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2 � The Process of Mathematical Modeling

1.1 WHAT IS MODEL BUILDING?

Definition: modeling is the art of describing in symbolic language a real life

system so that approximately correct predictions can be made regarding the

behavior or evolution of the system under varied circumstances of interest.

We now elaborate on this definition.

First, note that in this definition “modeling” is referred to as an art. As

such one cannot develop rigid preset rules for this task. What can be done,

however, is to point out a pattern that is found to be useful in many cases

and can help the practitioner to avoid many pitfalls.

Furthermore, a model is described as being able to make “correct predic-

tions” about the system. This usually does not mean 100% accuracy. Predic-

tions of many models have a rather wide error margin. The pertinent question,

therefore, is whether these margins are acceptable to the user or not. More-

over, it might turn out that several models are capable of describing the same

phenomena with different degrees of accuracy (and complexity).

Another important aspect of the definition is that a model should be “solv-

able.” A sophisticated but “insolvable” model might be less useful from a prac-

tical point of view than a simple and straightforward one which is capable of

making predictions with acceptable error margins.

One should also bear in mind that every model is constructed with certain

limitations on its validity, and these should be borne in mind by the prospec-

tive user. Thus, in many practical applications it is not that “the model is

incorrect” but it is the application which violates the basic assumptions of the

model used.

A classical example to illustrate these points is given by gravitation theory.

Here we do have at present two concurrent theories which pertain to modeling

the same phenomena viz. Newton’s Law of Gravitation and Einstein’s theory.

Though it is accepted and proven that Einstein’s theory is better and more

accurate, still it is highly complex and “hard to solve.” As a result, in most

terrestrial applications we use Newton’s Law of Gravitation with “acceptable

error margin.”
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As to the problems which require model construction, their source and

scope vary between applied problems in life to attempts to duplicate natural

phenomena and (what might seem to be) intellectual curiosity.

Examples and Illustrations:

1. In many cases of daily life, we construct “mini-models” without even

paying any attention to these facts; e.g., “How do I get to downtown?”

(by car, by bus, by subway, on foot, or otherwise) requires a model which

depends on:

(a) The distance to downtown,

(b) The time element (How fast do I want to get there?),

(c) Money considerations,

(d) Security considerations (Is it safe to ride the subway?),

(e) Availability of means (How frequently do the buses run?),

(f) The mood of the person.

2. Consider a truck company operating in the U.S. with “truck depots and

service centers” in some major cities.

A major problem for such a company is how to dispatch trucks to their

destinations in the most economical way (saving gas and drivers’ time).

3. How can the wheat crop be increased to feed the growing human popu-

lation?

4. What is the cause of global warming and climate change and how can

these effects be mitigated?

5. How can sound and light be recorded in a better way?

6. How can rockets be sent to the Moon or the planets?

7. Why is the sky blue?
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1.2 MODELING FRAMEWORK

As we said above, model building is a creative act for which no preset rules

apply. We do trace here, however, a series of steps which hopefully will be

useful in avoiding costly mistakes and around which one can develop one’s

skills in this field. We would like to stress, moreover, that model building is a

non-sequential process. In some cases, several of these steps will overlap, some

might be “missing” (i.e., not needed), and between others “loops” have to be

made until one may come up with a reasonable (and acceptable) model for

the problem at hand.

We now describe these steps.

STEP 0: Set up as precisely as possible the reasons for constructing the

model and its objectives.

We note here that in many projects a clear statement of these reasons

and objectives might radically influence the model to be built.

Example: The statement “Build a model to predict the weather” is a

rather loose and incomplete statement from a modeling point of view.

Thus, if no statement is made for the reasons and the precise objectives

of the desired model, the problem should be considered as ill-defined. In

fact, as stated above, each of the following might be the actual objective

of the model.

1. Predict the weather for the next hour.

Reason: One wants to go shopping.

Appropriate model: Just look through the window.

2. Predict the weather tomorrow.

Reason: Going on a trip one would like to know how to dress.

Appropriate model: Listen to the weather forecast on the radio or

the Internet.

3. Predict the weather next winter.

Reason: Will it be a good idea to build a ski-motel during the

summer?
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Discussion of an appropriate model: We note, however, that even after

these clarifications the model to be built is not precisely defined since

the word “weather” might have different connotations, for example:

1. The model should predict the temperature to within 10◦ (should I

take my sweater with me?).

2. The model should predict the temperature, the condition of the

sky, and the possibility of showers (would it be a nice day for a

trip? Should I take a raincoat?).

3. The model should predict the possibility of snow (should I take my

ski gear with me?).

Another point to remember at this stage is that in many instances a

reformulation of the model objectives will be required during the process

of model building. This is especially so if the original scope of the model

turns out to be too large.

Example: The objective of building a model to “cure cancer” requires

many sub-models since there are several types of cancer.

STEP 1: Study the problem as it is in real life.

Example: If one attempts to build a model to improve the performance

of a production line, then it is imperative to go to the factory and study

first hand how this line operates (nothing else will do). In many instances,

one might discover that the problem of improved production depends on

factors which are independent of the line operation.

STEP 2: Data collection and analysis in real life.

At this stage, one studies the phenomenon and its behavior in real life

with the objective of identifying the major factors (i.e., causes) that

influence the phenomenon.

Example 1: Analysis of car accidents.

As result of data collection and its statistical analysis, one might con-

clude that the main factors which have a bearing on the frequency of

car accidents are: driver, road, car, and weather. Each of these can be
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further subdivided into several sub-headings; e.g., to define “driver,” we

must specify age, sex, height, sight, mental state (e.g., intoxication), etc.

We note that at this step some very crucial decisions have to be made

viz. to identify those factors that are most important to the problem

at hand. For example, in analyzing car accidents, one might make the

(questionable) assumption that the height of the driver is of little impor-

tance and hence can be ignored. Once again, it is important to keep in

mind the need to strike the balance between model simplicity (i.e., few

variables and easy to solve) and effectiveness (i.e., accurate predictions).

Moreover, at this point one must also decide whether to limit the scope

of the model to be built or to make its objectives more precise.

Example 1: If we started with the objective of curing cancer, we might

decide at this stage to study only the relationship between drug X

and lung cancer.

Example 2: If we wanted to study, originally, the performance of a

given car, we might decide to limit ourselves to the study of a

certain component, e.g., the motor.

STEP 3. Controlled lab studies or simulations.

Studies carried out in the labs enable us to vary the factors that influence

the phenomena under study in a controlled manner and thus study the

influence of each factor separately.

Example : If the strength of a certain material depends on the tem-

perature and pressure, then lab experiments will enable us to study the

strength as a function of one variable only (for a constant value of the

other variables), something that is not easy to achieve in real life situa-

tions.

STEP 4: Construction of a conceptual qualitative model.

As a result of the studies conducted in the previous steps, one should be

able to construct a qualitative model for the phenomena at hand.
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Example 1: “The accident rate depends mainly on the driver’s age

where 25 seems to be the most important in changing driving

habits.”

Example 2: “Pleasure is the main motivating force in human behav-

ior.”

Example 3: “Reliability of a given system decreases with heat and

speed but increases with weight.”

If such a qualitative model is acceptable to the user, then the au-

thor or researcher might feel no further need for a mathematical-

quantitative model (or the model might be hard to quantify, e.g.,

amount of pleasure, motivation, etc.) and therefore may proceed

directly to step 8 (bypassing steps 5, 6, and 7, which are needed

when a mathematical model is constructed).

In many cases, one is required at this stage to make a creative

breakthrough, that is provide a new conceptual framework for the

problem under consideration and its solution.

Example 4: “The H2-molecule can be represented by a rod whose mass

is concentrated at the end points.” This is Raman Model for the

H2-molecule which earned him the Nobel prize.

STEP 5: Conclusions, predictions, and recommendations that follow for the

qualitative model.

Example 1: “Tomorrow will be partly cloudy.”

Example 2: “Saccharine is carcinogenic.”

Example 3: “Car X is not reliable.”

Example 4: “Mr. X has a strong personality.”

Example 5: “Travel is a pleasurable experience.”

The shortcomings of qualitative models are:

1. Models tend to be limited in scope.

2. Model reliability in making predictions is sometimes questionable.

3. Predictions are qualitative rather than quantitative.
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The points of strength of these models, on the other hand, are:

1. Their meaning is clear to almost everybody.

2. They are hard to question and challenge (sometimes these mod-

els are accepted solely due to the experience and authority of the

person that suggests the model).

3. They are simple in structure.

4. They are based sometimes on long personal experience and intu-

ition.

Example : “Buy stocks in January and sell them in April.”

While qualitative models are accepted and used extensively in the social

sciences, they are rarely acceptable in the natural sciences or engineering.

In these fields, one has to perform the following additional steps which

lead to a mathematical-quantitative model and its solutions.

Remark: Not all mathematical models make quantitative predictions,

e.g., in the stability theory for solutions (or equilibrium points) of dif-

ferential equations.

STEP 6: Abstraction and symbolic representation.

This step sometimes requires a lot of insight and creativity as the true

variables which control the phenomena might be masked by the data.

In the majority of the cases, however, it consists of representing the

variables by symbols, naming the functions and identifying the axioms

or constraints of the model.

Example 1: “We can treat a car as a point particle whose position is given by

the vector x (abstraction and simplification).”

Example 2: “The temperature T is a polynomial function of the speed v and

the time t, i.e.,

T = p(v, t)

where p is a polynomial.”
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Example 3: “Let the number of trucks at station A be denoted by NA. Then

NA must satisfy NA ≤ N where N is the total number of trucks op-

erated by the company (symbolic representation and constraint).”

Example 4: “For transportation purposes, it is enough to represent the U.S.

map by a set of discrete points whose location coincide with the

major cities (abstraction and simplification).”

STEP 7: Derive the equations that govern the phenomena.

Example 1: If F is acting on point particle of mass m, and the particle acceler-

ation is denoted by a, then

F = ma.

This is Newton’s Second Law.

Example 2: Denoting by P , V , and T the pressure, volume, and temperature

of a gas, then

PV = RT

where R is a constant. This is the Ideal Gas Law.

Remarks: Broadly, mathematical models are classified as deterministic

versus stochastic (viz. probabilistic). Another possible classification of

these models is as continuous (i.e., the variables used are continuous)

and discrete. Each of these classifications has its merit within a given

context.

STEP 8: Model testing.

To this end, one must solve the model equations and compare the solu-

tion with the actual data collected in steps 2 and 3. If there is a bad fit,

i.e. non-acceptable deviations, then it will be necessary to redo steps 4,

5, and 6.

In this context, we remark that sometimes new mathematical techniques

have been devised to solve a mathematical model. If the model equations

remain intractable, then some approximations to the model equations
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must be made, thereby sacrificing accuracy in favor of easier computabil-

ity.

Example: If the original model equations are highly nonlinear and hard

to solve, then one may find an acceptable linear approximation which

might be solved easily.

STEP 9: Model limitations and constraints.

At this point, one must become clearly aware of the limitations that

must be imposed on the use of the model and the permissible range of

the variables.

Example 1: One cannot use the equations of classical mechanics to

predict the motion of a particle whose speed is close to the speed of

light.

Example 2: The ideal gas law is a good model for some gases but not

for others.

STEP 10: Predictions and sensitivity analysis.

Once a model has been tested and found acceptable, then it can be

used to make predictions. Whenever such a prediction is found to be

correct, the model is considered to be more reliable (in a way every such

prediction is a further test of the model).

One should bear in mind, however, that sensitivity analysis of many

models is required before their actual use; i.e., one has to find the extent

to which the model predictions are sensitive to small variations of the

model parameters. We note that some models are “required” to be highly

sensitive while in others insensitivity to such variations is necessary (e.g.,

if the data contains inherent errors).

Example 1: Ballistic tables.

To construct an “exact” ballistic table, one has to know the exact at-

mospheric conditions, amount of charge, geographic altitude, and state

of the cannon to be fired. In field conditions, however, these variables

are known approximately at best. Hence, a good ballistic model must
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be somewhat insensitive to small variations in these parameters while

giving a reasonable prediction about the range of the shot.

Example 2: Models for physical resonances.

Here, sensitivity is highly desirable especially when several such “close

by” resonances are involved.

Example 3: Chaotic systems.

When the evolution of a system under consideration displays high sen-

sitivity to the initial conditions, we say that the system is “chaotic.”

Under these circumstances, it is possible to make only “short time” pre-

dictions about the state of the system. This is why weather forecasts are

accurate only for a “few days” (at best).

STEP 11: Extensions and refinements.

If a model is found to be correct in some instances but less accurate in

others, then a refinement of it is needed to take care of these exceptions.

Example: The ideal gas law needs such a refinement when the gas molecules

are “large” (e.g., diatomic gases). The refined model is given by

(

P +
α

V 2

)

V = RT

where α is a parameter which depends on the gas.

STEP 12: Compounding.

Once a correct and reliable model has been established for some phenom-

ena, then related problems can be modeled by a process of compounding.

Example: Once the equations of motion for the spring-mass system are

found, one can compound the model to systems of several masses and

springs.

Finally, we present here a schematic overview of the modeling process.
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EXERCISES

E. Fermi was one of the great theoretical physicists in the twentieth century.

Some of the following “mini-model” questions are attributed to him. We of-

fer these here to sharpen the reader’s skill in the modeling of “real world

problems.”

1. Ignoring oceans and such, how long would it take to walk entirely around

the world?

2. How much water per year flows in the Mississippi river?

3. How many dump-truck loads would it take to move Mt. Washington in

New Hampshire, USA?

4. Find the dimension of a box that can contain all of the human race (five

billion approximately).

5. What is the linear velocity of Earth around the Sun?

6. How many drops of water are in the Pacific ocean?

7. How many books are in a bookstore?

8. How many atoms are in a cell?

9. How many cells are in the human body?

10. How many light-bulbs burn out in one minute throughout the world?

11. What is the actual volume of material in a solid cubic meter of metal

(remember atoms are made of nuclei and electrons)?

12. How do you buy the best car for your money?

13. How do you buy the best computer for your money?
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1.3 GENES AND BIOLOGICAL REPRODUCTION

Most of the models that we consider in this book will use “continuous vari-

ables.” Moreover, it will be advantageous in some cases to convert a discrete

variable problem into a problem with continuous variables. However, to illus-

trate the modeling process we consider in this section a model which reduces

a “continuous variable problem” into a discrete one.

Motivation and Objective:

A company grows and sells various types of beans (Lima-beans,kidney-beans

etc.). It is a known fact that green and smooth texture (Lima-)beans are

preferred by the consumers and hence command a higher price. However, on

the farms the company grows beans which vary in color (white, red, yellow,

green, and anything in between) and texture (from smooth to wrinkled).

It is the objective of this project to understand this phenomenon so that

the company will be able to produce larger quantities of the desirable beans

and enhance its profits.

Data from the farm:

1. Beans self fertilize.

2. Beans can be divided to a good approximation into the following groups:

Green-Smooth (G-S), Green-Wrinkled (G-W), White-Smooth (W-S),

White-Wrinkled (W-W), Yellow-Smooth (Y-S), Red-Smooth (R-S), and

Red-Wrinkled (R-W).

Remarks: Note that by using the simplification in (2) above, we converted

a continuous set of variables for the color and texture into a discrete one.

This, sometimes, simplifies the problem considerably. However, sometimes the

reverse is true (e.g., in population models).

Experimental Data:

Observations of bean plants grown in seclusion are being made in regard to

their crop and their descendants.



The Process of Mathematical Modeling � 15

Results:

1. It is possible to obtain pure lines of beans, i.e., beans which by self

fertilization will always produce descendants of the same type. However,

these pure lines are prone to disease and therefore not very desirable

from a commercial point of view.

2. Sometimes, a plant from a line producing green smooth beans will pro-

duce by self fertilization some descendants which are wrinkled, etc. (so

that appearances might be deceptive).

3. If we cross pure lines of G-S beans with G-W, we obtain first generation

G-S beans only. However, in the second generation, these G-S beans will

give both G-S and G-W beans by approximate ratio of 3:1.

Subproblem:

Build a model to explain texture only; i.e., assume all beans are Green.

Qualitative Model:

1. A bean carries entities which we shall call “genes” which determine

whether it is smooth or wrinkled. These will be denoted by S and W .

2. Each bean contains two such genes.

3. A bean is smooth if the combination of genes is SS or SW and wrinkled

if WW .

4. In cross fertilization, one gene is accepted (independently) from each

parent.

Remark: In such a situation where the combination SW is smooth, we shall

say that S is “dominant” with respect to W .

Mathematical Model

Let R(∗, ∗) denote the reproduction function, i.e., the probability distribu-

tion of the descendants for a given pair of parents

R(p1, p2) = (R1, R2, R3)
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where p1 and p2 represent the parents and R1, R2, and R3 are the probabilities

of SS, SW , andWW descendants respectively. If P (∗) is the probability that

a given bean carries a certain gene, we then have

R1(p1, p2) = P (S | p1)P (S | p2)

R2(p1, p2) = P (S | p1)P (W | p2) + P (W | p1)P (S | p2)

R3(p1, p2) = P (W | p1)P (W | p2).

(In these equations P (S | p1) represents the conditional probability that the

parent p1 contributes the S gene to the descendant and so on.)

Model Predictions: In the cross fertilization experiment, we started with

two pure lines, i.e. p1 = SS, p2 = WW . As a result, our model predicts for

first generation descendants:

R1 = 0 R2 = 1 R3 = 0,

i.e. all first generation beans are G-S which corresponds to the experimental

results. For the second generation, we therefore have

p1 = p2 = SW

and hence,

R1 =
1

2
· 1
2
=

1

4
, R2 =

1

2
, R3 =

1

4
,

i.e.
3

4
of the beans are smooth and

1

4
are wrinkled, i.e., a ratio of 3:1.

EXERCISES

1. Predict the results of cross fertilization between

(a) SW and WW beans.

(b) SW and SS beans.

2. (Compounding) Devise a model for beans which takes color into account.

Hint: Each bean will now have four genes; S,W for texture and C, c for

color.
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3. Suppose that beans with (SS, CC) are crossed with (ww, cc) (and C is

also dominant with respect to c) and the first generation descendants

reproduce by self fertilization. Predict the results for color and texture

of the crop.

4. The following are well known facts regarding blood types in humans:

(a) There are four (major) blood types denoted by A,B,AB and O.

(b) Each blood cell contains two genes which determine the blood type.

(c) The O-gene is regressive with respect to the A and B genes, i.e.,

AO and BO bloods are A and B bloods respectively.

(d) A and B genes are of “equal strength.”

(e) In the process of reproduction, each parent donates one gene to

determine the blood type of the descendant.

Use this data to:

1. Give an explicit representation for the reproduction function of this sys-

tem.

2. Predict the blood type distribution for the descendants to parents with

blood types AO and BO.
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The behavior and evolution of many scientific and engineering systems are

described by equations which involve unknown functions and their derivatives.

These are called differential equations, and methods for their solution play a

central role in many disciplines.

Differential equations are classified as ordinary differential equations

(ODEs) and partial differential equations (PDEs). ODEs are equations which

involve only one independent variable while PDEs involve several independent

variables.

To motivate the study of these equations we consider in this chapter prob-

lems in various areas which are modeled naturally by ODEs. For some of these

models a solution is possible by elementary integration methods. For others

more elaborate methods are needed.

For all the models presented in this chapter we illustrate the modeling

process by adhering as closely as possible to the modeling framework that was

introduced in the previous chapter.

2.1 THE MOTION OF A PROJECTILE

Model Objective and Motivation: Build a prototype model which de-

scribes the motion of a small particle in the gravity field of the Earth. Neglect

all other forces and the rotation of the Earth.

This study is motivated by the fact that the motion of a projectile in the

atmosphere is important in many applications (e.g rockets, cannon shells, etc).

As per usual in the modeling process we first consider this problem in its ”bare

bones” setting and derive a prototype model.

Background: To derive the equations of motion for this problem we need

Newton’s second law, which states that the external force acting on a point

mass is proportional to its acceleration. Thus

F = ma

where F, m, a denote respectively the force, mass, and acceleration of the

particle.
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2.1.1 Approximations and Simplifications

1. We assume that the speed of the particle is small compared to the speed

of light. Hence relativistic corrections to Newton’s second law can be

neglected.

2. The projectile is considered to be a point particle and the motion around

its center of gravity is neglected.

3. We assume that the distance covered by the projectile is small compared

to the Earth’s radius. Consequently the spherical shape of the Earth can

be neglected and we consider the flight to be over a flat plane.

4. We neglect the variation of the gravitational force with height and lo-

cation (which is due to the fact that the Earth is not a perfect sphere).

Hence we approximate g - the acceleration due to gravity by a constant.

5. We neglect the influence of the atmosphere on the motion of the projec-

tile. These include air drag and variations in temperature, density, and

pressure.

6. We neglect the effect of the Earth’s rotation on the projectile motion.

2.1.2 Model:

With the approximations delineated above it follows from Newton’s second

law that the equation of motion of the projectile is

m
d2x

dt2
= −mgj. (2.1)

where j is a unit vector in the upward vertical direction. Since the only force

acting on the projectile is in the j-direction, we infer also that its motion is

constrained to a plane. Without loss of generality we can choose this plane to

be the x-y plane with x = (x, y), (see Fig. 2.1). Equation (2.1) is equivalent

then to two scalar equations

ẍ =
d2x

dt2
= 0, ÿ =

d2y

dt2
= −g. (2.2)
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Figure 2.1 Trajectory of a projectile

Since g is constant, we can readily integrate these equations twice to obtain

ẋ = c1, ẏ = −gt+ c2, (2.3)

x = c1t+ c3, y = −gt
2

2
+ c2t+ c4, (2.4)

where ci, i = 1, 2, 3, 4, are constants. To determine these integration constants

we need some “initial conditions” which (in this case) must specify the position

and velocity of the projectile at some (initial) time. Thus if we assume that at

time t = 0 the projectile is at the origin and its velocity v0 = (v0 cos θ, v0 sin θ),

then

x(0) = 0, y(0) = 0, ẋ(0) = v0 cos θ, ẏ(0) = v0 sin θ. (2.5)

To use these conditions we substitute t = 0 in Equations (2.3), (2.4) to obtain

c3 = c4 = 0

c1 = v0 cos θ, c2 = v0 sin θ. (2.6)



26 � The Process of Mathematical Modeling

It follows then that the parametric representation of the trajectory is

x = (v0 cos θ)t, y = −gt
2

2
+ (v0 sin θ)t. (2.7)

The nonparametric representation of the trajectory is obtained by eliminating

t from Equation (2.7). This leads to

y = x tan θ − g

2

(

x

v0 cos θ

)2

. (2.8)

Example 2.1.1 Find the relation between the range of a projectile on Earth

and the Moon if they satisfy the same initial conditions.

Solution 2.1.1 The range of a projectile is the distance to where it returns

to ground zero, i.e., y = 0. To find the range Re on Earth we set y = 0 in

Equation (2.8) and solve for x.

We obtain

Re =
v20 sin 2θ

ge
(2.9)

where ge is the gravitational acceleration on Earth. On the Moon the projectile

satisfies the same equation of motion, but the gravitational acceleration is gm.

Hence the range of the projectile on the Moon is

Rm =
v20 sin 2θ

gm
. (2.10)

Therefore
Rm

Re
=

ge
gm
. (2.11)

2.1.3 Model Compounding:

We now compound the prototype model derived above by removing some of

its constraints.

Example 2.1.2 Derive the equation of motion of the projectile when air re-

sistance (drag) has to be taken into consideration.
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Solution 2.1.2 When the velocity of the projectile is not large, the drag force

Fd is (to a good approximation) proportional to the velocity of the projectile

Fd = −αv. (2.12)

The necessary modifications to Equation (2.1) are given by

mẍ = −mgj− αẋ (2.13)

or in scalar form

mẍ = −αẋ (2.14)

mÿ = −mg − αẏ. (2.15)

Eq. (2.14), (2.15) can be solved by direct integration

mẋ = −αx+ c1 (2.16)

x =

[

c2e
−bt + c1

m

]

b
, b =

α

m
, α 6= 0. (2.17)

To solve for y we introduce ẏ = u. Equation (2.15) becomes

mu̇ = −mg − αu

which then leads to

ẏ = u = c3e
−bt − g

b
(2.18)

y = −1

b

(

c3e
−bt + gt

)

+ c4. (2.19)

Once again we need initial conditions in order to solve for the integration con-

stants ci, i = 1, . . . , 4. We observe that at least formally the solution, Equa-

tions (2.16)-(2.19), “looks” totally different from the one obtained when α = 0

(however, see ex. 4).

Exercises

1. Derive the equations of motion for a projectile if the variation of the

gravitational force with height is to be taken into consideration.

2. Find the maximum height that a projectile will achieve as a function

of the initial speed and firing angle. If v0 = 1 km/sec, what will be the

maximal change in g along such a trajectory?
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3. Solve for the constants ci, i = 1, . . . , 4, in Equations (2.16)-(2.19) using

the initial conditions in Equation (2.5).

4. Use the results of exercise 3 and a first order Taylor expansion for e−bt

to show that as b → 0 the solution, Equations (2.16)-(2.19), converges

to the one given by Equation (2.7).

5. Write down the equation of motion and initial conditions for the motion

of a projectile if there is a wind blowing with velocity w = (w1, w2)

where w1, w2 are constants (w1, w2 are the wind components in the x, y

directions). Solve your model.

6. How many firing angles can be used to achieve a given range for a pro-

jectile with initial velocity v0?

7. For a fixed initial speed at what firing angle will a projectile achieve its

maximum range?

8. A plane with speed u is flying from city S to city N , which is at a

distance d exactly north of S. A wind of speed v is blowing in the eastern

direction. Find differential equations for the position of the plane if its

pilot makes sure that the plane is always aimed towards N . (See Fig.

2.2).

Hint: Find differential equations for
dx

dt
,
dy

dt
in terms of the position

(x, y) and u, v.

2.2 SPRINGMASS SYSTEMS

In this section we model spring-mass systems as well as systems with torsion.

Per usual we start with a prototype problem and then compound it to model

related systems.

Objective: Build a prototype model which describes the motion (in one-

dimension) of a mass attached to a spring whose other end is rigidly fixed

(see Fig. 3.3). Neglect gravity and all other external forces.
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S

N

 u

 v

airplane position

Figure 2.2 A diagram for the plane position and velocity

 k

 m

Figure 2.3 Spring Mass system
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Background: To model the motion of such a system one usually applies

Hooke’s law. It states that for small displacements x from the natural length

L of the spring the force exerted by it is given by

F = −kx, | x
L

|≪ 1

where k > 0 is called the spring-stiffness. However, to understand the limi-

tations and approximations made in its derivation, we state here some of the

experiments needed to establish the law.

2.2.1 Data Collection

1. Experiments to measure the force that various springs exert for positive

and negative displacements (stretchings and contractions respectively).

2. Experiments to determine to what extent the force exerted by a spring

varies with its use.

3. Experiments to find the effects of environmental factors such as temper-

ature, pressure, and location on various springs.

4. Experiments to determine how the force that is exerted by the spring

varies as a function of the material, size of the coil, and number and

diameter of the loops.

5. Experiments to find how various imperfections in the structure of a

spring, e.g. variations in the diameters of the loops and coil or deviations

from circular symmetry, affect its performance.

2.2.2 Approximations and Simplifications

As a result of the data collected in the experiments listed above, one is justified

in making the following approximations and simplifications for metal springs:

1. Small deviations in the structure of a spring minimally affect its per-

formance. Henceforth, we only consider “ideal springs” which are made

of homogeneous material, circular coil, and loops whose diameters are

constant.
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2. The force exerted by a spring depends very weakly on environmental

factors and the number of times that the spring is used. Hence we shall

neglect the influence of these factors on the performance of the spring.

3. For equal but opposite displacements the magnitude of the force exerted

by the spring is equal but in opposite directions.

4. For small displacements the force is proportional to the displacement

with a negative proportionality constant. The determination of this pro-

portionality constant for a given spring from first principles (i.e. as func-

tion of the material, number of loops, etc.) requires a major modeling

effort and is in most cases impractical.

2.2.3 Mathematical Model

Let

F = force exerted by the spring

m = mass of body attached to the spring

x = displacement of the mass (or the center of mass)

from equilibrium

a = acceleration of the mass.

Using the approximations to the data introduced above we can now write

for | x |<< 1 that

F (x) = −kx (Hooke’s Law) (2.20)

where k > 0 is called the stiffness of the spring.

Using Newton’s second law we find that the equation of motion for the

mass attached to the spring is given by

mẍ = −kx (2.21)

or

m
d2x

dt2
= −kx. (2.22)
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2.2.4 Remarks and Refinements

1. If we displace a spring from x to x+∆x, we infer from Equation (2.20)

that

∆F = F (x+∆x)− F (x) = −k∆x. (2.23)

This observation, that the additional force exerted by the spring due to

a displacement ∆x from x is independent of x, is important in many

applications.

2. (In preparation for 3) Let there be given an infinite series

p(x) =

∞
∑

n=0

anx
n (2.24)

which converges for | x |< R, R > 0. If p(x) is an odd function, i.e.

p(x) = −p(−x), | x |< R, (2.25)

then a2m = 0, m = 0, 1, . . . . In fact we infer from Equations (2.24),

(2.25) that

2

∞
∑

m=0

a2mx
2m = 0

and since this must be true for all | x |< R, it follows that a2m = 0.

Similarly if p(x) = p(−x) ,i.e. p(x) is even, one infers that a2m+1 =

0, m = 0, 1, . . . .

3. In many instances engineers and scientists are called upon to solve or

model systems in a short period of time. Under these constraints it is

impossible to conduct a thorough set of experiments to establish the

laws governing the system’s behavior. Instead “mathematical approxi-

mations” must be used. We now illustrate this procedure.

Assume that the only information given about the force exerted by the

spring is:

(a) F = f(x), i.e. the force is a function of the displacement only.

(b) F (0) = 0
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(c) F (x) = −F (−x), i.e. F is an odd function of x, where F is some

unknown but smooth (i.e. analytic) function.

Since F is analytic, we can expand it in a Taylor expansion around x = 0

F (x) = F (0) +
F ′(0)

1!
x+

F ′′(0)

2!
x2 + . . . =

∞
∑

n=0

F (n)(0)

n!
xn.

However, from the fact that F is odd it follows (using the previous observation)

that F (2m)(0) = 0, m = 0, 1, 2, . . .. Hence

F (x) = k1x+ k3x
3 + . . . .

If | x | is small and k1 is assumed to be nonzero, then we can approximate

F (x) by

F (x) = −kx, k > 0 (2.26)

(the sign can be determined by a simple experiment). Equation (2.26) is called

the linear (or first order) approximation to F . It is valid when F ′(0) 6= 0

and | x | is small. Hooke’s law can be interpreted then as representing this

approximation. Our analysis, however, goes one step beyond this law. In fact

it shows that the next order approximation to the force exerted by the spring

(under present assumptions) is not proportional to x2 but to x3, i.e.

F (x) = −kx± k3x
3. (2.27)

Compounding: Inclusion of external forces.

If an external force besides that of the spring acts on the mass we have

from Newton’s second law

ma = −kx+ Fext. (2.28)

However if the external force Fext contains frictional forces Ff then it is cus-

tomary to separate this force from the other external forces so that

ma = −kx+ Fext + Ff . (2.29)

In three dimensions one can obtain the following data about the frictional
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force: Ff always acts in the direction opposite of the velocity v and is a func-

tion of v, the material and shape of the body, and the medium in which the

body moves.

For a given body moving on a uniform surface, Ff = Ff (v), and we infer

from the “data” above that

Ff (v) = −Ff (−v), v = |v|. (2.30)

Hence in one dimension the “first two term approximation” for Ff is given by

Ff (v) = −bv − rv3 (2.31)

where b, r are positive constants.

In three dimensions the equivalent approximation for Ff is

Ff (v) = −bv − r(v · v)v. (2.32)

For small | v | we therefore obtain the following equation of motion for the

spring mass system in one-dimension.

ma + bv + kx = Fext (2.33)

or

mẍ+ bẋ+ kx = Fext (2.34)

where dots denote differentiation with respect to time (“standard” notation).

The equivalent equation of motion of this system in three dimensions is given

by

mẍ + bẋ+ kx = Fext. (2.35)

As a particular application of the nonlinear frictional forces given by eq.

(2.31) we mention the vibrations in the clarinet tube. Lord Rayleigh, who

investigated this problem in the 19th century, modeled these vibrations by

the equation

mẍ+ kx = bẋ− c(ẋ)3, b, c > 0 (2.36)

or equivalently

mẍ+ [c(ẋ)2 − b]ẋ+ kx = 0 . (2.37)
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This nonlinear equation is called Rayleigh equation.

Solution of Equation (3.84) without friction.

When friction can be neglected and there are no external forces , Equation

(3.84) reduces to

mẍ+ kx = 0. (2.38)

In Equation (2.38) the highest order derivative is ẍ, and therefore this is

a second order differential equation. This equation is also linear; i.e., if we

consider the equation as a polynomial in x, ẋ, ẍ, etc., then each term is of the

first order. Also we observe that the coefficients of the equation are constant.

We now show how Equation (2.38) can be solved by elementary techniques

of integration.

Multiplying Equation (2.38) by ẋ and observing that ẋẍ = 1
2
d
dt
(ẋ2). This

yields
m

2

d

dt
(ẋ2) + kẋx = 0. (2.39)

Integrating this with respect to t leads to

ẋ2 + ω2x2 = c2, ω =
√

k/m (2.40)

where c2 is a constant of integration (observe that this constant must be non-

negative since the left hand side of (2.40) is a sum of squares). Hence

ẋ =
√
c2 − ω2x2. (2.41)

Equation (2.41) can be easily integrated, and we obtain the solution in the

form

x = A cos(ωt+ φ) (2.42)

where A, φ are constant. Thus the general solution of Equation (2.38) contains

two arbitrary constants. These can be determined if the initial conditions

x(0), ẋ(0) are known.

As expected, the solution, Equation (2.42), represents vibrations with fixed

amplitude as there is no friction to damp the motion.
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Related Systems:

Example 2.2.1 Derive the equations of motion for two masses m1, m2 which

are attached to a spring with stiffness k as in Fig. 2.4.

Figure 2.4 Two masses attached to a spring

Solution 2.2.1 Let the distance between the center of mass of m1, m2 at

equilibrium be L (if we idealize the system and treat m1, m2 as point particles,

then L is the natural length of the spring). If these centers of mass at time t are

at x1, x2 respectively, then either a. x2−x1 −L > 0 or b. x2−x1 −L < 0.

In the first case (a) the spring is stretched beyond its natural length, and

hence m1 is pulled to the right and m2 to the left (by Newton’s third law these

two forces are equal but in opposite directions.) Hence, using Equation (2.23),

we have

m1
d2x1
dt2

= k(x2 − x1 − L)

m2
d2x2
dt2

= −k(x2 − x1 − L). (2.43)

Similarly in case (b) m1 is pushed to the left and m2 to the right. Since

x2−x1−L < 0, we infer once again that the equations of motion are given by

(2.43). Thus the differential equations which govern the system are the same

in both cases.

We observe that this system is modeled by a system of coupled ordinary

differential equations.
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Example 2.2.2 Derive the equation of motion for a mass in between two

springs which are attached to rigid walls whose distance from each other is L,

as shown in Fig. 2.5.

Figure 2.5 A mass and two springs enclosed by rigid walls

Solution 2.2.2 In problems of this type it is natural to use a coordinate sys-

tem whose origin coincides with the equilibrium position of the mass (which

does not have to be calculated) and obtain a differential equation for the dis-

placement from this position as a function of time. In fact for such a displace-

ment x the change in the forces acting on m is given by (using Equation

(2.23))

F = −k1x− k2x

(regardless of the sign of x). Hence the desired equation of motion is

mẍ = −(k1 + k2)x. (2.44)

Remark 2.2.1 To evaluate the position xeq of m at equilibrium we use the

fact that in this state Fext = 0. Hence if ℓ1, ℓ2 are the natural lengths of the

springs and m is treated as a point particle we have

k1(xeq − ℓ1) = k2(L− xeq − ℓ2)
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(where we used a coordinate system whose origin is at the left wall of the

system). However, note again that Equation xeq is not needed for the derivation

of Equation (2.44).

Example 2.2.3 Derive a model equation for the motion of a mass which is

attached to a thin elastic bar and subject to torsional forces (“twists”).

Figure 2.6 A mass attached to a thin elastic bar

Solution 2.2.3 To model this problem one must conduct the same type of

experiments and make the same approximations as in the spring-mass system.

For small “twists,” i.e., when the twist angle θ is small, the elastic restoring

torque due to the bar can be approximated by

T = −kθ. (2.45)

Using Newton’s second law for rotating bodies we then have

Iθ̈ + kθ = Text (2.46)

where Text is the external torque and I is the moment of inertia of m around

the axis of rotation which is defined as

I =

∫

V

r2ρ(x)dx. (2.47)

Here r is the distance of x from the axis of rotation and ρ(x) is the density of

the mass attached to the bar.

When frictional forces are also present then for | θ̇ |≪ 1, we have

Ff = −bθ̇, (2.48)
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and the equation of motion for m becomes

Iθ̈ + bθ̇ + kθ = Text. (2.49)

Exercises

1. Find the differential equation which governs the motion of the system

shown in Fig. 2.7:

Figure 2.7 A mass attached to two springs ”in series”

Hint: Apply Newton’s second law to the massless point P at which the

two springs are connected.

2. Repeat Ex. 1 for the system shown in Fig. 2.8.

Assume that m is always “gliding” on the x-axis.

3. What is the equivalent stiffness for the two springs in the systems of

ex. 1,2;i.e., if one wants to replace the two springs by one, what should

its stiffness be to yield exactly the same equation of motion for a mass

m attached to it? Compare these results to the addition of resistors in

series and parallel in an electric circuit.

4. Find the moment of inertia for a thin homogeneous rod of length L and

linear density ρ (i.e. mass/unit length) which is rotating around its

(a) mid-point


