

Cisco Press

800 East 96th Street

Indianapolis, IN 46240

Cisco IOS XR
Fundamentals

Mobeen Tahir, CCIE No. 12643
Mark Ghattas, CCIE No. 19706
Dawit Birhanu, CCIE No. 5602

Syed Natif Nawaz, CCIE No. 8825

Cisco IOS XR Fundamentals

Mobeen Tahir, Mark Ghattas, Dawit Birhanu, Syed Natif Nawaz

Copyright© 2009 Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without written permission from the publisher, except for the inclusion of brief quotations in a
review.

Printed in the United States of America

First Printing June 2009

Library of Congress Cataloging-in-Publication Data:

Cisco IOS XR fundamentals / Mobeen Tahir ... [et al.].

p. cm.

Includes bibliographical references.

ISBN-13: 978-1-58705-271-2 (pbk.)

ISBN-10: 1-58705-271-7 (pbk.)

1. Cisco IOS. 2. Routing (Computer network management) 3. Routers (Computer networks)
4. Internetworking (Telecommunication) I. Tahir, Mobeen, 1966- II. Cisco Systems, Inc. III. Title.

TK5105.8.C57C548 2009

004.6—dc22

2009019283

ISBN-13: 978-1-58705-271-2

ISBN-10: 1-58705-271-7

Warning and Disclaimer

This book is designed to provide information about the Cisco IOS XR network operating system. Every
effort has been made to make this book as complete and as accurate as possible, but no warranty or fit-
ness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc., shall have
neither liability nor responsibility to any person or entity with respect to any loss or damages arising from
the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the authors and are not necessarily those of Cisco
Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriate-
ly capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity of any trademark or service mark.

ii Cisco IOS XR Fundamentals

Corporate and Government Sales

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact: U.S.
Corporate and Government Sales 1-800-382-3419 corpsales@pearsontechgroup.com

For sales outside the United States please contact: International Sales international@pearsoned.com

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise of
members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

Publisher: Paul Boger Business Operation Manager, Cisco Press: Anand Sundaram

Associate Publisher: Dave Dusthimer Manager Global Certification: Erik Ullanderson

Executive Editor: Brett Bartow Copy Editor: Mike Henry

Managing Editor: Patrick Kanouse Technical Editors: Mukhtiar Shaikh, Syed Kamran Raza

Development Editor: Dayna Isley Proofreader: Leslie Joseph

Project Editor: Tonya Simpson

Editorial Assistant: Vanessa Evans

Book Designer: Louisa Adair

Composition: Mark Shirar

Indexer: Ken Johnson

iii

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

CCDE, CCENT, Cisco Eos, Cisco HealthPresence, the Cisco logo, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco WebEx, DCE, and Welcome to the Human Network are trademarks; Changing the

Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the

Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step,

Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers,

Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and

the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0812R)

Americas Headquarters
Cisco Systems, Inc.

San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.

Singapore

Europe Headquarters
Cisco Systems International BV

Amsterdam, The Netherlands

www.cisco.com/go/offices

About the Authors

Mobeen Tahir, CCIE No. 12643 (SP, R&S), is a network consulting engineer with the World
Wide Service Provider Practice team in Cisco. Mobeen started his career in the communica-
tion industry in 1993 with France-based Alcatel. While working for Alcatel between 1993
and 1998, Mobeen engaged in assignments ranging from manufacturing voice switches to
planning large-scale telecommunications projects. He joined Cisco in 1999 and has worked
on the development testing of the IOS XR operating system for c12000 and CRS-1 plat-
forms. His current role as a network consulting engineer at Cisco consists of designing and
deploying NGN networks in the service provider space. Mobeen specializes in IOS
XR–based deployments and provides consulting services to Cisco customers. Mobeen has
attained master of engineering and B.S.E.E degrees from institutions in Canada and the
United States. He lives with his wife and two children in Cary, North Carolina.

Mark Ghattas, CCIE No. 19706 (Service Provider), is a solutions architect focusing on
architecture and design. He manages the World Wide Service Provider NGN Core
Practice team in Advanced Services. Mark has more than 15 years of experience with
data communication technologies. Mark joined Cisco Systems in 1999 and has supported
strategic service providers. Mark has supported many of the first CRS-1 customers in
Japan and the Asia Pacific theatre, CANSAC, Latin America, and North America. He has
presented on various topics at Networkers relating to IOS XR. He holds a bachelor’s degree
from the University of Maryland and plans to earn his MBA degree.

Dawit Birhanu, CCIE No. 5602, is a technical leader with the World Wide Service Provider
Practice team in Cisco Systems, where he is responsible for assisting global service
providers with the deployment of new NGN products and technologies. He specializes in
IOS XR–based platforms, QoS, MPLS, and BGP. Dawit joined Cisco Systems in 2000 and
has worked on the deployment of new technologies for Cisco 12000 and CRS-1 in the serv-
ice provider space. Dawit has a master of telecommunications degree from the University of
Pittsburgh and a master of electronics engineering degree from Eindhoven University of
Technology, The Netherlands. Before getting into the networking industry, Dawit was a lec-
turer of electrical engineering at Addis Ababa University, Ethiopia, between 1992 and 1995.
Dawit lives with his wife and two daughters in Raleigh, North Carolina.

Syed Natif Nawaz, CCIE No. 8825 (SP, R&S), has more than ten years of experience in
providing networking design, deployments, and escalation assistance to various service
provider customers. Syed Natif Nawaz is currently the IOS XE software development man-
ager at Cisco Systems, where he works on customer-focused software qualification/certifi-
cation/deployment, feature integration, release processes, and other software quality ini-
tiatives. He has presented on various MPLS-related topics in the Networkers conference
(Florida), MPLS Power Sessions (London), NANOG (Dallas), and APRICOT (Perth) and
has contributed to articles such as “L2VPN: Changing and Consolidating Networks” in
Techworld and “Cell Packing” in Packet Magazine. Formerly, Syed Natif Nawaz worked
as a development engineer at Assured Access technologies and Alcatel, where he devel-
oped software for access concentrators. In addition to higher education in electrical and
electronics from the University of Madras, Syed Natif Nawaz also holds an M.S. in com-
puter science and engineering from State University of New York at Buffalo.

iv Cisco IOS XR Fundamentals

About the Technical Reviewers

Mukhtiar Shaikh is a distinguished services engineer at Cisco and a senior member of the
central engineering team within the Customer Advocacy Organization. He joined Cisco
in October 1996. During his early years at Cisco, he provided technical support to
Cisco’s large ISP accounts. His areas of focus are IP routing protocols, multicast, and
MPLS technologies. Over the past several years, he has led various design projects and
has been involved in the deployment of MPLS in the service provider and Enterprise
NGN networks. In his current role, he provides technology leadership and architectural
and design consulting to the Cisco Advanced Services accounts. Mukhtiar is a regular
speaker at various industry forums. He is a CCIE and holds an M.S. degree in electrical
engineering from Colorado State University.

Syed Kamran Raza is a technical leader (MPLS software) at Cisco Systems. He joined
Cisco in 2000 to work on MPLS architecture and design for Cisco IOS XR and the carri-
er grade core router platform (CRS-1). For the past eight years, he has been priming the
IOS XR MPLS LDP software development and has contributed to various features,
including RSVP, LDP, MPLS forwarding, MPLS-based L2/L3 VPNs, SRP, and High
Availability. Prior to Cisco, he worked as a software designer at Nortel Networks and as a
telecommunications engineer at Alcatel. He completed his B. Eng in computer systems in
1993 from N.E.D. University of Engineering and Technology, Karachi, Pakistan, and com-
pleted his M. Eng in 1999 at Carleton University, Ottawa, Canada. He has published sev-
eral papers and presentations at international conferences and seminars and is also
engaged in IETF standardization activities.

v

Dedications

From Mobeen Tahir:

This book is dedicated to the memory of my father, Tahir Khan. He taught me how to
take the first step in life.

To my wife, Sharmeen, and my kids, Mohammad and Iman, for their unconditional love.

To my mother, Sadiqa, and my siblings Noreen, Javaria, and Usman, for their prayers and
support.

From Mark Ghattas:

This book is dedicated to my wife and son. I thank my wife, Amy, for her sacrifices, love,
patience, and endless support to allow me to pursue my goals.

To my mom, Ehsan, who provided me opportunities, guidance, wisdom, and love, which
made me the person, husband, and father I am today.

To my brothers, Matt and Paul, for the great technical discussions that last forever at the
dinner table.

To Brian—our friendship keeps me inspired.

From Dawit Birhanu:

This book is dedicated to my wife, Lydia, and daughters, Leah and Blen, for their sacri-
fice, patience, love, and support. It is also dedicated to my mother, Negesu, and father,
Birhanu, for their sacrifice and support to pursue my aspirations.

From Syed Natif Nawaz:

I dedicate this book in loving memory of my grandmother, Ameerunissa Begum, and to
my mother, Haseena Begum, for all their sacrifices and support over the years and their
love. I also dedicate this to my son, Taha, and my wife, Kouser Fathima, for filling my life
with joy. To my sister, Arshiya Afshan, and brother-in-law, Shameeque. May their life be
filled with joy and opportunities. Last but not the least, to my late father, Mr. Syed
Yakoob Ali.

vi Cisco IOS XR Fundamentals

Acknowledgments

From Mobeen Tahir:

I would like to acknowledge the technical help given to me by several members of the
IOS XR development community. I am particularly indebted to Pradosh Mohapatra,
Brian Hennies, Muhammad Durrani, Arun Satyanayarana, Deepak Sreekanten, John
Plunkett, Rakesh Gandhi, and Syed Kamran Raza, for answering my numerous questions
and providing their expert advice. I would also like to point out the help and encourage-
ment given to me by my colleague Muhammad Waris Sagheer.

From Mark Ghattas:

I would like to acknowledge Shahzad Burney and Waris Sagheer, who supported the con-
ception and creativity of this project. A thank you to Anthony Lau, who helped me
develop a “world” of experience with the multishelf platform. Thanks to Eddie Chami,
Grant Socal, and Nikunj Vaidya for their input on best practices documents. I want to
thank my co-authors Mobeen, Dawit, and Syed, who sacrificed personal and family time
to meet commitments.

From Dawit Birhanu:

I would like to acknowledge the technical help given to me from several members of IOS
XR and CRS development teams, and CRS deployment team. I would also like to
acknowledge Lane Wigley, Ken Gray, Joel Obstfeld, and Yeva Byzek for their mentorship,
inspiration, and support

Syed Natif Nawaz:

Thanks to all my co-authors for their effort and teamwork. Special thanks to my friends
Waris and Shahzad during the inception of this book. I would also like to thank Jeffrey
Liang and Lakshmi Sharma for helping me with their expertise and experience. I want to
thank Kiran Rane, Srihari Sangli, Sai Ramamoorthy, Ravi Amanaganti, Pankaj Malhotra,
and Paresh Shah for their unreserved support. As always I am grateful to my mom,
Haseena Begum, my wife, Kouser Fathima, and sister, Arshiya Afshan, for being there for
me.

The authors would like to send a special acknowledgement to Brett Bartow at Cisco
Press, who has been ultra-supportive and understanding of the hurdles and delays we
encountered. In addition, we thank Dayna Isley at Cisco Press, for her input and guidance
supporting our content.

vii

Contents at a Glance

Foreword xix

Introduction xx

Chapter 1 Introducing Cisco IOS XR 3

Chapter 2 Cisco IOS XR Infrastructure 17

Chapter 3 Installing Cisco IOS XR 59

Chapter 4 Configuration Management 99

Chapter 5 Cisco IOS XR Monitoring and Operations 135

Chapter 6 Cisco IOS XR Security 159

Chapter 7 Routing IGP 195

Chapter 8 Implementing BGP in Cisco IOS XR 247

Chapter 9 Cisco IOS XR MPLS Architecture 293

Chapter 10 Cisco IOS XR Multicast 357

Chapter 11 Secure Domain Router 385

Chapter 12 Understanding CRS-1 Multishelf 401

Appendix A ROMMON and Configuration Register Settings 437

Appendix B Multishelf 2+1 Array Cable Mapping 441

Appendix C Switch Fabric Down Flags 445

Index 448

Contents

Foreword xix

Introduction xx

Chapter 1 Introducing Cisco IOS XR 3

Evolution of Networking 3

Requirements for Carrier-Grade NOS 4

Convergence 5

Scalability 5

Availability 5

Hardware Redundancy 5

Failure Recovery and Microkernel-Based NOS 5

Process Restartability 6

Failure Detection 6

Software Upgrades and Patching 6

Security 6

Service Flexibility 6

Operating System Concepts 6

Basic Functions of an Operating System 7

Process Scheduling 7

Interrupt Handling 8

Memory Management 8

Synchronization 9

Interprocess Communication 9

Dynamic Link Library 9

Portable Operating System Interface 9

High-Level Overview of Cisco IOS XR 9

Cisco IOS XR Platforms 13

Cisco CRS-1 Carrier Routing System 13

Cisco XR 12000 Series 14

Cisco ASR 9000 Series 14

Chapter 2 Cisco IOS XR Infrastructure 17

Cisco IOS XR Kernel 17

Threads 17

Scheduling Algorithms 21

Synchronization Services 23

Cisco IOS XR System Manager 26

Process Attributes 27

System Manager and Process Lifecycle 28

CLI for Sysmgr and Processes 29

Interprocess Communication 31

Characteristics of IPC Mechanisms 31

Synchronous Versus Asynchronous 31

Intra-node Versus Inter-node 32

Connection-Oriented Versus Rendezvous 33

Point-to-Point Versus Point-to-Multipoint 34

Light Weight Messaging 34

Group Service Protocol 34

Atomic Descriptor Ring 34

Qnet 35

Distributed Services 35

GSP 36

Bulk Content Downloader 40

Process Placement 42

Cisco IOS XR System Database 46

High Availability Architecture 50

Forwarding Path 54

Chapter 3 Installing Cisco IOS XR 59

Introduction to Cisco IOS XR Packages 59

Image Naming Conventions 60

Cisco IOS XR Bootable Files, PIEs, and SMUs 61

Composite Bootable Files 63

Composite Upgrade PIE 65

Optional PIEs 65

Software Maintenance Upgrade 67

Install System Overview 67

Preparing to Install Cisco IOS XR 71

TURBOBOOT 72

Setting the TURBOBOOT ROMMON Variable 72

Booting the .vm File from ROMMON 73

Verifying the Software Installation 76

Installing Packages 78

TURBOBOOT Considerations for the c12000 Platform 81

Booting the Standby RP 82

x Cisco IOS XR Fundamentals

Upgrading to a Major Cisco IOS XR Version Using mini.pie 82

Install Rollback 85

Removing Inactive Packages 87

Performing an Install Audit 88

Disk Backup and Recovery 89

Creating a Backup Disk with Golden Disk 90

Disk Mirroring 91

Creating a Disk Partition 92

Turning On Disk Mirroring 93

Install Health Checks 95

Verifying MD5 Signature of a PIE or an SMU 95

Anticipating Disk Space Usage 95

Testing a PIE or SMU Installation 96

Verifying the config-register 96

Clearing Configuration Inconsistency 96

Chapter 4 Configuration Management 99

Understanding Distributed Configuration Management 99

Control Plane Configuration Management 99

Data Plane Configuration Management 99

Understanding Configuration Planes 100

Admin Plane 100

Shared Plane 100

Local Plane 101

Components of Configuration Management 101

Configuration Manager 101

Configuration File System 103

Role of SysDB in Configuration Management 107

Replicated Data Service File System 109

Understanding the Two-Stage Commit Model 110

Building the Target Configuration 111

Commit Operation 112

Commit Confirmed Option 115

Commit Failures 115

Configuration Failures During Startup 116

Configuration Features in Cisco IOS XR 117

Deleting Physical Interface 117

Configuration Navigation 118

Default Running Configuration Behavior 119

xi

Troubleshooting Configuration Inconsistencies 119

Configuration Session Lock 120

Avoiding a Commit Operation and Clearing the Target Configurations 121

Option 1: Unlock the Configuration Session 121

Option 2: Use the clear Command 122

Option 3: Use the abort Command 122

Option 4: Use the end or exit Commands 122

Configuration Management During Hardware and Software Change Events 123

Configuration Management During Online Insertion and Removal Events 123

Case 1: Insert or Remove a Node 124

Case 2: Replace the Node with a Different Node 124

Case 3: Replace the Node with a Higher Density Node 124

Case 4: Replace the Node with a Lower Density Node 125

Configuration Management During Package Activation and Deactivation 126

Interface Preconfiguration 127

Configuration Template 128

Configuration Management During Router Startup 129

Configuration Rollback 130

Chapter 5 Cisco IOS XR Monitoring and Operations 135

Using SNMP 135

Configuring SNMP 137

Cisco IOS XR Syslog 138

SNMP in the Context of a VRF 138

Logging Destination 139

Local Archiving of Logging Messages 140

Embedded Event Manager 141

EEM Event Detectors and Events Processing 142

Timer Services Event Detector 142

Syslog Event Detector 142

None Event Detector 142

Watchdog System Monitor Event Detector 143

Distributed Event Detectors 143

Registering and Using Onboard EEM Policies 143

User-Defined EEM Policy 144

EEM Reliability Metrics 146

Monitoring Processes 147

WDSYSMON 149

xii Cisco IOS XR Fundamentals

Monitoring Memory 150

Using the show system verify Command 151

Operations and Monitoring Best Practices 154

Chapter 6 Cisco IOS XR Security 159

Secure Operating System 159

Securing Access to the Router 160

Admin Plane 161

SDR Plane 162

User Groups and Task Groups 162

User Group and Task Group Inheritance 167

External AAA 169

Configuring a TACACS+ Server 171

Authentication Using RADIUS 172

Configuring Secure Shell 173

Management Plane Protection 177

Securing the Forwarding Plane 178

Access Control Lists 178

Unicast RPF 181

Local Packet Transport Service 183

Mechanics Behind LPTS: A High-Level Overview 185

Configuring LPTS 191

Chapter 7 Routing IGP 195

Routing Information Protocol 195

Understanding RIP Fundamentals 195

RIP Versions 196

Configuring RIP in Cisco IOS XR 196

Configuring Route Policy Language 198

Configuring Passive Interface 199

Restarting, Shutting Down, and Blocking RIP 199

Verifying and Troubleshooting RIP 201

Enhanced Interior Gateway Routing Protocol 203

Understanding EIGRP Fundamentals 203

Neighbor Discovery/Recovery 203

Reliable Transport Protocol 203

Diffusing Update Algorithm 204

Protocol-Dependent Modules 204

Configuring EIGRP in Cisco IOS XR 204

xiii

Configuring Routing Policy 205

Configuring Router ID 206

Configuring and Verifying NSF 207

Verifying EIGRP Process Status 208

Verifying and Troubleshooting EIGRP 210

Open Shortest Path First 211

Understanding OSPF Fundamentals 211

Configuring OSPF in Cisco IOS XR 213

Configuring and Verifying OSPFv2 213

Hierarchical CLI and Inheritance 215

Configuring OSPFv2 Authentication 219

Verifying NSF Configuration and Standby RP Status 221

Configuring and Verifying Nonstop Routing 224

Configuring and Verifying Multiarea Adjacencies 226

Configuring and Verifying Bidirectional Forwarding Detection 227

Configuring OSPF Timers 229

Configuring and Verifying OSPFv3 229

Intermediate System to Intermediate System 232

Understanding IS-IS Fundamentals 232

Configuring IS-IS in Cisco IOS XR 233

Verifying the Single Topology Model 235

Configuring and Verifying the Multitopology Model 237

Configuring and Verifying Interface States 238

Configuring IS-IS NSF and IS-IS Timers 239

Configuring and Verifying BFD in IS-IS 241

Configuring and Verifying IP Fast Reroute 242

Configuring and Verifying Authentication in IOS XR IS-IS 243

Chapter 8 Implementing BGP in Cisco IOS XR 247

Cisco IOS XR BGP Architectural Overview 247

Cisco IOS XR BGP Hierarchical Configuration 250

Address Family Configuration Mode 251

Configuration Groups 252

Implementing BGP Policies 256

Routing Policy Language 257

Prefix Set 259

AS-path Set 261

Community Set 261

xiv Cisco IOS XR Fundamentals

Routing Policies 262

Hierarchical Policies and Parameterization 272

BGP Policy Accounting 276

BGP Remotely Triggered Black Hole 278

BGP Graceful Restart 280

BGP Distributed Speaker 282

Cisco IOS XR BGP Convergence 286

Chapter 9 Cisco IOS XR MPLS Architecture 293

Understanding Cisco IOS XR MPLS Architecture Fundamentals 293

TTL Processing 299

Cisco IOS XR MPLS Load Balancing 299

Label Distribution Protocol 302

LDP Basic Configuration 305

LDP Parameters 306

LDP Label Control 306

LDP-IGP Sync and LDP Session Protection 308

MPLS Traffic Engineering 312

Cisco IOS XR Peer-to-Peer L3VPN 317

Virtual Routing Forwarding Tables 318

MP-iBGP Between PE Routers 320

Routing Between CE and PE 334

Static Routing for CE-PE 334

eBGP as CE-PE Protocol 335

OSPF as CE-PE Protocol 338

RIP as CE-PE Protocol 339

L2VPN 340

Virtual Private Wire Service 340

VPWS Configuration in IOS XR 341

Pseudo Wire Redundancy 346

Virtual Private VLAN Service 347

Chapter 10 Cisco IOS XR Multicast 357

Understanding Multicast Routing Fundamentals 357

Internet Group Management Protocol 358

IGMPv2 358

IGMPv3 358

Protocol Independent Multicast 359

xv

Understanding Cisco IOS XR Multicast 360

Understanding Cisco IOS XR PIM Sparse Mode 362

Understanding PIM Source Specific Multicast on IOS XR 374

Configuring Cisco IOS XR Multicast 377

Enabling Multicast Routing 377

Configuring IGMP 377

Configuring PIM 378

Configuring Static RP 378

Auto-RP 378

BSR 379

PIM SSM Configuration 379

Monitoring and Troubleshooting Cisco IOS XR Multicast 380

Debugging Multicast on the CRS Router’s Ingress Path 381

Debugging Multicast in Router’s Fabric and Egress Path 381

Debugging an RPF Failure Using a Line Card MFIB Command 382

Chapter 11 Secure Domain Router 385

Owner and Non-Owner SDR 385

Understanding SDR Privileges 386

Creating a Secure Domain Router 388

DRP 388

Configuring a Secure Domain Router 389

Creating a Named Secure Domain Router 392

Assigning Resources to a Named SDR 393

Logging In to a Newly Named SDR 395

Process Placement 397

Chapter 12 Understanding CRS-1 Multishelf 401

Multishelf Overview 401

Line Card Chassis 401

Fabric Card Chassis 402

Switch Fabric Cards 404

Fabric Data Path 404

High Availability 405

Multishelf Fabric Interconnect 405

Fabric Planes 406

SEA Links 406

Fabric Backpressure 408

Optical Array Cables 408

xvi Cisco IOS XR Fundamentals

Recommended Practices and Considerations 409

Single Module Fabric Configuration 410

Multimodule Configuration 412

Multishelf Control Ethernet 413

Multishelf Configuration 416

Viewing the Configuration 419

Line Card Chassis to Multishelf Preparation 424

Troubleshooting Multishelf Fabric Planes 426

Troubleshooting Fabric Links 429

Appendix A ROMMON and Configuration Register Settings 437

Appendix B Multishelf 2+1 Array Cable Mapping 441

Appendix C Switch Fabric Down Flags 445

Index 448

xvii

Icons Used in This Book

Router Multiservice
Switch

Serial
Connection

Ethernet
Connecton

File Server

Cisco Carrier
Routing System

Switch

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions
used in the IOS Command Reference. The Command Reference describes these conven-
tions as follows:

■ Boldface indicates commands and keywords that are entered literally as shown. In
actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

■ Italic indicates arguments for which you supply actual values.

■ Vertical bars (|) separate alternative, mutually exclusive elements.

■ Square brackets ([]) indicate an optional element.

■ Braces ({ }) indicate a required choice.

■ Braces within brackets ([{ }]) indicate a required choice within an optional element.

xviii Cisco IOS XR Fundamentals

Foreword

Over the last several years, fiscal discipline has really dominated the industry. Both con-
sumers and businesses expect far more from their communications providers than they
did just a few years ago. Offering simple telephone dial tone and an Internet connection
are not going to be enough for success. At the same time, however, service providers want
to continue to reduce their operational costs. As a result, one of the main challenges
telecommunications companies now face is to find ways to cost effectively bring innova-
tive services to their customers. These drivers are why most providers are working on
transitioning their disparate legacy networks to one, unified, converged network infra-
structure based on IP combined with Multiprotocol Label Switching (MPLS). MPLS is a
technology that translates various other telecommunications protocols, such as ATM or
frame relay, so they can run over an IP-based network. By eliminating their multiple net-
works, service providers are greatly reducing their operational costs. And by moving to
an IP/MPLS network, they can mix and match all communications types—voice, data,
and video—into any service their customers might want.

We believe the CRS-1 will dramatically affect carriers and their capability to successfully
transition to this new era in communications. Carriers worldwide are embracing conver-
gence and almost unanimously agree that IP/MPLS is the foundation for their new infra-
structures. The CRS-1 provides carriers the means to consolidate their networks in the
most efficient and cost-effective way possible. Nothing on the market can match it in
terms of scalability, reliability, and flexibility. It is a system that our service provider cus-
tomers will be able to base their businesses on. And I firmly believe that carriers that
deploy the CRS-1 will gain profound competitive advantage over their competition
through operational efficiencies and service flexibility. As we like to point out, when
service providers work with Cisco, they are not just working with a network equipment
maker but, rather, a business partner.

Sameer Padhye
Sr. Vice President, Advanced Services
WW Service Provider Line of Business
Customer Advocacy

xix

Introduction

This book is intended to provide a reference to users who plan or have implemented
Cisco IOS XR software in the network. Cisco IOS XR Fundamentals provides an
overview of IOS XR operation system infrastructure and hardware architecture on the
Carrier Routing System. The intention of this book is to provide general networking top-
ics in IOS XR that service providers may implement in the core network. It is not feasible
to cover every aspect of IOS XR; however, the key configurations have been explained
that are typically deployed in core networks.

Who Should Read This Book?

Readers who have a relatively strong working knowledge of Cisco IOS Software and rout-
ing protocols will benefit from the discussions and configuration examples presented.

How This Book Is Organized

Although this book could be read cover to cover, it is designed to provide a configuration
overview on Cisco IOS XR to support implementation configuration and features in IOS
XR. Chapter 1 provides an overview of the evolution of operating systems and an under-
standing of the underlying QNX operating system. Chapters 2 through 12 are the core
chapters and can be covered in order. If you do intend to read them all, the order in the
book is an excellent sequence to use.

Chapters 1 through 12 cover the following topics:

■ Chapter 1, “Introducing Cisco IOS XR”: This chapter discusses the evolution of
network operating systems in service provider enviroments. It is important to under-
stand the goals and requirement of service providers that influenced the goals of IOS
XR.

■ Chapter 2, “Cisco IOS XR Infrastructure”: This chapter discusses the interwork-
ings of IOS XR. It helps you understand IOS XR microkernel architecture, process
scheduling, interprocess communications, system database, and distributed services.

■ Chapter 3, “Installing Cisco IOS XR”: This chapter discusses various procedures for
installing IOS XR on the Carrier Routing System.

■ Chapter 4, “Configuration Management”: This chapter provides a deeper insight
into how IOS XR is different when configuring interfaces, out of band management,
and features such as rollback and commit commands. Understanding these features
will help you better manage the system.

■ Chapter 5, “Cisco IOS XR Monitoring and Operations”: This chapter explores how
monitoring works in IOS XR. As IOS XR operates as a real-time operating system,
there are monitoring tools that provide deeper inspection of activities on the system.

■ Chapter 6, “Cisco IOS XR Security”: This chapter examines inherent policers that
provide a layer of security within the operating system. The importance of Local
Packet Transport System (LPTS) is discussed.

xx Cisco IOS XR Fundamentals

■ Chapter 7, “Routing IGP”: This chapter covers the basics of routing protocol config-
urations. It provides configuration examples to show how IGP features are config-
ured in IOS XR.

■ Chapter 8, “Implementing BGP in Cisco IOS XR”: This chapter introduces the IOS
XR implementation of BGP. This chapter assumes that you have prior experince and
knowledge of the BGP protocol and focuses on unique aspects of IOS XR BGP con-
figuration. This chapter also provides details on Routing Policy Language as a vehicle
for implementing BGP routing policies.

■ Chapter 9, “Cisco IOS XR MPLS Architecture”: This chapter discusses
Multiprotocol Label Switching (MPLS), an important technology for building con-
verged network infrastructure and services. This chapter assumes that you are famil-
iar with MPLS protocols and operations. This chapter discusses IOS XR MPLS
architecture, features, implementation, and configuration. It covers LDP, Layer 3
VPN, VPWS, VPLS, and MPLS Traffic Engineering.

■ Chapter 10, “Cisco IOS XR Multicast”: This chapter discusses when to use queuing
and which queuing technique to use. This chapter also examines Weighted Fair
Queuing (WFQ), Custom Queuing, and Priority Queuing and addresses the need for
compression in today’s enterprise network.

■ Chapter 11, “Secure Domain Router”: This chapter covers the concept of SDRs. It
discusses the Distributed Route Processor (DRP) hardware needed to implement
SDRs and provides configuration examples.

■ Chapter 12, “Understanding CRS-1 Multishelf”: This chapter discusses the Cisco
implementation of the CRS-1 multishelf system. The key components are discussed
to understand the architecture and troubleshooting of a CRS-1 multishelf system. A
fabric troubleshooting section is covered to support implementation and operation.

xxi

This chapter covers the following topics:

■ Evolution of Networking

■ Requirements for Carrier-Grade NOS

■ Operating System Concepts

■ High-Level Overview of Cisco IOS XR

■ Cisco IOS XR Platforms

■ References

This chapter reviews the evolution of network operating
systems (NOS), requirements for current and future net-
works, and how Cisco IOS XR meets these requirements.
The first section of this chapter provides an overview of
the evolution of networking. The second section out-
lines the requirements for a carrier-grade NOS that un-
derpins a converged network with critical applications.
The third section reviews basic concepts of operating
systems. The final sections provide a high-level overview
of Cisco IOS XR.

CHAPTER 1

Introducing Cisco IOS XR

Table 1-1 Protocols That Were in Use in the Early Days of Data Networking

Protocols OSI Layer

Token Ring, Fiber Distributed Data Interface (FDDI), Switched Multi-
megabit Data Service (SMDS)

1–2

ATM, Frame Relay 2–3

Internetwork Packet eXchange (IPX), International Standards Organiza-
tion ConnectionLess Network Services (ISO CLNS), AppleTalk, DECNet,
Xerox Network Services (XNS), IBM System Network Architecture (SNA),
Apollo Domain, Banyan Virtual Integrated Network Services (VINES)

3

Evolution of Networking

In the 1980s the main network applications were limited to e-mail, web, file, printer, and
database. Silicon technology for hardware (HW)-based packet forwarding was not yet
fully developed, and transmission speed, CPU power, and memory capacity were very
limited. As a result, routers and the underlying NOS were primarily designed to efficiently
use CPU and memory resources for packet forwarding. A NOS is an operating system that
is specifically designed for implementing networking and internetworking capabilities.
Network devices such as routers and switches are empowered by a NOS.

Moreover, in the early days of data networking there was a plethora of competing net-
working protocols in addition to Internet Protocol (IP). Some became industry standards
and others remained proprietary. Table 1-1 shows the protocols at different OSI layers that
were once prevalent to varying degrees.

Routers were designed to support a variety of multiple protocols including IP, Ethernet,
SONET/SDH, and some of the protocols shown in Table 1-1.

Network operators had several service-specific networks, each managed and operated by
a different team. It was not uncommon for a service provider to maintain a separate PSTN
network for telephony, an ATM data network, a Frame Relay data network, a public data
network for Internet customers, a separate network for mobile backhaul, and a transport
network to support all services. Some network operators still have a legacy of multiple
networks; however, they are actively migrating to a converged network.

Although networking services such as e-mail, web browsing, file transfer, instant messag-
ing, VoIP, and so on are taken for granted today, they were either nonexistent or consid-
ered privileged services for a few users at large enterprise, academic, and government
institutions.

Over the past few decades the network, users, and services have evolved dramatically as
follows:

■ Applications: In the 1980s there were just a few network applications, namely e-mail,
file, database, and print services. Today there are countless applications, including
video conferencing, instant messaging, IPTV, telepresence, telemedicine, peer-to-peer
sharing, video surveillance, online banking, online shopping, and so on.

■ User size: Until the mid-1990s, data networking usage was limited to large enter-
prise, government, and academic institutions for limited applications. Based on data
from Internet World Stats, Internet usage has grown from 16 million users in 1995 to
1.46 billion users in 2008. Moreover, per-capita bandwidth usage has increased dra-
matically since the mid 1990s.

■ Transmission capacity: Transmission capacity of a single fiber pair has increased
from 155Mbps in the early 1990s to multi-terabits today (realized with dense wave-
length division multiplexing [DWDM] technologies). The Trans-Pacific Express (TPE)
submarine cable that connects the United States to mainland China has an initial ca-
pacity of 1.28 terabits per second with a designed maximum capacity of 5.12 terabits
per second.

■ Processing and memory capacity: CPU speed and complexity increased from
tens of megahertz single core processors in the early 1990s to multigigahertz multi-
core processors in 2009 following Moore’s law. Memory capacity and access speed
have seen similar growth—from a few megabytes of memory capacity in the early
1990s to many gigabytes in 2009. Moore’s law, which is named after Intel co-founder
Gordon E. Moore, states that processor and memory capacity doubles approximately
every two years.

■ Protocols: From several protocols in the early 1990s (as shown in Table 1-1), the net-
work has consolidated toward IPv4/IPv6 and Ethernet protocols.

■ Networks: Network operators have migrated or are in the process of migrating from
multiple networks, each dedicated for specific function to a single converged net-
work capable of supporting multiple services.

Requirements for Carrier-Grade NOS

Service providers are striving to provide solutions that can sufficiently satisfy the needs of
their customers. Businesses are demanding integrated data, voice, video, and mobility
services with high availability, security, and fast provisioning. Consumers want broadband
access with bundled service of voice, video, mobile wireless, and data on a single bill.
Governments are pushing for broadband access to every home and a resilient infrastruc-
ture that can survive catastrophic failures.

4 Cisco IOS XR Fundamentals

Chapter 1: Introducing Cisco IOS XR 5

This section describes the requirements that a carrier-grade NOS needs to satisfy to meet
the requirements of network operators.

Convergence

A carrier-grade NOS should have the capability to enable infrastructure and service conver-
gence. Network convergence is critical to lowering capital and operational expenditure. Ser-
vice convergence is vital to meeting customer demands and to offer new revenue-generating
services.

Scalability

A converged network infrastructure should be able to scale seamlessly with respect to
control plane, data plane, and management plane without interruption to existing services.
The growth of customers, access bandwidth, and traffic volume per customer every year
is pushing the scalability demand on every aspect of the network infrastructure. To cope
with growth, the network operator might have to add additional hardware in the form of
network ports, transport links, line cards, route processing cards, power modules or chas-
sis in a multi-chassis system. The NOS should be able to support the addition of different
system components without service disruption.

Availability

In a converged network, routers are carrying critical traffic including voice, emergency
service traffic, video broadcasting, video conferencing, and business-critical data with
availability requirement of 99.999% or better. To achieve carrier-grade availability require-
ments, a network operating system should be able to support a number of high availability
features as described in this section.

Hardware Redundancy

Although it is possible to reduce the probability of hardware failure, it is virtually impos-
sible and cost-prohibitive to reduce it to zero. Therefore, to achieve carrier-grade availabil-
ity it is important to build the system with redundant hardware modules—particularly for
system-critical subsystems. In addition, the NOS should have the necessary software ca-
pability to enable the system to operate with no or minimal service disruption when such
a module fails, and when it is subsequently removed, upgraded, or replaced.

Failure Recovery and Microkernel-Based NOS

Modern operating systems and applications are complex, and are developed by hundreds
of software engineers. It is virtually impossible to have defect-free operating systems. A
software component might fail not only due to software defect but also due to memory
corruption and malicious attacks. A carrier-grade NOS should be able to contain and re-
cover from most software failures without service disruption.

Modern operating systems have kernel and nonkernel components. In general, a failure in
a nonkernel software component will not impact the kernel or other nonkernel compo-
nents. A kernel failure, however, will cause system reload. This suggests that it is important
to keep most software components outside the kernel and to keep only minimal function-
ality in the kernel. This type of operating system is called a microkernel-based operating

system. Multitasking, multithreading, and memory protection, which are discussed in the
next section, are also critical components of a carrier-grade NOS.

Process Restartability

When a software process fails, the operating system should be able to restart the process.
When a process is restarted, it should be able to recover its state so that it can seamlessly
continue its functions without disrupting service. This capability is referred to as process

restartability.

Failure Detection

The network operating system should also support network features that enable quick fail-
ure detection and rerouting of traffic around failed links, modules, or routers.

Software Upgrades and Patching

Carrier-grade NOS should support software upgrade and/or patching with no or minimal
disruption to service. It is important that it has software patching capability to apply
critical software updates and minimize frequent full software upgrades.

Security

A router has two primary security functions:

■ To protect customer and service provider infrastructure by supporting network secu-
rity features such as unicast reverse path forwarding (uRPF), access control list
(ACL)–based filtering, and prefix filtering

■ To protect the router from malicious or unintended security attacks and intrusions,
which is the primary focus here

The operating system must provide effective mechanisms to protect the routing protocols
from malicious attacks. It should also provide granular access control to protect the router
from unauthorized access. Distributed denial of service (DDoS) attacks are common and
becoming sophisticated. The NOS should minimize the impact to data, control, and man-
agement plane functions due to such attacks.

Service Flexibility

Carriers are demanding a routing system that has a long life cycle. This requires that the
addition of new services should not require a fork-lift upgrade. Carrier-grade NOS needs
to support the addition of new software features, line cards, and/or service modules with
no or minimal service disruption. This can be achieved with modular software packaging,
the support of service modules, and partitioning of systems into multiple routing
domains.

Operating System Concepts

Computer systems, including “embedded” systems such as routers, have an operating sys-
tem that is responsible for providing a number of services to the applications. Coordination
of processing activities and access to hardware resources such as memory, network inter-

6 Cisco IOS XR Fundamentals

Chapter 1: Introducing Cisco IOS XR 7

faces, and disk are also essential functions provided by an operating system. Figure 1-1
shows the relationships among the operating system, applications, and hardware resources.

Basic Functions of an Operating System

Operating systems provide a number of services to applications. The basic functions of-
fered by an operating system include process scheduling, interrupt handling, memory
management, interprocess communication, and common routines (or library). These basic
functions of OS are discussed in more detail in this section.

Process Scheduling

A process is a software program execution instance running on a system that has the ca-
pability to execute multiple program instances. Multiple processes can be spawned simul-
taneously from a single program. In a multitasking operating system multiple processes
can time-share CPU resources, giving the user a perception of simultaneous processing. In
a multitasking system, a process might have to relinquish control of the CPU before it
completes the execution of its current task.

In a cooperative multitasking system, a process voluntarily relinquishes control only after
completing execution or while waiting for an event. This could result in CPU starvation of
other processes while waiting for the current process to relinquish control.

On the other hand, in a preemptive multitasking system a currently running process
might be forced to relinquish control of the CPU. This is called preemption, and it can oc-
cur when either a high-priority process becomes ready or after the current process has run
for the time allocated to it.

When the operating system preempts a process it is necessary to preserve the state of the
process before relinquishing control to another process so that it can resume its execution

Hardware
Resource

1

Hardware
Resource

2

Hardware
Resource

M

Operating System

Application
1

Application
2

Application
N

Figure 1-1 Operating System Interaction with Hardware and Applications

8 Cisco IOS XR Fundamentals

when it gets to run again. Context switching is the mechanism by which a processes state
is saved when it is preempted and retrieved when it resumes execution.

Most modern operating systems support running multiple instances of the same process
concurrently. These types of operating systems are known as multithreaded. A thread is
the smallest unit of execution within a process.

Interrupt Handling

Interrupt is a signal from hardware or software indicating a need for immediate attention.
It causes the operating system to suspend a currently running process and dispatch an in-
terrupt handling routine or process. A running process can also execute an interrupt in-
struction and trigger context switch to an interrupt handler. When executing a critical
routine, the operating system can inhibit certain interrupts until the critical routine is
completed. This is known as interrupt masking.

Memory Management

The operating system is responsible for managing the entire system memory, including al-
location of memory to processes and ensuring that a process does not corrupt memory
that belongs to another process. Memory protection is a mechanism by which a process
is prevented from accessing memory locations other than the memory space allocated to
it. With memory protection, each process runs in its own memory space. A defect in one
process or a malicious attack to one process will not impact other processes.

In operating systems that support memory protection, some forms of communication be-
tween processes are better handled using shared memory, which is accessible by multiple
processes. The operating system provides different synchronization mechanisms between
processes that are writing to or reading from shared memory regions.

In a monolithic operating system, all processes share the same address space and the sys-
tem does not provide fault isolation among processes. A monolithic system can offer better
utilization of CPU cycles because it has lower overhead with respect to memory access, in-
terprocess communication, and context switching. It might be useful in scenarios in which
CPU resources are expensive and the overall system is simple with small code size.

In operating systems that support memory protection, the OS process that is responsible
for managing other processes, memory, and other system resources is known as the
kernel, and the OS is often referred to as kernel-based OS. The kernel can also contain
other services, depending on the implementation. It runs in a separate memory space from
the rest of the system and is protected from memory corruptions caused by other
processes outside the kernel.

A failure in a nonkernel process does not impact the kernel and other processes. However,
a failure in the kernel processes impacts all applications. In a microkernel system, only es-
sential core OS services reside inside the kernel. All other services, including device driv-
ers and network drivers, reside in their own address space. This has important resilience
implications in that a failure in a device or network driver is self-contained and does not
propagate to the kernel or other applications. Device and network drivers can also be
restarted without restarting the whole system.

Chapter 1: Introducing Cisco IOS XR 9

Synchronization

When multiple applications are running concurrently and attempt to access a resource
such as disk drive, it is important to make sure that data integrity is preserved and re-
source is allocated fairly. There are different mechanisms that network operating systems
provide to synchronize events and resource access.

Interprocess Communication

The operating system provides the interprocess communication (IPC) mechanism for
processes running in separate address spaces because they cannot use the memory to ex-
change data. IPC communication can also occur between processes running on the main
route processor and the processes running on different components in the device, includ-
ing line cards and power supplies.

Dynamic Link Library

It is common for multiple applications to use a set of common routines. When these appli-
cations are running in separate protected memory address spaces, the common routines
have to be duplicated in each address space, which is a waste of memory space. To avoid
this problem, operating systems provide a mechanism to share common routines. This
mechanism is called dynamic linked library (DLL) or Libc (C standard library). This allows
the OS to load only active libraries into device memory and enables different processes to
share the same libraries. This is a robust fault containment and software modularization
mechanism. It also allows the sharing of common code among different applications.

Portable Operating System Interface

Portable Operating System Interface (POSIX) is a set of IEEE specifications that define
kernel APIs, thread interfaces, kernel utilities, and more. POSIX also defines a confor-
mance test suite. If an operating system passes the test suite, it is called a POSIX-
conforming OS. An OS that adheres to POSIX compliance is considered highly flexible
and provides maximum portability for additional features or application development. An
application program developed for one POSIX-compliant OS can easily be ported with
minimal effort to another POSIX-compliant OS.

High-Level Overview of Cisco IOS XR

As the world is becoming increasingly dependent on IP-based network infrastructure, net-
work operators are demanding a high degree of reliability and availability. Cisco IOS XR
Software is designed to meet the stringent requirements of network operators. It is de-
signed to provide the following:

■ A high level of scalability

■ Distributed forwarding architecture

■ Exceptionally high reliability and resiliency

■ Service separation and flexibility

■ Robust security

10 Cisco IOS XR Fundamentals

■ Modularity across all software components

■ Hierarchical configuration and robust configuration management

■ Better manageability

Cisco IOS XR software is a highly distributed, secure, highly modular, and massively
scalable network operating system that allows uninterrupted system operation. It is a
microkernel-based operating system with preemptive multitasking, memory protection,
and fast context switching. The microkernel provides basic operating system functionali-
ties including memory management, task scheduling, synchronization services, context
switching, and interprocess communication (IPC).

The microkernel used in Cisco IOS XR is QNX Neutrino real-time operating system
(RTOS) from QNX Software Systems. The kernel is lightweight and does not include sys-
tem services such as device drivers, file systems, and network stack. Figure 1-2 shows the
IOS XR microkernel architecture.

All processes outside the microkernel (procnto) are individually restartable. If any of the
processes, including SysMgr, SysDB, Qnet, or BGP, is restarted it does not cause the en-
tire system to reload. When a process restarts, it recovers its states from persistent storage
or peer processes, also called collaborators. For example, if the Routing Information Base
(RIB) process restarts it will restore the RIB table from its collaborators, which are routing
protocol processes such as OSPF, BGP, IS-IS, and so on. As a result, the RIB table is rebuilt
and there is no traffic disruption if the RIB process is restarted.

Cisco IOS XR employs two distribution models to achieve higher performance and scala-
bility. The first distribution model uses localization, which performs processing and stor-
age closer to the resource. With this model, a database specific to a node is located on
that node. Also processes are placed on a node where they have greater interaction with

BGP

SysMgr

OSPF

SysDB

RIB

Qnet

NetIO

etc…

Micro-
kernel

Process
Manager

IPC (Message Passing “Bus”)

Restartable Processes

OS (procnto Process)

Restartable Processes

Figure 1-2 Cisco IOS XR Microkernel Architecture

Chapter 1: Introducing Cisco IOS XR 11

the resource. For example, Address Resolution Protocol (ARP), interface manager (IM),
Bidirectional Failure Detection (BFD), adjacency manager, and Forwarding Information
Base (FIB) manager are located on the line cards and are responsible only for managing re-
sources and tables on that line card. System databases specific to the line card, such as
interface-related configurations, interface states, and so on, are stored on the line card.
This enables IOS XR to achieve faster processing and greater scalability.

The second distribution model uses load distribution in which additional route processors
(RPs or distributed RPs [DRP]) are added to the system and processes are distributed
across different RP and/or DRP modules. Routing protocols, management entities, and
system processes are examples of processes that can be distributed using this model. For
example, we can classify the processes into three groups as follows and allocate each
group to run on one RP or active/standby RP pair:

■ Group 1: All routing protocols or processes, including BGP, ISIS, LDP, RSVP, PIM,
MSDP, and RIB

■ Group 2: All management entities, including SNMP server, SSH, Telnet, XML,
and HTTP

■ Group 3: All other processes

This model enables the operator to add additional RPs or DRPs in the system as needed to
offload processing from one RP to another, essentially increasing the overall processing
power of the system.

Cisco IOS XR provides a clear separation of management, control, and data plane. Figure
1-3 illustrates the IOS XR architecture and the separation of the management, control, and
data planes.

Memory MgmtIPC MechSynch. ServicesScheduler

Group CommunicationENS/NRS, RDS, Async IPC, GS System DB, IM

Lightweight Microkernel
Kernel System Services

Distributed Infrastructure

H
os

t S
er

vi
ce

B
G

P

R
IP

IS
IS

O
S

P
F

R
S

 V
P

P
IM

IG
M

P

R
IB

L2
 D

riv
er

s

A
C

L

F
IB

Q
oS

LP
T

S

H
os

t S
er

vi
ce

P
F

I

In
te

rf
ac

e

C
LI

S
N

M
P

X
M

L

N
et

flo
w

A
la

rm

P
er

.fM
gm

t

S
S

H

Te
ln

et

T
F

T
P

Management PlaneData PlaneControl Plane

Management PlaneData PlaneControl Plane

Management PlaneData PlaneControl Plane

Distributed Subsystems/Processes

Figure 1-3 Cisco IOS XR Architecture: Separation of Management, Control, and Data
Planes

12 Cisco IOS XR Fundamentals

Each routing control plane or management plane process runs on one or multiple route
processors (RP) and/or distributed RP nodes. Data plane processes are located on each
node that participates in packet forwarding, including RP and line card.

Cisco IOS XR supports partitioning of a system into multiple secure domain routers
(SDR) at physical boundaries. SDRs share only chassis, power supply, fan tray, and related
system components. Each line card or RP belongs to only one SDR. Cisco IOS XR SDRs
provide fault and security isolation because they are defined at physical boundaries. A
fault, resource starvation, or security breach on one SDR does not impact other SDRs in
the same system. An SDR can be defined with just one RP, but it can have multiple RPs
and LCs.

Figure 1-4 shows a system partitioned into three SDRs: default SDR, SDR 1, and SDR 2.
The SDR that has the designated shelf controller (DSC) is the default SDR. DSC is the
main RP (or RP pair for redundancy) on the system.

Cisco IOS XR uses a two-stage fully distributed forwarding architecture. Each line card
has forwarding information base (FIB) and local adjacency information base (AIB) for local
interfaces on that line card. When a packet first enters the system, the ingress line card
performs ingress feature processing and FIB lookup. The FIB lookup returns sufficient in-
formation for the ingress line card to deliver the packet to the appropriate egress line
cards. The ingress line card does not need to know the full adjacency information of the
egress interface. The ingress line card sends the packet through the fabric to the egress
line card. The egress line card performs egress feature processing and FIB lookup to get
full adjacency and layer 2 rewrite information. The packet is then sent to the outbound in-
terface with an appropriate layer 2 header.

SDR 1

SDR 2

Default
SDR

D
R
P

D
R
P

D
R
P

D
R
P

R
P

R
P

F
A
N

F
A
N

DSC

Figure 1-4 Partitioning System into Secure Domain Routers

Chapter 1: Introducing Cisco IOS XR 13

The purpose of two-stage forwarding is to get better scalability and performance. This is
critical because Cisco IOS XR is designed to achieve a very high degree of scalability in
different dimensions, including bandwidth capacity, number of routes, and number of
customer connections.

In Cisco IOS XR, all transit traffic is processed in HW and does not involve any LC or RP
CPU processing. Only traffic destined to the router or originating from the router is
processed by LC or RP CPU. Cisco has developed an innovative processing and delivery
mechanism for packets destined to the router. This mechanism is called local packet

transport service (LPTS). If a packet enters the system and FIB lookup in HW determines
that the packet needs to be delivered to the local system, it will be handed over to LPTS
process for additional HW processing. LPTS determines what application it is destined to
and sends the packet to the node where the application resides. For example, if a BGP
packet is received, the ingress LC will send it directly to the RP where the BGP process is
located. The HW forwarding engine on the LC sends the packet through the fabric to the
RP. The LC CPU does not touch this packet.

Cisco IOS XR LPTS also acts as a dynamic integral firewall and protects the system from
denial of service and other forms of attacks. To protect the system from DoS attacks, it
monitors and polices the traffic destined to the router. For example, BGP or any other
type of control packets destined to the RP must conform to the policing thresholds set by
the LPTS process. In case of BGP, the policer value is set such that regular BGP updates
are not impacted. However, if someone maliciously sends a large amount of BGP updates,
LPTS protects the RP CPU from being overwhelmed with bogus BGP packets. The policer
value also depends on the status of the BGP session for which the packet is sent. If the
packet belongs to a configured neighbor and the session is not yet established, the rate
will be lower. On the other hand, if the packet matches an established session the rate will
be higher. Note that it is very hard to generate bogus BGP packets belonging to an estab-
lished session because the attacker must know the source and destination port of the BGP
session in addition to the source and destination IP addresses.

LPTS does not require user configuration—it is enabled by default and updated dynami-
cally as the system is configured and sessions come up and down. The LPTS policer val-
ues, however, are user configurable.

Cisco IOS XR Platforms

This section provides a brief overview of Cisco IOS XR–based platforms. It is not in-
tended to provide a detailed systems architecture for these platforms. Visit the Cisco web-
site (http://www.cisco.com/) to get detailed information on each of the platforms
described in this section.

Cisco CRS-1 Carrier Routing System

Cisco CRS-1 is the first platform to run IOS XR. It is designed for high system availability,
scale, and uninterrupted system operation. CRS-1 is designed to operate either as a single-
chassis or multichassis system. It has two major elements: line card chassis (LCC) and fab-
ric card chassis (FCC). Details about each system follow:

http://www.cisco.com/

14 Cisco IOS XR Fundamentals

■ CRS-1 16-Slot Single-Chassis System is a 16-slot LCC with total switching capacity
of 1.2 Tbps and featuring a midplane design. It has 16 line card and 2 route processor
slots.

■ CRS-1 8-Slot Single-Shelf System is an eight-slot line card chassis with total switch-
ing capacity of 640 Gbps and featuring a midplane design. It has eight line card and
two route processor slots.

■ CRS-1 4-Slot Single-Shelf System is a four-slot line card shelf with total switching
capacity of 320 Gbps. It has four line card and two route processor slots.

■ CRS-1 Multi-Shelf System consists of 2 to 72 16-slot LCC and 1 to 8 FCC with a
total switching capacity of up to 92 Tbps. The LCCs are connected only to the FCCs
where stage 2 of the three-stage fabric switching is performed. The FCC is a 24-slot
system.

Cisco XR 12000 Series

Cisco XR 12000 series is capable of a 2.5 Gbps, 10 Gbps, or 40 Gbps per slot system with
four different form factors:

■ Cisco 12016, Cisco 12416, and Cisco 12816 are full-rack, 16-slot, and 2.5-, 10- and
40-Gbps per slot systems, respectively.

■ Cisco 12010, Cisco 12410, and Cisco 12810 are half-rack, 10-slot, and 2.5-, 10-
and 40-Gbps per slot systems, respectively.

■ Cisco 12006 and Cisco 12406 are 1/4-rack, 6-slot, and 2.5- and 10-Gbps per slot
systems, respectively.

■ Cisco 12404 is a four-slot, 10-Gbps per slot system.

Cisco ASR 9000 Series

ASR 9000 Series Aggregation Service Router is targeted for carrier Ethernet services and
delivers a high degree of performance and scalability. It can scale up to 6.4 Tbps per sys-
tem. It comes with two form factors:

■ Cisco ASR 9010 is a 10-slot, 21-rack unit (RU) system.

■ Cisco ASR 9006 is a 6-slot, 10-rack unit (RU) system.

Chapter 1: Introducing Cisco IOS XR 15

Summary

Networking has evolved from limited use for specialized applications using several dis-
parate networks to a critical infrastructure that is relied on by businesses, public services,
government, and individuals for an increasing number of applications. As a result, net-
work operators are demanding a very high degree of availability, reliability, and security
for the routers that constitute their network infrastructure. IOS XR is designed to meet
this challenge.

Cisco IOS XR is a microkernel-based operating system with preemptive multitasking,
memory protection, a high degree of modularity, and fast context-switching capabilities.
Because each process outside the microkernel is restartable without impacting the rest of
the system, failure of a process due to memory corruption of software defect does not im-
pact other parts of the system.

To achieve a high degree of scalability and performance, Cisco IOS XR employs two
forms of distribution: localization and load distribution. Localization refers to performing
processing and storage closer to the resource. Load distribution refers to offloading of
processing from one RP to another with the objective of increasing overall processing
power of the system.

Cisco IOS XR uses a two-stage fully distributed forwarding architecture. When a packet
first enters the system the ingress linecard performs ingress feature processing and FIB
lookup. The FIB lookup returns sufficient information for the ingress line card to deliver
the packet to the appropriate egress line cards. The egress line card performs egress fea-
ture processing and FIB lookup to get the full L2 adjacency information.

References

■ Internet World Stats. http://www.internetworldstats.com/

■ Cisco. Cisco IOS XR Configuration Guides. http://www.cisco.com/

http://www.internetworldstats.com/
http://www.cisco.com/

This chapter covers the following topics:

■ Cisco IOS XR Kernel

■ Cisco IOS XR System Manager

■ Interprocess Communication

■ Distributed Services

■ Process Placement

■ Cisco IOS XR System Database

■ High Availability Architecture

■ Forwarding Path

■ References

Cisco IOS XR is designed for massively scalable systems
with particular focus on continuous system operation,
scalability, security, and performance. This chapter dis-
cusses the IOS XR infrastructure and how it achieves the
stated goals of IOS XR. The first section discusses the
microkernel used by IOS XR. Subsequent sections dis-
cuss interprocess communication (IPC), IOS XR System
Database, distributed system services, process manage-
ment, and high availability.

CHAPTER 2

Cisco IOS XR Infrastructure

Cisco IOS XR Kernel

Cisco IOS XR is a highly distributed microkernel-based network operating system. The
microkernel used by Cisco IOS XR is QNX Neutrino real-time operating system (RTOS),
which is from QNX Systems. The microkernel is lightweight and provides only a few fun-
damental services. It is responsible for interrupt handling, scheduling, task switching,
memory management, synchronization, and interprocess communication. The microkernel
does not include other system services such as device drivers, file system, and network
stacks; those services are implemented as independent processes outside the kernel, and
they can be restarted like any other application.

The microkernel is a POSIX-compliant kernel. POSIX defines OS specifications and test
suites for APIs and OS services that a POSIX-compliant OS has to implement. Applica-
tions and services developed for a POSIX-compliant kernel can easily be ported to an-
other POSIX-compliant kernel. If the need arises in the future, Cisco IOS XR can easily
be ported to another POSIX-compliant OS.

The essential aspect of a microkernel-based OS is modularity. The microkernel provides a
very high degree of modularity. The OS is implemented as a team of cooperative
processes managed by the microkernel and glued by its message-passing service. Each
process is running in its own address space and is protected from memory corruption of
other processes. An important aspect of microkernel architecture is its fast context
switching capability, which provides the impetus to a high degree of modularity. Because
the CPU cost associated with context switching is minimal, it provides greater incentive to
implement each application and service as its own process and in its own memory address
space. For example, Cisco IOS XR implements BGP, OSPF, OSPFv3, RIBv4, RIBv6, and so
on as separate processes. Moreover, if multiple OSPF processes are configured on the
router each one will be assigned its own process instance completely separate from other
OSPF processes. This greater modularity is made possible due to the fast context-
switching capability of the microkernel and efficient interprocess communication
provided by QNX and enhanced by Cisco. Interprocess communication is discussed in
greater detail in the section “Interprocess Communication,” later in this chapter.

Threads

As illustrated in Figure 2-1, the OS is a group of cooperating processes managed by a
small microkernel. The microkernel provides thread scheduling, preemption, and synchro-
nization services to the processes. It also serves as a message-passing “bus.” The microker-

18 Cisco IOS XR Fundamentals

BGP

SysMgr

OSPF

SysDB

RIB

IM

RSVP

NetIO

LDP

GSP

sshd

etc…

Micro-
kernel

Process
Manager

IPC (Message Passing “Bus”)

Restartable Processes

OS (procnto Process)

Restartable Processes

Figure 2-1 Microkernel-Based Operating System

nel and the process manager together form the procnto process. Each process runs in its
own address space and can be restarted without impacting other processes.

When developing an application, it is often desirable to execute several algorithms concur-
rently. This concurrency is achieved using multiple threads within a process. A thread is
the minimum unit of execution and scheduling. A process, on the other hand, is a con-
tainer for related threads and defines the memory address space within which the threads
can execute. There is at least one thread per process. Threads are discussed in more detail
in the section “Cisco IOS XR System Manager.”

For example, as you can see from the show processes threadname 120 output in Example
2-1, the BGP process in IOS XR has several threads that each perform a specific task, in-
cluding input, output, import, and so on. In the following sample output, 120 is the jobid
of BGP process. Jobid (JID) is a unique number assigned to each process, and it is covered
in more detail in the section “Cisco IOS XR System Manager” later in this chapter.

Chapter 2: Cisco IOS XR Infrastructure 19

Example 2-1 Thread Names for the BGP Process

RP/0/RP0/CPU0:CRS-A#show processes threadname 120

! 120 is the jobid of bgp process

JID TID ThreadName pri state TimeInState NAME

120 1 io-control 10 Receive 0:00:04:0166 bgp

120 2 chkpt_evm 10 Receive 96:23:26:0941 bgp

120 3 label-thread 10 Receive 0:00:16:0525 bgp

120 4 rib-update ID 0 10 Receive 0:00:16:0522 bgp

120 5 async 10 Receive 50:49:09:0707 bgp

120 6 io-read 10 Receive 0:01:16:0534 bgp

120 7 io-write 10 Receive 0:00:16:0532 bgp

120 8 router 10 Receive 0:00:16:0533 bgp

120 9 import 10 Receive 0:00:16:0529 bgp

120 10 update-gen 10 Receive 0:00:16:0529 bgp

120 11 crit-event 10 Receive 0:00:16:0525 bgp

120 12 event 10 Receive 0:00:32:0777 bgp

120 13 management 10 Receive 0:00:16:0549 bgp

120 14 rib-update ID 1 10 Receive 0:00:55:0617 bgp

RP/0/RP0/CPU0:CRS-A#

Figure 2-2 shows the most common thread states and transitions between the states. The
inner circle actually represents two distinct states: ready and running. A thread state can
transition from ready to running and vice versa. A thread in running state may also transi-
tion to any of the other states shown in Figure 2-2.

Cisco IOS XR microkernel uses a preemptive, priority based, and non-adaptive scheduling
algorithm. Each thread is assigned a priority. The scheduler is responsible for selecting the
next thread to run based on the priority assigned. The highest priority thread in ready state
is selected to run. There is a ready state first in, first out (FIFO) queue for each priority level.

The idle thread is a special thread of the procnto process in that it is the only thread that
runs at priority 0 and uses FIFO scheduling. Also, it is either in running or ready state and
it never relinquishes CPU voluntarily. However, because it uses the lowest priority, it can
be preempted by any other process that is in ready state.

A running thread may be moved to a different state due to system call (such as a kernel
call, exception, or hardware interrupt), getting blocked, preempted, or voluntarily yield-
ing. If a running thread is preempted by a higher priority thread, it moves to the head of
the ready queue for its priority. On the other hand, if it is preempted after consuming its
timeslice or it voluntarily yields the process, it moves to the end of the ready queue for its
priority. Timeslice is the maximum time that a running thread can consume while one or
more threads are in the ready queue for the same priority level as the running thread.

A running thread blocks when it needs to wait for an event to occur such as a reply mes-
sage. When a thread is blocked it moves to the corresponding blocked state and stays
there until it is unblocked. When the process is unblocked, it normally moves to the tail of
the ready queue for its priority. There are some exceptions to this rule.

20 Cisco IOS XR Fundamentals

Ready

Running

Condvar

Sem

Reply Mutex

Interrupt Stopped

SigWaitInfoReceive

NanosleepSend

Figure 2-2 Most Common Thread States and Transitions

For example, if a server thread is waiting for a client request, it is in a receive blocked state.
Suppose the blocked server thread has priority 10 and is unblocked by a client thread at
priority 20 sending a request and waiting for a reply. This will unblock the server thread
and move the client thread to reply blocked state. If the server thread is moved to the
ready queue for priority 10 and there are several threads in ready state at priority 15, it
will impact the response time for the client even though the client thread has priority 20.
This problem is known as priority inversion. To prevent priority inversion, the microkernel
uses priority inheritance, which temporarily boosts the priority of the server thread to
match that of the client thread (20) and places the server at the ready queue for the client’s
priority (20).

Chapter 2: Cisco IOS XR Infrastructure 21

Scheduling Algorithms

The microkernel provides the following three scheduling algorithms to meet needs for dif-
ferent scenarios:

■ FIFO scheduling

■ Round-robin scheduling

■ Sporadic scheduling

With FIFO scheduling, a thread continues to run until it voluntarily relinquishes control
or is preempted by a higher-priority thread. With Cisco IOS XR, only the idle threads of
procnto (kernel) use FIFO scheduling.

Most other processes in IOS XR use round-robin scheduling, which restricts the maxi-
mum amount of time (timeslice) a thread can run without relinquishing control. A thread
that uses round-robin scheduling runs until it voluntarily relinquishes control, gets pre-
empted by a higher-priority thread, or consumes its timeslice.

Sporadic scheduling algorithm allows a thread to run at its normal priority for a certain
amount of time (budget) over a period of replenishment interval before its priority is
dropped to a lower priority. Figure 2-3 illustrates how sporadic scheduling works.

Assume that at time t = 0 ms, threads T1 and T2 are ready to run and all other threads are
blocked. Furthermore, assume that T1 is a sporadically scheduled thread with normal pri-
ority of 30, low priority of 10, budget time of 20 ms, and replenish interval of 50 ms. T2 is
a round-robin scheduled thread with a priority of 20. An example follows:

1. T1 is scheduled to run at t = 0 ms because it has a higher priority than T2.

2. At t = 5 ms, thread T3 with priority of 40 is unblocked and becomes ready.

Priority = 10

0ms 10ms 20ms 30ms 40ms 50ms

Priority = 20

Priority = 30

Priority = 40

60ms 70ms 80ms

T1

T1

T3

T1

T2 T2 T2

T1

Threads T2 and T3 Use Round-Robin Scheduling

T1 is a sporadically scheduled thread with
- Budget time of 20ms
- Replenish interval of 50ms
- Normal priority of 30
- Low priority of 10

Figure 2-3 Sporadic Scheduling

22 Cisco IOS XR Fundamentals

3. Because T3 has a higher priority than T1, it preempts T1 and starts running. As a re-
sult, T1 is moved to the head of the ready queue for priority 30.

4. At t = 10 ms, T3 is blocked and relinquishes CPU. Note that threads T1 with priority
30 and T2 with priority 20 are in the ready state. Therefore, because of its high pri-
ority, T1 starts running at t = 10 ms.

5. At t = 25 ms, because T1 has already used its budget time of 20 ms and is a sporadi-
cally scheduled thread, its priority is reduced to 10. Because T2 is in ready state and
has a priority of 20, it preempts T1 and starts running at t = 25 ms.

6. At t = 50 ms, after the replenish interval lapses, the priority of T1 is restored to its
normal priority of 30, which causes T1 to preempt T2 and start running.

7. At t = 70 ms, after T1 has used its budget in the new replenish interval, its priority is
reduced to 10 again. This causes T2 to preempt T1 and start running.

Example 2-2 shows a partial output of show process pidin, which lists the threads and
corresponding process ID (pid), thread ID (tid), process name, priority, scheduling algo-
rithm, and state. The prio column shows the priority and scheduling algorithm of the
thread. The scheduling of a thread is denoted as f for FIFO, r for round-robin, or ? for spo-
radic scheduling. Example 2-2 shows that there are two threads that use FIFO scheduling:
procnto threads 1 and 2. These are the idle threads of the kernel. There is one idle thread
per CPU. Because this output was taken from the RP of CRS-16/s, which has a two-
processor CPU complex, it shows two idle threads, one for each CPU. Example 2-2 also
shows that threads 3, 4, and 7 of the eth_server process use sporadic scheduling. All other
threads use round-robin scheduling.

Example 2-2 Output of show processes pidin

RP/0/RP0/CPU0:CRS-A#show processes pidin

pid tid name prio STATE Blocked

1 1 procnto 0f READY

1 2 procnto 0f RUNNING

1 3 procnto 63r RECEIVE 1

1 4 procnto 10r NANOSLEEP

1 5 procnto 63r RECEIVE 1

1 6 procnto 10r RECEIVE 1

1 7 procnto 63r RECEIVE 1

1 8 procnto 63r RECEIVE 1

1 9 procnto 63r RECEIVE 1

...

40987 3 pkg/bin/eth_server 50? SEM 29df078

40987 4 pkg/bin/eth_server 49? SEM 29df080

40987 5 pkg/bin/eth_server 10r SEM 29defc8

40987 6 pkg/bin/eth_server 10r RECEIVE 5

40987 7 pkg/bin/eth_server 55? RECEIVE 9

40987 8 pkg/bin/eth_server 10r RECEIVE 12

40987 9 pkg/bin/eth_server 10r RECEIVE 1

Chapter 2: Cisco IOS XR Infrastructure 23

40987 10 pkg/bin/eth_server 10r RECEIVE 1

40987 11 pkg/bin/eth_server 55r RECEIVE 1

45084 1 kg/bin/bcm_process 10r RECEIVE 1

45084 2 kg/bin/bcm_process 56r RECEIVE 6

45084 3 kg/bin/bcm_process 56r INTR

45084 4 kg/bin/bcm_process 56r RECEIVE 10

45084 5 kg/bin/bcm_process 56r RECEIVE 9

45084 6 kg/bin/bcm_process 56r RECEIVE 1

45085 1 pkg/bin/attachd 10r RECEIVE 1

45085 2 pkg/bin/attachd 55r REPLY 40987

45085 3 pkg/bin/attachd 55r REPLY 16397

45086 1 ad_eeprom_protocol 10r RECEIVE 1

45087 2 pkg/bin/qnet 10r RECEIVE 1

45087 3 pkg/bin/qnet 10r RECEIVE 4

...

RP/0/RP0/CPU0:CRS-A#

! Count threads that use round-robin scheduling

RP/0/RP0/CPU0:CRS-A#show processes pidin | utility egrep -e “[0-9]+r “ count

1025

RP/0/RP0/CPU0:CRS-A#

! List threads that use sporadic scheduling

RP/0/RP0/CPU0:CRS-A#show processes pidin | include “[0-9]+\\? “

40987 3 pkg/bin/eth_server 50? SEM 29df078

40987 4 pkg/bin/eth_server 49? SEM 29df080

40987 7 pkg/bin/eth_server 55? RECEIVE 9

180321 5 /bin/parser_server 16? CONDVAR 485f48b4

RP/0/RP0/CPU0:CRS-A#

! List threads that use FIFO scheduling

RP/0/RP0/CPU0:CRS-A#show processes pidin | include “[0-9]+f “

1 1 procnto 0f READY

1 2 procnto 0f RUNNING

RP/0/RP0/CPU0:CRS-A#RP/0/RP0/CPU0:CRS-A#

Synchronization Services

The microkernel provides a message-passing–based synchronous IPC mechanism. This
message-passing service copies a message directly from the address space of the sender
thread to the receiver thread without intermediate buffering. The content and format of
the message are transparent to the kernel. IPC is discussed in greater detail in the section
“Interprocess Communication” later in this chapter.

In addition to the message-passing IPC mechanism provided by the microkernel, it is pos-
sible to develop other IPC mechanisms that use shared memory space. However, access to
the shared memory space must be synchronized to ensure data consistency. For example,

24 Cisco IOS XR Fundamentals

if one thread attempts to access a linked list while another thread is in the process of up-
dating it, the result could be catastrophic. The microkernel provides mutex, condvar, and
semaphore synchronization tools to address this problem.

Mutual exclusion lock, or mutex, is used to ensure exclusive access to data shared be-
tween threads. Before a thread can access the shared data it should first acquire (lock) the
mutex. When it completes operation on the shared data, it releases the mutex. Only one
thread may acquire a mutex at any given time. If a thread attempts to lock a mutex that is
already locked by another thread, it will be blocked until the mutex is unlocked and ac-
quired. When a thread releases a mutex, the highest priority thread waiting to acquire the
mutex will unblock and become the new owner of the mutex.

If a higher-priority thread attempts to lock a mutex that is already locked by a lower-
priority thread, the priority of the current owner will be increased to that of the higher-
priority blocked thread. This is known as priority inheritance and solves the priority
inversion problem. Priority inheritance and priority inversion are also discussed earlier in
this section in the context of client/server thread interaction.

A conditional variable (condvar) is used to wait until some condition (for example, a time-
out) is fulfilled. The thread blocks until the condition is satisfied. A condvar is usually
used in conjunction with a mutex as follows:

■ Lock a mutex

■ Wait on a condvar

■ Perform an activity (manipulate shared data)

■ Unlock the mutex

Semaphore is another form of synchronization in which a thread waits for the semaphore
to be positive. If the semaphore is positive, the thread unblocks and decrements the sema-
phore by 1. A post operation on a semaphore increments it by 1. A semaphore can be used
to wake a thread by a signal handler. The thread issues a wait operation on the semaphore
to wait for a signal. A signal handler will perform a post operation on the semaphore to
wake a thread blocked by the semaphore.

As shown in Example 2-2 earlier in this section, show process pidin location <r/s/m>

shows the state of each thread. Table 2-1 provides a list of states a process may take.

Table 2-1 Process States

State Explanation

dead The kernel is waiting to release the thread’s resources.

running Actively running on a CPU.

ready Not running on a CPU but is ready to run.

stopped Suspended (SIGSTOP signal).

send Waiting for a client to send a message.

Chapter 2: Cisco IOS XR Infrastructure 25

As seen in Example 2-2, some of the threads are in a Reply state, which indicates that the
client thread is blocked waiting for a reply. If a process is stuck in blocked state, it might
be an indication of a problem with the (client/server) process or application. However, the
existence of blocked processes on the router does not necessarily indicate a problem be-
cause it is expected behavior for selected processes. Other processes stuck in a block
state might cause applications not to respond. It is important to understand the typical be-
havior of a router in your production network.

To display a list of blocked threads, issue the command show processes blocked location
<r/s/m>, as shown in Example 2-3. It is recommended to issue this command several times
within a few seconds. Running the command numerous times verifies whether processes
are questionably blocked in error versus in a blocked state as it performs its normal IPC
exchange. Processes such as ksh and devc-conaux are in a blocked state by design. Ksh is
the client process communicating to devc-conaux (the server process). Here the thread is
in blocked state until a user provides input on the console server. More specifically, ksh
waits for input on the console or the auxiliary port and returns a system message to devc-
conaux. When devc-conaux replies to ksh, the process changes the state from blocked to
reply.

Example 2-3 Processes Block

RP/0/RP0/CPU0:CRS1-4#show processes blocked location 0/rp0/cpu0

Jid Pid Tid Name State TimeInState Blocked-on

65546 12298 1 ksh Reply 101:26:48:0708 12296 devc-conaux

52 40988 2 attachd Reply 101:26:50:0679 40985 eth_server

52 40988 3 attachd Reply 101:26:50:0678 16397 mqueue

78 40990 6 qnet Reply 0:00:00:0040 40985 eth_server

78 40990 7 qnet Reply 0:00:00:0038 40985 eth_server

State Explanation

receive Waiting for a server to receive a message.

reply Waiting for a server to reply to a message.

stack Waiting for more stack to be allocated.

waitpage Waiting for the process manager to resolve a page fault.

sigsuspend Waiting for a signal.

sigwaitinfo Waiting for a signal.

nanosleep Sleeping for a period of time.

mutex Waiting to acquire a mutex.

condvar Waiting for a conditional variable to be signaled.

join Waiting for the completion of another thread.

intr Waiting for an interrupt.

sem Waiting to acquire a semaphore.

26 Cisco IOS XR Fundamentals

78 40990 8 qnet Reply 0:00:00:0032 40985 eth_server

78 40990 9 qnet Reply 0:00:00:0041 40985 eth_server

78 40990 10 qnet Reply 0:00:00:0028 40985 eth_server

78 40990 11 qnet Reply 0:00:00:0033 40985 eth_server

78 40990 12 qnet Reply 0:00:00:0033 40985 eth_server

78 40990 13 qnet Reply 0:00:00:0039 40985 eth_server

51 40996 2 attach_server Reply 101:26:50:0438 16397 mqueue

394 172114 1 tftp_server Reply 101:25:02:0994 16397 mqueue

135 499850 4 cethha Reply 0:00:10:0981 1 node
0/RP1/CPU0 kernel

276 512195 2 lpts_fm Reply 0:00:10:0194 495725 lpts_pa

65742 1470670 1 exec Reply 42:18:14:0620 12296 devc-conaux

65807 1474831 1 exec Reply 2:14:28:0875 512187 devc-vty

65809 4870417 1 exec Reply 0:00:00:0300 1 kernel

65810 4874514 1 more Reply 0:00:00:0094 16395 pipe

65811 4874515 1 show_processes Reply 0:00:00:0000 1 kernel

RP/0/RP0/CPU0:CRS1-4#

Cisco IOS XR System Manager

Cisco IOS XR has hundreds of processes running simultaneously on multiple nodes. Some
processes are associated with applications and protocols. Examples of such processes in-
clude telnetd and isis, which refer to Telnet daemon (server) and the IS-IS routing protocol,
respectively. Other processes are dedicated to system functions such as device drivers, in-
terprocess communication, system health monitor, file system, configuration management,
software install management, and so on. Such processes are always operational.

IOS XR system manager is the central entity responsible for starting, monitoring, restart-
ing, terminating, and core dumping most IOS XR processes during bootup, RP failover,
software activation, and in response to router configuration. System manager can also ini-
tiate disaster recovery based on process health. System manger runs on each route proces-
sor and line card in the system. Two instances of sysmgr process are running on each
node. One of the instances is the primary sysmgr, which is responsible for all system man-
ager responsibilities; the second instance acts as a standby and is ready to assume the pri-
mary role if the current primary sysmgr exits for some reason.

The following are the main functions of system manager:

■ Start processes during bootup or node reload

■ Start processes during route processor (RP) failover

■ Start processes in response to user configuration; for example, when a user config-
ures an OSPF process using router ospf <process-name>, system manager starts a
new OSPF process instance

Chapter 2: Cisco IOS XR Infrastructure 27

■ Act as a central repository for all process-related information

■ Initiate disaster recovery based on the process health

■ Invoke dumper to collect a core dump when a process terminates abnormally

Process Attributes

System manager uses process attributes stored in a startup file for each process that it
manages. Each startup file corresponds to an executable. The startup files are located in
the /pkg/startup/ directory and contain tokens that are used by system manager to man-
age the corresponding process. The startup file for OSPF, FIB manager, and GSP are
shown in Example 2-4.

Example 2-4 Startup Files for OSPF, FIB_mgr, and GSP Processes

more /pkg/startup/ospf.startup

name:ospf

path:/ios/bin

item:/cfg/gl/ipv4-ospf/proc/

copies:10

tuple_dynamic_tag:ON

placement: ON

check_avail: ON

failover_tier: isis

standby_capable: ON

#

more /pkg/startup/fib_mgr.startup

name:fib_mgr

path:/ios/bin

check_avail: ON

level:99

standby_capable:ON

#

more /pkg/startup/gsp-rp.startup

name:gsp

path:/ios/bin

level: 80

check_avail:on

mandatory: on

The name token corresponds to the name of the process and the corresponding exe-
cutable. The path token is the path where the executable is located. If the level token is set
it implies that the process is level started during boot. During system boot the system
manager uses the level token to determine the sequence in which the processes are started.
The startup sequence during boot is shown in Table 2-2. You can use show process boot
location <r/s/m> to see the boot sequence and startup level and at what time each process
is ready.

28 Cisco IOS XR Fundamentals

If the item token is set, it indicates that the corresponding process is started or terminated
when a user enters configuration or when the configuration is loaded to the system database
(sysdb) during boot. The process is started when the configuration item specified in the
startup file is added to sysdb. For example, when the user enters and commits the configu-
ration router ospf <process-name> system manager starts an OSPF process instance.
System database is discussed in more detail in the section “Cisco IOS XR System Database”
later in this chapter.

If the mandatory token is set to ON, the process is considered critical for the functioning
of the node, which is any subsystem such as line card, route processor, service processor,
or switch fabric card module running IOS XR. If a mandatory process exits or dies and
fails to be restarted after repeated attempts, system manager will reload the node.

If the placement item is set to ON, the corresponding process is placeable and can run on
any active RP or DRP node on the router. Process placement is discussed in the section
“Process Placement,” later in this chapter.

System manager assigns a unique job id (JID) to each executable. The JID is persistent
across restarts. In addition to a JID each process is assigned a unique process ID (PID)
when it is started or restarted. If a process is restarted it is assigned a new PID number but
it retains its original JID number.

Some processes, such as telnetd, are transient processes that are started in response to a
user request (telnetting to the router). These transient processes are not managed by sys-
tem manager, and their JID is derived from their processed ID (PID). For transient
processes a startup file is not needed because they are not started by the system manager.

System Manager and Process Lifecycle

System manager monitors the health of each process. Figure 2-4 shows the system man-
ager and process lifecycle. When system manager starts a process it starts an end of initial-
ization (EOI) timer. After the process starts and completes initialization it notifies system
manager by sending an end of initialization signal. If the EOI timer for a process expires

Table 2-2 IOS XR Startup Levels During Boot

Band Levels Examples

MBI 0–39 dllmgr, nvram, obflmgr, dumpr, syslogd

ARB (arbitration) 40 wdsysmon, redcon

ADMIN 41–90 sysdb, netio, oir_daemon, gsp, envmon, shelfmgr

INFRA 91–100 ifmgr, aib, ipv4_io, fib_mgr

ACTIVE 101–150 ipv4_ma

FINAL 151–999 clns, arp

Chapter 2: Cisco IOS XR Infrastructure 29

before sysmgr receives EOI from the process, sysmgr declares that process initialization
failed.

CLI for Sysmgr and Processes

System manager provides a rich set of commands to check the status of processes; start,
stop, crash, and restart processes; and configure process attributes. Use show process
[<process-name> | <JID>] location <r/s/m> to show the process data and status. Example
2-5 displays an example of such output for an IS-IS process on a primary RP.

Example 2-5 IS-IS Process and Threads

RP/0/RP0/CPU0:CRS1-4#show processes isis

Job Id: 255

PID: 12714252

Executable path: /disk0/hfr-rout-3.6.2/bin/isis

Instance #: 1

Version ID: 00.00.0000

Respawn: ON

Respawn count: 5

Max. spawns per minute: 12

Last started: Thu Jan 15 05:06:57 2009

Process state: Run (last exit due to SIGTERM)

Package state: Normal

Started on config: cfg/gl/isis/instance/test/ord_A/running

core: COPY

Process Starts
and Performs
Initializations Process Didn’t

Start After
Timeout;
Restart It

System
Manager

Starts Process

When Initializations Are
Complete, Process Notifies
System Manager That It’s

Now “Running”

System Manager Makes
Sure That Process Starts

Process Running
System Manager
Monitors Process

for Termination

System Manager
Restarts Process

According to Policy

LoggedProcess
Dies

0000:00

Figure 2-4 Sysmgr and Process Lifecycle

30 Cisco IOS XR Fundamentals

Max. core: 0

Placement: ON

startup_path: /pkg/startup/isis.startup

Ready: 2.615s

Available: 2.664s

Process cpu time: 0.537 user, 0.130 kernel, 0.667 total

JID TID Stack pri state TimeInState HR:MM:SS:MSEC NAME

255 1 48K 10 Receive 0:00:14:0377 0:00:00:0284 isis

255 2 48K 10 Receive 0:00:01:0591 0:00:00:0075 isis

255 3 48K 10 Receive 110:34:27:0344 0:00:00:0008 isis

255 4 48K 10 Receive 110:34:18:0331 0:00:00:0002 isis

255 5 48K 10 Receive 0:00:01:0591 0:00:00:0159 isis

255 6 48K 10 Receive 0:00:07:0283 0:00:00:0009 isis

———————————————————————————————————————-

RP/0/RP0/CPU0:CRS1-4#

The definition of the key attributes of IOS XR processes follow:

■ Job ID (JID): The JID number remains constant, including process restarts.

■ Process ID (PID): The PID field changes when a process is restarted.

■ Thread ID (TID): A single process can have multiple threads executing specific tasks
for a process.

■ Executable path: References a path to the process executable. An additional field
called “executable path on reboot” may appear if an in-service software upgrade has
been performed.

■ Instance: There may be more than one instance of a process running at a given time.
Each instance is referenced by a number.

■ Respawn count: The number of times a process has been (re)started. The first time
a process is started, the respawn count is set to 1. Respawn mode is on or off. This
field indicates whether this process restarts automatically in case of failure.

■ Max spawns per minute: The number of respawns not to be exceeded in one
minute. If this number is exceeded, the process stops restarting as a self-defense
mechanism.

■ Last started date and time: This timestamp shows when the process was last
started.

■ Process state: This shows the current state of the process.

■ Started on config: Points to the location in system database (SysDB) that contains
configuration data that resulted in spawn of the process.

■ core: Memory segments to include in core file.

■ Max. core: Shows the number of times to dump a core file. A value of 0 signifies
infinity.

