
[image: cover-image]

About the Authors

[image: image]

Andreas Spillner is a professor of Computer Science in the Faculty of Electrical Engineering and Computer Science at Bremen University of Applied Sciences. For more than 10 years, he was president of the German Special Interest Group in Software Testing, Analysis, and Verification of the German Society for Informatics. He is a honorary member of the German Testing Board. His work emphasis is on software engineering, quality assurance, and testing.

[image: image]

Tilo Linz is CEO of imbus AG, a leading service company for software testing in Germany. He is president of the German Testing Board and was president of the ISTQB from 2002 to 2005. His work emphasis is on consulting and coaching projects on software quality management, and optimizing software development and testing processes.

[image: image]

Hans Schaefer is an independent consultant in software testing in Norway. He is president of the Norwegian Testing Board. He has been consulting and teaching software testing methods since 1984. He organizes the Norwegian Special Interest Group in Software Testing for Western Norway. His work emphasis is on consulting, teaching, and coaching test process improvement and test design techniques, as well as reviews.

Software Testing Foundations

A Study Guide for the Certified Tester Exam

	
Foundation Level

	ISTQB compliant

4th Edition

Andreas Spillner
Tilo Linz
Hans Schaefer

[image: image]

Andreas Spillner (andreas.spillner@hs-bremen.de)

Tilo Linz (tilo.linz@imbus.de)

Hans Schaefer (hans.schaefer@ieee.org)

Editor: Dr. Michael Barabas

Copyeditor: Judy Flynn

Translator: Hans Schaefer

Layout: Josef Hegele

Project Manager: Matthias Rossmanith

Cover Design: Helmut Kraus, www.exclam.de

Printer: Sheridan

Printed in the USA

ISBN 978-1-937538-42-2

4th Edition

© 2014 by Spillner, Linz, Schaefer

Rocky Nook Inc.

802 East Cota St., 3rd Floor

Santa Barbara, CA 93103

www.rockynook.com

This 4th English book edition conforms to the 5th German edition “Basiswissen Softwaretest – Aus- und Weiterbildung zum Certified Tester – Foundation Level nach ISTQB-Standard” (dpunkt.verlag GmbH, ISBN: 978-3-86490-024-2), which was published in September 2012.

Library of Congress Cataloging-in-Publication Data

Spillner, Andreas.
 Software testing foundations / by Andreas Spillner, Tilo Linz, Hans Schaefer. -- Fourth edition.
 pages cm
 ISBN 978-1-937538-42-2 (paperback)
1. Computer software--Testing. 2. Computer software--Verification. 3. Computer software--Evaluation. I. Linz, Tilo.
II. Schaefer, H. (Hans) III. Title.
 QA76.76.T48S66 2014
 005.1'4--dc23
 2013045349

Distributed by O‘Reilly Media

1005 Gravenstein Highway North

Sebastopol, CA 95472

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the publisher.

Many of the designations in this book used by manufacturers and sellers to distinguish their products are claimed as trademarks of their respective companies. Where those designations appear in this book, and Rocky Nook was aware of a trademark claim, the designations have been printed in caps or initial caps. All product names and services identified throughout this book are used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark. They are not intended to convey endorsement or other affiliation with this book.

While reasonable care has been exercised in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein or from the use of the discs or programs that may accompany it.

This book is printed on acid-free paper.

Preface

Worldwide success

In most industrialized countries, the Certified Tester has gained acceptance as a training and education tool for testers. At the end of 2013, the number of certified testers worldwide was more than 300,000. Chris Carter, president of the International Software Testing Qualifications Board (ISTQB), says this: “I think the scheme has been so successful because we freely offer our syllabi and glossary to the public, which helps to standardize professional terminology. We also offer certifications at a range of levels, from foundation through advanced to expert, allowing testing professionals to be supported right through their careers and keeping them up-to-date with the world’s best practices.”

Certified Testers in some countries

There are more than 20,000 Certified Testers in Germany, more than 1,000 in Norway, and more than 2,000 in Sweden. Even the small country of Iceland has over 100 Certified Testers. In more and more countries, being a Certified Tester is a prerequisite to being employed in testing or to be a contractor in testing services.

A 2011 poll (taken in Germany, Switzerland, and Austria) revealed that nearly 75% of the people asked know the ISTQB scheme. More than 70% of them already have a Foundation Level Certificate. About 90% said the training was helpful.

Ten-year anniversary of the German version of this book

The first version of this book was published in German in 2002. The first English edition was published in 2006. The German issue is in its 5th edition and the English version is in its 4th edition. This book conforms to the ISTQB syllabus “Certified Software Tester—Foundation Level” version 2011. Most major changes planned for the 2015 version have been included and are specially marked.

Ten years is a long time in the IT industry; new developments and paradigms are encouraged and used, and new and improved tools are available. On the other hand, there is some basic knowledge in computer science that does not change. In this book, we have concentrated on generic knowledge and techniques. We have not described techniques whose benefits are yet unknown, or techniques that have to show their practical validity and applicability. The same is true about “special disciplines” in testing; testing of web applications, testing in agile projects, or testing of embedded or mobile systems, for example. These techniques are not part of the standard foundations. There is other literature about such specialized areas.

Books for the advanced level

The Certified Tester training scheme consists of three levels (see Chapter 1). Besides the foundation knowledge (Foundation Level) described in detail in this text, books are also available from Rocky Nook for the syllabus for the Advanced Level. These books are available:

	The Software Test Engineer’s Handbook [Bath 14] (for Test Analyst and Technical Test Analyst)

	Advanced Software Testing—Vol. 1 – 3 [Black 08, 09, 11]

Syllabi for the Expert Level also exist: “Improving the Test Process”1 and “Test Management.” The syllabi for “Test Automation” and “Security Testing” are currently being finished.

The knowledge is much asked for in the IT world

The broad acceptance of this training scheme is made apparent by the powerful and continuous growth in ISTQB membership. 47 Testing Boards represent more than 70 countries. Ten years ago, there were a handful of members. Now ISTQB is represented in all parts of the world. The Certified Tester has grown to be a renowned trademark in the IT industry worldwide, and has considerably contributed to improving testing in the software development process.

Testing is taught at colleges and universities

The number of colleges that have integrated the Certified Tester scheme into their teaching is impressive. Courses are taught at places like Aachen and Bremen (Germany), Oslo (Norway), Reykjavik (Iceland), and Wismar (Germany). National Testing Boards usually decide which colleges offer these courses. Their relevance is shown by many job advertisements as well as requests for tenders. For personnel in software development it is more or less required to have some basic knowledge about testing, best shown by a certificate.

Thank you

We want to thank the colleagues from the German Testing Board and the ISTQB. Without their interest and work, the Certified Tester training scheme would not have received the success and acceptance described above.

What has been changed

Why a new edition of this book? This edition contains corrections of faults and clarification of ambiguity, as far as we know them. A special thank you to the readers who have described faults and have asked us about the instances of ambiguity. Furthermore, the terminology has been made more consistent with the improved ISTQB-glossary. This edition of the book is consistent with the syllabus version 2011. The literature list was updated and new books and standards were included. The links to Internet pages were checked and updated. We wish all readers good luck when using the described testing approaches and techniques in practice and—when reading the book is part of the preparation for the Certified Tester examination—good luck with the exam.

Andreas Spillner and Tilo Linz
Bremen, Möhrendorf, Germany
August 2013

I want to especially thank Michael Barabas from dpunkt.verlag, the publisher of the German book, and Matthias Rossmanith from Rocky Nook for their support in preparing this book. There were a lot of late changes and delays, most of which can be attributed to me. My special thanks goes to Judy Flynn, copy editor at Rocky Nook. Without her help, this book would be much harder to read. She helped me to improve my English, without getting tired of my systematic errors. When translating the German book to English, I especially thought of readers who do not use English as their native language. Many of us use a different language in our life, but English for our business. I hope the book will be comprehensible to such readers.

I included some planned changes to the ISTQB syllabus. These are specially marked because they will not be included in exams before 2015. Most of them are obvious changes due to development in international standards. When taking the Certified Tester exam, please make sure you know which version of the syllabus is used in your exam!

Finally, the main goal for this book is that it should teach you how to test effectively and efficiently. You should learn that there is a lot more to learn in the area of testing. As a side effect, you should be prepared to pass the Certified Tester exam.

Hans Schaefer
Valestrandsfossen, Norway
February 2014

Contents

1 Introduction

2 Fundamentals of Testing

2.1 Terms and Motivation

2.1.1 Error, Defect, and Bug Terminology

2.1.2 Testing Terms

2.1.3 Software Quality

2.1.4 Test Effort

2.2 The Fundamental Test Process

2.2.1 Test Planning and Control

2.2.2 Test Analysis and Design

2.2.3 Test Implementation and Execution

2.2.4 Test Evaluation and Reporting

2.2.5 Test Closure Activities

2.3 The Psychology of Testing

2.4 General Principles of Testing

2.5 Ethical Guidelines

2.6 Summary

3 Testing in the Software Life Cycle

3.1 The General V-Model

3.2 Component Test

3.2.1 Explanation of Terms

3.2.2 Test objects

3.2.3 Test Environment

3.2.4 Test objectives

3.2.5 Test Strategy

3.3 Integration Test

3.3.1 Explanation of Terms

3.3.2 Test objects

3.3.3 The Test Environment

3.3.4 Test objectives

3.3.5 Integration Strategies

3.4 System Test

3.4.1 Explanation of Terms

3.4.2 Test Objects and Test Environment

3.4.3 Test Objectives

3.4.4 Problems in System Test Practice

3.5 Acceptance Test

3.5.1 Contract Acceptance Testing

3.5.2 Testing for User Acceptance

3.5.3 Operational (Acceptance) Testing

3.5.4 Field Testing

3.6 Testing New Product Versions

3.6.1 Software Maintenance

3.6.2 Testing after Further Development

3.6.3 Testing in Incremental Development

3.7 Generic Types of Testing

3.7.1 Functional Testing

3.7.2 Nonfunctional Testing

3.7.3 Testing of Software Structure

3.7.4 Testing Related to Changes and Regression Testing

3.8 Summary

4 Static Test

4.1 Structured Group Evaluations

4.1.1 Foundations

4.1.2 Reviews

4.1.3 The General Process

4.1.4 Roles and Responsibilities

4.1.5 Types of Reviews

4.2 Static Analysis

4.2.1 The Compiler as a Static Analysis Tool

4.2.2 Examination of Compliance to Conventions and Standards

4.2.3 Execution of Data Flow Analysis

4.2.4 Execution of Control Flow Analysis

4.2.5 Determining Metrics

4.3 Summary

5 Dynamic Analysis – Test Design Techniques

5.1 Black Box Testing Techniques

5.1.1 Equivalence Class Partitioning

5.1.2 Boundary Value Analysis

5.1.3 State Transition Testing

5.1.4 Logic-Based Techniques (Cause-Effect Graphing and Decision Table Technique, Pairwise Testing)

5.1.5 Use-Case-Based Testing

5.1.6 General Discussion of the Black Box Technique

5.2 White Box Testing Techniques

5.2.1 Statement Testing and Coverage

5.2.2 Decision/Branch Testing and Coverage

5.2.3 Test of Conditions

5.2.4 Further White Box Techniques

5.2.5 General Discussion of the White Box Technique

5.2.6 Instrumentation and Tool Support

5.3 Intuitive and Experience-Based Test Case Determination

5.4 Summary

6 Test Management

6.1 Test Organization

6.1.1 Test Teams

6.1.2 Tasks and Qualifications

6.2 Planning

6.2.1 Quality Assurance Plan

6.2.2 Test Plan

6.2.3 Prioritizing Tests

6.2.4 Test Entry and Exit Criteria

6.3 Cost and Economy Aspects

6.3.1 Costs of Defects

6.3.2 Cost of Testing

6.3.3 Test Effort Estimation

6.4 Choosing the Test Strategy and Test Approach

6.4.1 Preventative vs. Reactive Approach

6.4.2 Analytical vs. Heuristic Approach

6.4.3 Testing and Risk

6.5 Managing The Test Work

6.5.1 Test Cycle Planning

6.5.2 Test Cycle Monitoring

6.5.3 Test Cycle Control

6.6 Incident Management

6.6.1 Test Log

6.6.2 Incident Reporting

6.6.3 Defect Classification

6.6.4 Incident Status

6.7 Requirements to Configuration Management

6.8 Relevant Standards

6.9 Summary

7 Test Tools

7.1 Types of Test Tools

7.1.1 Tools for Management and Control of Testing and Tests

7.1.2 Tools for Test Specification

7.1.3 Tools for Static Testing

7.1.4 Tools for Dynamic Testing

7.1.5 Tools for Nonfunctional Test

7.2 Selection and Introduction of Test Tools

7.2.1 Cost Effectiveness of Tool Introduction

7.2.2 Tool Selection

7.2.3 Tool Introduction

7.3 Summary

Appendix

A Test Plans According to IEEE Standard 829-1998

Test Plans According to IEEE Standard 829-2008

B Important Information about the Syllabus and the Certified Tester Exam

C Exercises

Glossary

Literature

Index

1 Introduction

In recent years, software been introduced virtually everywhere. There will soon be no appliances, machines, or facilities for which control is not implemented by software or software parts. In automobiles, for example, microprocessors and their accompanying software control more and more functionality, from engine management to the transmission and brakes. Thus, software is crucial to the correct functioning of devices and industry. Likewise, the smooth operation of an enterprise or organization depends largely on the reliability of the software systems used for supporting the business processes and particular tasks. How fast an insurance company can introduce a new product, or even a new rate, most likely depends on how quickly the IT systems can be adjusted or extended.

High dependence on the correct functioning of the software

Within both embedded and commercial software systems, quality has become the most important factor in determining success.

Many enterprises have recognized this dependence on software and strive for improved quality of their software systems and software engineering (or development) processes. One way to achieve this goal is through systematic evaluation and testing of the software. In some cases, appropriate testing procedures have found their way into the daily tasks associated with software development. However, in many sectors, there remains a significant need to learn about evaluation and testing.

Basic knowledge for structured evaluation and testing

With this book, we offer basic knowledge that will help you achieve structured and systematic evaluation and testing. Implementation of these evaluation and testing procedures should contribute to improvement of the quality of software. This book does not presume previous knowledge of software quality assurance. It is designed as a textbook and can even be used as a guide for self-study. We have included a single, continuous example to help provide an explanation and practical solutions for all of the topics we cover.

We want to help software testers who strive for a well-founded, basic knowledge of the principles behind software testing. We also address programmers and developers who are already performing testing tasks or will do so in the future. The book will help project managers and team leaders to improve the effectiveness and efficiency of software tests. Even those in disciplines related to IT, as well as employees who are involved in the processes of acceptance, introduction, and further development of IT applications, will find this book helpful for their daily tasks.

Evaluation and testing procedures are costly in practice (this area is estimated to consume 25% to 50% of software development time and cost [Koomen 99]). Yet, there are still too few universities, colleges, and vocational schools in the sectors of computer and information science that offer courses about this topic. This book will help both students and teachers. It provides the material for an introduction-level course.

Lifelong learning is indispensable, especially in the IT industry. Many companies and trainers offer further education in software testing to their employees. General recognition of a course certificate is possible, however, only if the contents of the course and the examination are defined and followed up by an independent body.

Certification program for software testers

In 1997, the Information Systems Examinations Board (ISEB) [URL: ISEB] of the British Computer Society (BCS) [URL: BCS] started a certification scheme to define course objectives for an examination (see the foreword by Dorothy Graham).

International initiative

Similar to the British example, other countries took up these activities and established independent, country-specific testing boards to make it possible to offer training and exams in the language of the respective countries. These national boards cooperate in the International Software Testing Qualifications Board (ISTQB) [URL: ISTQB]. An updated list of all ISTQB members can be found at [URL: ISTQB Members].

The ISTQB coordinates the national initiatives and assures uniformity and comparability of the courses and exam contents among the countries involved.

The national testing boards are responsible for issuing and maintaining curricula in the language of their countries and for organizing and executing examinations in their countries. They assess the seminars offered in their countries according to defined criteria and accredit training providers. The testing boards thus guarantee a high quality standard for the seminars. After passing an exam, the seminar participants receive an internationally recognized certificate of qualification.

Three-step qualification scheme

The ISTQB Certified Tester qualification scheme has three steps. The basics are described in the Foundation Level curriculum (syllabus). Building on this is the Advanced Level certificate, showing a deeper knowledge of testing and evaluation. The third level, the Expert Level, is intended for experienced professional software testers and consists of several modules about different special topics. Currently, the first four syllabi are being prepared in the ISTQB and the national boards. The syllabi for “Improving The Test Process” and “Test Management” are available. Syllabi for “Test Automation” and “Security Testing” are on their way. The current status of the syllabi can be seen at [URL: ISTQB].

The contents of this book correspond to the requirements of the ISTQB Foundation Level certificate. The knowledge needed to pass the exams can be acquired by self-study. The book can also be used to attain knowledge after, or parallel to, participation in a course.

The overall structure of this book corresponds to the course contents for the Foundation Level certificate.

Foundations

In chapter 2, “Fundamentals of Testing,” the basics of software testing are discussed. In addition to the motivation for testing, the chapter will explain when to test, with which goals, and how intensively. The concept of a basic test process is described. The chapter shows the psychological difficulties experienced when testing one’s own software and the problems that can occur when trying to find one’s own errors.

Testing in the software life cycle

Chapter 3, “Testing in the Software Life Cycle,” discusses which test activities should be performed during the software development process and when. In addition to describing the different test levels, it will examine the difference between functional and nonfunctional tests. Regression testing is also discussed.

Static testing

Chapter 4, “Static Test,” discusses static testing techniques, that is, ways in which the test object is analyzed but not executed. Reviews and static analyses are already applied by many enterprises with positive results. This chapter will describe in detail the various methods and techniques.

Dynamic testing

Chapter 5, “Dynamic Analysis – Test Design Techniques,” deals with testing in a narrower sense. The classification of dynamic testing techniques into black box and white box techniques will be discussed.

Each kind of test technique is explained in detail with the help of a continuous example. The end of the chapter shows the reasonable usage of exploratory and intuitive testing, which may be used in addition to the other techniques.

Test management

Chapter 6, “Test Management,” discusses aspects of test management such as systematic incident handling, configuration management, and testing economy.

Testing tools

Chapter 7, “Test Tools,” explains the different classes of tools that can be used to support testing. The chapter will include introductions to some of the tools and suggestions for selecting the right tools for your situation.

The appendices include additional information on the topics covered and for the exam.

Appendix A contains explanations of the test plan according to IEEE Standard 829-1998 [IEEE 829] and 829-2008. Appendix B includes important notes and additional information on the Certified Tester exam, and appendix C offers exercises to reinforce your understanding of the topics in each chapter. Finally, there is a glossary and a bibliography. Technical terms that appear in the glossary are marked with an arrow [→] when they appear for the first time in the text. Text passages that go beyond the material of the syllabus are marked as “excursions.”

2 Fundamentals of Testing

This introductory chapter will explain basic facts of software testing, covering what you will need to know to understand the following chapters. Important concepts and essential vocabulary will be explained by using an example application that will be used throughout the book. It appears frequently to illustrate and clarify the subject matter. The fundamental test process with the different testing activities will be illustrated. Psychological problems with testing will be discussed. Finally, the ISTQB Code of Tester Ethics is presented and discussed.

Throughout this book, we’ll use one example application to illustrate the software test methods and techniques presented in this book. The fundamental scenario is as follows.

Case study, “VirtualShowRoom” – VSR

A car manufacturer develops a new electronic sales support system called VirtualShowRoom (VSR). The final version of this software system will be installed at every car dealer worldwide. Customers who are interested in purchasing a new car will be able to configure their favorite model (model, type, color, extras, etc.), with or without the guidance of a salesperson.

The system shows possible models and combinations of extra equipment and instantly calculates the price of the car the customer configures. A subsystem called DreamCar will provide this functionality.

When the customer has made up her mind, she will be able to calculate the most suitable financing (EasyFinance) as well as place the order online (JustIn-Time). She will even get the option to sign up for the appropriate insurance (NoRisk). Personal information and contract data about the customer is managed by the ContractBase subsystem.

Figure 2-1 shows the general architecture of this software system.

Every subsystem will be designed and developed by a separate development team. Altogether, about 50 developers and additional employees from the respective user departments are involved in working on this project. External software companies will also participate.

The VSR-System must be tested thoroughly before release. The project members assigned to test the software apply different testing techniques and methods. This book contains the basic knowledge necessary for applying them.

Figure 2–1
Architecture of the VSR-System

[image: image]

2.1 Terms and Motivation

Requirements

During the construction of an industry product, the parts and the final product are usually examined to make sure they fulfill the given →requirements, that is, whether the product solves the required task.

Depending on the product, there may be different requirements to the →quality of the solution. If the product has problems, corrections must be made in the production process and/or in the design of the product itself.

Software is immaterial

What generally counts for the production of industry products is also appropriate for the production or development of software. However, testing (or evaluation) of partial products and the final product is more difficult, because a software product is not a tangible physical product. Direct examination is not possible. The only way to examine the product is by reading (reviewing) the development documents and code.

The dynamic behavior of the software, however, cannot be checked this way. It must be done through →testing, by executing the software on a computer. Its behavior must be compared to the requirements. Thus, testing of software is an important and difficult task in software development. It contributes to reducing the →risk of using the software because →defects can be found in testing. Testing and test documentation are often defined in contracts, laws, or industrial or organizational standards.

Example

To identify and repair possible faults before delivery, the VSR-System from the case study example must be tested intensively before it is used. For example, if the system executes order transactions incorrectly, this could result in frustration for the customer and serious financial loss and a negative impact on the image of the dealer and the car manufacturer. Not finding such a defect constitutes a high risk during system use.

2.1.1 Error, Defect, and Bug Terminology

What is a defect, failure, or fault?

When does a system behave incorrectly, not conforming to requirements? A situation can be classified as incorrect only after we know what the correct situation is supposed to look like. Thus, a →failure means that a given requirement is not fulfilled; it is a discrepancy between the →actual result or behavior1 and the →expected result or behavior.2

A failure is present if a legitimate (user) expectation is not adequately met. An example of a failure is a product that is too difficult to use or too slow but still fulfills the →functional requirements.

In contrast to physical system failure, software failures do not occur because of aging or abrasion. They occur because of →faults in the software. Faults (or defects or →bugs) in software are present from the time the software was developed or changed yet materialize only when the software is executed, becoming visible as a failure.

Failure

To describe the event when a user experiences a problem, [IEEE 610.12] uses the term failure. However, other terms, like problem, issue, and incident, are often used. During testing or use of the software, the failure becomes visible to the →tester or user; for example, an output is wrong or the program crashes.

Fault

We have to distinguish between the occurrence of a failure and its cause. A failure is caused by a fault in the software. This fault is also called a defect or internal error. Programmer slang for a fault is bug. For example, faults can be incorrect or forgotten →statements in the program.

Defect masking

It is possible that a fault is hidden by one or more other faults in other parts of the program (→defect masking). In that case, a failure occurs only after the masking defects have been corrected. This demonstrates that corrections can have side effects.

One problem is that a fault can cause none, one, or many failures for any number of users and that the fault and the corresponding failure are arbitrarily far away from each other. A particularly dangerous example is some small corruption of stored data, which may be found a long time after it first occurred.

Error or mistake

The cause of a fault or defect is an →error or →mistake by a person—for example, defective programming by the developer. However, faults may even be caused by environmental conditions, like radiation and magnetism, that introduce hardware problems. Such problems are, however, not discussed in this book.

People err, especially under time pressure. Defects may occur, for example, by bad programming or incorrect use of program statements. Forgetting to implement a requirement leads to defective software. Another cause is changing a program part because it is complex and the programmer does not understand all consequences of the change. Infrastructure complexity, or the sheer number of system interactions, may be another cause. Using new technology often leads to defects in software, because the technology is not fully understood and thus not used correctly.

More detailed descriptions of the terms used in testing are given in the following section.

2.1.2 Testing Terms

Testing is not debugging

To be able to correct a defect or bug, it must be localized in the software. Initially, we know the effect of a defect but not the precise location in the software. Localization and correction of defects are tasks for a software developer and are often called →debugging. Repairing a defect generally increases the →quality of the product because the →change in most cases does not introduce new defects.

However, in practice, correcting defects often introduces one or more new defects. The new defects may then introduce failures for new, totally different inputs. Such unwanted side effects make testing more difficult. The result is that not only must we repeat the →test cases that have detected the defect, we must also conduct even more test cases to detect possible side effects.

Debugging is often equated with testing, but they are entirely different activities.

Debugging is the task of localizing and correcting faults. The goal of testing is the (more or less systematic) detection of failures (that indicate the presence of defects).

A test is a sample examination

Every execution3 (even using more or less random samples) of a →test object in order to examine it is testing. The →test conditions must be defined. Comparing the actual and expected behaviors of the test object serves to determine if the test object fulfills the required characteristics.4

Testing software has different purposes:

	Executing a program to find failures

	Executing a program to measure quality

	Executing a program to provide confidence5

	Analyzing a program or its documentation to prevent failures

Tests can also be performed to acquire information about the test object, which is then used as the basis for decision-making—for example, about whether one part of a system is appropriate for integration with other parts of the system. The whole process of systematically executing programs to demonstrate the correct implementation of the requirements, to increase confidence, and to detect failures is called testing. In addition, a test includes static methods, that is, static analysis of software products using tools as well as document reviews (see chapter 4).

Testing terms

Besides execution of the test object with →test data, planning, design, implementation, and analysis of the test (→test management) also belong to the →test process. A →test run or →test suite includes execution of one or more →test cases. A test case contains defined test conditions. In most cases, these are the preconditions for execution, the inputs, and the expected outputs or the expected behavior of the test object. A test case should have a high probability of revealing previously unknown faults [Myers 79].

Several test cases can often be combined to create →test scenarios, whereby the result of one test case is used as the starting point for the next test case. For example, a test scenario for a database application can contain one test case writing a date into the database, another test case changing that date, and a third test case reading the changed date from the database and deleting it. (By deleting the date, the database should be in the same state as before executing this scenario.) Then all three test cases will be executed, one after another, all in a row.

No large software system is bug free

At present, there is no known bug-free software system, and there will probably not be any in the near future (if a system has nontrivial complexity). Often the reason for a fault is that certain exceptional cases were not considered during development and testing of the software. Such faults could be the incorrectly calculated leap year or the not-considered boundary condition for time behavior or needed resources. On the other hand, there are many software systems in many different fields that operate reliably, 24/7.

Testing cannot produce absence of defects

Even if all the executed test cases do not show any further failures, we cannot safely conclude (except for very small programs) that there are no further faults or that no further test cases could find them.

Excursion: Naming tests

There are many confusing terms for different kinds of software tests. Some will be explained later in connection with the description of the different →test levels (see chapter 3). The following terms describe the different ways tests are named:

→Test objective or test type:

A test is named according to its purpose (for example, →load test).

→Test technique:

A test is named according to the technique used for specifying or executing the test (for example, →business-process-based test).

Test object:

The name of a test reflects the kind of the test object to be tested (for example, a GUI test or DB test [database test]).

Test level:

A test is named after the level of the underlying life cycle model (for example, →system test).

Test person:

A test is named after the personnel group executing the tests (for example, developer test, →user acceptance test).

Test extent:

A test is named after the level of extent (for example, partial →regression test, full test).

Thus, not every term means a new or different kind of testing. In fact, only one of the aspects is pushed to the fore. It depends on the perspective we use when we look at the actual test.

2.1.3 Software Quality

Software testing contributes to improvement of →software quality. This is done by identifying defects and subsequently correcting them. If the test cases are a reasonable sample of software use, quality experienced by the user should not be too different from quality experienced during testing.

But software quality is more than just the elimination of failures found during testing. According to the ISO/IEC Standard 9126-1 [ISO 9126], software quality comprises the following factors:

→functionality, →reliability, usability, →efficiency, →maintainability, and portability.

Testing must consider all these factors, also called →quality characteristics and →quality attributes, in order to judge the overall quality of a software product. Which quality level the test object is supposed to show for each characteristic should be defined in advance. Appropriate tests must then check to make sure these requirements are fulfilled.

Excursion: ISO/IEC 25010

In 2011 ISO/IEC Standard 9126 was replaced by ISO/IEC Standard 25010 [ISO 25010]. The current ISTQB syllabus still refers to ISO/IEC 9126. Here is a short overview of the new standard.

ISO/IEC 25010 partitions software quality into three models: quality in use model, product quality model, and data quality model. The quality in use model comprises the following characteristics: effectiveness, satisfaction, freedom from risk, and context coverage. The product quality model comprises functional sustainability, performance efficiency, compatibility, usability, reliability, security, maintainability, and portability. In this area much is like in ISO/IEC 9126. Data quality is defined in ISO/IEC 25012 [ISO 25012].

Example VirtualShowRoom

In the case of the VSR-System, the customer must define which of the quality characteristics are important. Those must be implemented in the system and then checked for. The characteristics of functionality, reliability, and usability are very important for the car manufacturer. The system must reliably provide the required functionality. Beyond that, it must be easy to use so that the different car dealers can use it without any problems in everyday life. These quality characteristics should be especially well tested in the product.

We discuss the individual quality characteristics of ISO/IEC Standard 9126-1 [ISO 9126] in the following section.

Functionality

When we talk about functionality, we are referring to all of the required capabilities of a system. The capabilities are usually described by a specific input/output behavior and/or an appropriate reaction to an input. The goal of the test is to prove that every single required capability in the system was implemented as described in the specifications. According to ISO/IEC Standard 9126-1, the functionality characteristic contains the subcharacteristics adequacy, accuracy, interoperability, correctness, and security.

An appropriate solution is achieved if every required capability is implemented in the system. Thereby it is clearly important to pay attention to, and thus to examine during testing, whether the system delivers the correct or specified outputs or effects.

Software systems must interoperate with other systems, at least with the operating system (unless the operating system is the test object itself).

Interoperability describes the cooperation between the system to be tested and other specified systems. Testing should detect trouble with this cooperation.

Adequate functionality also requires fulfilling usage-specific standards, contracts, rules, laws, and so on. Security aspects such as access control and →data security are important for many applications. Testing must show that intentional and unintentional unauthorized access to programs and data is prevented.

Reliability

Reliability describes the ability of a system to keep functioning under specific use over a specific period. In the standard, the reliability characteristic is split into maturity, →fault tolerance, and recoverability.

Maturity means how often a failure of the software occurs as a result of defects in the software.

Fault tolerance is the capability of the software product to maintain a specified level of performance or to recover from faults such as software faults, environment failures, wrong use of interface, or incorrect input.

Recoverability is the capability of the software product to reestablish a specified level of performance (fast and easily) and recover the data directly affected in case of failure. Recoverability describes the length of time it takes to recover, the ease of recovery, and the amount of work required to recover. All this should be part of the test.

Usability

Usability is very important for acceptance of interactive software systems. Users won’t accept a system that is hard to use. What is the effort required for the usage of the software for different user groups? Understandability, ease of learning, operability, and attractiveness as well as compliance to standards, conventions, style guides, and user interface regulations are aspects of usability. These quality characteristics are checked in →nonfunctional tests (see chapter 3).

Efficiency

Efficiency tests may give measurable results. An efficiency test measures the required time and consumption of resources for the execution of tasks. Resources may include other software products, the software and hardware →configuration of the system, and materials (for example, print paper, network, and storage).

Maintainability and portability

Software systems are often used over a long period on various platforms (operating system and hardware). Therefore, the last two quality criteria are very important: maintainability and portability.

Subcharacteristics of maintainability are analyzability, changeability, stability, and testability.

Subcharacteristics of portability are adaptability, ease of installation, conformity, and interchangeability. Many aspects of maintainability and portability can only be examined by →static analysis (see section 4.2).

A software system cannot fulfill every quality characteristic equally well. Sometimes it is possible that meeting one characteristic results in a conflict with another one. For example, a highly efficient software system can become hard to port because the developers usually use special characteristics (or features) of the chosen platform to improve efficiency. This in turn negatively affects portability.

Prioritize quality characteristics

Quality characteristics must therefore be prioritized. The quality specification is used to determine the test intensity for the different quality characteristics. The next chapter will discuss the amount of work involved in these tests.

2.1.4 Test Effort

Complete testing is impossible

Testing cannot prove the absence of faults. In order to do this, a test would need to execute a program in every possible situation with every possible input value and with all possible conditions. In practice, a →complete or exhaustive test is not feasible. Due to combinational effects, the outcome of this is an almost infinite number of tests. Such a “testing” for all combinations is not possible.

Example

The fact that complete testing is impossible is illustrated by an example of →control flow testing [Myers 79].

A small program with an easy control flow will be tested. The program consists of four decisions (IF-instructions) that are partially nested. The control flow graph of the program is shown in figure 2-2. Between Point A and B is a loop, with a return from Point B to Point A. If the program is supposed to be exhaustively tested for the different control-flow-based possibilities, every possible flow—i.e., every possible combination of program parts—must be executed. At a loop limit of a maximum of 20 cycles and considering that all links are independent, the outcome is the following calculation, whereby 5 is the number of possible ways within the loop:

520 + 519 + 518 + ... + 51

51 test cases result from execution of every single possible way within the loop, but in each case without return to the loop starting point. If the test cases result in one single return to the loop starting point, then 5 × 5 = 52 different possibilities must be considered, and so on. The total result of this calculation is about 100 quadrillion different sequences of the program.

Figure 2–2
Control flow graph of a small program

[image: image]

Assuming that the test is done manually and a test case, as Myers describes [Myers 79], takes five minutes to specify, to execute, and to be analyzed, the time for this test would be one billion years. If we assume five microseconds instead of five minutes per test case, because the test mainly runs automatically, it would still last 19 years.

Test effort between 25% and 50%

Thus, in practice it is not possible to test even a small program exhaustively.

It is only possible to consider a part of all imaginable test cases. But even so, testing still accounts for a large portion of the development effort. However, a generalization of the extent of the →test effort is difficult because it depends very much on the character of the project. The following list shows some example data from projects of one large German software company. This should shed light on the spectrum of different testing efforts relative to the total budget of the development.

	For some major projects with more than 10 person-years’ effort, coding and testing together used 40%, and a further 8% was used for the integration. At test-intensive projects (for example, →safety-critical systems), the testing effort increased to as much as 80% of the total budget.

	In one project, the testing effort was 1.2 times as high as the coding effort, with two-thirds of the test effort used for →component testing.

	For another project at the same software development company, the system test cost was 51.9% of the project.

Test effort is often shown as the proportion between the number of testers and the number of developers. The proportion varies from 1 tester per 10 developers to up to 3 testers per developer. The conclusion is that test efforts or the budget spent for testing vary enormously.

Defects can cause high costs

But is this high testing effort affordable and justifiable? The counter question from Jerry Weinberg is “Compared to what?” [DeMarco 93]. His question refers to the risks of faulty software systems. Risk is calculated as the probability of occurrence and the expected amount of damage.

Faults that were not found during testing can cause high costs when the software is used. The German newspaper Frankfurter Allgemeine Zeitung from January 17, 2002, had an article titled “IT system breakdowns cost many millions.” A one-hour system breakdown in the stock exchange is estimated to cost $7.8 million. When safety-critical systems fail, the lives and health of people may be in danger.

Since a full test is not possible, the testing effort must have an appropriate relation to the attainable result. “Testing should continue as long as costs of finding and correcting a defect6 are lower than the costs of failure” [Koomen 99]. Thus, the test effort is always dependent on an estimation of the application risk.

Example for a high risk in case of failure

In the case of the VSR-System, the prospective customers configure their favorite car model on the display. If the system calculates a wrong price, the customer can insist on that price. In a later stage of the VSR-System, the company plans to offer a web-based sales portal. In that case, a wrong price can lead to thousands of cars being sold for a price that’s too low. The total loss can amount to millions, depending on how much the price was miscalculated by the VSR-System. The legal view is that an online order is a valid sales contract with the quoted price.

Systems with high risks must be tested more thoroughly than systems that do not generate big losses if they fail. The risk assessment must be done for the individual system parts, or even for single error possibilities. If there is a high risk for failures by a system or subsystem, there must be a greater testing effort than for less critical (sub)systems. International standards for production of safety-critical systems use this approach to require that different test techniques be applied for software of different integrity levels.

For a producer of a computer game, saving erroneous game scores can mean a very high risk, even if no real damage is done, because the customers will not trust a defective game. This leads to high losses of sales, maybe even for all games produced by the company.

Define test intensity and test extent depending on risk

Thus, for every software program it must be decided how intensively and thoroughly it shall be tested. This decision must be made based upon the expected risk of failure of the program. Since a complete test is not possible, it is important how the limited test resources are used. To get a satisfying result, the tests must be designed and executed in a structured and systematic way. Only then is it possible to find many failures with appropriate effort and avoid →unnecessary tests that would not give more information about system quality.

Select adequate test techniques

There exist many different methods and techniques for testing software.

Every technique especially focuses on and checks particular aspects of the test object. Thus, the focus of examination for the control-flow-based test techniques is the program flow. In case of the →data flow test techniques, the examination focuses on the use and flow of data. Every test technique has its strengths and weaknesses in finding different kinds of faults. There is no test technique that is equally well suited for all aspects. Therefore, a combination of different test techniques is always necessary to detect failures with different causes.

Test of extra functionality

During the test execution phase, the test object is checked to determine if it works as required by the →specifications. It is also important—and thus naturally examined while testing—that the test object does not execute functions that go beyond the requirements. The product should provide only the required functionality.

Test case explosion

The testing effort can grow very large. Test managers face the dilemma of possible test cases and test case variants quickly becoming hundreds or thousands of tests. This problem is also called combinatorial explosion, or →test case explosion. Besides the necessary restriction in the number of test cases, the test manager normally has to fight with another problem: lack of resources.

Limited resources

Participants in every software development project will sooner or later experience a fight about resources. The complexity of the development task is underestimated, the development team is delayed, the customer pushes for an earlier release, or the project leader wants to deliver “something” as soon as possible. The test manager usually has the worst position in this “game.” Often there is only a small time window just before delivery for executing the test cases and very few testers are available to run the test. It is certain that the test manager does not have the time and resources for executing an “astronomical” amount of test cases.

However, it is expected that the test manager delivers trustworthy results and makes sure the software is sufficiently tested. Only if the test manager has a well-planned, efficient strategy is there is a chance to fulfill this challenge successfully. A fundamental test process is required. Besides the adherence to a fundamental test process, further →quality assurance activities must be accomplished, such as, for example, →reviews (see section 4.1.2). Additionally, a test manager should learn from earlier projects and improve the development and testing process.

The next section describes a fundamental test process typically used for the development and testing of systems like the VSR-System.

2.2 The Fundamental Test Process

Excursion Life cycle models

To accomplish a structured and controllable software development effort, software development models and →development processes are used. Many different models exist. Examples are the waterfall model [Boehm 73], [Boehm 81], the general V-model7 [Boehm 79], and the German V-model XT [URL: V-model XT]). Furthermore, there are the spiral model, different incremental or evolutionary models, and the agile, or lightweight, methods like XP (Extreme Programming [Beck 00]) and SCRUM [Beedle 01], which are popular nowadays (for example, see [Bleek 08]). Development of object-oriented software systems often uses the rational unified process [Jacobson 99].

All of these models define a systematic, orderly way of working during the project. In most cases, phases or design steps are defined. They have to be completed with a result in the form of a document. A phase completion, often called a →milestone, is achieved when the required documents are completed and conform to the given quality criteria. Usually, →roles dedicated to specific tasks in software development are defined. Project staff has to accomplish these tasks. Sometimes, the models even define the techniques and processes to be used in a particular phase. With the aid of these models, detailed planning of resource usage (time, personnel, infrastructure, etc.) can be performed. In a project, the development models define the collective and mandatory tasks and their chronological sequence.

Testing appears in each of these life cycle models, but with very different meanings and to a different extent. In the following, some models will be briefly discussed from the view of testing.

The waterfall model: Testing as “final inspection”

The first fundamental model was the waterfall model (see figure 2-3, shown with the originally defined phases [Royce 70]8). It is impressively simple and very well known. Only when one development phase is completed will the next one be initiated.

Between adjacent phases only, there are feedback loops that allow, if necessary, required revisions in the previous phase. The crucial disadvantage of this model is that testing is understood as a “one time” action at the end of the project just before the release to operation. The test is seen as a “final inspection,” an analogy to a manufacturing inspection before handing over the product to the customer.

The general V-model

An enhancement of the waterfall model is the general V-model ([Boehm 79], [IEEE/IEC 12207]), where the constructive activities are decomposed from the testing activities (see chapter 3, figure 3-1). The model has the form of a V. The constructive activities, from requirements definition to implementation, are found on the downward branch of the V. The test execution activities on the ascending branch are organized by test levels and matched to the appropriate abstraction level on the opposite side’s constructive activity. The general V-model is common and frequently used in practice.

Figure 2–3
Waterfall-model

[image: image]

The description of tasks in the process models discussed previously is not sufficient as an instruction on how to perform structured tests in software projects. In addition to embedding testing in the whole development process, a more detailed process for the testing tasks themselves is needed (see figure 2-4). This means that the “content” of the development task testing must be split into smaller subtasks, as follows: →test planning and control, test analysis and design, test implementation and execution, evaluation of test →exit criteria and reporting, and test closure activities. Although illustrated sequentially, the activities in the test process may overlap or take place concurrently. Test activities also need to be adjusted to the individual needs of each project. The test process described here is a generic one. The listed subtasks form a fundamental test process and are described in more detail in the following sections.

Figure 2–4
ISTQB fundamental test process

[image: image]

2.2.1 Test Planning and Control

Execution of such a substantial task as testing must not take place without a plan. Planning of the test process starts at the beginning of the software development project. As with all planning, during the course of the project the previous plans must be regularly checked, updated, and adjusted.

Resource planning

The mission and objectives of testing must be defined and agreed upon as well as the resources necessary for the test process. Which employees are needed for the execution of which tasks and when? How much time is needed, and which equipment and utilities must be available? These questions and many more must be answered during planning, and the result should be documented in the →test plan (see chapter 6). Necessary training programs for the employees should be prepared. An organizational structure with the appropriate test management must be arranged or adjusted if necessary.

Test control is the monitoring of the test activities and comparing what actually happens during the project with the plan. It includes reporting the status of deviations from the plan and taking any actions necessary to meet the planned goals in the new situation. The test plan must be updated to the changed situation.

Part of the test management tasks is administrating and maintaining the test process, the →test infrastructure, and the →testware. Progress tracking can be based on appropriate reporting from the employees as well as data automatically generated from tools. Agreements about these topics must be made early.

Determination of the test strategy

The main task of planning is to determine the →test strategy or approach (see section 6.4). Since an exhaustive test is not possible, priorities must be set based on risk assessment. The test activities must be distributed to the individual subsystems, depending on the expected risk and the severity of failure effects. Critical subsystems must get greater attention, thus be tested more intensively. For less critical subsystems, less extensive testing may be sufficient. If no negative effects are expected in the event of a failure, testing could even be skipped on some parts. However, this decision must be made with great care. The goal of the test strategy is the optimal distribution of the tests to the “right” parts of the software system.

Example for a test strategy

The VSR-System consists of the following subsystems:

	DreamCar allows the individual configuration of a car and its extra equipment.

	ContractBase manages all customer information and contract data.

	JustInTime implements the ability to place online orders (within the first expansion stage by the dealer).

	EasyFinance calculates an optimal method of financing for the customer.

	NoRisk provides the ability to purchase appropriate insurance.

Naturally, the five subsystems should not be tested with identical intensity. The result of a discussion with the VSR-System client is that incorrect behavior of the DreamCar and ContractBase subsystems will have the most harmful effects.

OEBPS/graphics/f0002-02.jpg

OEBPS/graphics/f0002-01.jpg

OEBPS/graphics/f0003-01.jpg
rOCKYy

OEBPS/graphics/f02-03.jpg
System

Requirements .

Software
Requirements

Lo |

nalysis

==

est

. Use

OEBPS/graphics/f02-04.jpg
Begin

Planning and
¥
Analysis and Design

¥

Implementation and
Execution

Control

Evaluation of Exit
Criteria and Reporting

Test Closure Activities

OEBPS/graphics/f02-01.jpg
2
v

DreamCar

ContractBase

JustinTime NoRisk EasyFinance
/‘ s
1 Exchange of car data
2 Exchange of contract data
Host 3 Exchange of order data
VirtualShowRoom (VSR)

OEBPS/graphics/f02-02.jpg

OEBPS/graphics/f0002-03.jpg

OEBPS/graphics/9781937538422.jpg
Andreas Spillner, Tilo Linz, Hans Schaefer

Software Testing
Foundations

A Study Guide for the Certified Tester Exam
« Foundation Level
« ISTOB Compliant

