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Preface

Allergy-related diseases are today recognized as reaching epidemic 
proportions, with up to 30% of the general population suffering 
from clinical symptoms ranging from urticaria, rhinitis and asthma 
to life-threatening anaphylactic reactions.

The main contributors to the increasing prevalence of allergy 
seem to be very diverse including increasing immunological 
predisposition (‘atopy’), changing food consumption and well as 
living conditions. The dramatic increase of allergic diseases is not 
only seen in the developed world, but increasing evidence indicates 
that also developing countries are considerably affected. Already 
over fifty percent of the world population is living in Asia, where 
not only food consumption, but also food allergies are very different 
from what is mainly published from Western countries. In the 
research efforts in the field of food allergy two main questions are 
often asked: What makes one person allergic to a particular food and 
not the other? Furthermore, Why are some foods and food proteins 
more allergenic than others? In addition it is very difficult to predict 
the severity of clinical reaction and the amount of allergen required 
to elicit these reactions.

Major food allergens from a small number of sources were 
identified and purified as early as the 1970s. A boost in the number 
of newly identified allergens was elicited by the general availability 
of recombinant DNA technology in the late 1980s. The ever-growing 
IUIS Allergen Nomenclature Database contains currently over 840 
allergens from 252 sources and their isoforms and variants. Currently 
we know about 290 food allergens from 98 different food sources.
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Recent developments into the molecular nature of allergenic 
proteins enabled us to classify most allergens into few protein 
families with limited biochemical function. Allergenic proteins can 
be classified into approximately 130 Pfam protein families, while the 
most important plant and animal food allergens can be found in 8 
protein superfamilies and is discussed in detail in Chapters 1 and 2.

The correct diagnosis of a food allergy can be complex, but 
includes a convincing clinical history as well as the presence of 
elevated levels of specific IgE antibody to allergenic proteins in a 
given food. Therefore, detailed knowledge about the food specific 
allergenic proteins is central to a specific and sensitive diagnostic 
approach. The different allergens of peanut, egg, fish, shellfish and 
food contamination parasites and their diagnostic application are 
detailed in Chapters 3 to 7. 

The food industry is one of the largest employers of workers with 
about 10% and therefore is the allergic sensitisation to food borne 
proteins at the workplace not surprising. Workers at increased risk 
of allergic sensitisation include farmers who grow and harvest crops; 
factory workers involved in food processing, storage and packing; as 
well as those involved in food preparation (chefs and waiters) and 
transport and is detailed in Chapter 8.

Research in food allergies and allergens is much more 
complex than investigating inhalant allergens since food proteins 
often undergo extensive modifications during food processing. 
Furthermore these allergenic proteins are embedded in a complex 
matrix and may undergo physicochemical changes during digestion 
and subsequent uptake by the gut mucosal barrier and presentation 
to the immune system, and have been highlighted in Chapter 9.

Furthermore, food processing results often in water-insoluble 
proteins, which makes the traditional serological analysis of 
allergenicity difficult as well as detection and quantification in the 
food matrix. The approaches and problems of quantifying allergen 
residues in processed food are detailed in Chapter 10.

To characterize allergens better but also develop better diagnostic 
and therapeutics, recombinant allergens are increasingly utilized. 



Unlike natural allergens or allergen extracts, the production of 
recombinant proteins is not dependent on biological source material 
composed of complex mixtures of allergen isoforms. The use of 
recombinant allergens has revolutionized diagnosis, enabling 
clinicians to identify disease eliciting allergens as well as cross-
reactivity pattern, thereby providing us with the tools necessary for 
personalized allergy medicine and therapeutics and is detailed in 
Chapter 11.

Food allergy is a growing problem globally carrying a huge 
socioeconomic burden for patients, families and the community. 
Although fatalities are fortunately rare, the fear of death is very 
real for each patient. Currently, there is no cure for any food allergy 
available, with management strategies focusing on complete 
avoidance and utilization of adrenaline as the emergency antidote for 
anaphylaxis. There is a very strong imperative for safe and effective 
specific therapeutics for food allergy and one strategy based on T-cell 
epitopes for peanut allergy is detailed in Chapter 12. 

We hope that the joined effort by the authors will not only provide 
pragmatic information for current food allergy research but also 
serves as a foundation for significant new research that will advance 
our current knowledge.

Preface
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1.1 IntroductIon

Allergenic proteins are able to elicit Th2-polarized immune responses 
in predisposed individuals. As compared to the presently known 
number of protein architectures, allergenic proteins can be classified 
into a highly limited number of protein families (Radauer et al. 2008a). 
Version 30.0 of the protein family database Pfam (http://pfam.
xfam.org/) describes 16,306 protein families (Finn et al. 2014). The 
structural database of allergenic proteins (SDAP; http://fermi.utmb.
edu/) (Ivanciuc et al. 2003) assigns all allergens to 130 Pfam families. 
The most important plant and animal food allergens can be found 
in eight protein superfamilies discussed below. Our understanding 
why exactly these proteins are able to induce a specific IgE response 
in certain individuals is still incomplete. Allergenic proteins seem to 
be able to modulate the communication between innate and adaptive 
immune cells by interacting with pattern recognition receptors, 
which results in a Th2 polarization of the adaptive immune response  
(Karp 2010, Platts-Mills and Woodfolk 2011, Pulendran et al. 2010, 
Ruiter and Shreffler 2012, Willart and Hammad 2010, Wills-Karp 
2010). Recent discoveries have shown that group 2 innate lymphoid 
cells are able to translate epithelial cell-derived alarmins into 
downstream adaptive type-2 responses (Scanlon and McKenzie 
2015).

The toxin hypothesis of allergy has now gained interest and offers 
an alternative understanding of why certain proteins are targeted by 
IgE (Palm et al. 2012, Tsai et al. 2015). This hypothesis offers plausible 
explanations for allergenic components of insect venoms, proteins 
that have been altered by environmental toxins or proteins that carry 
ligands that present a certain danger to a host’s cells. Why only few of 
the individuals who are exposed to the allergen raise an IgE response 

http://pfam.xfam.org
http://fermi.utmb.edu
http://pfam.xfam.org
http://fermi.utmb.edu


Biomolecular and Clinical Aspects of Food Allergy

3 

is most likely rooted in the way the incoming signals are processed. 
It has been shown that monocyte-derived dendritic cells from birch 
pollen allergic and non-allergic subjects displayed distinct signal 
transduction pathways following the contact with the major birch 
pollen allergen Bet v 1 (Smole et al. 2015). The situation is less clear 
for food allergens. Certain lipids directly bound as ligands by the 
allergen or when present in the allergen source seem to play a role 
in the allergic sensitization process (Bublin et al. 2014). Moreover, 
plant seed storage proteins of the cupin and prolamin superfamilies 
have the capacity to damage cells, which might induce danger signals 
in exposed innate immune cells resulting in allergic sensitization 
(Candido Ede et al. 2011).

1.2 ProlamIn SuPerfamIly

Plant seeds are a major source of dietary proteins. Seed storage 
proteins such as the prolamins are a source of amino acids for use 
during germination and seedling growth. The prolamin superfamily 
comprises several families of proteins with limited sequence 
homology. The prolamins which gave the superfamily its name are 
the major seed storage proteins in most cereal seeds. They possess 
two or more unrelated structural domains, one of which contains 
repeated sequences. Parts of the non-repetitive domain of one 
group of the sulfur-rich prolamins are homologous with sequences 
present in a large group of low molecular seed proteins including 
the 2S albumins, the non-specific lipid proteins (nsLTPs) and the 
cereal inhibitors of α-amylase and trypsin (Kreis et al. 1985). They all 
share a conserved cysteine skeleton, which contains eight cysteine 
residues. The prolamin superfamily seems to be of a much more 
recent origin than the cupin seed storage proteins. The 2.2S spore 
storage protein matteucin of the ostrich fern is related to the 2S 
albumins of angiosperms whose common ancestors lived more than 
300 million years ago (Rodin and Rask 1990). nsLTPs are abundant 
in liverworts, mosses and land plants but have not been found in 
any algae indicating that they have evolved only after plants had 
conquered land (Edstam et al. 2011). 
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1.2.1 Prolamins

The prolamins which are characterized by high levels of glutamine 
and proline residues are restricted to the grasses including major 
cereals such as wheat, barley and rye (Shewry et al. 1995). The 
prolamin seed storage proteins of wheat are the major components 
of gluten, which determines the quality of the flour for bread making. 
The complex mixture of cereal storage proteins, the gluten, consists 
of roughly equal amounts of gliadins and glutenins (Tatham and 
Shewry 2008). Gliadins are monomeric proteins, which interact by 
noncovalent forces. Based on their electrophoretic mobility they are 
divided into the fast moving α/β-gliadins, the intermediate γ-gliadins, 
and the slowly moving ω-gliadins. The glutenins are polymers of 
individual proteins that are linked by interchain disulfide bridges. 
Glutenins can be classified into high molecular weight (HMW) and 
low molecular weight (LMW) groups. The sulfur-rich prolamins 
are quantitatively the major prolamin group in wheat, barley and 
rye, and they include polymeric and monomeric proteins (Shewry 
and Tatham 1990). Wheat-dependent exercise-induced anaphylaxis 
(WDEIA) is associated with ω5-gliadins (Tatham and Shewry 2008) 
while both gliadins and glutenins appear to be implicated in baker’s 
asthma (Quirce and Diaz-Perales 2013).

1.2.2 Bifunctional Inhibitors

Plants have evolved a certain degree of resistance to insect pests that 
feed on plant tissues. Six types of proteinaceous α-amylase inhibitors 
are found in higher plants (Svensson et al. 2004). The bifunctional 
inhibitors impede digestion by acting on insect gut α-amylases and 
proteinases such as trypsin (Franco et al. 2002). A large family of 
these inhibitors, also referred to as CM proteins for their presence in 
chloroform/methanol extracts, is found in cereals seeds (Svensson et 
al. 2004). Several of these proteins are α-amylase/trypsin inhibitors 
while others inhibit only α-amylase or trypsin. These inhibitors 
consist of 120 to 160 amino acids, have a high α-helical content, 
and possess ten cysteine residues which form five disulfide bonds 
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(Oda et al. 1997). Tri a 28 (syn. 0.19 α-amylase inhibitor form wheat) 
acts as a homodimer (Oda et al. 1997) whereas the wheat inhibitor 
0.28 and the corresponding barley inhibitor BMAI-1 (Hor v 15) are 
monomers (Sanchez-Monge et al. 1992). Current immunological and 
clinical data point to the α-amylase/trypsin inhibitor family as the 
main culprit of Baker’s asthma (Salcedo et al. 2011).

1.2.3 2S albumins

2S albumins are a water-soluble storage protein group widely present 
in mono- and dicotyledonous seeds (Candido Ede et al. 2011). They 
are encoded by a multigene family, which results in the presence 
of several isoforms in individual plants. They are synthesized as a 
single large precursor, which is then processed to give rise to two 
subunits that are held together by disulfide bonds. Typically, the 2S 
albumins comprise four α-helices and four to five disulfide bonds 
(Moreno and Clemente 2008). Although the major function of 2S 
albumins is the storage of amino acids, antifungal and antibacterial 
properties of several 2S albumins and thus their role in plant defense 
against pathogens were described (Candido Ede et al. 2011). A 
novel antimicrobial protein, SiAMP2, of the 2S albumin family was 
identified in sesame seeds and its inhibition of the growth of the 
human pathogenic bacterium Klebsiella was described (Maria-Neto et 
al. 2011). The 2S albumins of Brassica napus were able to significantly 
damage the fungal plasma lemma and to cause its permeabilization 
(Barciszewski et al. 2000). The number of 2S albumins that are 
described as food allergens is still increasing (Moreno and Clemente 
2008). Many of the highly important seed, tree nut and legume 
allergens belong to the 2S albumins. Among them are Ara h 2, Ara 
h 6, and Ara h 7 from peanut (Burks et al. 1992, Kleber-Janke et al. 
1999), Jug r 1 from walnut (Teuber et al. 1998), Ses i 1 and Ses i 2 
from sesame seeds (Beyer et al. 2002a, Pastorello et al. 2001), Ber e 
1 from Brazil nut (Pastorello et al. 1998), and Ana o 1 from cashew 
(Robotham et al. 2005). Ber e 1 serves as a model protein for studies 
of intrinsic allergenicity of food proteins (Alcocer et al. 2012).
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1.2.4  Nonspecific Lipid Transfer Proteins (nsLTPs)

The nsLTPs are a family of allergens of high importance. They are 
divided into the 9 kDa nsLTP1 and the 7 kDa nsLTP2 subfamilies 
(Kader 1996). NsLTP1 are primarily found in aerial organs while 
nsLTP2 are expressed in roots. Both nsLTP1 and nsLTP2 are found 
in seeds. Members of both subfamilies are compact cysteine-rich 
proteins, which are made up of four or five α-helices that are 
held together by four conserved disulfide bridges. The α-helices 
enclose a hydrophobic cavity that enables them to transfer various 
lipid ligands between lipid bilayers in vitro (Lascombe et al. 2008). 
NsLTPs are involved in key cellular processes such as stabilization 
of membranes, cell wall organization and signal transduction but 
they also play important roles in resistance to biotic and abiotic 
stress, plant growth and development (Liu et al. 2015). Besides their 
various biologic roles in plants, nsLTPs are a large group of heat- and 
proteolysis-resistant allergens (Egger et al. 2010). The type 1 nsLTPs 
are able to elicit severe type 1 reactions to fresh fruits such as peach in 
predisposed individuals in Southern Europe and the Mediterranean 
region. NsLTPs are regarded as panallergens due to their presence 
in a variety of plant tissues including seeds, fruits and vegetative 
tissues (Salcedo et al. 2007). In addition, nsLTPs1 were described 
as inhalant allergens in pollen of many flowering plants including 
Parietaria judaica (Duro et al. 1996), olive tree (Tejera et al. 1999), and 
mugwort (Gadermaier et al. 2009).

Plant food nsLTPs1 have been identified in fruits such as peach 
(Pastorello et al. 1999), apple (Zuidmeer et al. 2005), and grapes 
(Pastorello et al. 2003), in vegetables such as asparagus (Diaz-Perales 
et al. 2002), corn (Pastorello et al. 2000), and celery (Gadermaier et 
al. 2011), and in various nuts including hazelnut (Offermann et al. 
2015). Cross-reactivities between nsLTPs1 from closely related plants 
are frequently observed but decreases with evolutionary distance. 
The kiwi fruit nsLTP1 does not cross-react with the peach nsLTP1 
(Bernardi et al. 2011). Similarly, the nsLTP1s from olive pollen and 
Parietaria judaica pollen neither cross-react with each other nor with 
other plant food nsLTP1s such as the one from peach (Tordesillas 
et al. 2011). In contrast, sensitization to the nsLTP1 from peach is 
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Table 1.1 Selected allergens of the prolamin superfamily.

Protein family Allergen source Allergen designation

Prolamin Wheat (Triticum aestivum) Tri a 19: ω-5-glaidin

Tri a 20: γ-gliadin

Tri a 21: α/β-gliadin

Tri a 26: high molecular weight 
glutenin

Tri a 36: low molecular weight 
glutenin

Bifunctional inhibitor Wheat (Triticum aestivum) Tri a 15: monomeric α-amylase 
inhibitor

Tri a 28: dimeric α-amylase 
inhibitor 0.19

Tri a 29: tetrameric α-amylase 
inhibitor CM1/CM2

Tri a 30: tetrameric α-amylase 
inhibitor CM3

Rye (Secale cereale) Sec c 38: dimeric α-amylase/
trypsin inhibitor

2S albumin Brazil nut (Bertholletia excelsa) Ber e 1

Cashew nut (Anacardium 
occidentale)

Ana o 3

Hazelnut (Corylus avellana) Cor a 14

Peanut (Arachis hypogaea) Ara h 2, Ara h 6, Ara h 7

Sesame (Sesamum indicum) Ses i 1, Ses i 2

Walnut (Juglans regia) Jug r 1

Non-specific lipid 
transfer protein type 1

Apple (Malus domestica) Mal d 3

Celeriac (Apium graveolens) Api g 2

Cherry (Prunus avium) Pru av 3

Corn (Zea mays) Zea m 14

Grape (Vitis vinifera) Vit v 1

Hazelnut (Corylus avellana) Cor a 8

Peach (Prunus persica) Pru p 3

Non-specific lipid 
transfer protein type 2

Celeriac (Apium graveolens) Api g 6

Tomato (Solanum lyopersicum) Sola l 6
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frequently present with a sensitization to the mugwort nsLTP1 in the 
Mediterranean region. A primary sensitization to the peach nsLTP1 
can lead to a respiratory allergy based on the cross-reactivity of peach 
and mugwort nsLTPs (Sanchez-Lopez et al. 2014). The first allergenic 
type 2 nsLTP, detected as a heat-resistant protein in celeriac, showed 
only a very limited cross-reactivity to the tape 1 nsLTP from celeriac 
(Vejvar et al. 2013). Recently, a type 2 nsLTP was identified as an 
allergen present in tomato seeds (Giangrieco et al. 2015).

1.3 cuPIn SuPerfamIly

At present, the cupin superfamily contains 57 families. The members 
of this superfamily possess one or more conserved cupin domain, 
a characteristic β-barrel (Latin cupa = barrel) that evolved in a 
prokaryotic organism and was then passed on into the plant kingdom 
(Khuri et al. 2001). The cupin domain is used for a large number 
of biological functions and is found in fungal spherulins that are 
produced upon spore formation, in proteins that bind saccharose, 
or in germins whose function depends on the binding of manganese 
ions by the cupin domain (Dunwell et al. 2000). Cupins are highly 
thermostable, a trait that has most likely evolved in thermophilic 
archaea and that can still be found in today’s plant food allergens. 
The cupin domain was duplicated in flowering plants giving rise 
to the so-called bicupin seed storage proteins (Dunwell and Gane 
1998), the 7S and 11S globulins which are described as major allergens 
of peanut, tree nuts and various seeds (Mills et al. 2002, Radauer 
and Breiteneder 2007, Willison et al. 2014). The cupin seed storage 
proteins are primarily an energy source and provide amino acids 
during seed germination. In addition, they are also involved in the 
defense of many plant species against fungi and insects (Candido 
Ede et al. 2011).

1.3.1  Vicilins (7S globulins)

The 7S globulin seed storage proteins are trimeric proteins that are 
also referred to as vicilins, as they are primarily found in the Viciae 
group of legumes. The monomers of these proteins are products of 
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a multigene family that are proteolytically processed during their 
maturation and glycosylated by varying degrees dependent on the 
plant species (Marcus et al. 1999). Many major plant food allergens 
are vicilins, including Ara h 1 from peanut (Burks et al. 1991), Gly m 
5 from soybean (Ogawa et al. 1995), Ana o 1 from cashew (Wang et 
al. 2002), Jug r 2 from walnut (Teuber et al. 1999), Len c 1 from lentil 
(Lopez-Torrejon et al. 2003), Ses i 3 from sesame (Beyer et al. 2002a), 
and Cor a 11 from hazelnut (Lauer et al. 2004). 

1.3.2  Legumins (11S globulins) 

The 11S globulins are the seed storage proteins of many mono- and 
dicotyledonous plants. They are also referred to as legumins as they 
were primarily studied in legume seeds. Legumins are hexameric 
proteins that consist of two associated viclin-like trimers (Dunwell 
et al. 2000). The monomers, like in their vicilin counterparts, 
are the products of multigene families. In contrast to the vicilin 
monomers, the legumin monomer is proteolytically cleaved into 
an acidic and a basic chain that are held together by a disulfide 
bond. Legumins are only rarely glycosylated. Various allergens of 

Table 1.2 Selected allergens of the cupin superfamily.

Protein family Allergen source Allergen designation

Vicilin (7S globulins) Cashew nut (Anacardium occidentale) Ana o 1

Hazelnut (Corylus avellana) Cor a 11

Peanut (Arachis hypogaea) Ara h 1

Sesame (Sesamum indicum) Ses i 3

Soybean (Glycine max) Gly m 5

Walnut (Juglans regia) Jug r 2

Legumin (11S globulins) Brazil nut (Bertholletia excelsa) Ber e 2

Cashew nut (Anacardium occidentale) Ana o 2

Hazelnut (Corylus avellana) Cor a 9

Peanut (Arachis hypogaea) Ara h 3

Sesame (Sesamum indicum) Ses i 6, Ses i 7

Soybean (Glycine max) Gly m 6

Walnut (Juglans regia) Jug r 4
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legume seeds, tree nuts, and seeds belong to the legumin protein 
family. They include Ara h 3 from peanut (Rabjohn et al. 1999),  
Gly m 6 from soybean (Beardslee et al. 2000), Ana o 2 from cashew 
nut (Wang et al. 2003), Cor a 9 from hazelnut (Beyer et al. 2002b), and 
Ses i 6 and Ses i 7 from sesame seeds (Beyer et al. 2007). 

1.4 ef-Hand SuPerfamIly

The EF-hand motif is the most common calcium-binding motif 
found in proteins where two α-helices connected by a loop 
form a calcium-binding structure (Lewit-Bentley and Rety 
2000). Proteins that contain EF-hand motifs have functions as 
diverse as calcium buffering in the cytosol, signal transduction 
between cellular compartments or muscle contraction.  
EF-hand motifs are found in certain pollen allergens, the polcalcins, 
as well as in the major fish allergens, the parvalbumins. Plant EF-
hand and animal EF-hand proteins do not cross-react with each other.

1.4.1 Parvalbumins

Parvalbumins are present in high concentration in the white muscle 
of many fish species and are highly cross-reactive major allergens  
(Lee et al. 2011). Parvalbumins possess three characteristic EF-hand 
motifs (Ikura 1996) of which only two are able to bind calcium 
ions (Declercq et al. 1991). Parvalbumins play an important 
role in relaxing muscle fibers by binding free intracellular 
calcium ions (Pauls et al. 1996). Binding of the calcium ligand is 
necessary for the correct conformation of parvalbumin. Loss of 
the ligand leads to a change in conformation, which results in  
the loss of the ability to bind IgE (Bugajska-Schretter et al. 1998,  
Bugajska-Schretter et al. 2000). Calcium-bound parvalbumin 
displays a high stability to denaturation by heat or degradation by 
proteolysis (Elsayed and Aas 1971, Filimonov et al. 1978, Griesmeier 
et al. 2010, Somkuti et al. 2012). Parvalbumins can be classified into 
two evolutionary lineages, the α- and the β-parvalbumins, which 
share similar architectures. In general, only β-parvalbumins are 
allergenic. However, an allergenic α-parvalbumin from frog was 
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described (Hilger et al. 2002). Gad c 1 was isolated from cod and 
was the first described allergenic β-parvalbumin (Aas and Jebsen 
1967, Elsayed and Bennich 1975). Today, a large number of allergenic 
β-parvalbumins from a variety of fish species is known (Kuehn 
et al. 2014, Sharp and Lopata 2014). In addition, two allergenic 
parvalbumins from red stingray were described (Cai et al. 2010).

1.5 troPomyoSIn-lIke SuPerfamIly

Tropomyosins are one of three families of the tropomyosin-like 
superfamily. Tropomyosins are closely related proteins that—
together with actin and myosin—are involved in the contraction of 
muscle fibers. Tropomyosins consist of 40 heptapeptide units and 
are double stranded, so called coiled-coil, molecules (Li et al. 2002). 
Tropomyosins are the major allergens of crustaceans and mollusks. 
Most allergies to shrimps, crabs, lobsters, squids, and shellfish are 
mediated by tropomyosins. Tropomyosins were originally described 
as allergenic in shrimps (Daul et al. 1994, Leung et al. 1994, Shanti 
et al. 1993). Today, tropomyosins are regarded as panallergens of 
many invertebrate animals (Reese et al. 1999). Tropomyosins of 
crustaceans and mollusks are highly heat-stable and cross-reactive 
(Motoyama et al. 2006). Extracts of cooked Penaeus indicus shrimps 
still contained the major allergen Pen i 1 with unchanged IgE-binding 
capacity (Naqpal et al. 1989). Water-soluble shrimp allergens were 
also detected in the cooking stock (Lehrer et al. 1990). In seafood 
processing plants, allergenic tropomyosins are present in aerosols 
and thus elicit occupational allergies in the work force (Lopata 
and Jeebhay 2013). Tropomyosins are also inhalant allergens from 
mites and cockroaches. Although they seem to possess only a 

Table 1.3 Selected allergenic parvalbumins.

Protein family Allergen source Allergen designation

Parvalbumin Atlantic cod (Gadus morhua) Gad m 1

Atlantic salmon (Salmo salar) Sal s 1

Carp (Cyprinus carpio) Cyp c 1

Rainbow trout (Oncorhynchus mykiss) Onc m 1

Whiff (Lepidorhombus whiffagonis) Lep w 1
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limited allergenic potential (Thomas et al. 2010) they are regarded 
as important for cross-sensitization to tropomyosins of crustaceans 
and shellfish (Lopata et al. 2010).

1.6 ProfIlIn-lIke SuPerfamIly

The profilin-like superfamily comprises four member families. One 
of them, the profilin family, are proteins that are highly conserved 
in higher plants with sequence identities of at least 75% (Radauer 
et al. 2006). Profilins are cytoplasmic proteins of 12–15 kDa and 
are present in all eukaryotic cells. They bind monomeric actin 
(Schutt et al. 1993) and are involved in the dynamic turnover 
and restructuring of the actin cytoskeleton (Witke 2004). Profilin 
from birch pollen was the first profilin that was described as 
allergenic (Valenta et al. 1991). Subsequently, a large number of  
cross-reactive profilin allergens were described in pollen of trees, 
grasses and weeds (Gadermaier et al. 2014, Hauser et al. 2010). As 
profilin-specific IgE cross-reacts with practically all plant profilins, a 
profilin sensitization is regarded as a risk factor for allergic reactions 
to various plant pollen (Mari 2001) and plant foods (Asero et al. 
2003, Fernandez-Rivas 2015). However, the clinical relevance of 
a profilin sensitization is still under discussion (Santos and Van 
Ree 2011). The clinical relevance of a profilin sensitization was 
shown for profilins from cantaloupe, watermelon, tomato, banana, 
pineapple, orange and kaki (Anliker et al. 2001, Asero et al. 2008,  
Lopez-Torrejon et al. 2005). Recently, profilins were shown to be 

Table 1.4 Selected allergenic tropomyosins.

Protein family Allergen source Allergen designation

Tropomyosin: Crustaceans American lobster  
(Homerus americanus)

Hom a 1

Crucifix crab (Charybdis feriatus) Cha f 1

Indian white prawn  
(Penaeus indicus)

Pen i 1

North Sea shrimp  
(Crangon crangon)

Cra c 1

Tropomyosin: Mollusks Pacific flying squid  
(Todarodes pacificus)

Tod p 1
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complete food allergens capable of eliciting severe reactions in plant 
food allergic patients that had been exposed to high levels of grass 
pollen (Alvarado et al. 2014).

1.7  BeT V 1-Like SuPerfamiLy

Bet v 1, the major birch pollen allergen, is the one member that 
gave this superfamily its name (Breiteneder et al. 1989). The Bet 
v 1-like superfamily contains at present 103,375 members from 
17,750 species (http://pfam.xfam.org/clan/CL0209, accessed 
November 2015). Proteins with the typical Bet v 1 architecture can 
be found in all kingdoms of life and hence belong to the earliest 
proteins that evolved at the beginning of life (Radauer et al. 2008b). 
The superfamily consists of 14 families including the Bet v family, 
which comprises 11 subfamilies. Most of the Bet v 1-homologous 
allergens known today belong to the PR-10 subfamily (Hoffmann-
Sommergruber 2002). The cDNA coding for Bet v 1 was discovered 
on July 3, 1989 and published as a sequence for the first plant allergen 
(Breiteneder et al. 1989). Birch belongs to the botanical order Fagales 
which comprises 8 families, some of which produce allergenic pollen 
such as hazel (Breiteneder et al. 1993), alder (Breiteneder et al. 1992), 
oak (Wallner et al. 2009), and beech (Hauser et al. 2011).

The association of a birch pollen allergy with an allergy to diverse 
plant foods is a frequently observed syndrome, which is due to the 
presence of homologous allergens in these allergen sources (Katelaris 
2010, Vieths et al. 2002). The observed clinical symptoms to the 
various plant foods are generally elicited by IgE that was induced 
by exposure to Bet v 1. The known structures of Bet v 1 (Gajhede 

Table 1.5 Selected allergenic plant food profilins.

Protein family Allergen source Allergen designation

Profilin Banana (Musa acuminata) Mus a 1

Cantaloupe (Cucumis melo) Cuc m 2

Orange (Citrus sinensis) Cit s 2

Pineapple (Ananas comosus) Ana c 1

Tomato (Solanum lycopersicum) Sola l 1

http://pfam.xfam.org/clan/CL0209
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et al. 1996), and its homologs form cherry (Neudecker et al. 2001), 
celeriac (Markovic-Housley et al. 2009), carrot (Markovic-Housley 
et al. 2009), soybean (Berkner et al. 2009) and peanut (Hurlburt et al. 
2013) clearly illustrate the similarities of these molecules’ surfaces 
that explain the clinically observed cross-reactivities. IgE antibodies 
bind to Bet v 1-related plant food allergens such as Mal d 1 from apple 
(Vanek-Krebitz et al. 1995), Api g 1 from celeriac (Breiteneder et al. 
1995), Ara h 8 from peanut (Mittag et al. 2004), Vig r 1 from mung 
bean (Mittag et al. 2005), and Bet v 1 homologs from Sharon fruit 
(Bolhaar et al. 2005) and jackfruit (Bolhaar et al. 2004). Act d 11 is an 
allergen of the kiwifruit that belongs to the ripening related protein 
(RRP) subfamily (D’Avino et al. 2011). Vig r 6 from mung beans 
is another Bet v 1 homolog that belongs to the cytokinin-specific 
binding protein (CSBP) family.

1.8 tHe caSeIn and tHe caSeIn kaPPa famIly

All mammalian milks contain multiple casein proteins characterized 
as α-, β- and κ-caseins (Oftedal 2012). Caseins are members of the 
unfolded secretory calcium-binding phosphoproteins called SSCP 
(Kawasaki and Weiss 2003). The α- and β-caseins evolved from 
tooth and bone-proteins well before the evolution of lactation 

Table 1.6 Selected allergens of the Bet v 1 family.

Subfamily of the Bet v 1 family Allergen source Allergen designation

PR-10 Apple (Malus domestica) Mal d 1

Celeriac (Apium graveolens) Api g 1

Cherry (Prunus avium) Pru av 1

Mung bean (Vigna radiata) Vig r 1

Peach (Prunus persica) Pru p 1

Peanut (Arachis hypogaea) Ara h 8

Soybean (Glycine max) Gly m 4

RRP Kiwifruit (Actinidia deliciosa) Act d 11

CSBP Mung bean (Vigna radiata) Vig r 6
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(Lenton et al. 2015). In mammalian milks, sequestered nanoclusters 
of calcium phosphate are substructures in casein micelles which 
allow the calcium and phosphate concentrations to be far in excess 
of their solubility. The αS1-, αS2- and β-caseins form a shell around 
amorphous calcium phosphate to form the nanoclusters. These 
nanoclustes are then assembled into the casein micelles that are 
stabilized by κ-casein (ten Grotenhuis et al. 2003). α- and β-caseins 
are members of the casein family (Kawasaki et al. 2011), while 
κ-caseins are members of the casein kappa family (Ward et al. 1997). 
Caseins are major food allergens involved in cow’s milk allergy, 
which affects predominantly young children. In European children, 
the incidence of challenge-proven cow’s milk allergy was 0.54% 
with national incidences ranging from < 0.3% to 1% (Schoemaker 
et al. 2015). Recently, the official nomenclature of allergenic caseins 
has been changed (Radauer et al. 2014). The name Bos d 8, as it is 
widely established, was kept to designate the whole casein fraction. 
However, based on low sequence similarities, Bos d 8 was demerged 
into four separate allergens: Bos d 9 (aS1-casein), Bos d 10 (αS2-
casein), Bos d 11.0101 (β-casein), and Bos d 12.0101 (κ-casein).

1.9 calycIn-lIke SuPerfamIly

The calycin structural superfamily includes 20 families. Calycins 
are an example for a superfamily of proteins, which—although they 
share structural similarities—have unusually low levels of overall 
sequence conservation. The calycin architecture is based on an eight-
stranded β-barrel which forms an internal ligand binding site for 
small hydrophobic molecules (Flower et al. 1993).

Table 1.7 Allergenic caseins of cow’s milk.

Protein family Allergen source Allergen designation

Casein Cow’s milk (Bos domesticus) Bos d 9: αS1-casein

Bos d 10: αS2-casein

Bos d 11: β-casein

Casein kappa Cow’s milk (Bos domesticus) Bos d 12: κ-casein
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1.9.1 lipocalins

Lipocalins form a subset of the calycin superfamily. Lipocalins 
are small extracellular proteins with a large variety of functions 
which typically revolves around the binding of small hydrophobic 
ligands such as retinol (Flower et al. 2000). Most of the allergenic 
lipocalins are not food allergens but important inhalant allergens 
from mammals and insects (Hilger et al. 2012, Virtanen et al. 2012). 
The only lipocalin animal food allergen is β-lactoglobulin (Bos d 5) 
which is a major allergen in cow’s milk (Hochwallner et al. 2014) 
and is absent from human and camel milk (Restani et al. 2009). Bos 
d 5 is highly stable to proteolytic degradation and acid hydrolysis 
(Wal 2004).

1.10 concluSIonS

In 1991, the evolutionary biologist Margie Profet published the toxin 
hypothesis of allergy (Profet 1991). She proposed that the allergic 
immune response evolved as a defense mechanism to protect the 
individual from toxic environmental substances such as venoms 
and toxic plant compounds. Recently, this hypothesis has found 
experimental proof for bee and snake venoms (Marichal et al. 2013, 
Palm et al. 2013, Starkl et al. 2015). It is highly plausible that this 
hypothesis will be confirmed for allergenic components of other 
insect venoms. Future experiments will have to be performed for 
plant food allergens and plant food matrices to explore whether 
they are as innocuous as they were made out to be. In fact, seed 
storage proteins which are commonly regarded as inert also have 
functions in plant defense mechanisms (Candido Ede et al. 2011). 2S 
albumins from passion fruit seeds have been shown to induce plasma 
membrane permeabilization (Agizzio et al. 2006) and vicilins from 
cowpea were discovered to interact with the microvilli of the larval 
midgut epithelium of the bean-feeding cowpea beetle (Oliveira et 
al. 2014).

The allergens of the various superfamilies have distinct 
distributions. Allergenic prolamins and cupins are only present 
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in plants. While the cupin allergens are so far only known as seed 
storage proteins, allergens of the prolamin superfamily can either be 
storage proteins or have inhibitory or signal transduction functions. 
Bet v 1 homologs and profilins are also only known as plant allergens. 
Allergenic food proteins of the EF-hand superfamily are only known 
from fish. Likewise, allergenic tropomyosins as food allergens seem 
to be limited to crustaceans and mollusks. Although lipocalins 
are also present in plants (Charron et al. 2005), most of them are 
inhalant animal allergens and only one is an animal food allergen, 
the β-lactoglobulin from cow’s milk. All of these proteins perform a 
specific biologic function. They become allergenic only when they 
interact with the immune system of a predisposed individual. It is 
worth to note, that in general, allergens are restricted to a highly 
limited number of protein families. That indicates that only a 
very small number of protein structures are able to induce allergic 
sensitization or to become involved in such a process. Why this is 
the case is still unclear. The innate immune system (Herre et al. 2013, 
Junker et al. 2012, Trompette et al. 2009), binding of ligands to the 
allergens (Jyonouchi et al. 2011, Mirotti et al. 2013), and adjuvants 
present in the allergen source seem to play a role (Gilles et al. 2009, 
Mittag et al. 2013).

When the allergens designated by the WHO/IUIS Allergen 
Nomenclature Subcommittee (http://www.allergen.org/) are 
classified by protein families, as was done in this chapter, they become 
much more manageable. A detailed analysis of the biochemical, 
structural and immunologic properties of each family of allergens 
will contribute to the understanding of factors that contribute to the 
allergenic potential of a protein.
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