terminology, these diagrams are called Context Maps.

Think of a route map used for traveling. A route map doesn’t show you every detail: it focuses only on the main routes so that you can plan your journey. For example, here’s a sketch of an airline route map:
[image: images/airline-context-map.png]

This diagram doesn’t show the details of each city, just the available routes between each city. The map’s only purpose is to help you plan your flights.
If you want to do something different, such as drive around New York, you’re going to need a different map (and some blood pressure pills).

In the same way, a context map shows the various bounded contexts and their relationships at a high level. The goal is not to capture every detail but to provide a view of the system as a whole. For example, this is what we have so far for the order-taking system as shown in the figure.
[image: images/order-context-map1.png]

In making this map, we are not concerned with the internal structure of the shipping context, only that it receives data from the order-taking context.
We say informally that the shipping context is downstream and the order-taking context is upstream.

Obviously the two contexts will need to agree on a shared format for the messages that they exchange.

OEBPS/images/order-taking-domains1.png

OEBPS/images/order-context-map1.png

OEBPS/images/order-taking-domains2.png
Problem space (real world)

Solution space (domain model)

Order-taking

Shipping
context

OEBPS/images/airline-context-map.png

OEBPS/images/eventstorming1.png

OEBPS/images/mental-model3.png
Pomain Pevelopment
experts team

Other
stakehdders

OEBPS/images/eventstorming3.png
Order-taking team

OEBPS/images/eventstorming2.png
Order-taking team

OEBPS/images/command-event2.png
data needed
to place order

List of
arising
dlaced

events
from a
order

OEBPS/images/command-event1.png

OEBPS/images/programming-domains.png
Gereral programming

Web programming

JavaScript
programming

R
Ruby programming

OEBPS/images/h1-underline.gif

OEBPS/images/cover.jpg
granimers

Domain Modeling
Made Functional

Tackle Software Complexity with
Domain-Driven Design and F#

Scott Wlaschin
edited by Brian MacDonald

OEBPS/images/mental-model2.png
Pomain Pevelopment
experts team
\—7

dehva'able \>

=

OEBPS/images/mental-model1.png
Pomain Business
experts Analgst

Keqwrements
Design Archatect e"i
document

Development,

team

