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Preface

The study of wave propagation in structured media can be traced as far back as
the seventeenth century with the publication of Newton’s Philosophiæ Nat-
uralis Principia Mathematica. For instance in Principia, Newton examined
the, now classical, one-dimensional mass-spring lattice system and derived an
expression for the speed of propagation of sound waves. Despite being stud-
ied for several centuries, wave propagation in multi-scale structured media
remains an active, exciting, and challenging area of research.

Indeed, recent developments toward the control of wave propagation in
multi-scale solids have led to considerable progress in the development and
application of analytical techniques for the modelling of wave propagation
in multi-scale structured media. The principal aim of the present text is to
provide a unified account of several of these analytical techniques as applied
to a collection of fascinating physical problems.

Following the introduction, Chapter 2 summarises several fundamental
methods, concepts, and approaches required for the analysis of wave propaga-
tion in multi-scale solids. This chapter is designed to furnish the uninitiated
reader with a succinct introduction to the primary methods necessary for the
material presented later in the text. It is hoped that graduate students and
those researchers unfamiliar with the topics covered in the present monograph
will find Chapter 2 particularly useful.

The main body of the present text represents a coherent account of a selec-
tion of interesting problems tackled over the last 15 years. We were privileged
to have worked with wonderful colleagues with whom we have collaborated
over the past years, and we are very grateful to them. The book is based on
a series of research papers cited throughout the text.

Liverpool,
United Kingdom

A. B. Movchan
N. V. Movchan

I. S. Jones
D. J. Colquitt
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Chapter 1
Introduction

The study of wave propagation in multi-scale structured media has proven
a rich area of research, attracting the attention of researchers from a broad
range of disciplines including mathematics, physics, and engineering. From a
mathematical standpoint, the modelling of dynamic phenomena in structured
media is both interesting and challenging and has captivated the applied math-
ematics community for many decades. In the last century, the field of waves
in structured media has undergone a rapid series of developments with both
theoretical and experimental advances actively driving the field forward; see,
for example, [12,43,58,98,106,119–121,137,143,158,174,175]. More recently,
advances in fabrication methods and materials technology, coupled with the
desire and ability to create “designer materials” have led to a significant ex-
pansion in experimental research for waves in multi-scale structured media.

Elastic structured media presents a unique challenge in the analysis of
wave propagation in multi-scale solids. In the case of electromagnetism, all
waves travel at the same speed (the speed of light) in a given medium; the
same is true of acoustic waves and water waves. In contrast, elastic bodies
generally support the propagation of two different types of wave: pressure
waves and shear waves. These two waves travel at different speeds, even in
this same medium, and are coupled at boundaries and interfaces; this makes
the analysis of wave propagation in structured media, where there are many
interfaces and boundaries, singularly difficult. In turn, this unique coupling
leads to particularly fascinating dispersion properties and, not only creates
several new directions in the mathematical modelling of the dynamic response
of multi-scale structured solids, but also allows for the development of many
interesting applications in mechanics and engineering.

One particularly interesting area of research relates to “high-contrast”
structures. In the case of mechanical systems, “high-contrast” refers to ma-
terials of structures with large spatial variations in density and/or stiffness.
Such structures are of particular interest because they can support very low
frequency standing waves and localised waveforms. Among the plethora of
engineering applications, earthquake protection systems are, understandably,
of particular interest and multi-scale systems of resonators can be used to
efficiently filter, reflect, polarise, mode convert, and otherwise control elastic
waves over a desired frequency range (see, for example, [44, 46]).

In the present book, we consider a broad range of theoretical approaches
to the challenging problems of modelling wave propagation and localisation in

1



2 Mathematical Modelling of Waves in Multi–Scale Structured Media

structured elastic media. In particular, we will focus on multi-scale materials,
with a dynamic response that may appear unusual and often counterintuitive;
using the rigorous methods developed here, we will show that these, apparently
strange, phenomena can be easily understood and are, in fact, entirely natural.
Examples of such phenomena include dynamic anisotropy, focussing by flat
interfaces and cloaking.

1.1 Bloch–Floquet waves
There are many classical monographs, such as [26], [85], [91], and [187],

which address wave propagation in structured media; a topic that has proven
to be an exceptionally rich and attractive area of research. Motivated, not only
by contemporary theoretical and technological advances, but also by work
going back to the seventeenth century [135], there has been a particularly
high level of scientific interest in the analysis of systems exhibiting photonic
and phononic band gaps for Bloch–Floquet waves. The scholarly interest in
the analysis of such phenomena is underlined by the extensive bibliography
summarised in [60]. In particular focussing and diffraction, which are well
known for optical systems (see, for example, [25] and [145]), can have new
and interesting aspects in problems of vector elasticity. A systematic analysis
of the scattering of waves in solids with periodic arrays of defects was presented
in [35]. For problems of the mathematical theory of elasticity, the paper [166]
extended the Rayleigh method [169] to examine the scattering of elastic waves
in doubly periodic structures.

For the case of lattice dynamics, localised primitive waveforms have been
identified [8, 151] and studied in detail. In particular, it was demonstrated
that these localised vibrations are associated with stationary points on the
dispersion surfaces. For both, time-harmonic and transient excitations, the
papers [92] and [93] have analysed the dynamic response of a square lattice,
with a particular emphasis on the nature of the caustics, which require careful
consideration when applying the method of steepest descent.

For systems of elastic rods, which include periodic arrays of trusses and
frames, a generic algorithm for treating the dispersive properties of vector
lattices and the design of structures possessing band gaps in desired ranges of
frequencies was developed in [108].
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1.2 Structured interfaces and localisation
The concept of structured interfaces of finite thickness, which join two

continuous regions of an elastic medium, was introduced in [21]; wherein the
authors note that the inertial properties of the interface significantly affect
the dynamic response of the structure and lead to unusual filtering properties
for elastic waves. Extending the work of [21], a structured interface between
two continuous domains was employed in [29] to demonstrate the focussing of
elastic waves via negative refraction. Such structured interfaces in solid media
are sometimes referred to as “flat lenses” for elastic waves. Similar effects
have also been demonstrated in acoustics, as shown, for example, in [76]. The
effects of focussing and filtering of elastic waves have been extended to entirely
discrete structures: a diatomic interface lattice embedded in a monatomic
ambient lattice of the same geometry was considered in [49]; and it was shown
that, for certain frequencies, the interface lattice acts as a flat elastic lens.
Dynamic homogenisation, which also incorporates directional preferences and
effects of negative refraction, was addressed in the recent papers [54–56,139].

Anisotropic inhomogeneous interfaces are useful, for example, for the re-
duction of stress concentration in solids. Figure 1.1 gives a simple example
for a uni-axially loaded static solid containing a set of coated inclusions. The
material of the ring-coating is orthotropic and the Young’s modulus in the
tangential direction within the coating increases toward the centre, similar
to [58, 98]. As shown in Figures 1.1c and 1.1d, the stress concentration has
been reduced dramatically compared to the cases in Figures 1.1a and 1.1b.

The presence of localised waveforms was previously illustrated for scalar
lattices [8,92,93,151]. The resulting anisotropy, diffraction patterns and aber-
rations are often explained using the dispersion surfaces and slowness con-
tours. Two geometrically identical lattices, with the same elastic stiffness may
provide different dynamic responses due to different distributions of inertia
and embedded resonators of different kind. In statics such lattices, which we
denote as type I and type II, may be geometrically identical. However, em-
bedding an interface composed of a lattice of type I into an ambient lattice of
type II will result in highly fascinating dynamic features. Although in statics
we would have a uniform lattice which is homogenous, its dynamic response
may exhibit the total reflection of waves by the interface, as well as negative
refraction and focussing.

Imperfect interfaces may influence the overall properties of the ho-
mogenised composites. In particular, there are interesting examples concern-
ing the notion of neutral inclusions and, in a static setting, these were studied
in [14,23,100,122].

Dynamic composite structures containing coated inclusions have been
analysed in [160,161], where the notion of neutrality was linked to the effective
refractive index in the long-wave limit; the coated inclusions were considered
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(a) (b)

(c) (d)

FIGURE 1.1: Panels (a) and (b) show the stress σ11 and σ22 field plots around
an inclusion in a uni-axially loaded solid; (c) and (d) panels show the stress σ11
and σ22 field plots around an inclusion surrounded by an orthotropic inhomo-
geneous coating in the same uni-axially loaded solid. The stress concentration
has been dramatically reduced.
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as neutral if the effective refractive index of the composite medium was the
same as that of the homogenous solid without inclusions. In these papers, the
elastic coating around an inclusion was considered as anisotropic, and it was
demonstrated that the geometrical and physical parameters of the coatings
could be chosen to match the effective refractive index of the doubly peri-
odic array of coated inclusions with the refractive index of the unperturbed
homogeneous medium. Acoustic band gaps for waves in media with neutral
inclusions were considered in [77].

In statics one can introduce so-called imperfect interfaces in order to de-
scribe high-contrast coatings with elastic properties that are significantly dif-
ferent from those of the ambient elastic medium. In the context of homogeni-
sation and bounds on effective moduli and neutrality, static models of com-
posites containing coated inclusions have been analysed in [13,15,78,79,101];
including both stiff and soft, as well as highly anisotropic imperfect interfaces
in two-dimensional elasticity and problems of torsion.

A model of non-local structured interfaces was developed in [21] for static
and dynamic problems in elastic composite media. Special features, high-
lighted in that paper, include strong anisotropy and a finite-width interface. In
particular, for dynamic problems the structured interface may possess trapped
waveforms, which enhance transmission. The papers [16–18] studied new static
models of non-local structured interfaces, and addressed evaluation of their
effective mechanical properties and their influence on the elastic stress con-
centration around defects. Structured interfaces possess inertia, and hence,
tractions may become discontinuous across such interfaces in dynamic prob-
lems of wave propagation.

The interaction between periodic discrete and continuous systems was
studied in [21, 29] wherein the existance of “slow waves” was noted, and the
transmission properties of a finite-width dynamic structured interface was
analysed leading to unusual dynamic effects such as negative refraction.

1.3 Multi-physics problems and phononic crystal
structures

The interaction of electromagnetic waves with photonic crystal structures
has been the subject of rapid development in the last decade. In particular,
cloaking of electromagnetic waves has been analysed both experimentally and
theoretically; some of the earliest investigations in this area of wave studies
were reported in [58,174]. Being natural and well-studied for problems of elec-
tromagnetism and acoustics, the concept of wave cloaking was also addressed
for other classes of physical problems, which include linear water waves [63]
and flexural vibration of elastic plates [64]. The equations of vector elasticity
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(a) (b)

FIGURE 1.2: Structured interface coating: (a) the radial anisotropic struc-
ture, (b) the square anisotropic coating.

bring additional challenges, compared to the Maxwell system or the equations
describing flexural waves in elastic structures; the tensor structure of the gov-
erning equations of mathematical elasticity incorporates the notion of shear.
As a result, pressure and shear waves propagate with different speeds and
couple through the boundary conditions. This makes the modelling of elastic
metamaterial systems, which possess cloaking properties, difficult as outlined,
for example, in [119,143].

The dynamic response of vector elastic lattice systems, interacting with
waves, has been the subject of classical investigations, as discussed, for exam-
ple in [91], as well as [49, 177–179]. We note substantial differences between
scalar problems involving the vibration of systems of harmonic springs and
vector problems of elasticity, referring to elastic rods and beams, which con-
nect a system of finite solids or point masses. The notion of shear stress and
shear strain is absent in scalar lattice systems and there is no such analogue
in models of electromagnetism. The misconception of predictability of dy-
namic properties of vector elastic lattices is sometimes based on an intuitive
extrapolation of results available for the scalar systems or for problems of elec-
tromagnetism. As illustrated in [49], results observed for micro-polar elastic
lattice structures do not always follow from the simpler scalar physical models
or intuitive assumptions.

The papers [99,129,160–162,166,190] have addressed the problems of dis-
persion of Bloch–Floquet waves and phononic band gaps for elastic waves in
doubly periodic solids containing arrays of voids or inclusions. Transmission
problems for waves interacting with arrays of elastic gratings of inclusions were
studied in [163,164], including a comparative analysis of the filtering proper-
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(a) (b)

FIGURE 1.3: Wave-cloaking of a square scatterer: (a) a distorted wave front
within the cloaking layer; (b) the ray diagram showing the distorted metrics
in the cloaking region.

ties of elastic waves in doubly periodic media and the transmission properties
for the corresponding singly periodic gratings consisting of circular inclusions.

An elegantly designed elastic coating, with anisotropic inertial properties,
has been proposed in [123] to model an elastic “invisibility cloak”, which takes
an incident wave around a scatterer. The paper [28] shows an alternative de-
sign of an elastic cloaking coating which engages a micro-polar inhomogenous
composite structure. Structured interfaces, and their discrete approximations,
can be effectively used to construct dynamic invisibility cloaks, with two ex-
amples shown in Figure 1.2, which illustrate a radially symmetric structure
(part(a)) and a square structured interface (part (b)). The radially symmetric
wave cloaks are discussed, for example, in [43, 58, 98], and the square cloak
has been modelled in [48].

The papers [30, 39, 40] have addressed propagation of elastic waves, their
dispersion properties, and their interaction with defects in a two-dimensional
structured medium endowed with micro-rotations associated with spinning
gyroscopes embedded into the lattice system. The analysis of gyroscopic mo-
tion of an individual spinner was incorporated into the system of conservation
of linear and angular momenta within the lattice systems. Consequently, it
has led to a special design of chiral media, which are characterised by “hand-
edness” in their microstructures. Such media possess special properties related
to shielding, polarisation and filtering of elastic waves.
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1.4 Designer multi-scale materials
The term “metamaterials” is often used for multi-scale materials, which

are engineered to possess specially designed properties that are not found in
nature. Examples of interesting designs include structures which exhibit nega-
tive refraction [176], filtering, polarisation and focussing of waves [62,74,118].
In particular, metamaterial wave cloaking structures have been designed and
implemented in many physical applications; the example in Figure 1.3 shows
a distorted wave within a square inhomogeneous and anisotropic cloaking in-
terface and the ray diagram illustrating “diversion” of an incident wave [48].

Another term, “hyperbolic metamaterials”, is used for a special class of
structured multi-scale media, which exhibit a strong dynamic anisotropy ac-
companied by star-shaped wave forms. Such materials were designed and
studied in problems of optics [165], as well as in acoustics and linear elastic-
ity [8,50,92,94,131,151,170]. In particular, in the framework of time-harmonic
fields, the waves in hyperbolic metamaterials are modulated by functions,
which satisfy hyperbolic partial differential equations.

The paper [52] introduced the concept of “parabolic metamaterials” as
multi-scale structures which support uni-directionally localised waveforms.
This work also demonstrated interesting connections with the Dirac points on
the dispersion surfaces for Bloch–Floquet waves in a special frequency range.
We also note that Dirac cones on the dispersion surfaces occur as the result of
degeneracies in the dispersion equations characterising Bloch–Floquet waves
in photonic [117], phononic [42], and platonic crystals [112].

The dynamic homogenisation scheme developed and demonstrated in
[5,6,47,55,56,103] is also useful in the description of hyperbolic and parabolic
metamaterials. Classical two-scale asymptotic homogenisation approaches for
microstructured media (see, for example, [12, 154]) usually involve the study
of a class of model problems on an elementary cell and can be used effectively
in the long-wave quasi-static regime. In contrast, the approach of dynamic ho-
mogenisation addresses perturbations away from known resonances and may
be used to study dynamic anisotropy and localisation of waves in dispersive
media.

1.5 Dynamic anisotropy and defects in lattice systems
Classical applications in the theory of defects in crystals and dislocations

follow from the fundamental work [105], where explicit closed-form solutions
were derived for a heterogeneous lattice system when two distant particles of
different masses are interchanged. The envelope function-based perturbation
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approach was developed in [59, 102] for analysis of waveguides in photonic
crystal structures. In the latter case, an array of cylindrical inclusions embed-
ded into an ambient medium represents a waveguide, where the frequencies
of the guided modes are close to the band edge of the unperturbed doubly
periodic system.

Periodic lattices may exhibit very different behaviour in dynamics com-
pared to their static response. In particular, dynamic anisotropy and different
classes of localisation have been identified in periodic lattices, as outlined
in [8, 50, 92, 94, 131, 151, 170]. In some frequency regimes, corresponding to
neighbourhoods of resonances, hyperbolic metamaterials can be viewed as
multi-scale structures, where Bloch–Floquet waves exhibit behaviour associ-
ated with locally hyperbolic dispersion surfaces in the neighbourhood of cer-
tain resonances. Strong spatial localisation may occur where wave propagation
is permitted only along directions associated with the principal curvatures of
the hyperbolic dispersion surface. Important connections between the disper-
sion properties of Bloch–Floquet waves in a periodic lattice and the solutions
of forced problems are discussed in [50].

The dynamic lattice Green’s function describes the vibration of a lattice
with a single-point defect, or applied point force. Green’s functions have been
studied in [107] for two-dimensional square lattices in pass band regimes. The
paper [131] addressed continuous and discrete models for exponentially lo-
calised waveforms, with various forcing or defect types. Localised waveforms
have been identified for the cases when the forcing frequency and/or the nat-
ural frequency of the defect are placed in the band gap. Such defect modes
can be linked to the stop-band Green’s functions.

Using an asymptotic approach, the papers [20,68] considered the effect of
a pre-stress on the propagation of flexural waves through an elastic beam on
a Winkler foundation. Special attention was devoted to dynamically localised
waveforms and to control the position of band gaps via pre-stress. It was found
that a tensile pre-stress can increase the frequency at which a particular band
gap occurs.

The monograph [178] presents a detailed discussion of applications for dy-
namic lattice problems involving cracks modelled as semi-infinite faults, ad-
vancing in two-dimensional periodic elastic lattices. For a structured interface
and a crack propagating with an average constant speed through a square
lattice, localised modes were analysed in [124]. The article [138] presented
the study of a semi-infinite dynamic crack in a non-uniform elastic lattice.
The crack stability was analysed and a connection has been established be-
tween the unstable crack growth and the energy of waves emanating from the
crack-tip in the steady-state regime.

A comprehensive mathematical theory developing an asymptotic analysis
of fields in multi-structures is presented in the monograph [90], where bound-
ary layers near junctions are shown to have special importance in both static
problems as well as in problems of time-harmonic vibrations.
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(a)
(b)

FIGURE 1.4: Panel (a) shows a photograph of a typical weld which exhibits
the characteristic columnar grain alignments. Panel (b) is a plot of the grain
orientations generated by a scanning electron microscope from an actual weld.
Images courtesy of Amec Foster Wheeler plc.

1.6 Models and physical applications in materials
science

Studies of the propagation of elastic waves in inhomogeneous and
anisotropic materials are often motivated by the requirement for effective ul-
trasonic non-destructive examination of strongly anisotropic steel welds and
other components. In particular, an inhomogeneity may arise when the cast-
ing or weld is formed and the metallic crystals align such that their symmetry
axes are parallel to the maximal thermal gradient. Figure 1.4 shows a typical
weld and grain map, illustrating the inhomogeneity.

In some applications, ultrasonic probes and sensors are used to detect
defects in welded structures, and this in turn may require measurements of
the scattered fields. A numerical ray-tracing model was developed in [146]
to account for the inhomogeneous and anisotropic nature of the weld. The
paper [140] presented an investigation into the effect of beam distortion in
anisotropic, but homogeneous materials. Further studies [2, 186] suggested
that the weld may be modelled as a material with constant density and crys-
talline moduli, but with the orientations of the crystals smoothly varying with
position. In addition, the paper [144] developed a ray theory for elastic waves
propagating through the inhomogeneous and anisotropic medium, with the
emphasis on the special case of SH-waves.

Applications of the Bloch–Floquet wave theory to the study of the dynamic
localisation in welds has been illustrated in [51], which has surpassed the tra-
ditional ray-tracing approaches and revealed new features linked to dispersion
and localisation of elastic waves in a weld with a granular structure. In par-
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FIGURE 1.5: An illustration of the effect of grain structure on the path of
ultrasonic waves through granular welds. Here we plot the magnitude of the
dilatation.

ticular, the authors of [51] developed an analytical and computational model
capable of using data taken from actual welds (such as the grain structure
shown in Figure 1.4) to analyse the propagation of ultrasonic waves through
granular welds. Figure 1.5 shows an illustrative computation highlighting the
localisation and complex wave behaviour exhibited in such welds.

1.7 Structure of the book
This text is based on recent theoretical advances leading to modelling of

dynamic anisotropy, localisation and design of multi-scale heterogeneous ma-
terials, which possess unusual dynamic properties such as negative refraction,
filtering, and focussing of waves by flat interfaces as well as the creating of
invisibility cloaks. Some background material and a theoretical introduction
are also included in the book. Some of the key topics presented here include
Green’s functions and localised waveforms, dynamic response of dynamic elas-
tic structures with thin ligaments, dynamic anisotropy and localisation in lat-
tice systems.

Furthermore, the state-of-the-art is presented for models of hyperbolic and
parabolic modes and uni-directional or star-shaped wave forms, disintegrating
elastic solids and effective junction conditions for multi-structures in dynam-
ics. Multi-resonator systems, which also include tuneable thermo-elastic dy-
namic systems, are studied using asymptotic approximations, combined with
numerical simulations.

Asymptotic analysis is also used here to study continuous and discrete
media, dynamic inclusions and cracks in lattices versus Bloch–Floquet waves,
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platonic crystals and localised defect modes, chiral systems and models of
vibrating gyro-lattices, approximate cloaking in lattice structures, as well as
scattering reduction in structured plates.

Modelling foundations and methods of analysis of waves in multi-scale
media are discussed in Chapter 2. Chapter 3 includes models of waves in
so-called “disintegrating solids”, which are multi-scale structures with thin
ligaments and disintegrating junctions. Dynamic anisotropy, wave localisation
and defect waveforms in lattice structures are presented in Chapter 4. Chapter
5 deals with the topic of cloaking via the introduction of specially designed
multi-scale heterogeneous coatings. Finally, in Chapter 6, the reader will find
models of structured interfaces and special chiral media developed for multi-
scale elastic systems.

The book is aimed at a wide audience, including applied mathematicians,
physicists and engineers. It may be especially useful to research students who
would like to study dispersion and localisation of waves in structured media.

Enjoy reading!



Chapter 2
Foundations, methods of analysis of
waves and analytical approaches to
modelling of multi-scale solids

This preliminary chapter introduces some fundamental concepts and meth-
ods required for the analysis of wave propagation in multi-scale solids. We
begin in Section 2.1 by introducing the concept of dispersion, initially for
the classical example of linear water waves, then followed by one-dimensional
mass-spring chains. The elements of Bloch–Floquet theory for infinite periodic
media are summarised in Section 2.2, followed by a discussion of asymptotic
approximations of high-contrast continua by discrete lattices in Section 2.3.
We then proceed to study a one-dimensional transmission problem where two
dissimilar lattices are joined by a “structured interface” in Section 2.4; we
also introduce the notion of the transmission matrix. An important connec-
tion is established between formally distinct Bloch–Floquet problem and the
transmission problem.

In Sections 2.5 and 2.6 we move on to problems for defects in otherwise
periodic media and analyse the associated localised waves. Finally, in Sec-
tion 2.7, we briefly summarise the approach of Craster et al. [47, 55] for the
asymptotic homogenisation of periodic media at finite frequencies, which has
proven extremely useful in the analysis of dynamic problems in multi-scale
media.

The present chapter is intended to provide the uninitiated reader with a
concise introduction to the principal methods required for the material pre-
sented in later chapters. The interested reader is also referred to the references
provided for further information. In contrast, the reader familiar with this area
of research may consider proceeding directly to Chapter 3.

2.1 Wave dispersion
This introductory section discusses some classical examples of dispersive

waves, i.e. waves whose speeds are different for different frequencies. At the
beginning we refer to linear water wave theory, which is well known in models

13
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of fluid flow as discussed, for example, in [24]. Another example, included in
Section 2.2, is a one-dimensional lattice system, known from classical texts,
such as [85] and [26]. The dispersion relations, that is the equations relating the
permissible values of frequency and wavenumber, are written in explicit form
and formation of a stop band, i.e. ranges of frequency with which no waves
can propagate, is discussed for heterogeneous systems. An asymptotic model
is given for a high-contrast stratified structure in Section 2.2. Following [128]
we discuss the lattice approximation of such a system, which is capable of
reproducing the dynamic response of the heterogeneous continuum system in
the low frequency range.

2.1.1 Elementary considerations for linear water waves
One of the straightforward examples of dispersion is based on the linear

theory of waves propagating along the surface of an incompressible inviscid
fluid of uniform density. For convenience, we call such a fluid “water”. The
continuity equation and the equation of motion for the velocity u and pressure
p have the form [3]

∇ · u = 0, (2.1)
∂u
∂t

+ (u · ∇)u + 1
ρ
∇p = F, (2.2)

where F is the body force density, ρ is the mass density, and t is time. In
particular, if the body force represents gravity we have F = −ge(3), and

F = ∇Ξ with Ξ = −gx3, (2.3)

where g is a positive constant, normalised gravitational acceleration, the up-
ward vertical x3-axis is orthogonal to the unperturbed water surface, and e(3)

is the unit vector along this axis.
Assuming that the fluid flow is irrotational and using the notation φ for

the velocity potential we have u = ∇φ. Hence according to (2.1) the function
φ is harmonic

∇2φ = 0, (2.4)
within the fluid. The non-linear term in (2.2) becomes

{(u · ∇)u}i =
∑
j

uj
∂ui
∂xj

=
∑
j

∂φ

∂xj

∂2φ

∂xi∂xj
= 1

2
∂

∂xi

(
|∇φ|2

)
. (2.5)

Thus, (2.2) may be written as

∇
(
∂φ

∂t
+ 1

2 |∇φ|
2 + p

ρ
+ gx3

)
= 0,

which leads to Bernoulli’s equation
∂φ

∂t
+ 1

2 |∇φ|
2 + p

ρ
+ gx3 = f(t), (2.6)
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FIGURE 2.1: Surface water waves in a flow of finite depth.

where f(t) is a function of t only.
The boundary conditions are set at the bottom and upper surfaces S1 and

S2, respectively, as shown in Figure 2.1. It is assumed that the bottom surface
S1 of the channel is fixed and hence the normal component of the velocity is
zero, that is,

u · n = 0 on S1. (2.7)
It is also assumed that the upper surface S2 is characterised by the equation

x3 = ζ(x1, x2, t),

and there is no variation in pressure on S2:

p = p0 = const on S2.

Hence, according to (2.6) on the free surface we have

∂φ

∂t
+ 1

2 |∇φ|
2 + p0

ρ
+ gζ(x1, x2, t) = f(t), as x3 = ζ(x1, x2, t). (2.8)

This is accompanied by the identity

u3 = dx3
dt

= dζ

dt
= ∂ζ

∂t
+ u1

∂ζ

∂x1
+ u2

∂ζ

∂x2
on x3 = ζ(x1, x2, t). (2.9)

In the linear approximation, we simplify the problem by addressing the case
when |u|, the surface fluctuations, and the derivatives ∂ζ/∂x1 and ∂ζ/∂x2 are
all small.

In particular, if the unperturbed surface is x3 = h = const, then for the
free surface we can write

φ(x, t) = φ(x1, x2, ζ(x1, x2, t), t) =

= φ(x1, x2, h, t) + (ζ − h) ∂φ
∂x3

(x1, x2, h, t) + . . .


