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Preface

This book describes and illustrates the modelling approach to the analysis
of survival data, using a wide range of examples from biomedical research.
My experience in presenting many lectures and courses on this subject, at
both introductory and advanced levels, as well as in providing advice on the
analysis of survival data, has had a big influence on its content. The result
is a comprehensive practical account of survival analysis at an intermediate
level, which I hope will continue to meet the needs of statisticians in the phar-
maceutical industry or medical research institutes, scientists and clinicians
who are analysing their own data, and students following undergraduate or
postgraduate courses in survival analysis.

In preparing this new edition, my aim has been to incorporate extensions
to the basic models that dramatically increase their scope, while updating
the text to take account of the wider availability of computer software for
implementing these techniques. This edition therefore contains new chapters
covering frailty models, non-proportional hazards, competing risks, multiple
events, event history analysis and dependent censoring. Additional material
on variable selection, non-linear models, measures of explained variation and
flexible parametric models has also been included in earlier chapters.

The main part of the book is formed by Chapters 1 to 7. After an intro-
duction to survival analysis in Chapter 1, Chapter 2 describes methods for
summarising survival data, and for comparing two or more groups of survival
times. The modelling approach is introduced in Chapter 3, where the Cox
regression model is presented in detail. This is followed by a chapter that de-
scribes methods for checking the adequacy of a fitted model. Parametric pro-
portional hazards models are covered in Chapter 5, with an emphasis on the
Weibull model for survival data. Chapter 6 describes parametric accelerated
failure time models, including a detailed account of their log-linear represen-
tation that is used in most computer software packages. Flexible parametric
models are also described and illustrated in this chapter, while model-checking
diagnostics for parametric models are presented in Chapter 7.

The remaining chapters describe a number of extensions to the basic mod-
els. The use of time-dependent variables is covered in Chapter 8, and the
analysis of interval-censored data is considered in Chapter 9. Frailty mod-
els that allow differences between individuals, or groups of individuals, to be
modelled using random effects, are described in Chapter 10. Chapter 11 sum-
marises techniques that can be used when the assumption of proportional

xv
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hazards cannot be made, and shows how these models can be used in compar-
ing survival outcomes across a number of institutions. Competing risk mod-
els that accommodate different causes of death are presented in Chapter 12,
while extensions of the Cox regression model to cope with multiple events of
the same or different types, including event history analysis, are described in
Chapter 13. Chapter 14 summarises methods for analysing data when there
is dependent censoring, and Chapter 15 shows how to determine the sample
size requirements of a study where the outcome variable is a survival time.

All of the techniques that have been described can be implemented in
many software packages for survival analysis, including the freeware package
R. However, sufficient methodological details have been included to convey a
sound understanding of the techniques and the assumptions on which they are
based, and to help in adapting the methodology to deal with non-standard
problems. Some examples in the earlier chapters are based on fewer observa-
tions than would normally be encountered in medical research programmes.
This enables the methods of analysis to be illustrated more easily, as well as
allowing tabular presentations of the results to be compared with output ob-
tained from computer software. Some additional data sets that may be used
to obtain a fuller appreciation of the methodology, or as student exercises, are
given in an Appendix. All of the data sets used in this book are available in
electronic form from the publisher’s web site at http://www.crcpress.com/.

In writing this book, I have assumed that the reader has a basic knowledge
of statistical methods, and has some familiarity with linear regression analysis.
Matrix algebra is used on occasions, but an understanding of linear algebra is
not an essential requirement. Bibliographic notes and suggestions for further
reading are given at the end of each chapter, but so as not to interrupt the
flow, references in the text itself have been kept to a minimum. Some sections
contain more mathematical details than others, and these have been denoted
with an asterisk. These sections can be omitted without loss of continuity.

I am indebted to Doug Altman, Alan Kimber, Mike Patefield, Anne White-
head and John Whitehead for their help in the preparation of the current and
earlier editions of the book, and to NHS Blood and Transplant for permission
to use data from the UK Transplant Registry in a number of the examples.
I also thank James Gallagher and staff of the Statistical Services Centre,
University of Reading, and my colleagues in the Statistics and Clinical Stud-
ies section of NHS Blood and Transplant, for giving me the opportunity to
rehearse the new material through courses and seminars. I am particularly
grateful to all those who took the trouble to let me know about errors in ear-
lier editions. Although these have been corrected, I would be very pleased to
be informed (d.collett@btinternet.com) of any further errors, ambiguities
and omissions in this edition. Finally, I would like to thank my wife Janet for
her support and encouragement over the period that this book was written.

David Collett
September, 2014



Chapter 1

Survival analysis

Survival analysis is the phrase used to describe the analysis of data in the
form of times from a well-defined time origin until the occurrence of some
particular event or end-point. In medical research, the time origin will often
correspond to the recruitment of an individual into an experimental study,
such as a clinical trial to compare two or more treatments. This in turn may
coincide with the diagnosis of a particular condition, the commencement of
a treatment regimen or the occurrence of some adverse event. If the end-
point is the death of a patient, the resulting data are literally survival times.
However, data of a similar form can be obtained when the end-point is not
fatal, such as the relief of pain, or the recurrence of symptoms. In this case, the
observations are often referred to as time to event data, and the methods for
analysing survival data that are presented in this book apply equally to data
on the time to these end-points. The methods can also be used in the analysis
of data from other application areas, such as the survival times of animals in
an experimental study, the time taken by an individual to complete a task in
a psychological experiment, the storage times of seeds held in a seed bank or
the lifetimes of industrial or electronic components. The focus of this book is
on the application of survival analysis to data arising from medical research,
and for this reason much of the general discussion will be phrased in terms of
the survival time of an individual patient from entry to a study until death.

1.1 Special features of survival data

We must first consider the reasons why survival data are not amenable to
standard statistical procedures used in data analysis. One reason is that sur-
vival data are generally not symmetrically distributed. Typically, a histogram
constructed from the survival times of a group of similar individuals will tend
to be positively skewed, that is, the histogram will have a longer ‘tail’ to the
right of the interval that contains the largest number of observations. As a
consequence, it will not be reasonable to assume that data of this type have
a normal distribution. This difficulty could be resolved by first transforming
the data to give a more symmetric distribution, for example by taking log-
arithms. However, a more satisfactory approach is to adopt an alternative
distributional model for the original data.

1
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The main feature of survival data that renders standard methods inappro-
priate is that survival times are frequently censored. Censoring is described in
the next section.

1.1.1 Censoring

The survival time of an individual is said to be censored when the end-point
of interest has not been observed for that individual. This may be because the
data from a study are to be analysed at a point in time when some individuals
are still alive. Alternatively, the survival status of an individual at the time
of the analysis might not be known because that individual has been lost
to follow-up. As an example, suppose that after being recruited to a clinical
trial, a patient moves to another part of the country, or to a different country,
and can no longer be traced. The only information available on the survival
experience of that patient is the last date on which he or she was known to
be alive. This date may well be the last time that the patient reported to a
clinic for a regular check-up.

An actual survival time can also be regarded as censored when death is
from a cause that is known to be unrelated to the treatment. However, it can
be difficult to be sure that the death is not related to a particular treatment
that the patient is receiving. For example, consider a patient in a clinical
trial to compare alternative therapies for prostatic cancer who experiences a
fatal road traffic accident. The accident could have resulted from an attack
of dizziness, which might be a side effect of the treatment to which that
patient has been assigned. If so, the death is not unrelated to the treatment.
In circumstances such as these, the survival time until death from all causes,
or the time to death from causes other than the primary condition for which
the patient is being treated, might also be subjected to a survival analysis.

In each of these situations, a patient who entered a study at time t0 dies
at time t0 + t. However, t is unknown, either because the individual is still
alive or because he or she has been lost to follow-up. If the individual was
last known to be alive at time t0 + c, the time c is called a censored survival
time. This censoring occurs after the individual has been entered into a study,
that is, to the right of the last known survival time, and is therefore known as
right censoring. The right-censored survival time is then less than the actual,
but unknown, survival time. Right censoring that occurs when the observation
period of a study ends is often termed administrative censoring.

Another form of censoring is left censoring, which is encountered when the
actual survival time of an individual is less than that observed. To illustrate
this form of censoring, consider a study in which interest centres on the time
to recurrence of a particular cancer following surgical removal of the primary
tumour. Three months after their operation, the patients are examined to
determine if the cancer has recurred. At this time, some of the patients may
be found to have a recurrence. For such patients, the actual time to recurrence
is less than three months, and the recurrence times of these patients is left-
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censored. Left censoring occurs far less commonly than right censoring, and
so the emphasis of this book will be on the analysis of right-censored survival
data.

Yet another type of censoring is interval censoring. Here, individuals are
known to have experienced an event within an interval of time. Consider again
the example concerning the time to recurrence of a tumour used in the above
discussion of left censoring. If a patient is observed to be free of the disease
at three months, but is found to have had a recurrence when examined six
months after surgery, the actual recurrence time of that patient is known to
be between three months and six months. The observed recurrence time is
then said to be interval-censored. We will return to interval censoring later,
in Chapter 9.

1.1.2 Independent censoring

An important assumption that will be made in the analysis of censored sur-
vival data is that the actual survival time of an individual, t, does not depend
on any mechanism that causes that individual’s survival time to be censored at
time c, where c < t. Such censoring is termed independent or non-informative
censoring. This means that if we consider a group of individuals who all have
the same values of relevant prognostic variables, an individual whose survival
time is censored at time c must be representative of all other individuals in
that group who have survived to that time. A patient whose survival time is
censored will be representative of those at risk at the censoring time if the
censoring process operates randomly. Similarly, when survival data are to be
analysed at a predetermined point in calendar time, or at a fixed interval of
time after the time origin for each patient, the prognosis for individuals who
are still alive can be taken to be independent of the censoring, so long as
the time of analysis is specified before the data are examined. However, this
assumption cannot be made if, for example, the survival time of an individual
is censored through treatment being withdrawn as a result of a deterioration
in their physical condition. This type of censoring is known as dependent or
informative censoring. The methods of survival analysis presented in most
chapters of this book are only valid under the assumption of independent cen-
soring, but techniques that enable account to be taken of dependent censoring
will be described in Chapter 14.

1.1.3 Study time and patient time

In a typical study, patients are not all recruited at exactly the same time, but
accrue over a period of months or even years. After recruitment, patients are
followed up until they die, or until a point in calendar time that marks the end
of the study, when the data are analysed. Although the actual survival times
will be observed for a number of patients, after recruitment some patients may
be lost to follow-up, while others will still be alive at the end of the study.
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The calendar time period in which an individual is in the study is known as
the study time.

The study time for eight individuals in a clinical trial is illustrated diagram-
matically in Figure 1.1, in which the time of entry to the study is represented
by a ‘•’.
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Figure 1.1 Study time for eight patients in a survival study.

This figure shows that individuals 1, 4, 5 and 8 die (D) during the course
of the study, individuals 2 and 7 are lost to follow-up (L), and individuals 3
and 6 are still alive (A) at the end of the observation period.

As far as each patient is concerned, the trial begins at some time t0.
The corresponding survival times for the eight individuals depicted in Fig-
ure 1.1 are shown in order in Figure 1.2. The period of time that a patient
spends in the study, measured from that patient’s time origin, is often re-
ferred to as patient time. The period of time from the time origin to the
death of a patient (D) is then the survival time, and this is recorded for in-
dividuals 1, 4, 5 and 8. The survival times of the remaining individuals are
right-censored (C).

In practice, the actual data recorded will be the date on which each indi-
vidual enters the study, and the date on which each individual dies or was last
known to be alive. The survival time in days, weeks or months, whichever is
the most appropriate, can then be calculated. Most computer software pack-
ages for survival analysis have facilities for performing this calculation from
input data in the form of dates.
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Figure 1.2 Patient time for eight patients in a survival study.

1.2 Some examples

In this section, the essential features of survival data are illustrated through a
number of examples. Data from these examples will then be used to illustrate
some of the statistical techniques presented in subsequent chapters.

Example 1.1 Time to discontinuation of the use of an IUD
In trials involving contraceptives, prevention of pregnancy is an obvious cri-
terion for acceptability. However, modern contraceptives have very low fail-
ure rates, and so the occurrence of bleeding disturbances, such as amenor-
rhoea (the prolonged absence of bleeding), irregular or prolonged bleeding,
become important in the evaluation of a particular method of contraception.
To promote research into methods for analysing menstrual bleeding data from
women in contraceptive trials, the World Health Organisation made available
data from clinical trials involving a number of different types of contraceptive
(WHO, 1987). Part of this data set relates to the time from which a woman
commences use of a particular method until discontinuation, with the discon-
tinuation reason being recorded when known. The data in Table 1.1 refer to
the number of weeks from the commencement of use of a particular type of
intrauterine device (IUD), known as the Multiload 250, until discontinuation
because of menstrual bleeding problems. Data are given for 18 women, all of
whom were aged between 18 and 35 years and who had experienced two pre-
vious pregnancies. Discontinuation times that are censored are labelled with
an asterisk.

In this example, the time origin corresponds to the first day in which a
woman uses the IUD, and the end-point is discontinuation because of bleed-
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Table 1.1 Time in weeks to discontinuation of the use of an IUD.

10 13* 18* 19 23* 30 36 38* 54*
56* 59 75 93 97 104* 107 107* 107*

* Censored discontinuation times.

ing problems. Some women in the study ceased using the IUD because of the
desire for pregnancy, or because they had no further need for a contracep-
tive, while others were simply lost to follow-up. These reasons account for the
censored discontinuation times of 13, 18, 23, 38, 54 and 56 weeks. The study
protocol called for the menstrual bleeding experience of each woman to be
documented for a period of two years from the time origin. For practical rea-
sons, each woman could not be examined exactly two years after recruitment
to determine if they were still using the IUD, and this is why there are three
discontinuation times greater than 104 weeks that are right-censored.

One objective in an analysis of these data would be to summarise the
distribution of discontinuation times. We might then wish to estimate the
median time to discontinuation of the IUD, or the probability that a woman
will stop using the device after a given period of time. Indeed, a graph of this
estimated probability, as a function of time, will provide a useful summary of
the observed data.

Example 1.2 Prognosis for women with breast cancer
Breast cancer is one of the most common forms of cancer occurring in women
living in the Western world. However, the biological behaviour of the tumour
is often unpredictable, and a number of studies have focussed on whether the
tumour is likely to have metastasised, or spread, to other organs in the body.
Around 80% of women presenting with primary breast cancer are likely to
have tumours that have already metastasised to other sites. If these patients
could be identified, adjunctive treatment could be focussed on them, while the
remaining 20% could be reassured that their disease is surgically curable.

The aim of an investigation carried out at the Middlesex Hospital, docu-
mented in Leathem and Brooks (1987), was to evaluate a histochemical marker
that discriminates between primary breast cancer that has metastasised and
that which has not. The marker under study was a lectin from the albumin
gland of the Roman snail,Helix pomatia, known asHelix pomatia agglutinin, or
HPA. The marker binds to those breast cancer cells associated with metastasis
to local lymph nodes, and the HPA stained cells can be identified by micro-
scopic examination. In order to investigate whether HPA staining can be used
to predict the survival experience of women who present with breast cancer, a
retrospective study was carried out, based on the records of women who had
received surgical treatment for breast cancer. Sections of the tumours of these
women were treated with HPA and each tumour was subsequently classified
as being positively or negatively stained, positive staining corresponding to a
tumour with the potential for metastasis. The study was concluded in July
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1987, when the survival times of those women who had died of breast cancer
were calculated. For those women whose survival status in July 1987 was un-
known, the time from surgery to the date on which they were last known to
be alive is regarded as a censored survival time. The survival times of women
who had died from causes other than breast cancer are also regarded as right-
censored. The data given in Table 1.2 refer to the survival times in months of
women who had received a simple or radical mastectomy to treat a tumour of
Grade II, III or IV, between January 1969 and December 1971. In the table,
the survival times of each woman are classified according to whether their
tumour was positively or negatively stained.

Table 1.2 Survival times of women with tumours
that were negatively or positively stained with HPA.

Negative staining Positive staining

23 5 68
47 8 71
69 10 76*
70* 13 105*
71* 18 107*

100* 24 109*
101* 26 113
148 26 116*
181 31 118
198* 35 143
208* 40 154*
212* 41 162*
224* 48 188*

50 212*
59 217*
61 225*

* Censored survival times.

In the analysis of the data from this study, we will be particularly interested
in whether or not there is a difference in the survival experience of the two
groups of women. If there were evidence that those women with negative
HPA staining tended to live longer after surgery than those with positive
staining, we would conclude that the prognosis for a breast cancer patient
was dependent on the result of the staining procedure.

Example 1.3 Survival of multiple myeloma patients
Multiple myeloma is a malignant disease characterised by the accumulation
of abnormal plasma cells, a type of white blood cell, in the bone marrow.
The proliferation of the abnormal plasma cells within the bone causes pain
and the destruction of bone tissue. Patients with multiple myeloma also ex-
perience anaemia, haemorrhages, recurrent infections and weakness. Unless
treated, the condition is invariably fatal. The aim of a study carried out at
the Medical Center of the University of West Virginia, USA, was to examine
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the association between the values of certain explanatory variables or covari-
ates and the survival time of patients. In the study, the primary response
variable was the time, in months, from diagnosis until death from multiple
myeloma.

The data in Table 1.3, which were obtained from Krall, Uthoff and Harley
(1975), relate to 48 patients, all of whom were aged between 50 and 80 years.
Some of these patients had not died by the time that the study was completed,
and so these individuals contribute right-censored survival times. The coding
of the survival status of an individual in the table is such that zero denotes a
censored observation and unity death from multiple myeloma.

At the time of diagnosis, the values of a number of explanatory variables
were recorded for each patient. These included the age of the patient in years,
their sex (1 = male, 2 = female), the levels of blood urea nitrogen (Bun),
serum calcium (Ca) and haemoglobin (Hb), the percentage of plasma cells in
the bone marrow (Pcells) and an indicator variable (Protein) that denotes
whether or not the Bence-Jones protein was present in the urine (0 = absent,
1 = present).

The main aim of an analysis of these data would be to investigate the effect
of the risk factors Bun, Ca, Hb, Pcells and Protein on the survival time of the
multiple myeloma patients. The effects of these risk factors may be modified
by the age or sex of a patient, and so the extent to which the relationship
between survival and the important risk factors is consistent for each sex and
for each of a number of age groups will also need to be studied.

Example 1.4 Comparison of two treatments for prostatic cancer
A randomised controlled clinical trial to compare treatments for prostatic can-
cer was begun in 1967 by the Veteran’s Administration Cooperative Urological
Research Group. The trial was double-blind and two of the treatments used
in the study were a placebo and 1.0 mg of diethylstilbestrol (DES). The treat-
ments were administered daily by mouth. The time origin of the study is the
date on which a patient was randomised to a treatment, and the end-point is
the death of the patient from prostatic cancer.

The full data set is given in Andrews and Herzberg (1985), but the data
used in this example are from patients presenting with Stage III cancer, that
is, patients for whom there was evidence of a local extension of the tumour
beyond the prostatic capsule, but without elevated serum prostatic acid phos-
phatase. Furthermore, the patients were those who had no history of cardio-
vascular disease, had a normal ECG result at trial entry, and who were not
confined to bed during the daytime. In addition to recording the survival time
of each patient in the study, information was recorded on a number of other
prognostic factors. These included the age of the patient at trial entry, their
serum haemoglobin level in gm/100 ml, the size of their primary tumour in
cm2 and the value of a combined index of tumour stage and grade. This index
is known as the Gleason index; the more advanced the tumour, the greater
the value of the index.
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Table 1.3 Survival times of patients in a study on multiple myeloma.
Patient Survival Status Age Sex Bun Ca Hb Pcells Protein
number time

1 13 1 66 1 25 10 14.6 18 1
2 52 0 66 1 13 11 12.0 100 0
3 6 1 53 2 15 13 11.4 33 1
4 40 1 69 1 10 10 10.2 30 1
5 10 1 65 1 20 10 13.2 66 0
6 7 0 57 2 12 8 9.9 45 0
7 66 1 52 1 21 10 12.8 11 1
8 10 0 60 1 41 9 14.0 70 1
9 10 1 70 1 37 12 7.5 47 0
10 14 1 70 1 40 11 10.6 27 0
11 16 1 68 1 39 10 11.2 41 0
12 4 1 50 2 172 9 10.1 46 1
13 65 1 59 1 28 9 6.6 66 0
14 5 1 60 1 13 10 9.7 25 0
15 11 0 66 2 25 9 8.8 23 0
16 10 1 51 2 12 9 9.6 80 0
17 15 0 55 1 14 9 13.0 8 0
18 5 1 67 2 26 8 10.4 49 0
19 76 0 60 1 12 12 14.0 9 0
20 56 0 66 1 18 11 12.5 90 0
21 88 1 63 1 21 9 14.0 42 1
22 24 1 67 1 10 10 12.4 44 0
23 51 1 60 2 10 10 10.1 45 1
24 4 1 74 1 48 9 6.5 54 0
25 40 0 72 1 57 9 12.8 28 1
26 8 1 55 1 53 12 8.2 55 0
27 18 1 51 1 12 15 14.4 100 0
28 5 1 70 2 130 8 10.2 23 0
29 16 1 53 1 17 9 10.0 28 0
30 50 1 74 1 37 13 7.7 11 1
31 40 1 70 2 14 9 5.0 22 0
32 1 1 67 1 165 10 9.4 90 0
33 36 1 63 1 40 9 11.0 16 1
34 5 1 77 1 23 8 9.0 29 0
35 10 1 61 1 13 10 14.0 19 0
36 91 1 58 2 27 11 11.0 26 1
37 18 0 69 2 21 10 10.8 33 0
38 1 1 57 1 20 9 5.1 100 1
39 18 0 59 2 21 10 13.0 100 0
40 6 1 61 2 11 10 5.1 100 0
41 1 1 75 1 56 12 11.3 18 0
42 23 1 56 2 20 9 14.6 3 0
43 15 1 62 2 21 10 8.8 5 0
44 18 1 60 2 18 9 7.5 85 1
45 12 0 71 2 46 9 4.9 62 0
46 12 1 60 2 6 10 5.5 25 0
47 17 1 65 2 28 8 7.5 8 0
48 3 0 59 1 90 10 10.2 6 1
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Table 1.4 gives the data recorded for 38 patients, where the survival times
are given in months. The survival times of patients who died from other
causes, or who were lost during the follow-up process, are regarded as censored.
A variable associated with the status of an individual at the end of the study
takes the value unity if the patient has died from prostatic cancer, and zero if
the survival time is right-censored. The variable associated with the treatment
group takes the value 2 when an individual is treated with DES and unity if
an individual is on the placebo treatment.

The main aim of this study is to determine the extent of any evidence that
patients treated with DES survive longer than those treated with the placebo.
Since the data on which this example is based are from a randomised trial, one
might expect that the distributions of the prognostic factors, that is the age
of patient, serum haemoglobin level, size of tumour and Gleason index, will
be similar over the patients in each of the two treatment groups. However, it
would not be wise to rely on this assumption. For example, it could turn out
that patients in the placebo group had larger tumours on average than those
in the group treated with DES. If patients with large tumours have a poorer
prognosis than those with small tumours, the size of the treatment effect would
be overestimated, unless proper account was taken of the size of the tumour
in the analysis. Consequently, it will first be necessary to determine if any of
the covariates are related to survival time. If so, the effect of these variables
will need to be allowed for when comparing the survival experiences of the
patients in the two treatment groups.

1.3 Survivor, hazard and cumulative hazard functions

In summarising survival data, there are three functions of central interest,
namely the survivor function, the hazard function, and the cumulative hazard
function. These functions are therefore defined in this first chapter.

1.3.1 The survivor function

The actual survival time of an individual, t, can be regarded as the observed
value of a variable, T , that can take any non-negative value. The different val-
ues that T can take have a probability distribution, and we call T the random
variable associated with the survival time. Now suppose that this random vari-
able has a probability distribution with underlying probability density function
f(t). The distribution function of T is then given by

F (t) = P(T < t) =

∫ t

0

f(u) du, (1.1)

and represents the probability that the survival time is less than some value t.
This function is also called the cumulative incidence function, since it sum-
marises the cumulative probability of death occurring before time t.
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Table 1.4 Survival times of prostatic cancer patients in a clinical trial to compare
two treatments.
Patient Treatment Survival Status Age Serum Size of Gleason

number time haem. tumour index

1 1 65 0 67 13.4 34 8

2 2 61 0 60 14.6 4 10

3 2 60 0 77 15.6 3 8

4 1 58 0 64 16.2 6 9

5 2 51 0 65 14.1 21 9

6 1 51 0 61 13.5 8 8

7 1 14 1 73 12.4 18 11

8 1 43 0 60 13.6 7 9

9 2 16 0 73 13.8 8 9

10 1 52 0 73 11.7 5 9

11 1 59 0 77 12.0 7 10

12 2 55 0 74 14.3 7 10

13 2 68 0 71 14.5 19 9

14 2 51 0 65 14.4 10 9

15 1 2 0 76 10.7 8 9

16 1 67 0 70 14.7 7 9

17 2 66 0 70 16.0 8 9

18 2 66 0 70 14.5 15 11

19 2 28 0 75 13.7 19 10

20 2 50 1 68 12.0 20 11

21 1 69 1 60 16.1 26 9

22 1 67 0 71 15.6 8 8

23 2 65 0 51 11.8 2 6

24 1 24 0 71 13.7 10 9

25 2 45 0 72 11.0 4 8

26 2 64 0 74 14.2 4 6

27 1 61 0 75 13.7 10 12

28 1 26 1 72 15.3 37 11

29 1 42 1 57 13.9 24 12

30 2 57 0 72 14.6 8 10

31 2 70 0 72 13.8 3 9

32 2 5 0 74 15.1 3 9

33 2 54 0 51 15.8 7 8

34 1 36 1 72 16.4 4 9

35 2 70 0 71 13.6 2 10

36 2 67 0 73 13.8 7 8

37 1 23 0 68 12.5 2 8

38 1 62 0 63 13.2 3 8
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The survivor function, S(t), is defined to be the probability that the sur-
vival time is greater than or equal to t, and so from Equation (1.1),

S(t) = P(T > t) = 1− F (t). (1.2)

The survivor function can therefore be used to represent the probability that
an individual survives beyond any given time.

1.3.2 The hazard function

The hazard function is widely used to express the risk or hazard of an event
such as death occurring at some time t. This function is obtained from the
probability that an individual dies at time t, conditional on he or she having
survived to that time. For a formal definition of the hazard function, consider
the probability that the random variable associated with an individual’s sur-
vival time, T , lies between t and t+δt, conditional on T being greater than or
equal to t, written P(t 6 T < t + δt | T > t). This conditional probability is
then expressed as a probability per unit time by dividing by the time interval,
δt, to give a rate. The hazard function, h(t), is then the limiting value of this
quantity, as δt tends to zero, so that

h(t) = lim
δt→0

{
P(t 6 T < t+ δt | T > t)

δt

}
. (1.3)

The function h(t) is also referred to as the hazard rate, the instantaneous death
rate, the intensity rate or the force of mortality.

From the definition of the hazard function in Equation (1.3), h(t) is the
event rate at time t, conditional on the event not having occurred before t.
Specifically, if the survival time is measured in days, h(t) is the approximate
probability that an individual, who is at risk of the event occurring at the
start of day t, experiences the event during that day. The hazard function at
time t can also be regarded as the expected number of events experienced by
an individual in unit time, given that the event has not occurred before then,
and assuming that the hazard is constant over that time period.

The definition of the hazard function in Equation (1.3) leads to some use-
ful relationships between the survivor and hazard functions. According to a
standard result from probability theory, the probability of an event A, condi-
tional on the occurrence of an event B, is given by P(A |B) = P(AB)/P(B),
where P(AB) is the probability of the joint occurrence of A and B. Using this
result, the conditional probability in the definition of the hazard function in
Equation (1.3) is

P(t 6 T < t+ δt)

P(T > t)
,

which is equal to
F (t+ δt)− F (t)

S(t)
,
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where F (t) is the distribution function of T . Then,

h(t) = lim
δt→0

{
F (t+ δt)− F (t)

δt

}
1

S(t)
.

Now,

lim
δt→0

{
F (t+ δt)− F (t)

δt

}
is the definition of the derivative of F (t) with respect to t, which is f(t), and
so

h(t) =
f(t)

S(t)
. (1.4)

Taken together, Equations (1.1), (1.2) and (1.4) show that from any one of
the three functions, f(t), S(t), and h(t), the other two can be determined.

1.3.3 The cumulative hazard function

From Equation (1.4), it follows that

h(t) = − d

dt
{logS(t)}, (1.5)

and so
S(t) = exp {−H(t)}, (1.6)

where

H(t) =

∫ t

0

h(u) du. (1.7)

The function H(t) features widely in survival analysis, and is called the in-
tegrated or cumulative hazard function. From Equation (1.6), the cumulative
hazard function can also be obtained from the survivor function, since

H(t) = − logS(t). (1.8)

The cumulative hazard function, H(t), is the cumulative risk of an event
occurring by time t. If the event is death, then H(t) summarises the risk of
death up to time t, given that death has not occurred before t. The cumulative
hazard function at time t can also be interpreted as the expected number of
events that occur in the interval from the time origin to t.

It is possible for the cumulative hazard function to exceed unity. Using
Equation (1.8), H(t) > 1, when − logS(t) > 1, that is when S(t) 6 e−1 =
0.37. The cumulative hazard is then greater than unity when the probability
of an event occurring after time t is less than 0.37, and means that more than
one event is expected in the time interval (0, t). The survivor function, S(t), is
then more correctly defined as the probability that one or more events occur
after time t. The interpretation of a cumulative hazard function in terms of
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the expected number of events is only reasonable when repetitions of an event
are possible, such as when the event is the occurrence of an infection, migraine
or seizure. When the event of interest is death, this interpretation relies on
individuals being immediately resurrected after death has occurred! Methods
for analysing times to multiple occurrences of an event are considered later
in Chapter 13, and a more mathematical interpretation of the hazard and
cumulative hazard functions when multiple events are possible is included in
Section 13.1 of that chapter.

In the analysis of survival data, the survivor function, hazard function and
cumulative hazard function are estimated from the observed survival times.
Methods of estimation that do not require the form of the probability den-
sity function of T to be specified are described in Chapters 2 and 3, while
methods based on the assumption of a particular survival time distribution
are presented in Chapters 5 and 6.

1.4 Computer software for survival analysis

Most of the techniques for analysing survival data that will be presented in
this book require suitable computer software for their implementation. Many
computer packages for survival analysis are now available, but of the commer-
cially available software packages, SAS (SAS Institute Inc.), S-PLUS (TIBCO
Software Inc.) and Stata (StataCorp) have the most extensive range of fa-
cilities. In addition, the R statistical computing environment (R Core Team,
2013) is free software, distributed under the terms of the GNU General Public
License. Both S-PLUS and R are modern implementations of the S statisti-
cal programming language, and include a comprehensive range of modules for
survival analysis. Any of these four packages can be used to carry out the
analyses described in subsequent chapters of this book.

In this book, the data sets used to illustrate the different methods of sur-
vival analysis have been analysed using SAS 9.4 (SAS Institute, Cary NC),
mainly using the procedures lifetest, lifereg and phreg. Where published
SAS macros have been used for more specialised analyses, these are docu-
mented in the ‘Further reading’ section of each chapter.

In some circumstances, numerical results in the output produced by soft-
ware packages may differ. This is often due to different default methods of
calculation being used. A particularly important example of this occurs when
a data set includes two or more individuals with the same survival times. In
this case, the SAS phreg procedure and the R package survival (Therneau,
2014) default to different methods of handling these tied observations, leading
to differences in the output. The default settings can of course be changed,
and the treatment of tied survival times is described in Section 3.3.2 of Chap-
ter 3. Differences in numerical values may also result from different settings
being used for parameters that control the convergence of certain iterative
procedures, and different methods being used for numerical optimisation.
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1.5 Further reading

An introduction to the techniques used in the analysis of survival data is
included in a number of general books on statistics in medical research, such
as those of Altman (1991) and Armitage, Berry and Matthews (2002). Machin,
Cheung and Parmar (2006) provide a practical guide to the analysis of survival
data from clinical trials, using non-technical language.

There a number of textbooks that provide an introduction to the methods
of survival analysis, illustrated with practical examples. Lee and Wang (2013)
provides a broad coverage of topics with illustrations drawn from biology and
medicine, and Marubini and Valsecchi (1995) describe the analysis of survival
data from clinical trials and observational studies. Hosmer, Lemeshow and
May (2008) give a balanced account of survival analysis, with excellent chap-
ters on model development and the interpretation of the parameter estimates
in a fitted model. Klein and Moeschberger (2005) include many example data
sets and exercises in their comprehensive textbook, and Kleinbaum and Klein
(2012) provide a self-learning text on survival analysis. Applications of sur-
vival analysis in the analysis of epidemiological data are described by Breslow
and Day (1987) and Woodward (2014). Introductory texts that describe the
application of survival analysis in other areas include those of Crowder et al.
(1991) who focus on the analysis of reliability data, and Box-Steffensmeier and
Jones (2004) who give a non-mathematical account of time to event analysis
in the social sciences.

Comprehensive accounts of the subject are given by Kalbfleisch and Pren-
tice (2002) and Lawless (2002). These books have been written for the post-
graduate statistician or research worker, and are usually regarded as reference
books rather than introductory texts. A concise review of survival analysis is
given in the research monograph of Cox and Oakes (1984), and in the chap-
ter devoted to this subject in Hinkley, Reid and Snell (1991). The book by
Hougaard (2000) on multivariate survival data incorporates more advanced
topics, after introductory chapters that cover the basic features of survival
analysis. Therneau and Grambsch (2000) base their presentation of survival
analysis on the counting process approach, leading to a more mathematical
development of the material. Harrell (2001) gives details on many issues that
arise in the development of a statistical model not found in other texts, and
includes an extensive discussion of two case studies.

There are many general books on the use of particular software packages
for data analysis, and some that give a detailed account of how they are used
in the analysis of survival data. Allison (2010) provides a comprehensive guide
to the SAS software for survival analysis. Der and Everitt (2013) also include
material on survival analysis in their text on the use of SAS for analysing
medical data. Therneau and Grambsch (2000) give a detailed account of how
SAS and S-PLUS are used to fit the Cox regression model, and extensions to
it. This book includes a description of a number of SAS macros and S-PLUS
functions that supplement the standard facilities available in these packages.
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The use of S-PLUS in survival analysis is also described in Everitt and Rabe-
Hesketh (2001) and Tableman and Kim (2004), while Broström (2012) shows
how R is used in the analysis of survival data. Venables and Ripley (2002)
describe how graphical and numerical data analyses can be carried out in the
S environment that is implemented in both R and S-PLUS; note that S code
generally runs under R. A similarly comprehensive account of the R system
is given by Crawley (2013), while Dalgaard (2008) gives a more elementary
introduction to R. The short introduction to R of Venables and Smith (2009)
is also available from R Core Team (2013). The use of Stata in survival analysis
is presented by Cleves et al. (2010), and Rabe-Hesketh and Everitt (2007) give
a more general introduction to the use of Stata in data analysis.



Chapter 2

Some non-parametric procedures

An initial step in the analysis of a set of survival data is to present numerical
or graphical summaries of the survival times for individuals in a particular
group. Such summaries may be of interest in their own right, or as a precur-
sor to a more detailed analysis of the data. Survival data are conveniently
summarised through estimates of the survivor function and hazard function.
Methods for estimating these functions from a single sample of survival data
are described in Sections 2.1 and 2.3. These methods are said to be non-
parametric or distribution-free, since they do not require specific assumptions
to be made about the underlying distribution of the survival times.

Once the estimated survivor function has been found, the median and
other percentiles of the distribution of survival times can be estimated, as
shown in Section 2.4. Numerical summaries of the data, derived on the basis
of assumptions about the probability distribution from which the data have
been drawn, will be considered later in Chapters 5 and 6.

When the survival times of two groups of patients are being compared, an
informal comparison of the survival experience of each group of individuals
can be made using the estimated survivor functions. However, there are more
formal procedures that enable two groups of survival data to be compared.
Two non-parametric procedures for comparing two or more groups of sur-
vival times, namely the log-rank test and the Wilcoxon test, are described in
Section 2.6.

2.1 Estimating the survivor function

Suppose first that we have a single sample of survival times, where none of
the observations are censored. The survivor function S(t), defined in Equa-
tion (1.2), is the probability that an individual survives for a time greater
than or equal to t. This function can be estimated by the empirical survivor
function, given by

Ŝ(t) =
Number of individuals with survival times > t

Number of individuals in the data set
. (2.1)

Equivalently, Ŝ(t) = 1−F̂ (t), where F̂ (t) is the empirical distribution function,
that is, the ratio of the total number of individuals alive at time t to the total

17
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number of individuals in the study. Notice that the empirical survivor function
is equal to unity for values of t before the first death time, and zero after the
final death time.

The estimated survivor function Ŝ(t) is assumed to be constant between
two adjacent death times, and so a plot of Ŝ(t) against t is a step-function.
The function decreases immediately after each observed survival time.

Example 2.1 Pulmonary metastasis
One complication in the management of patients with a malignant bone tu-
mour, or osteosarcoma, is that the tumour often spreads to the lungs. This
pulmonary metastasis is life-threatening. In a study concerned with the treat-
ment of pulmonary metastasis arising from osteosarcoma, Burdette and Gehan
(1970) give the following survival times, in months, of eleven male patients.

11 13 13 13 13 13 14 14 15 15 17

Using Equation (2.1), the estimated values of the survivor function at times
11, 13, 14, 15 and 17 months are 1.000, 0.909, 0.455, 0.273 and 0.091. The
estimated value of the survivor function is unity from the time origin until 11
months, and zero after 17 months. A graph of the estimated survivor function
is given in Figure 2.1.
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Figure 2.1 Estimated survivor function for the data from Example 2.1.

The method of estimating the survivor function illustrated in the above
example cannot be used when there are censored observations. The reason for
this is that the method does not allow information provided by an individual
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whose survival time is censored before time t to be used in computing the
estimated survivor function at t. Non-parametric methods for estimating S(t),
which can be used in the presence of censored survival times, are described in
the following sections.

2.1.1 Life-table estimate of the survivor function

The life-table estimate of the survivor function, also known as the actuarial
estimate of survivor function, is obtained by first dividing the period of ob-
servation into a series of time intervals. These intervals need not necessarily
be of equal length, although they usually are. The number of intervals used
will depend on the number of individuals in the study, but would usually be
somewhere between 5 and 15.

Suppose that the jth ofm such intervals, j = 1, 2, . . . ,m, extends from time
t′j−1 to immediately before time t′j , where we take t0 = 0 and tm = ∞. Also,
let dj and cj denote the number of deaths and the number of censored survival
times, respectively, in this interval, and let nj be the number of individuals
who are alive, and therefore at risk of death, at the start of the jth interval.
We now make the assumption that the censoring process is such that the
censored survival times occur uniformly throughout the jth interval, so that
the average number of individuals who are at risk during this interval is

n′j = nj − cj/2. (2.2)

This assumption is sometimes known as the actuarial assumption.
In the jth interval, the probability of death can be estimated by dj/n

′
j ,

so that the corresponding survival probability is (n′j − dj)/n
′
j . Now consider

the probability that an individual survives beyond time t′j−1, j = 2, 3, . . . ,m,
that is, until some time after the start of the jth interval. This will be the
product of the probabilities that an individual survives through each of the
j−1 preceding intervals, and so the life-table estimate of the survivor function
is given by

S∗(t) =

j−1∏
i=1

(
n′i − di
n′i

)
, (2.3)

for t′j−1 6 t < t′j , j = 2, 3, . . . ,m. The estimated probability of surviving
beyond the start of the first interval, t′0, is of course unity, while the estimated
probability of surviving beyond t′m is zero. A graphical estimate of the survivor
function will then be a step-function with constant values of the function in
each time interval.

Example 2.2 Survival of multiple myeloma patients
To illustrate the computation of the life-table estimate, consider the data on
the survival times of the 48 multiple myeloma patients given in Table 1.3. In
this illustration, the information collected on other explanatory variables for
each individual will be ignored.
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The survival times are first grouped to give the number of patients who die,
dj , and the number who are censored, cj , in each of the first five years of the
study, and in the subsequent three-year period. The number at risk of death
at the start of each of these intervals, nj , is then computed, together with the
adjusted number at risk, n′j . Finally, the probability of survival through each
interval is estimated, from which the estimated survivor function is obtained
using Equation (2.3). The calculations are shown in Table 2.1, in which the
time period is given in months, and the jth interval that begins at time t′j−1

and ends just before time t′j , for j = 1, 2, . . . ,m, is denoted t′j−1–.

Table 2.1 Life-table estimate of the survivor function for the data from
Example 1.3.

Interval Time period dj cj nj n′
j (n′

j − dj)/n
′
j S∗(t)

1 0– 16 4 48 46.0 0.6522 1.0000
2 12– 10 4 28 26.0 0.6154 0.6522
3 24– 1 0 14 14.0 0.9286 0.4013
4 36– 3 1 13 12.5 0.7600 0.3727
5 48– 2 2 9 8.0 0.7500 0.2832
6 60– 4 1 5 4.5 0.1111 0.2124

A graph of the life-table estimate of the survivor function is shown in
Figure 2.2.

E
s
ti
m

a
te

d
 s

u
rv

iv
o

r 
fu

n
c
ti
o

n

0.0

0.2

0.4

0.6

0.8

1.0

Survival time

0 10 20 30 40 50 60 70

Figure 2.2 Life-table estimate of the survivor function.

The form of the estimated survivor function obtained using this method
is sensitive to the choice of the intervals used in its construction, just as the
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shape of a histogram depends on the choice of the class intervals. On the other
hand, the life-table estimate is particularly well suited to situations in which
the actual death times are unknown, and the only available information is the
number of deaths and the number of censored observations that occur in a
series of consecutive time intervals. In practice, such interval-censored survival
data occur quite frequently.

When the actual survival times are known, the life-table estimate can still
be used, as in Example 2.2, but the grouping of the survival times does result
in some loss of information. Alternative methods for estimating the survivor
function are then more appropriate, such as that leading to the Kaplan-Meier
estimate.

2.1.2 Kaplan-Meier estimate of the survivor function

The first step in the analysis of ungrouped censored survival data is normally
to obtain the Kaplan-Meier estimate of the survivor function. This estimate
is therefore considered in some detail. To obtain the Kaplan-Meier estimate, a
series of time intervals is constructed, as for the life-table estimate. However,
each of these intervals is designed to be such that one death time is contained
in the interval, and this death time is taken to occur at the start of the interval.

As an illustration, suppose that t(1), t(2) and t(3) are three observed survival
times arranged in rank order, so that t(1) < t(2) < t(3), and that c is a censored
survival time that falls between t(2) and t(3). The constructed intervals then
begin at times t(1), t(2) and t(3), and each interval includes the one death time,
although there could be more than one individual who dies at any particular
death time. Notice that no interval begins at the censored time of c. Now
suppose that two individuals die at t(1), one dies at t(2) and three die at
t(3). The situation is illustrated diagrammatically in Figure 2.3, in which D
represents a death and C a censored survival time.

-

t0 t(1) t(2) t(3)
Time

D
D

D C D
D
D

Figure 2.3 Construction of intervals used in the derivation of the Kaplan-Meier
estimate.

The time origin is denoted by t0, and so there is an initial period com-
mencing at t0, which ends just before t(1), the time of the first death. This
means that the interval from t0 to t(1) will not include a death time. The
first constructed interval extends from t(1) to just before t(2), and since the
second death time is at t(2), this interval includes the single death time at t(1).
The second interval begins at time t(2) and ends just before t(3), and includes
the death time at t(2) and the censored time c. There is also a third interval
beginning at t(3), which contains the longest survival time, t(3).
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In general, suppose that there are n individuals with observed survival
times t1, t2, . . . , tn. Some of these observations may be right-censored, and
there may also be more than one individual with the same observed survival
time. We therefore suppose that there are r death times amongst the indi-
viduals, where r 6 n. After arranging these death times in ascending order,
the jth is denoted t(j), for j = 1, 2, . . . , r, and so the r ordered death times
are t(1) < t(2) < · · · < t(r). The number of individuals who are alive just
before time t(j), including those who are about to die at this time, will be
denoted nj , for j = 1, 2, . . . , r, and dj will denote the number who die at this
time. The time interval from t(j) − δ to t(j), where δ is an infinitesimal time
interval, then includes one death time. Since there are nj individuals who
are alive just before t(j) and dj deaths at t(j), the probability that an indi-
vidual dies during the interval from t(j) − δ to t(j) is estimated by dj/nj .
The corresponding estimated probability of survival through that interval
is then (nj − dj)/nj .

It sometimes happens that there are censored survival times that occur at
the same time as one or more deaths, so that a death time and a censored
survival time appear to occur simultaneously. In this situation, the censored
survival time is taken to occur immediately after the death time when com-
puting the values of the nj .

From the manner in which the time intervals are constructed, the interval
from t(j) to t(j+1) − δ, the time immediately before the next death time,
contains no deaths. The probability of surviving from t(j) to t(j+1) − δ is
therefore unity, and the joint probability of surviving from t(j) − δ to t(j) and
from t(j) to t(j+1)−δ can be estimated by (nj−dj)/nj . In the limit, as δ tends
to zero, (nj − dj)/nj becomes an estimate of the probability of surviving the
interval from t(j) to t(j+1).

We now make the assumption that the deaths of the individuals in the sam-
ple occur independently of one another. Then, the estimated survivor func-
tion at any time, t, in the kth constructed time interval from t(k) to t(k+1),
k = 1, 2, . . . , r, where t(r+1) is defined to be ∞, will be the estimated prob-
ability of surviving beyond t(k). This is actually the probability of surviving
through the interval from t(k) to t(k+1), and all preceding intervals, and leads
to the Kaplan-Meier estimate of the survivor function, which is given by

Ŝ(t) =
k∏
j=1

(
nj − dj
nj

)
, (2.4)

for t(k) 6 t < t(k+1), k = 1, 2, . . . , r, with Ŝ(t) = 1 for t < t(1), and where
t(r+1) is taken to be ∞. If the largest observation is a censored survival time,

t∗, say, Ŝ(t) is undefined for t > t∗. On the other hand, if the largest observed
survival time, t(r), is an uncensored observation, nr = dr, and so Ŝ(t) is zero
for t > t(r). A plot of the Kaplan-Meier estimate of the survivor function is
a step-function, in which the estimated survival probabilities are constant
between adjacent death times and decrease at each death time.
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Equation (2.4) shows that, as for the life-table estimate of the survivor
function in Equation (2.3), the Kaplan-Meier estimate is formed as a product
of a series of estimated probabilities. In fact, the Kaplan-Meier estimate is
the limiting value of the life-table estimate in Equation (2.3) as the number
of intervals tends to infinity and their width tends to zero. For this reason,
the Kaplan-Meier estimate is also known as the product-limit estimate of the
survivor function.

Note that if there are no censored survival times in the data set, nj−dj =
nj+1, j = 1, 2, . . . , k, in Equation (2.4), and on expanding the product we get

Ŝ(t) =
n2
n1

× n3
n2

× · · · × nk+1

nk
.

This reduces to nk+1/n1, for k = 1, 2, . . . , r− 1, with Ŝ(t) = 1 for t < t(1) and

Ŝ(t) = 0 for t > t(r). Now, n1 is the number of individuals at risk just before
the first death time, which is the number of individuals in the sample, and nk+1

is the number of individuals with survival times greater than or equal to t(k+1).

Consequently, in the absence of censoring, Ŝ(t) is simply the empirical survivor
function defined in Equation (2.1). The Kaplan-Meier estimate is therefore a
generalisation of the empirical survivor function that accommodates censored
observations.

Example 2.3 Time to discontinuation of the use of an IUD
Data from 18 women on the time to discontinuation of the use of an intra-
uterine device (IUD) were given in Table 1.1. For these data, the survivor
function, S(t), represents the probability that a woman discontinues the use
of the contraceptive device after any time t. The Kaplan-Meier estimate of the
survivor function is readily obtained using Equation (2.4), and the required
calculations are set out in Table 2.2.

Table 2.2 Kaplan-Meier estimate of the survivor
function for the data from Example 1.1.

Time interval nj dj (nj − dj)/nj Ŝ(t)

0– 18 0 1.0000 1.0000
10– 18 1 0.9444 0.9444
19– 15 1 0.9333 0.8815
30– 13 1 0.9231 0.8137
36– 12 1 0.9167 0.7459
59– 8 1 0.8750 0.6526
75– 7 1 0.8571 0.5594
93– 6 1 0.8333 0.4662
97– 5 1 0.8000 0.3729

107 3 1 0.6667 0.2486

The estimated survivor function, Ŝ(t), is plotted in Figure 2.4. Note that
since the largest discontinuation time of 107 days is censored, Ŝ(t) is not
defined beyond t = 107.
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Figure 2.4 Kaplan-Meier estimate of the survivor function for the data from Exam-
ple 1.1.

2.1.3 Nelson-Aalen estimate of the survivor function

An alternative estimate of the survivor function, which is based on the indi-
vidual event times, is the Nelson-Aalen estimate, given by

S̃(t) =
k∏
j=1

exp(−dj/nj). (2.5)

This estimate can be obtained from an estimate of the cumulative hazard
function, as shown in Section 2.3.3. Moreover, the Kaplan-Meier estimate of
the survivor function can be regarded as an approximation to the Nelson-
Aalen estimate. To show this, we use the result that

e−x = 1− x+
x2

2
− x3

6
+ · · · ,

which is approximately equal to 1 − x when x is small. It then follows that
exp(−dj/nj) ≈ 1 − (dj/nj) = (nj − dj)/nj , so long as dj is small relative
to nj , which it will be except at the longest survival times. Consequently,

the Kaplan-Meier estimate, Ŝ(t), in Equation (2.4), approximates the Nelson-
Aalen estimate, S̃(t), in Equation (2.5).

The Nelson-Aalen estimate of the survivor function, also known as Alt-
shuler’s estimate, will always be greater than the Kaplan-Meier estimate at
any given time, since e−x > 1 − x, for all values of x. Although the Nelson-
Aalen estimate has been shown to perform better than the Kaplan-Meier
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estimate in small samples, in many circumstances, the estimates will be very
similar, particularly at the earlier survival times. Since the Kaplan-Meier esti-
mate is a generalisation of the empirical survivor function, the latter estimate
has much to commend it.

Example 2.4 Time to discontinuation of the use of an IUD
The values shown in Table 2.2, which gives the Kaplan-Meier estimate of the
survivor function for the data on the time to discontinuation of the use of an
intrauterine device, can be used to calculate the Nelson-Aalen estimate. This
estimate is shown in Table 2.3.

Table 2.3 Nelson-Aalen estimate of the sur-
vivor function for the data from Example 1.1.

Time interval exp(−dj/nj) S̃(t)

0– 1.0000 1.0000
10– 0.9460 0.9460
19– 0.9355 0.8850
30– 0.9260 0.8194
36– 0.9200 0.7539
59– 0.8825 0.6653
75– 0.8669 0.5768
93– 0.8465 0.4882
97– 0.8187 0.3997

107 0.7165 0.2864

From this table we see that the Kaplan-Meier and Nelson-Aalen estimates
of the survivor function differ by less than 0.04. However, when we consider
the precision of these estimates, which we do in Section 2.2, we see that a
difference of 0.04 is of no practical importance.

2.2 Standard error of the estimated survivor function

An essential aid to the interpretation of an estimate of any quantity is the
precision of the estimate, which is reflected in the standard error of the esti-
mate. This is defined to be the square root of the estimated variance of the
estimate, and is used in the construction of an interval estimate for a quan-
tity of interest. In this section, the standard error of estimates of the survivor
function are given.

Because the Kaplan-Meier estimate is the most important and widely used
estimate of the survivor function, the derivation of the standard error of Ŝ(t)
will be presented in detail in this section. The details of this derivation can
be omitted on a first reading.
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2.2.1 ∗ Standard error of the Kaplan-Meier estimate

The Kaplan-Meier estimate of the survivor function for any value of t in the
interval from t(k) to t(k+1) can be written as

Ŝ(t) =
k∏
j=1

p̂j ,

for k = 1, 2, . . . , r, where p̂j = (nj−dj)/nj is the estimated probability that an
individual survives through the time interval that begins at t(j), j = 1, 2, . . . , r.
Taking logarithms,

log Ŝ(t) =
k∑
j=1

log p̂j ,

and so the variance of log Ŝ(t) is given by

var
{
log Ŝ(t)

}
=

k∑
j=1

var {log p̂j} . (2.6)

Now, the number of individuals who survive through the interval beginning
at t(j) can be assumed to have a binomial distribution with parameters nj
and pj , where pj is the true probability of survival through that interval. The
observed number who survive is nj−dj , and using the result that the variance
of a binomial random variable with parameters n, p is np(1− p), the variance
of nj − dj is given by

var (nj − dj) = njpj(1− pj).

Since p̂j = (nj − dj)/nj , the variance of p̂j is var (nj − dj)/n
2
j , that is, pj(1−

pj)/nj . The variance of p̂j may then be estimated by

p̂j(1− p̂j)/nj . (2.7)

In order to obtain the variance of log p̂j , we make use of a general result
for the approximate variance of a function of a random variable. According to
this result, the variance of a function g(X) of the random variable X is given
by

var {g(X)} ≈
{
dg(X)

dX

}2

var (X). (2.8)

This is known as the Taylor series approximation to the variance of a function
of a random variable. Using Equation (2.8), the approximate variance of log p̂j
is var (p̂j)/p̂

2
j , and using Expression (2.7), the approximate estimated variance

of log p̂j is (1− p̂j)/(nj p̂j), which on substitution for p̂j , reduces to

dj
nj(nj − dj)

. (2.9)

* Sections marked with an asterisk may be omitted without loss of continuity.
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Then, from Equation (2.6),

var
{
log Ŝ(t)

}
≈

k∑
j=1

dj
nj(nj − dj)

, (2.10)

and a further application of the result in Equation (2.8) gives

var
{
log Ŝ(t)

}
≈ 1

[Ŝ(t)]2
var

{
Ŝ(t)

}
,

so that

var
{
Ŝ(t)

}
≈ [Ŝ(t)]2

k∑
j=1

dj
nj(nj − dj)

. (2.11)

Finally, the standard error of the Kaplan-Meier estimate of the survivor func-
tion, defined to be the square root of the estimated variance of the estimate,
is given by

se
{
Ŝ(t)

}
≈ Ŝ(t)


k∑
j=1

dj
nj(nj − dj)


1
2

, (2.12)

for t(k) 6 t < t(k+1). This result is known as Greenwood’s formula.

If there are no censored survival times, nj−dj = nj+1, and Expression (2.9)
becomes (nj − nj+1)/njnj+1. Now,

k∑
j=1

nj − nj+1

njnj+1
=

k∑
j=1

(
1

nj+1
− 1

nj

)
=
n1 − nk+1

n1nk+1
,

which can be written as
1− Ŝ(t)

n1Ŝ(t)
,

since Ŝ(t) = nk+1/n1 for t(k) 6 t < t(k+1), k = 1, 2, . . . , r − 1, in the absence

of censoring. Hence, from Equation (2.11), the estimated variance of Ŝ(t) is
Ŝ(t)[1 − Ŝ(t)]/n1. This is an estimate of the variance of the empirical sur-
vivor function, given in Equation (2.1), on the assumption that the number
of individuals at risk at time t has a binomial distribution with parameters
n1, S(t).

2.2.2 ∗ Standard error of other estimates

The life-table estimate of the survivor function is similar in form to the
Kaplan-Meier estimate, and so the standard error of this estimator is ob-
tained in a similar manner. In the notation of Section 2.1.1, the standard
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error of the life-table estimate is given by

se {S∗(t)} ≈ S∗(t)


k∑
j=1

dj
n′j(n

′
j − dj)


1
2

.

The standard error of the Nelson-Aalen estimator is

se
{
S̃(t)

}
≈ S̃(t)


k∑
j=1

dj
n2j


1
2

,

although other expressions have been proposed.

2.2.3 Confidence intervals for values of the survivor function

Once the standard error of an estimate of the survivor function has been
calculated, a confidence interval for the corresponding value of the survivor
function, at a given time t, can be found. A confidence interval is an interval
estimate of the survivor function, and is the interval which is such that there is
a prescribed probability that the value of the true survivor function is included
within it. The intervals constructed in this manner are sometimes referred to
as pointwise confidence intervals, since they apply to a specific survival time.

A confidence interval for the true value of the survivor function at a given
time t is obtained by assuming that the estimated value of the survivor func-
tion at t is normally distributed with mean S(t) and estimated variance
given by Equation (2.11). The interval is computed from percentage points
of the standard normal distribution. Thus, if Z is a random variable that
has a standard normal distribution, the upper (one-sided) α/2-point, or the
two-sided α-point, of this distribution is that value zα/2 which is such that
P(Z > zα/2) = α/2. This probability is the area under the standard normal
curve to the right of zα/2, as illustrated in Figure 2.5. For example, the two-
sided 5% and 1% points of the standard normal distribution, z0.025 and z0.005,
are 1.96 and 2.58, respectively.

A 100(1 − α)% confidence interval for S(t), for a given value of t, is the
interval from Ŝ(t)− zα/2 se {Ŝ(t)} to Ŝ(t)+ zα/2 se {Ŝ(t)}, where se {Ŝ(t)} is
found from Equation (2.12). These intervals for S(t) can be superimposed on
a graph of the estimated survivor function, as shown in Example 2.5.

One difficulty with this procedure arises from the fact that the confidence
intervals are symmetric. When the estimated survivor function is close to
zero or unity, symmetric intervals are inappropriate, since they can lead to
confidence limits for the survivor function that lie outside the interval (0,1).
A pragmatic solution to this problem is to replace any limit that is greater
than unity by 1.0, and any limit that is less than zero by 0.0.

An alternative procedure is to transform Ŝ(t) to a value in the range
(−∞,∞), and obtain a confidence interval for the transformed value. The
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 -z  0     z    

Figure 2.5 Upper and lower α/2-points of the standard normal distribution.

resulting confidence limits are then back-transformed to give a confidence
interval for S(t) itself. Possible transformations are the logistic transforma-
tion, log[S(t)/{1 − S(t)}], and the complementary log-log transformation,
log{− logS(t)}. Note that from Equation (1.8), the latter quantity is the
logarithm of the cumulative hazard function. In either case, the standard
error of the transformed value of Ŝ(t) can be found using the approximation
in Equation (2.8).

For example, the variance of log{− log Ŝ(t)} is obtained from the expres-
sion for var {log Ŝ(t)} in Equation (2.10). Using the general result in Equa-
tion (2.8),

var {log(−X)} ≈ 1

X2
var (X),

and setting X = log Ŝ(t) gives

var
[
log{− log Ŝ(t)}

]
≈ 1

{log Ŝ(t)}2

k∑
j=1

dj
nj(nj − dj)

.

The standard error of log{− log Ŝ(t)} is the square root of this quantity. This
leads to 100(1− α)% limits of the form

Ŝ(t)exp[±zα/2 se{log[− log Ŝ(t)]}],

where zα/2 is the upper α/2-point of the standard normal distribution.
A further problem is that in the tails of the distribution of the survival

times, that is, when Ŝ(t) is close to zero or unity, the variance of Ŝ(t) obtained
using Greenwood’s formula can underestimate the actual variance. In these
circumstances, an alternative expression for the standard error of Ŝ(t) may
be used. Peto et al. (1977) propose that the standard error of Ŝ(t) should be
obtained from the equation

se {Ŝ(t)} =
Ŝ(t)

√
{1− Ŝ(t)}√
(nk)

,
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for t(k) 6 t < t(k+1), k = 1, 2, . . . , r, where Ŝ(t) is the Kaplan-Meier estimate
of S(t) and nk is the number of individuals at risk at t(k), the start of the kth
constructed time interval.

This expression for the standard error of Ŝ(t) is conservative, in the sense
that the standard errors obtained will tend to be larger than they ought to
be. For this reason, the Greenwood estimate is recommended for general use.

Example 2.5 Time to discontinuation of the use of an IUD
The standard error of the estimated survivor function, and 95% confidence
limits for the corresponding true value of the function, for the data from
Example 1.1 on the times to discontinuation of use of an IUD, are given in
Table 2.4. In this table, confidence limits outside the range (0, 1) have been
replaced by zero or unity.

Table 2.4 Standard error of Ŝ(t) and confidence intervals for S(t)
for the data from Example 1.1.

Time interval Ŝ(t) se {Ŝ(t)} 95% confidence interval

0– 1.0000 0.0000
10– 0.9444 0.0540 (0.839, 1.000)
19– 0.8815 0.0790 (0.727, 1.000)
30– 0.8137 0.0978 (0.622, 1.000)
36– 0.7459 0.1107 (0.529, 0.963)
59– 0.6526 0.1303 (0.397, 0.908)
75– 0.5594 0.1412 (0.283, 0.836)
93– 0.4662 0.1452 (0.182, 0.751)
97– 0.3729 0.1430 (0.093, 0.653)

107 0.2486 0.1392 (0.000, 0.522)

From this table we see that, in general, the standard error of the esti-
mated survivor function increases with the discontinuation time. The reason
for this is that estimates of the survivor function at later times are based on
fewer individuals. A graph of the estimated survivor function, with the 95%
confidence limits shown as dashed lines, is given in Figure 2.6.

It is important to observe that the confidence limits for a survivor func-
tion, illustrated in Figure 2.6, are only valid for any given time. Different
methods are needed to produce confidence bands that are such that there is
a given probability, 0.95 for example, that the survivor function is contained
in the band for all values of t. These bands will tend to be wider than the
band formed from the pointwise confidence limits. Details will not be included,
but references to these methods are given in the final section of this chapter.
Notice also that the width of these intervals is very much greater than the
difference between the Kaplan-Meier and Nelson-Aalen estimates of the sur-
vivor function, shown in Tables 2.2 and 2.3. Similar calculations lead to con-
fidence limits based on life-table and Nelson-Aalen estimates of the survivor
function.
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Figure 2.6 Estimated survivor function and 95% confidence limits for S(t).

2.3 Estimating the hazard function

A single sample of survival data may also be summarised through the hazard
function, which shows the dependence of the instantaneous risk of death on
time. There are a number of ways of estimating this function, two of which
are described in this section.

2.3.1 Life-table estimate of the hazard function

Suppose that the observed survival times have been grouped into a series of
m intervals, as in the construction of the life-table estimate of the survivor
function. An appropriate estimate of the average hazard of death per unit
time over each interval is the observed number of deaths in that interval,
divided by the average time survived in that interval. This latter quantity is
the average number of persons at risk in the interval, multiplied by the length
of the interval. Let the number of deaths in the jth time interval be dj , j =
1, 2, . . . ,m, and suppose that n′j is the average number of individuals at risk
of death in that interval, where n′j is given by Equation (2.2). Assuming that
the death rate is constant during the jth interval, the average time survived
in that interval is (n′j−dj/2)τj , where τj is the length of the jth time interval.
The life-table estimate of the hazard function in the jth time interval is then
given by

h∗(t) =
dj

(n′j − dj/2)τj
,

for t′j−1 6 t < t′j , j = 1, 2, . . . ,m, so that h∗(t) is a step-function.
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The asymptotic standard error of this estimate has been shown by Gehan
(1969) to be given by

se {h∗(t)} =
h∗(t)

√
{1− [h∗(t)τj/2]

2}√
(dj)

,

and confidence intervals for the corresponding true hazard over each of the m
time intervals can be obtained in the manner described in Section 2.2.3.

Example 2.6 Survival of multiple myeloma patients
The life-table estimate of the survivor function for the data from Example 1.3
on the survival times of 48 multiple myeloma patients was given in Table 2.1.
Using the same time intervals as were used in Example 2.2, calculations leading
to the life-table estimate of the hazard function are given in Table 2.5.

Table 2.5 Life-table estimate of the hazard function for
the data from Example 1.3.

Time period τj dj n′
j h∗(t)

0– 12 16 46.0 0.0351
12– 12 10 26.0 0.0397
24– 12 1 14.0 0.0062
36– 12 3 12.5 0.0227
48– 12 2 8.0 0.0238
60– 36 4 4.5 0.0444

The estimated hazard function is plotted as a step-function in Figure 2.7.
The general pattern is for the hazard to remain roughly constant over the
first two years from diagnosis, after which time it declines and then increases
gradually. However, some caution is needed in interpreting this estimate, as
there are few deaths two years after diagnosis.

2.3.2 Kaplan-Meier type estimate

A natural way of estimating the hazard function for ungrouped survival data
is to take the ratio of the number of deaths at a given death time to the
number of individuals at risk at that time. If the hazard function is assumed
to be constant between successive death times, the hazard per unit time can
be found by further dividing by the time interval. Thus, if there are dj deaths
at the jth death time, t(j), j = 1, 2, . . . , r, and nj at risk at time t(j), the
hazard function in the interval from t(j) to t(j+1) can be estimated by

ĥ(t) =
dj
njτj

, (2.13)

for t(j) 6 t < t(j+1), where τj = t(j+1) − t(j). Notice that it is not possible to
use Equation (2.13) to estimate the hazard in the interval that begins at the
final death time, since this interval is open-ended.
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Figure 2.7 Life-table estimate of the hazard function for the data from Example 1.3.

The estimate in Equation (2.13) is referred to as a Kaplan-Meier type esti-
mate, because the estimated survivor function derived from it is the Kaplan-
Meier estimate. To show this, note that since ĥ(t), t(j) 6 t < t(j+1), is an
estimate of the risk of death per unit time in the jth interval, the probabil-
ity of death in that interval is ĥ(t)τj , that is, dj/nj . Hence an estimate of
the corresponding survival probability in that interval is 1− (dj/nj), and the
estimated survivor function is as given by Equation (2.4).

The approximate standard error of ĥ(t) can be found from the variance
of dj , which, following Section 2.2.1, may be assumed to have a binomial
distribution with parameters nj and pj , where pj is the probability of death in
the interval of length τ . Consequently, var (dj) = njpj(1−pj), and estimating
pj by dj/nj gives

se {ĥ(t)} = ĥ(t)

√
nj − dj
njdj

.

However, when dj is small, confidence intervals constructed using this standard
error will be too wide to be of practical use.

Example 2.7 Time to discontinuation of the use of an IUD
Consider again the data on the time to discontinuation of the use of an IUD
for 18 women, given in Example 1.1. The Kaplan-Meier estimate of the sur-
vivor function for these data was given in Table 2.2, and Table 2.6 gives the
corresponding Kaplan-Meier type estimate of the hazard function, computed
from Equation (2.13). The approximate standard errors of ĥ(t) are also given.
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Table 2.6 Kaplan-Meier type estimate of the hazard
function for the data from Example 1.1.

Time interval τj nj dj ĥ(t) se {ĥ(t)}
0– 10 18 0 0.0000 –

10– 9 18 1 0.0062 0.0060
19– 11 15 1 0.0061 0.0059
30– 6 13 1 0.0128 0.0123
36– 23 12 1 0.0036 0.0035
59– 16 8 1 0.0078 0.0073
75– 18 7 1 0.0079 0.0073
93– 4 6 1 0.0417 0.0380
97– 10 5 1 0.0200 0.0179
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Figure 2.8 Kaplan-Meier type estimate of the hazard function for the data from
Example 1.1.

Figure 2.8 shows a plot of the estimated hazard function. From this figure,
there is some evidence that the longer the IUD is used, the greater is the risk of
discontinuation, but the picture is not very clear. The approximate standard
errors of the estimated hazard function at different times are of little help in
interpreting this plot.

In practice, estimates of the hazard function obtained in this way will often
tend to be rather irregular. For this reason, plots of the hazard function may be
‘smoothed’, so that any pattern can be seen more clearly. There are a number
of ways of smoothing the hazard function, that lead to a weighted average of
values of the estimated hazard ĥ(t) at death times in the neighbourhood of t.
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For example, a kernel smoothed estimate of the hazard function, based on the
r ordered death times, t(1), t(2), . . . , t(r), with dj deaths and nj at risk at time
t(j), can be found from

h†(t) = b−1
r∑
j=1

0.75

{
1−

(
t− t(j)

b

)2
}
dj
nj
,

where the value of b needs to be chosen. The function h†(t) is defined for
all values of t in the interval from b to t(r) − b, where t(r) is the greatest
death time. For any value of t in this interval, the death times in the interval
(t−b, t+b) will contribute to the weighted average. The parameter b is known
as the bandwidth and its value controls the shape of the plot; the larger the
value of b, the greater the degree of smoothing. There are formulae that lead
to ‘optimal’ values of b, but these tend to be rather cumbersome. Fuller details
can be found in the references provided in the final section of this chapter.
In this book, the use of a modelling approach to the analysis of survival data
is advocated, and so model-based estimates of the hazard function will be
considered in subsequent chapters.

2.3.3 Estimating the cumulative hazard function

The interpretation of the cumulative hazard function in terms of the expected
number of events that occur up to a given time, given in Section 1.3.3 of
Chapter 1, means that this function is important in the identification of models
for survival data, as will be seen later in Sections 4.4 and 5.2. In addition, since
the derivative of the cumulative hazard function is the hazard function itself,
the slope of the cumulative hazard function provides information about the
shape of the underlying hazard function. For example, a linear cumulative
hazard function over some time interval suggests that the hazard is constant
over this interval. Methods that can be used to estimate this function will now
be described.

The cumulative hazard at time t, H(t), was defined in Equation (1.7)
to be the integral of the hazard function, but is more conveniently found
using Equation (1.8). According to this result, H(t) = − logS(t), and
so if Ŝ(t) is the Kaplan-Meier estimate of the survivor function, Ĥ(t) =
− log Ŝ(t) is an appropriate estimate of the cumulative hazard function to
time t.

Now, using Equation (2.4),

Ĥ(t) = −
k∑
j=1

log

(
nj − dj
nj

)
,

for t(k) 6 t < t(k+1), k = 1, 2, . . . , r, and t(1), t(2), . . . , t(r) are the r ordered
death times, with t(r+1) = ∞.
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If the Nelson-Aalen estimate of the survivor function is used, the estimated
cumulative hazard function, H̃(t) = − log S̃(t), is given by

H̃(t) =
k∑
j=1

dj
nj
.

This is the cumulative sum of the estimated probabilities of death from the
first to the kth time interval, k = 1, 2, . . . , r, and so this quantity has imme-
diate intuitive appeal as an estimate of the cumulative hazard.

An estimate of the cumulative hazard function also leads to an estimate
of the corresponding hazard function, since the differences between adjacent
values of the estimated cumulative hazard function provide estimates of the
underlying hazard, after dividing by the time interval. In particular, differences
in adjacent values of the Nelson-Aalen estimate of the cumulative hazard lead
directly to the hazard function estimate in Section 2.3.2.

2.4 Estimating the median and percentiles of survival times

Since the distribution of survival times tends to be positively skewed, the
median is the preferred summary measure of the location of the distribution.
Once the survivor function has been estimated, it is straightforward to obtain
an estimate of the median survival time. This is the time beyond which 50%
of the individuals in the population under study are expected to survive, and
is given by that value t(50) which is such that S{t(50)} = 0.5.

Because the non-parametric estimates of S(t) are step-functions, it will
not usually be possible to realise an estimated survival time that makes the
survivor function exactly equal to 0.5. Instead, the estimated median survival
time, t̂(50), is defined to be the smallest observed survival time for which the
value of the estimated survivor function is less than 0.5.

In mathematical terms,

t̂(50) = min{ti | Ŝ(ti) < 0.5},

where ti is the observed survival time for the ith individual, i = 1, 2, . . . , n.
Since the estimated survivor function only changes at a death time, this is
equivalent to the definition

t̂(50) = min{t(j) | Ŝ(t(j)) < 0.5},

where t(j) is the jth ordered death time, j = 1, 2, . . . , r.
In the particular case where the estimated survivor function is exactly

equal to 0.5 for values of t in the interval from t(j) to t(j+1), the median
is taken to be the half-way point in this interval, that is (t(j) + t(j+1))/2.
When there are no censored survival times, the estimated median survival
time will be the smallest time beyond which 50% of the individuals in the
sample survive.
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Example 2.8 Time to discontinuation of the use of an IUD
The Kaplan-Meier estimate of the survivor function for the data from Ex-
ample 1.1 on the time to discontinuation of the use of an IUD was given in
Table 2.2. The estimated survivor function, Ŝ(t), for these data was shown in
Figure 2.4. From the estimated survivor function, the smallest discontinuation
time beyond which the estimated probability of discontinuation is less than
0.5 is 93 weeks. This is therefore the estimated median time to discontinuation
of the IUD for this group of women.

A similar procedure to that described above can be used to estimate other
percentiles of the distribution of survival times. The pth percentile of the
distribution of survival times is defined to be the value t(p) which is such that
F{t(p)} = p/100, for any value of p from 0 to 100. In terms of the survivor
function, t(p) is such that S{t(p)} = 1− (p/100), so that for example the 10th
and 90th percentiles are given by

S{t(10)} = 0.9, S{t(90)} = 0.1,

respectively. Using the estimated survivor function, the estimated pth per-
centile is the smallest observed survival time, t̂(p), for which Ŝ{t̂(p)} <
1− (p/100).

It sometimes happens that the estimated survivor function is greater than
0.5 for all values of t. In such cases, the median survival time cannot be
estimated. It would then be natural to summarise the data in terms of other
percentiles of the distribution of survival times, or the estimated survival
probabilities at particular time points.

Estimates of the dispersion of a sample of survival data are not widely
used, but should such an estimate be required, the semi-interquartile range
(SIQR) can be calculated. This is defined to be half the difference between
the 75th and 25th percentiles of the distribution of survival times. Hence,

SIQR =
1

2
{t(75)− t(25)} ,

where t(25) and t(75) are the 25th and 75th percentiles of the survival time
distribution. These two percentiles are also known as the first and third quar-
tiles, respectively. The corresponding sample-based estimate of the SIQR is
{t̂(75) − t̂(25)}/2. Like the variance, the larger the value of the SIQR, the
more dispersed is the survival time distribution.

Example 2.9 Time to discontinuation of the use of an IUD
From the Kaplan-Meier estimate of the survivor function for the data from
Example 1.1, given in Table 2.2, the 25th and 75th percentiles of the distri-
bution of discontinuation times are 36 and 107 weeks, respectively. Hence, the
SIQR of the distribution is estimated to be 35.5 weeks.


