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Preface

World food production has increased significantly over the last century largely due 
to the rise in population and consumer demand for food variation. Increase in food 
production has resulted in generation of high quantities of waste from the food 
production chain. Approximately 50 per cent of food from ‘farm to table’ is wasted. 
This is both a national and global problem because of the numerous risks caused by 
food waste to humans, animals and the environment.

Waste generated from agriculture and food production is considered as general 
waste because of its limited utilisation and low economic value. The large quantity 
of waste generated annually from agricultural and food production requires billions 
of dollars to be spent on agricultural and food waste treatment. Numerous studies 
undertaken on food waste reveal that it is a rich source of bioactive compounds, 
which can be extracted and isolated for further utilisation in the food, cosmetic and 
pharmaceutical industries.  

Utilisation of bioactive compounds isolated from food waste not only reduces 
the risks and costs of waste treatment, but also adds more value to agricultural and 
food production. Information on different aspects of waste bioactive compounds 
proves useful for students, academics, researchers and professionals engaged 
in food science and the food industry. This book was developed with the aim of 
providing comprehensive information related to extraction and isolation of bioactive 
compounds from agricultural and food waste for utilisation in the food, cosmetic and 
pharmaceutical industries. 

The topics range from bioactive compounds and potential health benefits, bioactive 
compounds in waste, techniques used to analyze, extract, isolate and encapsulate these 
compounds to several specific examples for potential utilisation of waste generated 
by the agricultural and food industry, such as rice, oil, wine and juice production. 
This book also discusses the potential of bioactives isolated from waste for re-use in 
important applications. It may be noted that the book covers only the main aspects 
of utilisation of bioactive compounds derived from plant waste materials, not from 
animal or marine materials. In addition, utilisation of by-products of agriculture and 
food produce is a complex issue. Although this book cannot cover the entire spectrum 
of utilisation of food waste, it is expected that the readers will find the information 
useful for their related works.

This book is an excellent compilation of knowledge gleaned by world experts, 
working on food waste and bioactive compounds. I would like to acknowledge the 
efforts of the authors in making invaluable contribution to this book. I am grateful to 
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the reviewers for their commitment to improving of the quality of this book. A word 
of thanks go to my wife, son and daughter for their encouragement. Finally, I would 
like to thank the CRC Press for publishing this book.

Quan V. Vuong
University of Newcastle Brush Road, 

Ourimbah, NSW 2258 Australia
E-mail: vanquan.vuong@newcastle.edu.au 
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Chapter 1

Bioactive Compounds in agricultural 
and Food production Waste

Nenad Naumovski,1,* Senaka Ranadheera,2 Jackson Thomas,3 
Ekavi Georgousopoulou1 and Duane Mellor1

Introduction

The use of natural products from plants and foodstuffs as medicines or as a part 
of the medicinal approach has been recorded since ancient times. These medicines 
constituted key components of traditional medicines in the form of extracts, 
powders, potions and oils. However, they relied on combination of very complex and 
matrix-imbedded combinations of compounds, rather than on pure and individual 
compounds themselves. Today the pure components of these compounds are products 
predominantly identified as secondary plant metabolites. Interest in these compounds 
as potential drug-leads could be incorporated in new aspects of pharmaceutical design 
and as such pose significant new areas of development. This is mainly due to their 
very diverse structure when compared to the standard combinatorial chemistry, 
which allows the discovery of predominately low-molecular-weight lead compounds. 
From this perspective, current modern-medicine can be identified as having its own 
foundation based on the more traditional medicine approach (Naumovski 2015).

Today’s society is described as one of an ageing population, predominantly due 
to the very large proportion of baby boomers (born after the Second World War) that 
are now approaching their third age of life, with the highest life expectancy ever. 
These trends are also seen globally in the developed and some developing countries. 
It is therefore expected that the new structure of the society will mainly be composed 

1 Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Locked Bag 1, 
Canberra, ACT, 2601, Australia. E-mail: Ekavi.Georgousopoulou@canberra.edu.au; duane.mellor@
canberra.edu.au

2 Advanced Food Systems Research Unit, College of Health & Biomedicine, Victoria University 
Werribee, VIC 3030, Australia. E-mail: Senaka.Ranadheera@vu.edu.au

3 Jackson Thomas, Discipline of Pharmacy, Faculty of Health, University of Canberra, Locked Bag 1, 
Canberra, ACT, 2601, Australia. E-mail: Jackson.thomas@canberra.edu.au
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of retired individuals or close to their retirement. Although the initial stage of the 
third age is commonly accepted to be relatively healthy and active, the last two-thirds 
are commonly burdened with increased incidence of illnesses, such as cardiovascular 
disease (WHO 2014), cognitive decline (Kumar et al. 2015) and various types of cancer 
(Cragg and Newman 2005). Demographic changes based on the age of the individual 
are responsible for development and re-design of new foods and functional foods 
to meet the new health and lifestyle challenges. Therefore, it is not surprising that 
the search for potential functional foods and natural supplements that can potentially 
delay the onset of these diseases (and associated ones) is on the increase both from the 
viewpoint of the consumer and the manufacturer (Covolo et al. 2013). Importantly, 
dependence on the use of these natural products (and their derivatives) can not only be 
seen from the specific age time-frame, but rather be viewed independent of the cross-
cultural and geographical needs. 

In addition to the increased proportion of society comprising an ageing population, 
there is a steady and consistent increase in the world population overall. This leaves 
humanity facing formidable challenges in securing adequate food sources for the 
well-being of the overall population (Sutovsky et al. 2016). Food waste reduction 
and reutilisation can been seen as the single and most easily approachable method 
to address issues of food security and health. The lowering of the traditionally seen 
food waste, such as usable but unused component of the food source, can effectively 
increase food usability (Godfray et al. 2011, Tilman et al. 2011). In addition, the 
use of non-usable food products commonly seen as the leftover of the primary food 
production, can also prove a significant source of bioactive compounds and as such, 
potentially reduce the burden on the primary food product itself. In 2011, the Food 
and Agriculture Organisation (FAO) identified that every year one-third of the world’s 
food produced for human consumption is wasted (FAO 2011). This report specifically 
focuses on the grown-but-not-eaten foods and although it emphasizes the importance 
of food losses to combat hunger, raise income and improve the food security in some 
of the poorest countries, it points to the missed opportunity to improve global food 
output and utilisation. 

Currently, the increased global need is for reduction of food waste from the 
socio-economic perspective and from all aspects of extraction and re-utilisation into 
the food system. This must be seen from the perspective of the single identifiable 
compound and also from the cocktail of compounds that can target increased health 
response. Therefore, the main aim of this chapter is to provide introduction to the 
current sources of food waste from agricultural production and to identify some of the 
most important classes of bioactive compounds found in the food waste. In addition, 
the potential significance of these compounds in use in today’s nutraceutical industry 
will also be discussed briefly. 

Sources of Agricultural and Food Production Waste

In general, food waste includes products that are not used, but are directly related 
to human consumption (FAO 2011). As such, the division can be made in five very 
broad systems boundaries (Table 1). Although not included in the strict definition of 
food waste, the use of leftovers of agricultural food production must be taken into 
account. Therefore, from the food industry perspective, waste can be derived from 
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Table 1. Identifiable ‘Five system boundaries’ of food waste (Adapted from FAO 2011).

System boundary Examples of potential food losses

Agricultural production Mechanical damage, spillage during harvesting, fruit picking

Post-harvest handling and storage Spillage and degradation during handling, storage and 
transport

Processing Industrial or domestic processing

Distribution Market systems

Consumption During consumption at the household level

raw vegetable and animal material processing during edible food material production 
(Baiano 2014). Interestingly, the food industry itself produces a significant amount 
of food waste, with the highest amounts being produced during the handling of fruit 
and vegetables, followed by milk, meat, fish and wine food productions (FAO 2011, 
Baiano 2014).

A large majority of the food industry’s waste products contain potentially 
marketable bioactive compounds that are normally present in foods and associated 
products. Although interest in these compounds was reported since several decades, 
it is only recently that significant attention has been channelled towards utilisation 
and extraction of these bioactives from industry waste. Therefore, the new emerging 
aim of the food industry is to completely exploit the high value components, such as 
macronutrients (proteins and carbohydrates) and secondary plant metabolites, such as 
phytochemicals that contain potential nutraceutical-related properties. 

Bioactive Compounds from Food Waste

It is well established that food, nutrition and pharmaceutical industries have a 
significant number of overlapping interests and areas of research. Since the rise of the 
term nutraceuticals, the search for natural compounds in the form of plant extract or as 
single compounds with beneficial health effects has risen exponentially and become a 
lead topic of many research laboratories around the globe (Naumovski 2015). 

The term bioactive compounds is loosely used in today’s literature despite the 
consensus in terminology defining it as the majority of non-nutritive compounds 
present in foods with the strong potential to improve human health (Biesalski et 
al. 2009). Interestingly, the use of non-nutritive compounds raises a query that is 
arguable, as some of these compounds can play a major role in nutrition and human 
health (Bernhoft 2010). In addition, minerals and vitamins are active components of 
plants and can induce beneficial and toxicological effects when ingested in relatively 
large quantities and over prolonged periods of time. However, when discussing the 
bioactives as a separate entity of compounds, these compounds must be produced as 
secondary plant metabolites (Cragg and Newman 2005, Biesalski et al. 2009). 

Secondary plant metabolites (Fig. 1) are exceptionally diverse compounds, 
both structurally and chemically, and are quite often localised in specialised plant 
cells. These compounds are not directly required for the plant metabolism (such as 
photosynthetic or respiratory metabolism) but rather, their importance is sought in the 
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plant’s survival in the environment. As such, their accumulation is associated with the 
developmental stages of the plant itself and can provide defensive (against parasites or 
competing plants) signalling (attraction to pollinating insects) and overall protective 
support to the plant (oxidant protection). Additionally, the pattern of distribution of 
these compounds is very diverse between the plant organs and organelles and also 
between the individual and different plant populations (such as same plant species, but 
from different geographical positions) (Lattanzio 2013). 

The classification of plant secondary metabolites is commonly based on the 
biosynthetic route or structural features (Lattanzio 2013). However, these metabolites 
can also be viewed from the basis of clinical function related to their pharmacological 
effect and botanical approach considering their families (Cragg and Newman 2013, 
Naumovski 2015). Alkaloids and glycosides are amongst the important categories that 
are currently attracting a significant amount of research in relation to their recovery 
from industrial food waste sources—terpenoids and polyphenols (for nutraceutical 
development).

Structure, Classification and Occurrence of Bioactives in Food 
Sources

Alkaloids 

Alkaloids are natural nitrogen-containing organic compounds with tremendous 
biological activities (Shi et al. 2014). These compounds are efficiently biosynthesized 
from amino acids, such as tyrosine (Evans and Mitch 1982) or from amination and 
transamination reactions (Aniszewski 2015). The boundary between alkaloids and other 
nitrogen-containing natural compounds is yet to be defined. However, in addition to 
carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulphur and rarely 
other elements, such as chlorine, bromine and phosphorus (Kabera et al. 2014). The 

Figure 1. Brief outline of primary and secondary plant metabolites.



  Bioactive Compounds in Agricultural and Food Production Waste 5

majority of alkaloids are found in higher plants as secondary metabolites, especially 
in dicots while a few exist in the lower plants (Shi et al. 2014). Certain fungi, such 
as Claviceps, Penicillium, Rhizopus and Aspergillus (Dembitsky 2014) and bacteria 
including genus Streptomyces (Zotchev 2013) also contain natural alkaloids. Naturally-
occurring plant alkaloids, in particular the alkaloids present in herbal medicinal plants, 
have been used in therapeutic application for centuries due to their wide range of 
pharmacological activities, including potential anti-inflammatory effect, antibacterial 
and antiviral effects, antimalarial, anticancer activity, hypoglycaemic effects, with 
positive effects on the central nervous system (Shi et al. 2014, Pereira et al. 2016) 
and adrenergic (stimulant) activity to promote weight loss (Fugh-Berman and Myers 
2004). Thus alkaloids may also contribute to increased perception of flavor, taste and 
quality of fruits and vegetables (He et al. 2011). 

At present more than 12,000 different natural compounds and their derivatives 
are recognized as alkaloids and their classification is challenging due to their great 
structural diversity (Hesse 2002, Chowański et al. 2016). Alkaloids can be classified 
broadly in terms of (1) biological and ecological activity, (2) relation to chemical 
and technological innovations, (3) chemical structure, and (4) biosynthetic pathway 
(Aniszewski 2015). There are some other classifications of alkaloids based on their 
natural sources and the similarity in the carbon skeleton. According to the position of 
the N-atom in the main structural element, alkaloids can be divided into five different 
groups: (1) Heterocyclic alkaloids, (2) Alkaloids with N-atoms in exocyclic position, 
including aliphatic amines, (3) Putrescence, spermidine and spermine alkaloids, (4) 
Peptide alkaloids and (5) Terpene and storied alkaloids (Hesse 2002).

Alkaloids are usually distributed non-homogeneously over plant tissues and 
the maximum alkaloid concentration in a plant can be made into any of its tissues, 
including leaves, fruits or seeds, root or bark.  Different tissues of the same plants 
may possibly contain different alkaloids as well (Grinkevich and Safronich 1983, 
Hesse 2002). Some well-known alkaloids and their plant sources are listed in  
Table 2. Chemical structures of two alkaloids which can potentially be recovered from 
food production by-products, such as potato and tomato wastes, are represented in 
Fig. 2.

There is no common or recommended method for isolation of alkaloids due 
to their higher diversity. Alkaloids, which are slightly soluble in water, are soluble 
in ethanol, benzene, ether, and chloroform (Aniszewski 2015). Based on these 
characteristics, a number of extraction techniques for alkaloids are available, such 
as ultrasound-assisted extraction, pressurized liquid extraction, microwave assisted 
extraction, enzyme assisted extraction, Soxhlet extraction and solid–liquid extraction 
(Hossain et al. 2015).

Glycosides

Glycosides are organic compounds usually found in plants and may contain phenol, 
alcohol or sulphur compounds within their structure. They are characterized by a 
sugar portion or moiety attached by a special bond (mostly a glycosidic bond) to 
one or non-sugar functional compounds. Many plants store chemicals in the form 
of inactive glycosides, which can be activated by enzyme hydrolysis, causing the 
sugar part to be detached and making the chemical available for use (Brito-Arias 
2007, Kabera et al. 2014). These plant glycosides are extremely diverse and mostly 



6 Utilisation of Bioactive Compounds from Agricultural and Food Waste

Table 2. Some well-known alkaloids and their sources (Adapted from Kabera et al. 2014).

Alkaloid name Source

Atropine Atropa belladonna, Darura stramonium, Mandragora officinarum 

Berberine Berberis species, Hydrastis, Canadensis, Xanthorhiza simplicissima, 
Phellodendron amurense, Coptis chinensis, Tinospora cordifolia, 
Argemone mexicana and Eschscholzia californica

Codeine Papaver somniferum

Coniine Conium macularum, Sarracenia flave

Cytisine (baptitoxine, 
sophorine)

Labum and Cytisus of Fabaceae family, most extracted from seeds of 
Cytisus laborinum 

Morphine Papaver somniferum and poppy derivatives

Nicotine Solanaceae plant family

Quinine Cinchona succirubra, C. calisya, C. ledgeriana, plants of Rubiaceae 
family

Solanine Solanum tuberosum, S. lycopersiam, S. igrum, plants of Solanaceae 
family

Strychnine Strychnos nux-vomica, Loganiaceae plants family

Thebaine (paramorphine) Papaver bracteatum

Tomatine Green parts of tomato plants

Figure 2. Chemical structures of; (a) solanine; and (b) α-tomatine (Adapted from Lee et al. 2013, 
Manrique-Moreno et al. 2014). 
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categorized as prodrugs since they remain inactive until they are hydrolyzed in the 
large intestine, leading to the release of the aglycone or the non-sugar portion, which 
is the right active constituent (Kabera et al. 2014). Glycosides are heterogeneous in 
structure and their classification is based on the nature of aglycone, which can be 
a wide range of molecular types, including phenols, quinines, terpenes and steroids 
(Kabera et al. 2014). Certain classifications are based on the therapeutic properties of 
glycosides, which can be further categorized into different groups, such as cardiac/
steroidal, flavonoid, saponin, anthraquinone, cyanophore, isothiocyanate, alcohol, 
lactone, phenolic, coumarin, chromone and iridoid glycosides. Glycosides can also be 
categorized into four major groups based on the atoms involved in glycosidic linkage 
or the type of glycosidic bond: C-glycoside (when sugar moiety is lined with carbon 
atom), O-glycoside (with oxygen), S-glycoside (with sulphur) and N-glycoside (with 
nitrogen) (Brito-Arias 2007). 

Glycosides contribute to the flavor, taste, color and quality of a number of plant-
derived foods. For example, the most widespread anthocyanin which contributes color 
to fruits is cyanidin-3-glucoside (Fig. 3) (Kong et al. 2003, Shahidi and Ambigaipalan 
2015). Additionally, therapeutic properties of glycosides include anticancer effects 
(Newman et al. 2008), expectorant, sedative, antidepressant, anticonvulsant activities 
and effect on the central nervous system (Fernández et al. 2006, Kabera et al. 2014, 
Wang et al. 2016). Glycosides can also be recovered from similar techniques used in 
isolation of alkaloids with water, methanol or ethanol used as the solvent for extraction 
(Brito-Arias 2007). 

Phenolic compounds

Phenolic compounds are the most ubiquitous, diverse and widely distributed secondary 
plant metabolites lacking presence in bacteria, fungi and algae. To date, there are over 

Figure 3. The flavylium cation. R1 and R2 are H, OH, or OCH3; R3 is a glycosyl or H; and R4 is OH 
or a glycosyl (Adapted from Kong et al. 2003).
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8,000 different types of compounds and more than 4,000 flavonoids that have been 
classified (Tsao 2010). The phenol, as a broad term, refers to the chemical structure that 
defines the phenyl ring bearing one or more of the hydroxyl substituents. Therefore, 
the commonly used terminology referred to as polyphenols only further extends the 
structural component of the substance where multiple (at least two) phenol rings are 
present and contain at least one (or more) of the hydroxyl groups. This classification 
of phenolic compounds in literature is loosely used and is not necessarily related to 
the hydroxyl groups but also includes their functional derivatives (such as glycosides). 
Glycosides, discussed earlier in this chapter, actually contain the majority of plant 
polyphenols with different sugar units and acylated sugars at different positions of 
the polyphenolic skeleton. Interestingly, the term polyphenol could also include 
compounds, such as gossypol and oestrogene (Lattanzio 2013). Therefore, the 
classification of polyphenols in this chapter will be fundamentally based on different 
groups as a function of the number of phenol rings and on the structural elements that 
bind these rings together. Therefore, distinctions can be made from the flavonoids, 
phenolic acids, stilbenes and lignans (Manach et al. 2004, Tsao 2010, Naumovski 
2015). 

Flavonoids: Flavonoids are most predominant polyphenols and secondary metabolites 
with over 4,500 different compounds identified to date. In their structure, the most 
common feature that flavonoids share is the 2 aromatic rings (A and B) bound together 
by 3 carbon atoms, effectively forming an oxygenated heterocycle ring (C) (Fig. 4). 
The diversity of the type of heterocyclic rings is the primary driver of the functional 
classification of the flavonoids subgroups. Therefore, based on the functional 
properties, the flavonoids can be divided into flavonols, flavones, isoflavones, 
flavanones, anthocyanidins and flavanols (Manach et al. 2004, Huber and Rupasinghe 
2009, Bernhoft 2010, Naumovski 2015). 

Flavones: Flavones (Fig. 4b), are most commonly found in the skins of fruits and 
vegetables as well as in some culinary herbs. Two of the most common flavones in 
the edible plants are apigenin and luteolin. The apigenin is present in abundance in 
food sources, such as celery, onion (0.05 mg/100 g) and also in the culinary herbs, 
such as fresh sage and dried marjoram (4.4 mg/100 g). On the other hand, the luteolin 
is predominately present in fruit and vegetables, such as celery, broccoli, carrots, 
cabbages and apple skins at levels up to 60 mg/100 g (Neveu et al. 2010, Naumovski 
2015). 

Flavonols: Flavonols (Fig. 4c), are regarded as the most ubiquitous flavonoids present 
in foods and predominantly found as diverse glycosides with sugar moiety bound 
to the C-3 position. These compounds are found in different fruits and vegetables, 
such as onions, apples, grapes and some food products, such as ciders, wine and tea 
(Manach et al. 2004, Naumovski 2015). The main compounds—quercetin, myricetin 
and kaempferol—are the lead structures representing this group and although they are 
the most distributed compounds, their concentration levels in food are relatively low. 
For a majority of food sources, flavonol levels are less than 30 mg/kg of fresh weight 
for individual compounds (Manach et al. 2004). However, some food sources do 
contain relatively high levels of these compounds, such as cranberries, onions (with 
quercetin levels above 15 mg/100 g) and kale (with myricetin levels above 25 mg/ 
100 g) (Bhagwat et al. 2013, Naumovski 2015). Interestingly, myricetin levels are 
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related to the ripening stages of berries, with increased levels detected at fruit ripening 
(Ong and Khoo 1997). 

Flavanones: Flavanones (Fig. 4d) are polyphenolic compounds that are rather unique 
for their presence in foods, as these compounds are predominately found in citrus 
fruits (Manach et al. 2003). From the food production perspective, orange juice is one 
of the most commonly represented foods that contains very high levels (90 per cent)  
of hesperidin (hesperidin-7-rutinoside) and much smaller percentage (10 per 
cent) being assigned to narirutin (naringenin-7-rutinoside) (Coelho et al. 2013,  
Naumovski 2015). 

The food sources of flavanols (Fig. 4e) were reported to be in many fruits and 
vegetables, tea and a variety of different legumes, herbs and spices. Although these 
compounds exist in both monomer (catechins) and polymer forms (proanthocyanidins), 
catechins as flavanols have aroused significant interest in the latest literature due to 
their potential beneficial health effects (Mellor et al. 2010, Sathyapalan et al. 2010, 
Mellor et al. 2013, Lau et al. 2016). Catechins are found in fruits like apricots (250 
mg/kg) but also present in food products, such as red wine (300 mg/L) (Manach et al. 

Figure 4. Common structure of flavonoids: a) containing 2 aromatic rings (A and B) and oxygenated 
heterocyclic ring (C); b) flavone; c) flavonol; d) flavanone; e) flavanol; f) anthocyanidin; and g) 
isoflavone.
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2004, Naumovski 2015). However, green tea (Coelho et al. 2013) and chocolate (Gu 
et al. 2006) are two of the most catechin-dense foods available on the current market. 
Green tea in particular contains much higher levels of total catechin content while 
black tea has significantly lesser amounts due to the fermentation processes associated 
with black tea production (Vuong et al. 2010, Vuong et al. 2011). Proanthocyanidins 
are also referred to as tanins which are responsible for the astringent characteristics of 
fruits like apples, grapes and pears but also for the perceived bitterness of chocolate. 
Interestingly, these characteristics of foods diminish as the fruit ripens (Manach et al. 
2004, Naumovski 2015). 

Anthocyanidins: Anthocyanidins (Fig. 4f) are compounds commonly associated 
with the presence of different and vibrant colours (mainly blue and red) in numerous 
fruits, vegetables and flowers. These compounds are often bound to sugar groups 
and structurally, anthocyanidins are glycosylated polyhydroxy and polymethoxy 
derivatives of the flavium salts (Wallace 2011, Naumovski 2015). Despite the relatively 
large number of anthocyanidins already identified (over 630), only six (cyaniding, 
delphinidin, malvidin, pelargonidin, peonidin and pertuindin) form over 90 per cent 
of the anthocyanidins found in food products. The highest levels of anthocyanidins are 
reported in black grapes (up to 39.23 mg/100 g) and black currants (86.68 mg/100 g) 
(Neveu et al. 2010, Naumovski 2015). 

Isoflavones: Isoflavones (Fig. 4g) are diphenolic compounds present in legumes, such 
as soybean and common black beans. These compounds have a structure very similar 
to mammalian estrogen and their consumption was reported to induce estrogenic and 
non-estrogenic effects. Two of the most predominant isoflavanones are genistein and 
daidzein with levels reaching 3 mg/g in various types of soybeans (Manach et al. 
2004, Neveu et al. 2010, Naumovski 2015). Additionally, these compounds can also 
be found in different forms of conjugations, such as isoflavone glucosides (sugar 
conjugated) and acetyl- and malonyl glucosides. 

Phenolic acids: Phenolic acids can be divided into two main categories, derivatives 
of benzoic acid and derivatives of cinnamic acid (Fig. 5) and these compounds are 
found free and as conjugates in several different foods. The cinammic acid derivatives 
commonly occur in foods than benzoic acid derivatives and predominately consist 
of coumaric (Fig. 5b1), caffeic (Fig. 5b2) and ferullic acids (Fig. 5b3). In Nature, 
phenolic acids are most commonly found in bound glycosylated derivatives of esters 
of quinic, shikimic and tartaric acids, except in the processed foods that has undergone 
freezing, sterilization or fermentation (Manach et al. 2004, Naumovski 2015). 

Caffeic acid is the most abundant phenolic acid with over 75 per cent acid content 
of most fruits with highest concentrations seen in the outside layer of the fruit. 
The concentration to decreased during fruit ripening, but the overall quantities are 
proportional to the increase in fruit’s size. 

Ferullic acid, however, is predominantly found in seeds and cereal grains and may 
be responsible for up to 90 per cent of total polyphenolic content. Similarly to caffeic 
acid, the frullic acid is chiefly found in the outermost layer of wheat endosperm 
(aleurone and pericarp layers) and potential losses of this phenolic acid during flour 
production can be quite significant (Manach et al. 2004, Naumovski 2015). 
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The benzoic acid content of fruit and vegetables is generally low, except in foods 
such as onions and some red fruits with values reported to be a few tens of mg/kg. 
Interestingly, tea is reported to have the most important source of gallic acid with 
concentrations reaching 4.5 g/kg (Neveu et al. 2010, Naumovski 2015, Naumovski 
et al. 2015). 

Stilbenes: Stilbenes are one of the only polyphenols that are found in very small 
concentrations in the human diet due to very small quantities occurring naturally in 
foods (Neveu et al. 2010, Naumovski 2015). In this class of polyphenols, resveratrol 
(Fig. 6) is the most abundant stilbene found in a small number of edible plants. 
Resveratrol (trans-3,4’,5-trihydroxystilbene) is a polyphenol commonly found in 
grapes and has been associated with several beneficial health effects chiefly driven 
via the anti-inflammatory metabolic regulation in humans (Christenson et al. 2016). 
Resveratrol is found in strawberries (0.35 mg/100 g) and red currants (1.57 mg/ 
100 g) (Ehala et al. 2005). However, the most investigated and advertised food 
product of resveratrol occurrence is wine. It is found in the skin and seeds of grapes, 
but larger quantities are found in red wine (0.19 mg/100 ml). It is important to note 
that resveratrol is found in white and rose wines as well, but to a much smaller extent 
(around tenfold less). Furthermore, the quantity of resveratrol found in different 
varieties of red wine is mainly dependent on the grape variety and is also regulated by 
different external factors, such as geographical region and climatic factors that grapes 
are exposed to (Gambuti et al. 2007, Neveu et al. 2010, Naumovski 2015).

Lignans: The basic lignan structure is composed of two cinnamic acid residues (or 
their biogenetic equivalents) (Ayers and Lokie 1990) and as such, belong to a class 
of a very large group of pharmacologically active compounds (Teponno et al. 2016). 
Most of the lignans commonly occur freely in a variety of the human food sources. 
However a relatively small proportion also occurs as glycosides in wood and resin 

Figure 5. Structures of two classes of phenolic acids: a) bezoic acid; and b) Cinnamic acid and their 
derivatives; Protocafechuric acid–a1; Gallic acid–a2; Coumeric acid–b1; Caffeic acid–b2; and Ferullic 
acid–b3 (Adapted from Kim et al. 2016). 



12 Utilisation of Bioactive Compounds from Agricultural and Food Waste

of some plants. These compounds are also referred to as dimers possessing a fairly 
complex chemical structure. Further, a relatively few trimers and tetramers are also 
of relatively low molecular weight found in nearly all morphological structures of 
the plant itself. According to their structure, ligans can be classified into five main 
categories, namely, lignans, neolignans, norlignans, hybrid lignans and oligomeric 
lignans, which are further classified into their own respective subgroups (Landete 
2012, Zhang et al. 2014, Teponno et al. 2016). 

These fiber-related polyphenols are very common in foods with significant 
amounts of fiber, such as whole-grain products (Landete 2012). Additionally, lignans 
are also found in other food sources, such as nuts and oilseeds, cereals and breads as 
well some fruits with varying levels of concentrations (Manach et al. 2004, Landete 
2012). A food source with the highest amount of lignans is flaxseed (around 300 
mg/100 g) followed by sesame seeds (up to 30 mg/100 g), sunflower seeds (0.89 
mg/100 g) and cashew nuts (0.63 mg/kg). Cereals also present a significant source of 
lignans with highest amounts being detected in rye (8.6 mg/100 g), wheat (3.2 mg/100 
g) and oat (2.3 mg/100 g). Vegetables have high levels of lignans (0.19–2.3 mg/100 
g) in sources such as cabbage, Brussel sprouts and kale, while the range of lignans 
in fruits is reported to range from 0 (banana) to 0.45 mg/100 g for apricot (Landete 
2012). 

Terpenoids

Bioactive plant constituents have been actively studied for their health-enhancing 
properties since numerous years and as described above, key bioactive plant-derived 
constituents include flavonoids, phenolic acids, carotenoids, tocopherols, alkaloids, 
lignans, tannins, salicylates, glucosinolates and triterpenoids (Han and Bakovic 2015). 

Figure 6. Chemical structure of resveratrol (trans-3,4’,5-trihydroxystilbene) (Adapted from Kim et 
al. 2016).
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Triterpenoids are Nature-derived compounds present in free form as well as in the 
form of numerous glycosides. The complex structures of triterpenoids mainly involve 
squalene derivatives, lanostanes, cycloartanes, dammaranes, euphanes, tirucallanes, 
tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, 
serratanes and other less known groups (Lesellier et al. 2012, Han and Bakovic 2015). 
The special triterpenic skeletons allow performance of chemical modifications in order 
to obtain many new derivatives with improved pharmacological activity (Lesellier et 
al. 2012). All forms of triterpenoids are widely distributed in edible and medicinal 
plants. Consequently they form an integral part of the human diet (Han and Bakovic 
2015).

The three key triterpene groups include oleane, ursane and lupane triterpenes 
(Hill and Connolly 2011). The main triterpenoids found in the oleane category include 
oleanolic acid, erythrodiol and β-amyrin, whereas ursane and lupane families contain 
ursolic acid, uvaol; and lupeol, betulin and betulinic acid respectively (Han and 
Bakovic 2015). Oleanolic acid, maslinic acid, and β-amyrin are the chief compounds 
present in the oleanane triterpene family. These compounds are predominantly 
found in the skin of grapes, olives and tomatoes. Ursolic acid and uvaol are the chief 
compounds present in the ursane family. They are mainly present in the cuticle of 
apples (Han and Bakovic 2015). The chief compounds of lupine family, namely 
lupeol, betulin and betulinic acid are mainly found in the cuticle of mangoes and grape 
berries. Triterpenoids, in their free and esterified form are found to have low polarity. 
Therefore they are found in abundance in plant parts, such as surface cuticle waxes 
and stem bark (Szakiel et al. 2012). Therefore, fruit peels serve as a promising and 
highly available source material for such bioactive components (Jager et al. 2009). 

Compared with plant vegetative organs, especially leaves, far less information 
is available regarding the triterpenoid content of fruit cuticular waxes (Szakiel 
et al. 2012). Fruit peels are a waste product of juice and canned products. Their 
utilisation to generate a value-added, therapeutically active, food ingredient can be 
economically beneficial (Wolfe and Liu 2003, Djilas et al. 2009). Triterpenoids, both 
in their natural form and as templates for synthetic modification, are of considerable 
interest to academia and industry. As previously indicated, food industries produce 
large volumes of wastes and the disposal of it may cause significant environmental 
pollution and burden. Millions of tonnes of apple, grape berry, olive, tomato, orange 
and other fruit peels are generated each year as agro-industrial waste. This could be 
utilized to formulate various useful pharmaceutical and/or nutraceutical applications 
(Mintz-Oron et al. 2008, Szakiel et al. 2012). 

Bioactives from Agricultural and Food Production Wastes

Although the total alkaloid content in plants is usually low, the plant-based agricultural 
by-products in particular food production waste can be considered as a potential source 
for alkaloids. Various alkaloids have been successfully isolated from agricultural and 
food wastes, such as potato peels (Hossain et al. 2015), potato tubers (Petersson et 
al. 2013), green tea leaves (Bermejo et al. 2015), tomato roots (Nagaoka et al. 1993), 
tomato (fruit) (Yahara et al. 2004), citrus and orange peel (epicarp and mesocarp) 
(He et al. 2011), dried pepper fruits (Capsicum frutescens) (Santos et al. 2016), 
lupin grains (Przybylak et al. 2005, Sujak et al. 2006), barley (Hordeum vulgare), 
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rye (Secale cereal) (Aniszewski 2015), common wheat (Triticum aestivum), Triticale 
(Scott and Lawrence Guillaume 1982), Maté (Ilex paraguariensis) leaf (Clifford and 
Ramirez-Martinez 1990), cocoa beans (Theobroma cacao) (Nazaruddin et al. 2006), 
castor leaves (Ricinus communis) (Kang et al. 1985), coffee beans (Mehari et al. 2016) 
and Kolanut (Cola nitida) (Muhammad and Fatima 2014). 

When plants are under stress due to improper storage conditions, mechanical 
damages, insect or pest attack, the injured plant tissues instigate synthesis of higher 
concentrations of alkaloids and other compounds (Chowański et al. 2016). For example, 
potatoes that have been exposed to light in the open or during storage may become 
green due to accumulation of chlorophyll, which may affect the surface (peel) or may 
penetrate into the flesh. Such tubers and damaged potato tubers usually possess higher 
levels of alkaloids. Therefore, isolation of alkaloid compounds from agricultural and 
food production waste is a feasible approach for economic development (Petersson et 
al. 2013, Chowański et al. 2016). 

Since most common phenolic acids and flavonoids in plants are present in 
conjugated forms as esters or glycosides (Lu et al. 2011), agricultural and plant-based 
food wastes are among the best sources for recovering glycosides and its derivatives. 
Apple pomace, one of the major global waste products generated primarily during 
apple juice production, is rich in a vast array of polyphenolic compounds, including 
quercetin and phloretin glycosides with notable functional properties. For example, 
quercetin glycosides isolated from apple pomace showed excellent antioxidant 
properties compared to other phenolic compounds (Lu and Foo 2000). Apple peel 
skins (Lommen et al. 2000, Huber and Rupasinghe 2009) and seeds (Lu and Foo 1998) 
are rich in glycosides. Grape pomace as a by-product is approximately 20 per cent of 
the harvested grapes. Flavonol glycoside is one of the principal phenolic constituents 
of grape (Vitis vinifera cultivars) pomace (Schieber et al. 2001) and has been isolated 
from both grape fruit skins and seeds (Williams et al. 1983, Ruberto et al. 2007). Grape 
stem, the other major waste product in the wine industry, also possesses glycosides 
(Souquet et al. 2000, Spatafora et al. 2013). Glycosides have been identified and 
characterized from numerous fruits and fruit-based by-products, such as mango peel 
and puree (Schiebe et al. 2000, Schieber et al. 2001), kiwifruit pulp (Dawes and Keene 
1999), bitter apricot seeds (Prunus armeniaca L., Rosaceae) (Tunçel et al. 1995), 
citrus fruits including lime, lemon, orange, grapefruit and tangerine peel (Mouly et 
al. 1994, Kanaze et al. 2004, Lu et al. 2011, Shahidi and Ambigaipalan 2015), black 
currant seeds (Lu and Yeap Foo 2003, Shahidi and Ambigaipalan 2015) and skins and 
seeds of blueberries and blueberry processing waste (Lee and Wrolstad 2004). 

Vegetable-based food commodities, such as onion (Allium cepa L., Alliaceae) 
waste, which includes brown skin, the outer two fleshy leaves and the top and bottom 
bulbs (Schieber et al. 2001, Turner et al. 2006), potato peel (Reyes et al. 2005), lettuce 
and collard leaves (Young et al. 2005), cabbage (Brassica) leaves (Nielsen et al. 
1993), pumpkin varieties, such as Curcubita pepo (Iheanacho and Udebuani 2009) and 
pericarp of red pepper fruit (Capsicum annuum L.) (Materska and Perucka 2005) have 
also been used in recovering glycosides. Various other agricultural and food production 
wastes including cottonseed as a by-product (Piccinelli et al. 2007), defatted soybean 
(Nemitz et al. 2015), tea leaves (Wan et al. 2009), almond hulls (Prunus amygdalus) 
(Sang et al. 2002), industrial horse chestnut (Aesculus hippocastanum) waste (Kapusta 
et al. 2007), green barley (Hordeum vulgare L.) leaves (Kitta et al. 1992) and seed 



  Bioactive Compounds in Agricultural and Food Production Waste 15

coat of lentils (Dueñas et al. 2002) and beans (Madhujith et al. 2004, Shahidi and 
Ambigaipalan 2015) are recognized as natural sources of glucosides. 

Vegetative parts of certain culinary herbs and spices, such as ginger (Zingiber 
officinale Rosc.), thyme (Thymus vulgaris L.), parsley (Petroselinum crispum 
Mill.), curry leaves (Murraya koenigii L. Spreng), peppermint (Mentha piperita L.), 
turmeric (Curcuma longa L.), green onion scallion (Allium fistulosum L.), coriander 
(Coriandrum sativum L.) and Chinese star anise (Illicium verum Hook) also contain 
cardiac glycosides (Wang et al. 2011, Ramkissoon et al. 2016). Hence, portions of 
these herbs and spices which are unsuitable for culinary purposes can be potential 
sources of extracting glycosides. 

Individual Sources and Potential Uses of Some of the Bioactives 
from Agricultural Food Waste

Apples and apple peel

Regular consumption of apples has been associated with prevention of chronic 
diseases, such as lung cancer, cardiovascular disease, symptoms of chronic obstructive 
pulmonary disease and the risk of thrombotic stroke (He and Liu 2007, Szakiel et 
al. 2012). Apple peel is found to contain greater antioxidant and antiproliferative 
activity than the flesh (Wolfe and Liu 2003), thus suggesting that the peel contains a 
major share of the bioactive phytochemicals (Cefarelli et al. 2006). The triterpenoid 
composition of apple peel and its noted pharmacological properties are summarised 
in Tables 3 and 4. Previous reports suggest that the method of cultivation and post-
harvest conditions, including cold storage of fruit, can influence the triterpenoid 
composition of the cuticular wax (Szakiel et al. 2012).

Grape berry

Grapevine (Vitis vinifera L.) consumption is associated with reduction of chronic 
illnesses, such as cancer, cardiovascular diseases, ischemic stroke, neurodegenerative 
disorders and aging (Yadav et al. 2009, Ali et al. 2010). Grapevine-derived products 
(fresh berries, raisins, juice, wine) are well known for their antioxidant content and 
therefore, grape extracts are widely incorporated in various cosmetic formulas. 
Bioactive components, including polyphenols, resveratrol, hydroxytyrosol and 
melatonin, may provide health benefits associated with regular consumption of grape 
products (Leifert and Abeywardena 2008, Ali et al. 2010). The triterpenoid composition 
of grape berry skin and its noted pharmacological properties are summarised in  
Tables 5 and 6. In addition to oleanolic acid, other triterpenoids have been identified in 
grape berry skin, including oleanolic aldehyde, erythrodiol and a group of phytosterols 
and their derivatives (e.g., β-sitosterol, campesterol, stigmasterol, and lanosterol) 
(Dagna et al. 1982, Orban et al. 2009, Zhang et al. 2014). 

Olives

The olive (Olea europaea L.) is a fruit of substantial agricultural importance in the 
Mediterranean region. Olive tree cultivation started approximately 6,000 years ago 
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Table 3. Summary of the triterpenoid composition of apple peel (Adapted from Szakiel et al. 2012).

Fruit Composition Amount Main 
compounds

Reference

Apple (Malus 
pumila Mill.)

Euscaphic acid; 
2a,3a-dihydroxy-olean-12-en-
28-oic acid; 
2a,3a-dihydroxy-urs-12-en-
28-oic acid; 2a-hydroxyursolic 
acid; ursolic acid, uvaol

77% of the 
peel extract

Ursolic acid 
(98% of 

triterpenoid 
mixture)

(Ma et al. 
2005)

Apple (Malus 
domestica Borkh.) 
cv. Holsteiner Cox

Oleanolic acid; ursolic acid; 
uvaol

0.34–0.42%
of the peel 

extract

Ursolic acid 
(0.28–0.34% 
of the peel 

extract)

(Ellgardt 
2006)

Apple (M. pumila 
Mill.) cv. Red 
Delicious

3b-cis-p-coumaroyloxy-2a- 
hydroxyolean-12-en-28-oic 
acid; 3b-cis-p-coumaroyloxy-
2a- hydroxyurs-12-en-28-oic 
acid; 3b,28-dihydroxy-
12-ursene; 3b,13b-
dihydroxyurs-11-en-28-oic 
acid; 2a-hydroxyursolic acid; 
maslinic acid; 
3b-trans-cinnamoyloxy-2a- 
hydroxyurs-12-en-28-oic acid; 
3b-trans-p-cinnamoyloxy-
2a-hydroxyolean-
12-en-28-oic acid; 
3b-trans-p-coumaroyloxy-
2a-hydroxyolean-
12-en-28-oic acid; 
3b-trans-p-coumaroyloxy-2a- 
hydroxyurs-12-en-28-oic acid; 
2a,3b,13b-trihydroxyurs-11-
en-28-oic acid; ursolic acid

0.15–19.5% 
of the peel 

extract

Ursolic acid 
(0.15% of the 
mass of fresh 
peels, 18% 
of the peel 

extract)

(He and 
Liu 2007)

Table 4. Summary of the pharmacological properties of triterpenoids found in apple peel seen in  
in vitro models (Adapted from Szakiel et al. 2012).

Pharmacological properties Reference

Antitumor activity, with inhibitory activity against four tumour cell lines, 
HL-60, BGC, Bel-7402, and HeLa, with ED50 values ranging from 45 to 72 
µg/ml 

(Ma et al. 2005)

Antiproliferative activities against human cell lines of HepG2 liver cancer, 
MCF-7 breast cancer and Caco-2 colon cancer

(Yamaguchi et al. 
2008)

Antitumorigenic effects—suppression of p65 phosphorylation, TNF-
induced expression of cyclin D1, cyclooxygenase 2 (COX-2) and matrix 
metalloproteinase 9, which are involved in the initiation, promotion and 
metastasis of tumours

(He and Liu 2007)
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and thus the olive is the oldest cultivated tree (Szakiel et al. 2012). Olive oil is one of 
the key components in the traditional Mediterranean diet and has significant nutritional 
and medicinal properties. These include reduction of the risk of coronary heart disease 
and atherosclerosis, prevention of several types of cancer and modification of the 
immune and inflammatory responses (Ortega 2006). The potential of triterpenoids 
and some other polyphenols present in olive oil has not been explored to its full 
potential (Stiti and Hartmann 2012). The triterpenoid composition of olive oil and 
its pharmacological properties are summarized in Tables 7 and 8. The triterpenoids 
composition in olives that are sold in the market is influenced by cultivar or the stage 
of fruit ripeness, and also the method of processing (Romero et al. 2010).

Table 5. A summary of the triterpenoid and phytosterol composition of grape berry skin (Adapted 
from Szakiel et al. 2012).

Fruit Composition Amount Main 
compounds

Reference

Grape berry
(Vitis vinifera L.)
cv. Cabernet 
Sauvignon

Oleanolic acid;
oleanolic aldehyde;
β-sitosterol;
β-sitosterol 3-O-β–D-
glucoside; 
β-sitosterol-60-linolenoyl-3-O-
β-D-glucopyranoside

0.075% of
fresh skin

mass

Oleanolic 
acid (86% of 
triterpenoid

mixture)

(Zhang et 
al. 2004)

Grape berry
(V. vinifera L.)

Oleanolic acid;
β-sitosterol; 
β-sitosterol-3-O-β–D-
glucoside

0.027% of
fresh berry

mass 

Oleanolic acid 
(0.003–0.016% 
of fresh berry 

mass)

(Orban et 
al. 2009)

Table 6. Summary of the reported pharmacological properties of triterpenoids found in grape berry 
skin (Adapted from Szakiel et al. 2012).

Pharmacological properties Reference

Anticancer, anti-inflammatory, antidiabetogenic, antimicrobial, hepato- 
and cardioprotective, anti-HIV and anti-multiple sclerosis effects

(Liu 2005, Martin et 
al. 2010)

Regulation of insulin secretion, activity against type-2 diabetes and 
inflammation

(Zhang et al. 2004)

Hepato-protective activity, prevention and treatment of liver disorders, 
to treat diarrhoea, hepatitis and stomach aches 

(Liu et al. 2010)

Antimicrobial activity against Streptococcus mutans and Porphyromonas 
gingivalis, potential benefits to oral health and disease prevention

(Wu 2009)

Serum cholesterol lowering, cancer preventive, antimutagenic and anti-
inflammatory activities

(Awad and Fink 2000, 
Piironen et al. 2000, 

Villasenor et al. 2002)

Antiprotozoal and chemo preventive activities (Gallo and Sarachine 
2009)
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Tomato

Tomatoes (Solanum lycopersicum L. or Lycopersicon esculentum L.) are one of the 
most important fruit crops globally. They are cultivated practically in every country in 
the world in outdoor fields, glass houses and net houses (Szakiel et al. 2012) with the 
triterpenoid composition summarised in Table 9. The triterpenoid levels in the fruit 
vary considerably during various stages of fruit development. For example, the levels 
of the most abundant triterpenols (α-, β- and δ-amyrins) increase significantly 25–42 
days after flower anthesis (Mintz-Oron et al. 2008). The potential pharmacological 
properties of bioactives identified from tomato skin include prevention of certain 
types of cancer, liver disorders, heart disease, osteoporosis, cataracts, anti-allergic, 
antidepressant, anti-inflammatory, anti-nociceptive, antipruritic, anxiolytic, gastro 
protective and hepato-protective activities (Soldi et al. 2008, Melo et al. 2010, Ching 
et al. 2011). 

Table 7. Summary of the triterpenoid composition of olive skin (Adapted from Szakiel et al. 2012).

Fruit Composition Amount Main compounds Reference

Olive (Olea 
europaea L.) cv. 
Coratina

α-amyrin; β-amyrin;
betulinic acid;
erythrodiol; maslinic
acid; oleanolic acid;
β-sitosterol,
stigmasterol, uvaol

0.075% of fresh 
skin mass

Oleanolic 
acid (86% of 
triterpenoid

mixture)

(Bianchi et 
al. 1992)

Olive (O. europaea
L.) cv. Arbequina

Maslinic acid;
oleanolic acid

0.23 and 0.19% 
of Fruit, in green 
and black fruit,

respectively

Oleanolic acid
(0.003–0.016% of 
fresh berry mass)

(Guinda et 
al. 2010)

Table 8. Summary of the pharmacological properties of triterpenoids found in olive skin (Adapted 
from Szakiel et al. 2012).

Pharmacological properties Reference

Anticancer, antihyperglycemic, and antiparasitic activities (De Pablos et al. 2010, 
Moneriz et al. 2011)

Antiproliferative effect on HT-29 cells (EC50 of 160 µmol/l) (Juan et al. 2008)

Prevention and treatment of hyperlipidemia (Liu et al. 2011)

Prevention and treatment of brain cancers, potent inhibitory activity 
against human 1321N1 astrocytoma cells

(Wu 2009)

Antiparasitic properties with activity against Plasmodium falciparum, 
Eimeria tenella, and Toxoplasma gondii

(De Pablos et al. 2010, 
Moneriz et al. 2011)
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Conclusion

Bioactive compounds have aroused significant interest in the recent past, 
predominately due to their antioxidant properties, which suppress and inhibit the 
production of common free radicals, such as superoxide anion and hydroxyl radical. 
Although these properties are well described in several in vitro studies, human and 
animal data still remain controversial (Lau et al. 2016, Mellor and Naumovski 2016). 
From the perspective of human consumption, it is important to note that though 
these compounds may be present in very high doses in some food products, their 
intake and absorption is regulated by the food intake and combination of different 
foods independently, whether they are consumed as a pure compound (Naumovski 
et al. 2015) or as a part of the polyphenolic matrix (Chow et al. 2005, Stalmach et 
al. 2008). However, formulations based on nanotechnology are proposed to replace 
the conventional dosage forms to address this concern (Chen et al. 2011). Much of 
the data supporting the concept of beneficial effects of these compounds is based on 
in vitro and animal model studies, with conflicting data often coming from clinical 
trials in humans. In some cases, such as with resveratrol, the dietary consumption 
of the compound is well below the threshold required to produce any significant 
physiological effect. Therefore, extraction, isolation and purification of individual 
compounds from the food matrix has already aroused significant levels of interest in 
the food and pharmaceutical industry. This search for pure compounds has also created 
a requirement for the production of foods that are primary carriers of bioactives where 

Table 9. Summary of the triterpenoid composition of tomato skin (Adapted from Szakiel et al. 2012).

Fruit Composition Amount Main compounds Reference

Tomato (L.
Esculentum L.)

α-amyrin; β-amyrin; δ-
amyrin; bauerenol;
cycloartenol;
germanicol; lupeol;
multiflorenol; β-
sitosterol;
stigmasterol;
taraxasterol; ω-
taraxasterol; taraxerol

13.7% of the
total wax extract

(average from 
26 cultivars)

δ-amyrin (5.6% of
wax extract, i.e., 
41.2% of total

triterpenoids); β-
amyrin (3.2% of wax 

extract); α-amyrin 
(3% of wax extract)

(Bauer et 
al. 2004)

Tomato (L.
esculentum L.) 
cv. MicroTom
(wild-type)

α-amyrin; β-amyrin; β-
amyrin derivative; δ-
amyrin; sterol;
lanosterol; lupeol
derivative I;
multiflorenol; β-
sitosterol;
stigmasterol;
taraxasterol; ω-
taraxasterol; taraxerol

21% of the total 
wax extract (in 
mature fruit)

α-, β-, δ-amyrins 
(76–91% of total 

triterpenoids)

(Leide et 
al. 2007) 
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the utilisation of agricultural food waste can be seen as a perfect fit to this part of 
the food industry. The main reason for this is due to the fact that agricultural food 
waste can contain significant levels of individual bioactives and rather than waste 
being re-used in the form of a landfill, it can be directed to re-utilisation of bioactives. 
Nevertheless, the presence of bioactives in foods is of crucial importance, not only 
from the perspective of potential beneficial health effects in humans, but also from the 
protective role that these compounds play in the overall plant metabolism.
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Chapter 2

phenolic Compounds 
potential health Benefits and toxicity

Deep Jyoti Bhuyan1,* and Amrita Basu2

Introduction

Phenolic compounds are probably the most explored natural compounds due to 
their potential health benefits as demonstrated in a number of studies (Del Rio et al. 
2010). Generic terms ‘phenolic compounds’, ‘phenolics’ or ‘polyphenolics’ refer to 
more than 8,000 compounds found in the plant kingdom and possessing at least an 
aromatic ring with one or more hydroxyl substituents, including functional derivatives 
like esters, methyl ethers, glycosides, etc. (Ho 1992, Cartea et al. 2011). These are 
plant secondary metabolites produced via shikimic acid pathway (Cartea et al. 2011, 
Talapatra and Talapatra 2015). Phenolic compounds regulate the various metabolic 
functions including structure and growth, pigmentation and are resistant to different 
pathogens in plants (Naumovski 2015). The organoleptic properties of the plant food 
(fruits, vegetables, cereals, legumes, etc.) and beverages (tea, coffee, beer, wine, 
etc.) are also partially ascribed to phenolic compounds (Dai and Mumper 2010). For 
instance, the interactions between phenolic compounds (such as procyanidins) and the 
glycoprotein present in our saliva contribute to the bitterness and astringency of fruit 
and juices (Dai and Mumper 2010). These phenolics have varied chemical structures 
ranging from simple molecules (i.e., phenolic acids) to more complex polymerized 
compounds (i.e., proanthocyanidins) (Galleano et al. 2010). They also help in defense 
against ultraviolet radiation, insects and predators (Dai and Mumper 2010). Phenolics 
derived from various natural sources are linked to antioxidant, anti-inflammatory, 
anti-allergic, anti-carcinogenic, antihypertensive, cardioprotective, anti-arthritic and 
antimicrobial activities (Rauha et al. 2000, Penna et al. 2001, Puupponen-Pimia et 
al. 2001, Wang and Mazza 2002, Liu et al. 2004, Dai and Mumper 2010). Studies 
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on natural antioxidants has developed significantly in the last few years due to 
restrictions on the use of synthetic antioxidants and enhanced public awareness of 
health-related issues (Vázquez et al. 2012). Because of their potential health benefits, 
natural antioxidants are considered to be a better alternative than the synthetic ones 
(Fu et al. 2010). Hence, the identification of novel antioxidants from natural sources is 
one of the main research focuses in natural product development these days. Various 
studies validate the positive correlation between phenolic content and the antioxidant 
activity (Dimitrios 2006, Galleano et al. 2010, Bhuyan et al. 2015). Free radicals play 
an important role in the development of cancer, diabetes, neurodegenerative, ageing-
related and cardiovascular diseases. Therefore, antioxidants, such as flavonoids and 
other phenolics have gained more attention in recent years as potential agents for 
preventing and treating a number of oxidative stress-related and chronic diseases 
(Rice-Evans et al. 1996, Stanner et al. 2004, Dimitrios 2006, Fu et al. 2010, Galleano 
et al. 2010, Gharekhani et al. 2012). The antioxidant activity of phenolics is primarily 
attributed to their redox properties that enable them to act as singlet oxygen quenchers, 
reducing agents and hydrogen donors (Rice-Evans et al. 1996, Galleano et al. 2010, 
Gharekhani et al. 2012). The hydroxyl (–OH) groups of phenolics are good H-donating 
antioxidants that disrupt the cycle of new radical generation by scavenging reactive 
oxygen species (ROS) (Castellano et al. 2012).

Types of Phenolic Compounds

The basic structure of a phenolic compound comprises of an aromatic ring with one 
or more –OH groups. However, phenolic compounds found in Nature are structurally 
diverse from simple phenolic molecules to complex polymerized compounds 
(Balasundram et al. 2006). Phenolics found in food material can be divided into three 
major groups: simple phenols and phenolic acids, hydroxycinnamic acid derivatives 
and flavonoids (Ho 1992). In addition, based on the number of carbons, the phenolic 
compounds commonly found in plants can be classified into several groups (Harborne 
1989, Baxter et al. 1998, Robards et al. 1999, Balasundram et al. 2006) as shown in 
Table 1. Phenolic acids, flavonoids and tannins are considered as the main dietary 
phenolics (King and Young 1999, Balasundram et al. 2006). Flavonoids constitute the 
largest group of low-molecular-weight plant phenolics and have been studied most 
extensively (King and Young 1999). They are also the most important plant pigments. 
Over 4,000 different types of flavonoids are found in Nature (Harborne 1989, Craig 
1999). Flavonoids usually occur bound to sugar molecules and consist mainly of 
catechins, proanthocyanins, anthocyanidins, flavons and flavonols and their glycosides 
(Ho 1992, King and Young 1999). According to the degree of hydroxylation and the 
presence of a C2–C3 double-bond in the heterocyclic pyrone ring, flavonoids can be 
divided into 13 classes (González 2002) and the most important ones are flavonols, 
flavones, isoflavones, anthocyanidins or anthocyanins and flavanones (Scalbert and 
Williamson 2000). Flavon-3-ols are most dominant in different kinds of tea (Camellia 
sinensis), berries, cherries, grapes, plums, apricots, red wine and chocolate (Lotito 
and Frei 2006, D’Archivio et al. 2007, Ratnasooriya et al. 2010). Anthocyanins are 
natural pigments in plants and exhibit blue, purple or red color (D’Archivio et al. 
2007, Wojdylo et al. 2008). These compounds are abundant in purple berries, apples, 
cherries, red and purple grapes and pomegranates, red wine and certain vegetables, 
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such as cabbage, onions and radish (Manach et al. 2004, D’Archivio et al. 2007, de 
Pascual-Teresa et al. 2010). Some examples of flavanones are: eriodictyol, hesperetin 
and naringenin. These compounds are commonly found in citrus fruits and to a lesser 
extent in tomatoes and mint (Manach et al. 2004, D’Archivio et al. 2007). They can 
also be seen in green leafy herbs, like parsley and chamomile. Flavanones comprise 
of the smallest group of compounds, starting with glycosides of naringenin which is 
present in grapefruit followed by hesperetin that is present in oranges (D’Archivio et 
al. 2007).

Phenolic acids are divided into two subgroups: hydroxybenzoic and 
hydroxycinnamic acids (Balasundram et al. 2006). Phenolic acids are significant 
components of fruit and vegetables. These compounds play an important role in 
color stability, aroma profile and antioxidant activity. They act as acids because of 
their carboxylic group (Fleuriet and Macheix 2003). Ellagic and gallic acids are two 
major dietary hydroxybenzoic acids in berries and nuts (Maas et al. 1991, King and 
Young 1999). Caffeic, ferulic, p-coumaric and sinapic acids are the most common 
hydroxycinnamic acids and aromatic in Nature (Bravo 1998, Balasundram et al. 2006). 
Chlorogenic acid is an important member of this group with regard to food material 

Table 1. Classification of phenolic compounds.

Class Number of 
carbon atoms

Basic structure Examples

Simple phenolics
Benzoquinones

6 C6 Catechol, hydroquinone
2,6-Dimethoxybenzoquinone

Phenolic acids 7 C6–C1 Gallic, salicylic acids

Acethophenones
Phenylacetic acids

8 C6–C2 3-Acetyl-6-methoxybenzaldehyde
p-Hydroxyphenylacetic acid

Hydroxycinnamic acids 
Phenylpropanoids 
Coumarins
Isocoumarins
Chromones

9 C6–C3 Caffeic, ferulic acids 
Myristicin, eugenol 
Umbelliferone, aesculetin
Bergenin
Eugenin

Napthoquinones 10 C6–C4 Juglone, plumbagin

Xanthones 13 C6–C1–C6 Mangiferin

Stilbenes
Anthraquinones

14 C6–C2–C6 Lunularic acid, resveratrol
Emodin

Flavonoids
Isoflavonoids

15 C6–C3–C6 Quercetin, cyaniding
Genistein

Lignans
Neolignans

18 (C6–C3)2 Pinoresinol
Eusiderin

Biflavonoids 30 (C6–C3–C6)2 Amentoflavone, agathisflavone

Lignins many

many

(C6–C3)n Pinoresinol

Condensed tannins 
(proanthocyanidins or 
flavolans)

(C6–C3–C6)n Selligueain A, prodelphinidin 
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and is the key substrate for enzymatic browning of fruits, such as apples and pears 
(Eskin 1990, Ho 1992). Chlorogenic acid is commonly found in higher quantities in 
seeds, such as coffee beans, sunflower seeds and grains and is formed when caffeic 
acid is combined with quinic acid (Sondheimer 1958, King and Young 1999).

Tannins are the third important group of polyphenolics which can further be 
divided into two subcategories: condensed and hydrolysable tannins (Porter 1989). 
These are high-molecular-weight polymers. Fruits, grains and legumes consist of 
condensed tannins which are mainly polymers of catechins or epicatechins, whereas 
hydrolysable tannins are polymers of gallic or ellagic acid and found in berries and 
nuts (King and Young 1999). Condensed tannins are also known as proanthocyanidins 
and polyflavonoid, consisting of chains of flavan-3-ol units. They usually accumulate 
in the outer layers of plants (Ho 1992, King and Young 1999).

Potential health benefits

For centuries, plants and plant-derived products have played a key role in maintenance 
of human health by improving the quality of life (Craig 1999). Numerous studies 
have reported the potential health benefits of plant polyphenolics in particular. Due 
to their potent antioxidant properties, plant phenolics have scientifically proven to 
prevent various oxidative stress-related as well as chronic diseases, such as cancer, 
cardiovascular and neurodegenerative diseases. In spite of their wide distribution in 
the plant kingdom, researchers have directed their attention to the health benefits of 
phenolics only now (Dai and Mumper 2010).

Cancer

Oxidative stress plays an important role in carcinogenesis. Several mechanisms 
contribute to the overall formation of tumours from oxidative damage. Free radicals 
induce oxidative stress, which leads to DNA damage in the cell, which, in turn, can lead 
to base mutation, single and double strand breaks, DNA cross-linking and chromosomal 
abnormality, if left unrepaired (Liu 2003). Therefore, phenolics with antioxidant 
properties have been found to be beneficial in preventing or treating the oxidative 
damage that can induce cancer. In addition to antioxidant properties, polyphenols also 
modulate the activity of a number of enzymes and cell receptors, indicating other 
specific biological actions in prevention and treatment of several diseases, including 
cancer (Dai and Mumper 2010). For instance, different phenolic compounds associate 
with the regulation of gene expression in cell proliferation and apoptosis, both in vitro 
and in vivo. Several in vitro and in vivo studies show that flavonoids may interrupt 
different stages of carcinogenesis not only with antioxidant activity but also with other 
anticancer mechanisms (Hollman et al. 1996, Rice-Evans and Miller 1996, Tham et 
al. 1998, Yang et al. 2001, Kris-Etherton et al. 2002). Polyphenols may affect the 
molecular events in the initiation, promotion and progression stages of carcinogenesis 
and isoflavones and lignans may affect the estrogen-related activities related to tumour 
formation (Yang et al. 2001).  Flavonoids have been reported to modulate key enzymes 
and receptors involved in signal transduction pathways of cellular proliferation, 
differentiation, apoptosis, inflammation, angiogenesis, metastasis and reversal of 
multidrug resistance (Ravishankar et al. 2013). Programmed cell death, commonly 
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known as apoptosis, is required to maintain a balance between cell proliferation 
and cell loss (Zuzana 2011). Misregulation of this balance can lead to malignant 
transformation, whereas induction of apoptosis suppresses the development of cancer 
(Tang and Porter 1996, Bhat and Pezzuto 2002). Compounds, such as resveratrol, have 
shown to induce apoptosis in malignant cells and provide a promising natural strategy 
to prevent cancer (Katdare et al. 1999, Surh et al. 1999).

Loo (2003) suggested that highly invasive or metastatic cancer cells may require 
a specific amount of oxidative stress for maintaining their proliferation or apoptosis. 
Therefore, they generate high yet tolerable amounts of H2O2 (hydrogen peroxide) which 
act as signaling molecules (in the mitogen-activated protein kinase pathway) to activate 
redox-sensitive transcription factors and responsive genes. These transcription factors 
and genes are involved in the survival and proliferation of cancer cells. Loo (2003) 
also proposed that polyphenols with antioxidant capacity can either scavenge the H2O2 
produced by the cancer cells or certain polyphenols (such as EGCG, quercetin and 
gallic acid) can induce the formation of H2O2 to achieve an intolerable level of high 
oxidative stress in cancer cells to inhibit their proliferation. Gopalakrishnan and Tony 
Kong (2008) suggested that phytochemicals, such as polyphenols, protect normal cells 
by Nrf2 which plays a key role in antioxidant response elements (ARE)-driven gene 
expression and on the other hand, modulate the transcription factors nuclear factor 
κB (NFκB) and AP-1 in abnormal cancer cells, which lead to cytotoxicity. Phenolics 
can modulate various components of the epigenetic machinery in humans (Link et 
al. 2010). These modulations include the changes in DNA methylation pattern, 
histone modifications and the expression of some non-coding miRNAs which lead to 
activation of tumor-suppressor genes and inactivation of oncogenes. Modulation of 
cytochrome p450 expression is another proposed anticancer mechanism of action of 
polyphenols. Cytochrome p450 mixed-function oxidases play an important role in the 
metabolic activation of chemical carcinogens. Phenolic compounds are hypothesized 
to stimulate cytochrome p450-conjugating enzymes with the ability to metabolically 
inactivate the chemical carcinogens produced by the mixed function oxidases (Vuong 
et al. 2014).

Many plant-derived phenolic compounds, for instance, tea polyphenols (green 
tea), gingerol (gingers), resveratrol (grapes), curcumin (turmeric), genistein (soybean), 
rosmarinic acid (rosemary), apigenin (parsley) and silymarin (milk thistle) are used in 
conjunction with chemotherapy and radiation therapy (Wang et al. 2012). Gingerol, a 
major phenolic compound derived from ginger (Zingiber officinale) and its derivative 
6-shogaol have been found to possess anticancer activity against oral, kidney, lung, 
brain and breast cancer cells (Chen et al. 2008, Chen et al. 2010, Han et al. 2015, Lee 
et al. 2014, Hsu et al. 2015). The latter can induce stress in cancer cells by increasing 
cytosolic Ca2+ levels and cause apoptotic cell death of both human oral cancer cells 
and renal tubular cells (Chen et al. 2008, 2010). 

The role of the flavonoid, quercetin, in anticancer research has been emphasized 
in a number of reports (Kris-Etherton et al. 2002). Quercetin is the most abundant 
flavonoid found in fruits after keamferol and myricetin (Vuong et al. 2014). The 
antioxidant activity of quercetin is well established as the most potent scavenger 
of ROS (superoxide) and reactive nitrogen species (nitric oxide and peroxynitrite) 
(Boots et al. 2008, Vuong et al. 2014). An in vivo study by Jin et al. (2006) revealed 
that quercetin had a significant preventive effect on benzo[a]pyrene-induced DNA 
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damage along with a potential chemopreventive effect on the benzo[a]pyrene-induced 
carcinogenesis of lung cancer. The inhibition of cytochrome p4501A1 activity might 
be the possible mechanism of these effects of quercetin. Quercetin was also found to 
inhibit the matrix metalloproteinase-3 (MMP-3) activity and invasion of the MDA-
MB-231 human breast carcinoma cell line (Phromnoi et al. 2009) and HGF/Met 
signaling in medulloblastoma cell line (Labbe et al. 2009). 

Another dietary flavonoid—keamferol (also known as kaempferol), a type of 
phytoestrogen found in a number of fruits and vegetables—is shown to promote 
human health by reducing the risk of chronic diseases, especially cancer (Chen 2013, 
Kim and Choi 2013, Lee and Kim 2016). It is reported to regulate major elements 
of cellular signal transduction pathways associated with apoptosis, angiogenesis, 
inflammation and metastasis (Zhang et al. 2008, Chen and Chen 2013, Lee and Kim 
2016). The anticancer effect of kaempferol in MIA PaCa-2, PANC-1, and SNU-213 
human pancreatic cancer cells is mediated by inhibition of EGFR related Src, ERK1/2, 
and AKT pathways (Lee and Kim 2016). Furthermore, kaemferol is reported to inhibit 
the migration and invasion ability of medulloblastoma (Labbe et al. 2009) and breast 
cancer cells (Phromnoi et al. 2009).

Myricetin has been broadly studied to investigate its anticancer properties and 
mechanisms of action against different types of cancer (Maggiolini et al. 2005, Lu 
et al. 2006, Kumamoto et al. 2009, Sun et al. 2012, Devi et al. 2015). For instance, 
in human colon cancer cells, myricetin induces cell death via BAX/BCL2-dependent 
pathway (Kim et al. 2014), whereas in the colorectal carcinoma cells, it inhibits MMP-
2 protein expression and enzyme activity (Ko et al. 2005). It also acts as an agonist 
for estrogen receptor alpha which leads to inhibition of hormone-dependent MCF7 
breast-cancer cell proliferation (Maggiolini et al. 2005). Additionally, myricetin 
interacts with a number of oncoproteins, such as protein kinase B (PKB) (AKT), 
Fyn, MEK1, and JAK1–STAT3 (Janus kinase–signal transducer and activator of 
transcription 3), and reduces the neoplastic transformation of cancer cells (Kumamoto 
et al. 2009, Sun et al. 2012, Devi et al. 2015). Lu et al. (2006) showed that the plant  
flavonoids—quercetin and myricetin, inhibit thioredoxin reductase (TrxR) (which is 
overexpressed in many aggressive tumors) that induces cell death. 

Apigenin, a flavone abundantly found in fruits and vegetables, is shown to possess 
anticancer properties against cancer of breast, cervix, colon, leukemia, lung, ovarian, 
prostate, skin, thyroid, gastric, liver and neuroblastoma, to name a few (Shukla and 
Gupta 2010). A study by Ruela-de-Sousa et al. (2010) suggested that apigenin can 
block proliferation in two types of leukemia cells—myeloid and erythroid subtypes 
through cell-cycle arrest in G2/M phase (myeloid HL60) and G0/G1 phase (erythroid 
TF1 cells). Choudhury et al. (2013) also showed that apigenin and curcumin can 
synergistically induce cell death and apoptosis and block cell cycle progression at 
G2/M phase of A549 lung epithelium cancer cells. They also established that both 
apigenin and curcumin can simultaneously bind at different sites of tubulin. Similarly, 
apigenin is also linked with inhibition of pancreatic cancer cell proliferation by G2/M 
cell cycle arrest, down regulation of the overexpressed protein geminin, increase in 
growth inhibitory effects of gemcitabine and abrogation of gemcitabine resistance in 
multiple reports (Ujiki et al. 2006, Salabat et al. 2008, Strouch et al. 2009). Another 
study by Gomez-Garcia et al. (2013) demonstrated that both potassium apigenin and 
carnosic acid have chemoprotective effects against 7,12-dimethyl benzanthracene 
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(DMBA)-induced carcinogenesis in hamster. Moreover, the anti-proliferative and 
anti-angiogenic effects of the flavonoid, apigenin, were illustrated by Melstrom et al. 
(2011). They established that apigenin inhibits HIF-1α, GLUT-1, and VEGF mRNA 
and protein expression in pancreatic cancer cells in both normoxic and hypoxic 
conditions, proving its potential as a therapeutic agent for pancreatic cancer. Johnson 
et al. (2011) showed that citrus flavonoids, such as luteolin, apigenin and quercetin can 
inhibit glycogen synthase kinase-3β (GSK-3β), which leads to decreased cancer cell 
proliferation and survival by reducing NFκB activity. They made similar observations 
in vivo. Apigenin and luteolin were also shown to improve the efficacy of certain 
chemotherapeutic drugs—gemcitabine, cisplatin, 5-fluorouracil and oxaliplatin—in 
terms of their anti-proliferative activity against BxPC-3 human pancreatic cancer cells 
by Johnson and Gonzalez de Mejia in 2013. Moreover, Lee et al. (2008) made similar 
observations and proposed that gemcitabine in combination with apigenin resulted 
in enhanced apoptosis and growth inhibition by down-regulation of NFκB activity 
through suppression of AKT activation in pancreatic cancer cell lines in vitro.

Other phenolic compounds, such as catechin, epicatechin, epigallocatechin-
3-gallate (EGCG), nariganin, chalcones, daidzein, gallic acid, protocatechuic acid 
(PCA), caffeic acid, genistein, stilbenes and anthocyanins were also investigated for 
their anticancer mechanisms against different types of cancer cell lines (Chahar et al. 
2011, Li et al. 2013, Vuong et al. 2014).

An inverse relation between the consumption of flavonoid and risks for certain 
types of cancer was demonstrated in many epidemiologic studies (Kris-Etherton et al. 
2002). A study of 9,959 men and women aged 15–99 years, in Finland, was conducted 
to demonstrate the relation between the intake of flavonoids and subsequent risk 
of cancer (Knekt et al. 1997). This study observed an inverse association between 
flavonoid intake and incidence of all the sites of cancer combined. The risk of lung 
cancer was reduced with flavonoid intake as found in the 24-year follow-up study. 
Another study conducted in Finland with a cohort of 27,110 male smokers aged 50–69 
years without history of cancer, revealed that the intake of flavonols and flavones can 
be inversely associated with the risk of lung cancer, but not with that of other cancers 
(Hirvonen et al. 2001). Likewise, statistically significant inverse associations between 
the food sources rich in flavonoids quercetin (onions and apples) and naringin (white 
grapefruit) and lung cancer risk were observed by Le Marchand et al. (2000). 

Cardiovascular diseases

Cardiovascular disease (CVD) is one the major killers in all developed countries with 
a rise in prevalence (Rangel-Huerta et al. 2015, Tome-Carneiro and Visioli 2016). 
Polyphenols from foods, such as tea, coffee, cocoa, olive oil, red wine and many 
fruits and vegetables were studied extensively to evaluate their effect on CVD risk 
(Tangney and Rasmussen 2013). Several epidemiologic studies and intervention 
trials suggest that polyphenols present in fruits and vegetables are associated with 
decreased risk of cardiovascular diseases (Morton et al. 2000, Kris-Etherton et al. 
2002, Vita 2005, Tangney and Rasmussen 2013, Rangel-Huerta et al. 2015, Tome-
Carneiro and Visioli 2016). Oxidative stress may play a role in the pathogenesis of 
CVD, like atherosclerosis (Morton et al. 2000). As polyphenols are known for their 
antioxidant activities, increased intake of dietary antioxidants may protect against 


