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Dedication



Technology is a powerful force in our society. Data, software, and communication can be used for bad:
to entrench unfair power structures, to undermine human rights, and to protect vested interests. But
they can also be used for good: to make underrepresented people’s voices heard, to create
opportunities for everyone, and to avert disasters. This book is dedicated to everyone working
toward the good.





Computing is pop culture. […] Pop culture holds a disdain for history. Pop culture is all about
identity and feeling like you’re participating. It has nothing to do with cooperation, the past or
the future—it’s living in the present. I think the same is true of most people who write code for
money. They have no idea where [their culture came from].

Alan Kay,
in interview with Dr Dobb’s Journal (2012)





Preface



If you have worked in software engineering in recent years, especially in server-side and backend
systems, you have probably been bombarded with a plethora of buzzwords relating to storage and
processing of data. NoSQL! Big Data! Web-scale! Sharding! Eventual consistency! ACID! CAP theorem!
Cloud services! MapReduce! Real-time!


In the last decade we have seen many interesting developments in databases, in distributed systems,
and in the ways we build applications on top of them. There are various driving forces for these
developments:



	
Internet companies such as Google, Microsoft, Amazon, Facebook, LinkedIn, Netflix, and Twitter are handling
huge volumes of data and traffic, forcing them to create new tools that enable them to efficiently
handle such scale.



	
Businesses need to be agile, test hypotheses cheaply, and respond quickly to new market insights
by keeping development cycles short and data models flexible.



	
Free and open source software has become very successful and is now preferred to commercial or
bespoke in-house software in many environments.



	
CPU clock speeds are barely increasing, but multi-core processors are standard, and networks are
getting faster. This means parallelism is only going to increase.



	
Even if you work on a small team, you can now build systems that are distributed across many
machines and even multiple geographic regions, thanks to infrastructure as a service (IaaS) such
as Amazon Web Services.



	
Many services are now expected to be highly available; extended downtime due to outages or
maintenance is becoming increasingly unacceptable.






Data-intensive applications are pushing the boundaries of what is possible by making use of these
technological developments. We call an application data-intensive if data is its primary
challenge—the quantity of data, the complexity of data, or the speed at which it is changing—as
opposed to compute-intensive, where CPU cycles are the bottleneck.


The tools and technologies that help data-intensive applications store and process data have been
rapidly adapting to these changes. New types of database systems (“NoSQL”) have been getting lots of
attention, but message queues, caches, search indexes, frameworks for batch and stream processing,
and related technologies are very important too. Many applications use some combination of these.


The buzzwords that fill this space are a sign of enthusiasm for the new possibilities, which is a
great thing. However, as software engineers and architects, we also need to have a technically
accurate and precise understanding of the various technologies and their trade-offs if we want to
build good applications. For that understanding, we have to dig deeper than buzzwords.


Fortunately, behind the rapid changes in technology, there are enduring principles that remain true,
no matter which version of a particular tool you are using. If you understand those principles,
you’re in a position to see where each tool fits in, how to make good use of it, and how to avoid
its pitfalls. That’s where this book comes in.


The goal of this book is to help you navigate the diverse and fast-changing landscape of
technologies for processing and storing data. This book is not a tutorial for one particular tool,
nor is it a textbook full of dry theory. Instead, we will look at examples of successful data
systems: technologies that form the foundation of many popular applications and that have to meet
scalability, performance, and reliability requirements in production every day.


We will dig into the internals of those systems, tease apart their key algorithms, discuss their
principles and the trade-offs they have to make. On this journey, we will try to find useful ways of
thinking about data systems—not just how they work, but also why they work that way, and
what questions we need to ask.


After reading this book, you will be in a great position to decide which kind of technology is
appropriate for which purpose, and understand how tools can be combined to form the foundation of a
good application architecture. You won’t be ready to build your own database storage engine from
scratch, but fortunately that is rarely necessary. You will, however, develop a good intuition for
what your systems are doing under the hood so that you can reason about their behavior, make good
design decisions, and track down any problems that may arise.








Who Should Read This Book?


If you develop applications that have some kind of server/backend for storing or processing data,
and your applications use the internet (e.g., web applications, mobile apps, or internet-connected
sensors), then this book is for you.


This book is for software engineers, software architects, and technical managers who love to code.
It is especially relevant if you need to make decisions about the architecture of the systems you
work on—for example, if you need to choose tools for solving a given problem and figure out how
best to apply them. But even if you have no choice over your tools, this book will help you better
understand their strengths and weaknesses.


You should have some experience building web-based applications or network services, and you should
be familiar with relational databases and SQL. Any non-relational databases and other data-related
tools you know are a bonus, but not required. A general understanding of common network protocols
like TCP and HTTP is helpful. Your choice of programming language or framework makes no difference
for this book.


If any of the following are true for you, you’ll find this book valuable:



	
You want to learn how to make data systems scalable, for example, to support web or mobile apps
with millions of users.



	
You need to make applications highly available (minimizing downtime) and operationally robust.



	
You are looking for ways of making systems easier to maintain in the long run, even as they grow
and as requirements and technologies change.



	
You have a natural curiosity for the way things work and want to know what goes on inside major
websites and online services. This book breaks down the internals of various databases and data
processing systems, and it’s great fun to explore the bright thinking that went into their design.






Sometimes, when discussing scalable data systems, people make comments along the lines of, “You’re
not Google or Amazon. Stop worrying about scale and just use a relational database.” There is truth
in that statement: building for scale that you don’t need is wasted effort and may lock you into an
inflexible design. In effect, it is a form of premature optimization. However, it’s also important
to choose the right tool for the job, and different technologies each have their own strengths and
weaknesses. As we shall see, relational databases are important but not the final word on dealing
with data.

















Scope of This Book


This book does not attempt to give detailed instructions on how to install or use specific software
packages or APIs, since there is already plenty of documentation for those things. Instead we
discuss the various principles and trade-offs that are fundamental to data systems, and we explore
the different design decisions taken by different products.


In the ebook editions we have included links to the full text of online resources. All links were verified at the time of publication, but unfortunately links tend to break frequently due to the nature of the web. If you come across a broken link, or if you are reading a print copy of this book, you can look up references using a search engine. For academic papers, you can search for the title in Google Scholar to find open-access PDF files. Alternatively, you can find all of the references at https://github.com/ept/ddia-references, where we maintain up-to-date links.


We look primarily at the architecture of data systems and the ways they are integrated into
data-intensive applications. This book doesn’t have space to cover deployment, operations, security, management, and other areas—those are complex and important topics, and we wouldn’t do
them justice by making them superficial side notes in this book. They deserve books of their own.


Many of the technologies described in this book fall within the realm of the Big Data buzzword.
However, the term “Big Data” is so overused and underdefined that it is not useful in a serious
engineering discussion. This book uses less ambiguous terms, such as single-node versus distributed
systems, or online/interactive versus offline/batch processing systems.


This book has a bias toward free and open source software (FOSS), because reading, modifying, and
executing source code is a great way to understand how something works in detail. Open platforms
also reduce the risk of vendor lock-in. However, where appropriate, we also discuss proprietary
software (closed-source software, software as a service, or companies’ in-house software that is
only described in literature but not released publicly).

















Outline of This Book


This book is arranged into three parts:


	
In Part I, we discuss the fundamental ideas that underpin the design of
data-intensive applications. We start in Chapter 1 by discussing what we’re actually
trying to achieve: reliability, scalability, and maintainability; how we need to think about
them; and how we can achieve them. In Chapter 2 we compare several different data
models and query languages, and see how they are appropriate to different situations. In
Chapter 3 we talk about storage engines: how databases arrange data on disk so that we
can find it again efficiently. Chapter 4 turns to formats for data encoding (serialization)
and evolution of schemas over time.



	
In Part II, we move from data stored on one machine to data that is
distributed across multiple machines. This is often necessary for scalability, but brings with it
a variety of unique challenges. We first discuss replication (Chapter 5),
partitioning/sharding (Chapter 6), and transactions (Chapter 7). We then
go into more detail on the problems with distributed systems (Chapter 8) and what it
means to achieve consistency and consensus in a distributed system (Chapter 9).



	
In Part III, we discuss systems that derive some datasets from other datasets. Derived
data often occurs in heterogeneous systems: when there is no one database that can do everything
well, applications need to integrate several different databases, caches, indexes, and so on. In
Chapter 10 we start with a batch processing approach to derived data, and we build upon it with stream processing in Chapter 11. Finally, in Chapter 12 we put everything
together and discuss approaches for building reliable, scalable, and maintainable applications in
the future.






















References and Further Reading


Most of what we discuss in this book has already been said elsewhere in some form or another—in
conference presentations, research papers, blog posts, code, bug trackers, mailing lists, and
engineering folklore. This book summarizes the most important ideas from many different sources,
and it includes pointers to the original literature throughout the text. The references at the end
of each chapter are a great resource if you want to explore an area in more depth, and most of them
are freely available online.
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Part I. Foundations of Data Systems



The first four chapters go through the fundamental ideas that apply to all data systems, whether
running on a single machine or distributed across a cluster of machines:



    	
        Chapter 1 introduces the terminology and approach
        that we’re going to use throughout this book. It examines what we actually mean by
        words like reliability, scalability, and maintainability, and how
        we can try to achieve these goals.

    

    	
        Chapter 2 compares several different data models and
        query languages—the most visible distinguishing factor between databases from a
        developer’s point of view. We will see how different models are appropriate to
        different situations.

    

    	
        Chapter 3 turns to the internals of storage engines and
        looks at how databases lay out data on disk. Different storage engines are optimized for
        different workloads, and choosing the right one can have a huge effect on performance.

    

    	
        Chapter 4 compares various formats for data encoding
        (serialization) and especially examines how they fare in an environment where application
        requirements change and schemas need to adapt over time.

    




Later, Part II will turn to the particular issues
of distributed data systems.





Chapter 1. Reliable, Scalable, and Maintainable Applications



  The Internet was done so well that most people think of it as a natural resource like the Pacific
Ocean, rather than something that was man-made. When was the last time a technology with a scale
like that was so error-free?

  Alan Kay,
  in interview with Dr Dobb’s Journal (2012)





 




Many applications today are data-intensive, as opposed to compute-intensive. Raw CPU power is
rarely a limiting factor for these applications—bigger problems are usually the amount of data,
the complexity of data, and the speed at which it is changing.



A data-intensive application is typically built from standard building blocks that provide commonly
needed functionality. For example, many applications need to:



	
Store data so that they, or another application, can find it again later (databases)



	
Remember the result of an expensive operation, to speed up reads (caches)



	
Allow users to search data by keyword or filter it in various ways (search indexes)



	
Send a message to another process, to be handled asynchronously (stream processing)



	
Periodically crunch a large amount of accumulated data (batch processing)







If that sounds painfully obvious, that’s just because these data systems are such a successful
abstraction: we use them all the time without thinking too much. When building an application, most
engineers wouldn’t dream of writing a new data storage engine from scratch, because databases are a
perfectly good tool for the job.


But reality is not that simple. There are many database systems with different characteristics,
because different applications have different requirements. There are various approaches to caching,
several ways of building search indexes, and so on. When building an application, we still need to
figure out which tools and which approaches are the most appropriate for the task at hand. And it
can be hard to combine tools when you need to do something that a single tool cannot do alone.


This book is a journey through both the principles and the practicalities of data systems, and how
you can use them to build data-intensive applications. We will explore what different tools have in
common, what distinguishes them, and how they achieve their characteristics.


In this chapter, we will start by exploring the fundamentals of what we are trying to
achieve: reliable, scalable, and maintainable data systems. We’ll clarify what those things mean,
outline some ways of thinking about them, and go over the basics that we will need for later
chapters. In the following chapters we will continue layer by layer, looking at different design
decisions that need to be considered when working on a data-intensive application.








Thinking About Data Systems



We typically think of databases, queues, caches, etc. as being very different categories of tools.
Although a database and a message queue have some superficial similarity—both store data for some
time—they have very different access patterns, which means different performance characteristics,
and thus very different implementations.


So why should we lump them all together under an umbrella term like data systems?


Many new tools for data storage and processing have emerged in recent years. They are optimized for
a variety of different use cases, and they no longer neatly fit into traditional categories
[1].



For example, there are datastores that are also used as message queues (Redis), and there are
message queues with database-like durability guarantees (Apache Kafka). The boundaries between the
categories are becoming blurred.


Secondly, increasingly many applications now have such demanding or wide-ranging requirements that a
single tool can no longer meet all of its data processing and storage needs. Instead, the work is
broken down into tasks that can be performed efficiently on a single tool, and those different
tools are stitched together using application code.





For example, if you have an application-managed caching layer (using Memcached or similar), or a
full-text search server (such as Elasticsearch or Solr) separate from your main database, it is
normally the application code’s responsibility to keep those caches and indexes in sync with the
main database. Figure 1-1 gives a glimpse of what this may look like (we will
go into detail in later chapters).



[image: ddia 0101]
Figure 1-1. One possible architecture for a data system that combines several components.





When you combine several tools in order to provide a service, the service’s interface or application
programming interface (API) usually hides those implementation details from clients. Now you have
essentially created a new, special-purpose data system from smaller, general-purpose components.
Your composite data system may provide certain guarantees: e.g., that the cache will be correctly
invalidated or updated on writes so that outside clients see consistent results. You are now not
only an application developer, but also a data system designer.


If you are designing a data system or service, a lot of tricky questions arise. How do you ensure
that the data remains correct and complete, even when things go wrong internally? How do you provide
consistently good performance to clients, even when parts of your system are degraded? How do you
scale to handle an increase in load? What does a good API for the service look like?



There are many factors that may influence the design of a data system, including the skills and
experience of the people involved, legacy system dependencies, the timescale for delivery, your
organization’s tolerance of different kinds of risk, regulatory constraints, etc. Those factors
depend very much on the situation.


In this book, we focus on three concerns that are important in most software systems:


	Reliability

	


The system should continue to work correctly (performing the correct function at the desired
level of performance) even in the face of adversity (hardware or software faults, and even human
error). See “Reliability”.



	Scalability

	
As the system grows (in data volume, traffic volume, or complexity), there should be reasonable
ways of dealing with that growth. See “Scalability”.



	Maintainability

	
Over time, many different people will work on the system (engineering and operations, both
maintaining current behavior and adapting the system to new use cases), and they should all be
able to work on it productively. See “Maintainability”.






These words are often cast around without a clear understanding of what they mean. In the interest
of thoughtful engineering, we will spend the rest of this chapter exploring ways of thinking about
reliability, scalability, and maintainability. Then, in the following chapters, we will look at
various techniques, architectures, and algorithms that are used in order to achieve those goals.

















Reliability







Everybody has an intuitive idea of what it means for something to be reliable or unreliable. For
software, typical expectations include:



	
The application performs the function that the user expected.



	
It can tolerate the user making mistakes or using the software in unexpected ways.



	
Its performance is good enough for the required use case, under the expected load and data volume.



	
The system prevents any unauthorized access and abuse.






If all those things together mean “working correctly,” then we can understand reliability as
meaning, roughly, “continuing to work correctly, even when things go wrong.”



The things that can go wrong are called faults, and systems that anticipate faults and can cope
with them are called fault-tolerant or resilient. The former term is slightly misleading: it
suggests that we could make a system tolerant of every possible kind of fault, which in reality is
not feasible.  If the entire planet Earth (and all servers on it) were
swallowed by a black hole, tolerance of that fault would require web hosting in space—good luck
getting that budget item approved. So it only makes sense to talk about tolerating certain types
of faults.



Note that a fault is not the same as a failure
[2]. A fault is usually defined as one component of the system
deviating from its spec, whereas a failure is when the system as a whole stops providing the
required service to the user. It is impossible to reduce the probability of a fault to zero;
therefore it is usually best to design fault-tolerance mechanisms that prevent faults from causing
failures. In this book we cover several techniques for building reliable systems from unreliable
parts.




Counterintuitively, in such fault-tolerant systems, it can make sense to increase the rate of
faults by triggering them deliberately—for example, by randomly killing individual processes
without warning. Many critical bugs are actually due to poor error handling
[3]; by deliberately inducing faults, you ensure
that the fault-tolerance machinery is continually exercised and tested, which can increase your
confidence that faults will be handled correctly when they occur naturally. The Netflix Chaos
Monkey [4] is an example of this approach.


Although we generally prefer tolerating faults over preventing faults, there are cases where
prevention is better than cure (e.g., because no cure exists). This is the case with security
matters, for example: if an attacker has compromised a system and gained access to sensitive data,
that event cannot be undone. However, this book mostly deals with the kinds of faults that can be
cured, as described in the following sections.










Hardware Faults







When we think of causes of system failure, hardware faults quickly come to mind. Hard disks crash,
RAM becomes faulty, the power grid has a blackout, someone unplugs the wrong network cable. Anyone
who has worked with large datacenters can tell you that these things happen all the time when you
have a lot of machines.


Hard disks are reported as having a mean time to failure (MTTF) of about 10 to 50 years
[5, 6].
Thus, on a storage cluster with 10,000 disks, we should expect on average one disk to die per day.




Our first response is usually to add redundancy to the individual hardware components in order to
reduce the failure rate of the system. Disks may be set up in a RAID configuration, servers may have
dual power supplies and hot-swappable CPUs, and datacenters may have batteries and diesel
generators for backup power. When one component dies, the redundant component can take its place
while the broken component is replaced. This approach cannot completely prevent hardware problems
from causing failures, but it is well understood and can often keep a machine running uninterrupted
for years.




Until recently, redundancy of hardware components was sufficient for most applications, since it
makes total failure of a single machine fairly rare. As long as you can restore a backup onto a new
machine fairly quickly, the downtime in case of failure is not catastrophic in most applications.
Thus, multi-machine redundancy was only required by a small number of applications for which high
availability was absolutely essential.





However, as data volumes and applications’ computing demands have increased, more applications have begun using
larger numbers of machines, which proportionally increases the rate of hardware faults. Moreover, in
some cloud platforms such as Amazon Web Services (AWS) it is fairly common for virtual machine instances
to become unavailable without warning [7], as the platforms are designed to
prioritize flexibility and elasticityi
over single-machine reliability.



Hence there is a move toward systems that can tolerate the loss of entire machines, by using
software fault-tolerance techniques in preference or in addition to hardware redundancy. Such
systems also have operational advantages: a single-server system requires planned downtime if you
need to reboot the machine (to apply operating system security patches, for example), whereas a
system that can tolerate machine failure can be patched one node at a time, without downtime of the
entire system (a rolling upgrade; see Chapter 4).

















Software Errors






We usually think of hardware faults as being random and independent from each other: one machine’s
disk failing does not imply that another machine’s disk is going to fail. There may be weak
correlations (for example due to a common cause, such as the temperature in the server rack), but
otherwise it is unlikely that a large number of hardware components will fail at the same time.


Another class of fault is a systematic error within the system
[8].
Such faults are harder to anticipate, and because they are correlated across nodes, they tend to
cause many more system failures than uncorrelated hardware faults
[5]. Examples include:



	


A software bug that causes every instance of an application server to crash when given a
particular bad input. For example, consider the leap second on June 30, 2012, that caused many
applications to hang simultaneously due to a bug in the Linux kernel
[9].



	
A runaway process that uses up some shared resource—CPU time, memory, disk space, or network
bandwidth.



	
A service that the system depends on that slows down, becomes unresponsive, or starts returning
corrupted responses.



	



Cascading failures, where a small fault in one component triggers a fault in another component,
which in turn triggers further faults
[10].






The bugs that cause these kinds of software faults often lie dormant for a long time until they are
triggered by an unusual set of circumstances. In those circumstances, it is revealed that the
software is making some kind of assumption about its environment—and while that assumption is
usually true, it eventually stops being true for some reason
[11].


There is no quick solution to the problem of systematic faults in software. Lots of small things can
help: carefully thinking about assumptions and interactions in the system; thorough testing; process
isolation; allowing processes to crash and restart; measuring, monitoring, and analyzing system
behavior in production. If a system is expected to provide some guarantee (for example, in a message
queue, that the number of incoming messages equals the number of outgoing messages), it can
constantly check itself while it is running and raise an alert if a discrepancy is found
[12].

















Human Errors





Humans design and build software systems, and the operators who keep the systems running are also
human. Even when they have the best intentions, humans are known to be unreliable. For example, one
study of large internet services found that configuration errors by operators were the leading cause
of outages, whereas hardware faults (servers or network) played a role in only 10–25% of outages
[13].


How do we make our systems reliable, in spite of unreliable humans? The best systems combine several
approaches:



	
Design systems in a way that minimizes opportunities for error. For example, well-designed
abstractions, APIs, and admin interfaces make it easy to do “the right thing” and discourage “the
wrong thing.” However, if the interfaces are too restrictive people will work around them,
negating their benefit, so this is a tricky balance to get right.



	
Decouple the places where people make the most mistakes from the places where they can cause
failures. In particular, provide fully featured non-production sandbox environments where
people can explore and experiment safely, using real data, without affecting real users.



	
Test thoroughly at all levels, from unit tests to whole-system integration tests and manual tests
[3].
Automated testing is widely used, well understood, and especially valuable for covering corner
cases that rarely arise in normal operation.



	
Allow quick and easy recovery from human errors, to minimize the impact in the case of a failure.
For example, make it fast to roll back configuration changes, roll out new code gradually (so that
any unexpected bugs affect only a small subset of users), and provide tools to recompute data (in
case it turns out that the old computation was incorrect).



	

Set up detailed and clear monitoring, such as performance metrics and error rates.
In other engineering disciplines this is referred to as telemetry. (Once a rocket has left the
ground, telemetry is essential for tracking what is happening, and for understanding failures
[14].)
Monitoring can show us early warning signals and allow us to check whether any assumptions or
constraints are being violated. When a problem occurs, metrics can be invaluable in diagnosing the
issue.



	
Implement good management practices and training—a complex and important aspect, and beyond the scope of
this book.





















How Important Is Reliability?




Reliability is not just for nuclear power stations and air traffic control software—more mundane
applications are also expected to work reliably. Bugs in business applications cause lost
productivity (and legal risks if figures are reported incorrectly), and outages of ecommerce sites
can have huge costs in terms of lost revenue and damage to reputation.


Even in “noncritical” applications we have a responsibility to our users. Consider a parent who
stores all their pictures and videos of their children in your photo application
[15]. How would they feel if that database was suddenly corrupted?
Would they know how to restore it from a backup?


There are situations in which we may choose to sacrifice reliability in order to reduce development
cost (e.g., when developing a prototype product for an unproven market) or operational cost (e.g., for
a service with a very narrow profit margin)—but we should be very conscious of when we are
cutting corners.



























Scalability




Even if a system is working reliably today, that doesn’t mean it will necessarily work reliably in
the future. One common reason for degradation is increased load: perhaps the system has grown from 10,000
concurrent users to 100,000 concurrent users, or from 1 million to 10 million. Perhaps it is
processing much larger volumes of data than it did before.


Scalability is the term we use to describe a system’s ability to cope with increased load. Note,
however, that it is not a one-dimensional label that we can attach to a system: it is meaningless to
say “X is scalable” or “Y doesn’t scale.” Rather, discussing scalability means considering questions
like “If the system grows in a particular way, what are our options for coping with the growth?” and
“How can we add computing resources to handle the additional load?”










Describing Load




First, we need to succinctly describe the current load on the system; only then can we discuss
growth questions (what happens if our load doubles?). Load can be described with a few numbers which
we call load parameters. The best choice of parameters depends on the architecture of your
system: it may be requests per second to a web server, the ratio of reads to writes in a database, the
number of simultaneously active users in a chat room, the hit rate on a cache, or something else.
Perhaps the average case is what matters for you, or perhaps your bottleneck is dominated by a small
number of extreme cases.



To make this idea more concrete, let’s consider Twitter as an example, using data published in
November 2012 [16].
Two of Twitter’s main operations are:


	Post tweet

	
A user can publish a new message to their followers (4.6k requests/sec on average, over
12k requests/sec at peak).



	Home timeline

	
A user can view tweets posted by the people they follow (300k requests/sec).








Simply handling 12,000 writes per second (the peak rate for posting tweets) would be fairly easy.
However, Twitter’s scaling challenge is not primarily due to tweet volume, but due to
fan-outii—each user follows many people, and each user
is followed by many people. There are broadly two ways of implementing these two operations:


	
Posting a tweet simply inserts the new tweet into a global collection of tweets. When a user
requests their home timeline, look up all the people they follow, find all the tweets for each of
those users, and merge them (sorted by time). In a relational database like in
Figure 1-2, you could write a query such as:


SELECT tweets.*, users.* FROM tweets
  JOIN users   ON tweets.sender_id    = users.id
  JOIN follows ON follows.followee_id = users.id
  WHERE follows.follower_id = current_user



	
Maintain a cache for each user’s home timeline—like a mailbox of tweets for each recipient
user (see Figure 1-3). When a user posts a tweet, look up all the people who
follow that user, and insert the new tweet into each of their home timeline caches. The request to
read the home timeline is then cheap, because its result has been computed ahead of time.
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Figure 1-2. Simple relational schema for implementing a Twitter home timeline.
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Figure 1-3. Twitter’s data pipeline for delivering tweets to followers, with load parameters as of November 2012 [16].




The first version of Twitter used approach 1, but the systems struggled to keep up with the load of
home timeline queries, so the company switched to approach 2. This works better because the average
rate of published tweets is almost two orders of magnitude lower than the rate of home timeline
reads, and so in this case it’s preferable to do more work at write time and less at read time.


However, the downside of approach 2 is that posting a tweet now requires a lot of extra work. On
average, a tweet is delivered to about 75 followers, so 4.6k tweets per second become
345k writes per second to the home timeline caches. But this average hides the fact that the
number of followers per user varies wildly, and some users have over 30 million followers. This
means that a single tweet may result in over 30 million writes to home timelines! Doing this in a
timely manner—Twitter tries to deliver tweets to followers within five seconds—is a significant
challenge.


In the example of Twitter, the distribution of followers per user (maybe weighted by how often those
users tweet) is a key load parameter for discussing scalability, since it determines the fan-out
load. Your application may have very different characteristics, but you can apply similar principles
to reasoning about its load.


The final twist of the Twitter anecdote: now that approach 2 is robustly implemented, Twitter is
moving to a hybrid of both approaches. Most users’ tweets continue to be fanned out to home
timelines at the time when they are posted, but a small number of users with a very large number of
followers (i.e., celebrities) are excepted from this fan-out. Tweets from any celebrities that a
user may follow are fetched separately and merged with that user’s home timeline when it is read,
like in approach 1. This hybrid approach is able to deliver consistently good performance. We will
revisit this example in Chapter 12 after we have covered some more technical ground.

















Describing Performance




Once you have described the load on your system, you can investigate what happens when the load
increases. You can look at it in two ways:



	
When you increase a load parameter and keep the system resources (CPU, memory, network bandwidth,
etc.) unchanged, how is the performance of your system affected?



	
When you increase a load parameter, how much do you need to increase the resources if you want to
keep performance unchanged?






Both questions require performance numbers, so let’s look briefly at describing the performance of a
system.





In a batch processing system such as Hadoop, we usually care about throughput—the number of
records we can process per second, or the total time it takes to run a job on a dataset of a certain
size.iii In online systems, what’s usually more important is the service’s
response time—that is, the time between a client sending a request and receiving a response.

Latency and response time




Latency and response time are often used synonymously, but they are not the same. The response
time is what the client sees: besides the actual time to process the request (the service time),
it includes network delays and queueing delays. Latency is the duration that a request is waiting to
be handled—during which it is latent, awaiting service
[17].




Even if you only make the same request over and over again, you’ll get a slightly different response
time on every try. In practice, in a system handling a variety of requests, the response time can
vary a lot. We therefore need to think of response time not as a single number, but as a
distribution of values that you can measure.








In Figure 1-4, each gray bar represents a request to a service, and its height shows how long
that request took. Most requests are reasonably fast, but there are occasional outliers that take
much longer. Perhaps the slow requests are intrinsically more expensive, e.g., because they process
more data. But even in a scenario where you’d think all requests should take the same time, you get
variation: random additional latency could be introduced by a context switch to a background
process, the loss of a network packet and TCP retransmission, a garbage collection pause, a page
fault forcing a read from disk, mechanical vibrations in the server rack
[18],
or many other causes.
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Figure 1-4. Illustrating mean and percentiles: response times for a sample of 100 requests to a service.





It’s common to see the average response time of a service reported. (Strictly speaking, the term
“average” doesn’t refer to any particular formula, but in practice it is usually understood as the
arithmetic mean: given n values, add up all the values, and divide by n.) However,
the mean is not a very good metric if you want to know your “typical” response time, because it
doesn’t tell you how many users actually experienced that delay.



Usually it is better to use percentiles. If you take your list of response times and sort it from
fastest to slowest, then the median is the halfway point: for example, if your median response
time is 200 ms, that means half your requests return in less than 200 ms, and half your
requests take longer than that.


This makes the median a good metric if you want to know how long users typically have to wait: half
of user requests are served in less than the median response time, and the other half take longer
than the median. The median is also known as the 50th percentile, and sometimes abbreviated as p50.
Note that the median refers to a single request; if the user makes several requests
(over the course of a session, or because several resources are included in a single page), the
probability that at least one of them is slower than the median is much greater than 50%.


In order to figure out how bad your outliers are, you can look at higher percentiles: the 95th,
99th, and 99.9th percentiles are common (abbreviated p95, p99, and p999). They are the
response time thresholds at which 95%, 99%, or 99.9% of requests are faster than that particular
threshold. For example, if the 95th percentile response time is 1.5 seconds, that means 95 out of
100 requests take less than 1.5 seconds, and 5 out of 100 requests take 1.5 seconds or more. This is
illustrated in Figure 1-4.




High percentiles of response times, also known as tail latencies, are important because they
directly affect users’ experience of the service. For example, Amazon describes response time
requirements for internal services in terms of the 99.9th percentile, even though it only affects 1
in 1,000 requests. This is because the customers with the slowest requests are often those who have
the most data on their accounts because they have made many purchases—that is, they’re the most
valuable customers
[19].
It’s important to keep those customers happy by ensuring the website is fast for them: Amazon has
also observed that a 100 ms increase in response time reduces sales by 1%
[20],
and others report that a 1-second slowdown reduces a customer satisfaction metric by 16%
[21,
22].


On the other hand, optimizing the 99.99th percentile (the slowest 1 in 10,000 requests) was deemed
too expensive and to not yield enough benefit for Amazon’s purposes. Reducing response times at very
high percentiles is difficult because they are easily affected by random events outside of your
control, and the benefits are diminishing.





For example, percentiles are often used in service level objectives (SLOs) and service level
agreements (SLAs), contracts that define the expected performance and availability of a service.
An SLA may state that the service is considered to be up if it has a median response time of less than
200 ms and a 99th percentile under 1 s (if the response time is longer, it might as well
be down), and the service may be required to be up at least 99.9% of the time. These metrics set
expectations for clients of the service and allow customers to demand a refund if the SLA is not
met.




Queueing delays often account for a large part of the response time at high percentiles. As a server can
only process a small number of things in parallel (limited, for example, by its number of CPU cores),
it only takes a small number of slow requests to hold up the processing of subsequent requests—an
effect sometimes known as head-of-line blocking. Even if those subsequent requests are fast to
process on the server, the client will see a slow overall response time due to the time waiting for
the prior request to complete. Due to this effect, it is important to measure response times on the
client side.



When generating load artificially in order to test the scalability of a system, the load-generating
client needs to keep sending requests independently of the response time. If the client waits for
the previous request to complete before sending the next one, that behavior has the effect of
artificially keeping the queues shorter in the test than they would be in reality, which skews the
measurements [23].


Percentiles in Practice



High percentiles become especially important in backend services that are called multiple times as
part of serving a single end-user request. Even if you make the calls in parallel, the end-user
request still needs to wait for the slowest of the parallel calls to complete. It takes just one
slow call to make the entire end-user request slow, as illustrated in Figure 1-5.
Even if only a small percentage of backend calls are slow, the chance of getting a slow call
increases if an end-user request requires multiple backend calls, and so a higher proportion of
end-user requests end up being slow (an effect known as tail latency amplification
[24]).




If you want to add response time percentiles to the monitoring dashboards for your services, you
need to efficiently calculate them on an ongoing basis. For example, you may want to keep a rolling
window of response times of requests in the last 10 minutes. Every minute, you calculate the median
and various percentiles over the values in that window and plot those metrics on a graph.






The naïve implementation is to keep a list of response times for all requests within the time
window and to sort that list every minute. If that is too inefficient for you, there are algorithms
that can calculate a good approximation of percentiles at minimal CPU and memory cost, such as
forward decay [25], t-digest
[26], or HdrHistogram
[27].
Beware that averaging percentiles, e.g., to reduce the time resolution or to combine data from
several machines, is mathematically meaningless—the right way of aggregating response time data
is to add the histograms [28].
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Figure 1-5. When several backend calls are needed to serve a request, it takes just a single slow backend request to slow down the entire end-user request.



















Approaches for Coping with Load




Now that we have discussed the parameters for describing load and metrics for measuring
performance, we can start discussing scalability in earnest: how do we maintain good performance
even when our load parameters increase by some amount?


An architecture that is appropriate for one level of load is unlikely to cope with 10 times that
load. If you are working on a fast-growing service, it is therefore likely that you will need to
rethink your architecture on every order of magnitude load increase—or perhaps even more often than
that.







People often talk of a dichotomy between scaling up (vertical scaling, moving to a more powerful
machine) and scaling out (horizontal scaling, distributing the load across multiple smaller
machines). Distributing load across multiple machines is also known as a shared-nothing
architecture. A system that can run on a single machine is often simpler, but high-end machines can
become very expensive, so very intensive workloads often can’t avoid scaling out. In reality, good
architectures usually involve a pragmatic mixture of approaches: for example, using several fairly
powerful machines can still be simpler and cheaper than a large number of small virtual machines.



Some systems are elastic, meaning that they can automatically add computing resources when they
detect a load increase, whereas other systems are scaled manually (a human analyzes the capacity and
decides to add more machines to the system). An elastic system can be useful if load is highly
unpredictable, but manually scaled systems are simpler and may have fewer operational surprises
(see “Rebalancing Partitions”).


While distributing stateless services across multiple machines is fairly straightforward, taking
stateful data systems from a single node to a distributed setup can introduce a lot of additional
complexity. For this reason, common wisdom until recently was to keep your database on a single
node (scale up) until scaling cost or high-availability requirements forced you to make it
distributed.


As the tools and abstractions for distributed systems get better, this common wisdom may change, at
least for some kinds of applications. It is conceivable that distributed data systems will become the
default in the future, even for use cases that don’t handle large volumes of data or traffic. Over the
course of the rest of this book we will cover many kinds of distributed data systems, and discuss how
they fare not just in terms of scalability, but also ease of use and maintainability.



The architecture of systems that operate at large scale is usually highly specific to the
application—there is no such thing as a generic, one-size-fits-all scalable architecture
(informally known as magic scaling sauce). The problem may be the volume of reads, the volume of
writes, the volume of data to store, the complexity of the data, the response time requirements, the
access patterns, or (usually) some mixture of all of these plus many more issues.


For example, a system that is designed to handle 100,000 requests per second, each 1 kB in
size, looks very different from a system that is designed for 3 requests per minute, each
2 GB in size—even though the two systems have the same data throughput.


An architecture that scales well for a particular application is built around assumptions of which
operations will be common and which will be rare—the load parameters. If those assumptions turn
out to be wrong, the engineering effort for scaling is at best wasted, and at worst
counterproductive. In an early-stage startup or an unproven product it’s usually more important to
be able to iterate quickly on product features than it is to scale to some hypothetical future
load.


Even though they are specific to a particular application, scalable architectures are nevertheless
usually built from general-purpose building blocks, arranged in familiar patterns. In this book we
discuss those building blocks and patterns.


























Maintainability




It is well known that the majority of the cost of software is not in its initial development, but in
its ongoing maintenance—fixing bugs, keeping its systems operational, investigating failures,
adapting it to new platforms, modifying it for new use cases, repaying technical debt, and adding
new features.



Yet, unfortunately, many people working on software systems dislike maintenance of so-called
legacy systems—perhaps it involves fixing other people’s mistakes, or working with platforms
that are now outdated, or systems that were forced to do things they were never intended for. Every
legacy system is unpleasant in its own way, and so it is difficult to give general recommendations
for dealing with them.



However, we can and should design software in such a way that it will hopefully minimize pain during
maintenance, and thus avoid creating legacy software ourselves. To this end, we will pay particular
attention to three design principles for software systems:


	Operability

	
Make it easy for operations teams to keep the system running smoothly.



	Simplicity

	
Make it easy for new engineers to understand the system, by removing as much complexity as
possible from the system. (Note this is not the same as simplicity of the user interface.)



	Evolvability

	
Make it easy for engineers to make changes to the system in the future, adapting it for unanticipated
use cases as requirements change. Also known as extensibility, modifiability, or
plasticity.






As previously with reliability and scalability, there are no easy solutions for achieving these goals.
Rather, we will try to think about systems with operability, simplicity, and evolvability in mind.










Operability: Making Life Easy for Operations



It has been suggested that “good operations can often work around the limitations of bad (or
incomplete) software, but good software cannot run reliably with bad operations”
[12]. While some aspects of operations can
and should be automated, it is still up to humans to set up that automation in the first place and
to make sure it’s working correctly.


Operations teams are vital to keeping a software system running smoothly. A good operations team
typically is responsible for the following, and more
[29]:



	

Monitoring the health of the system and quickly restoring service if it goes into a bad state



	
Tracking down the cause of problems, such as system failures or degraded performance



	
Keeping software and platforms up to date, including security patches



	
Keeping tabs on how different systems affect each other, so that a problematic change can be
avoided before it causes damage



	
Anticipating future problems and solving them before they occur (e.g., capacity planning)



	
Establishing good practices and tools for deployment, configuration management, and more



	
Performing complex maintenance tasks, such as moving an application from one platform to another



	
Maintaining the security of the system as configuration changes are made



	
Defining processes that make operations predictable and help keep the production environment
stable



	
Preserving the organization’s knowledge about the system, even as individual people come and go






Good operability means making routine tasks easy, allowing the operations team to focus their efforts
on high-value activities. Data systems can do various things to make routine tasks easy, including:



	
Providing visibility into the runtime behavior and internals of the system, with good monitoring



	
Providing good support for automation and integration with standard tools



	
Avoiding dependency on individual machines (allowing machines to be taken down for maintenance
while the system as a whole continues running uninterrupted)



	
Providing good documentation and an easy-to-understand operational model (“If I do X, Y will happen”)



	
Providing good default behavior, but also giving administrators the freedom to override defaults when needed



	
Self-healing where appropriate, but also giving administrators manual control over the system state when needed



	
Exhibiting predictable behavior, minimizing surprises





















Simplicity: Managing Complexity





Small software projects can have delightfully simple and expressive code, but as projects get
larger, they often become very complex and difficult to understand. This complexity slows down
everyone who needs to work on the system, further increasing the cost of maintenance. A software
project mired in complexity is sometimes described as a big ball of mud
[30].


There are various possible symptoms of complexity: explosion of the state space, tight coupling of
modules, tangled dependencies, inconsistent naming and terminology, hacks aimed at solving
performance problems, special-casing to work around issues elsewhere, and many more.
Much has been said on this topic already
[31,
32,
33].


When complexity makes maintenance hard, budgets and schedules are often overrun. In complex
software, there is also a greater risk of introducing bugs when making a change: when the system is
harder for developers to understand and reason about, hidden assumptions, unintended consequences,
and unexpected interactions are more easily overlooked. Conversely, reducing complexity greatly
improves the maintainability of software, and thus simplicity should be a key goal for the systems
we build.



Making a system simpler does not necessarily mean reducing its functionality; it can also mean
removing accidental complexity. Moseley and Marks
[32] define complexity as accidental if
it is not inherent in the problem that the software solves (as seen by the users) but arises only
from the implementation.



One of the best tools we have for removing accidental complexity is abstraction. A good
abstraction can hide a great deal of implementation detail behind a clean, simple-to-understand
façade. A good abstraction can also be used for a wide range of different applications. Not only is
this reuse more efficient than reimplementing a similar thing multiple times, but it also leads to
higher-quality software, as quality improvements in the abstracted component benefit all
applications that use it.



For example, high-level programming languages are abstractions that hide machine code, CPU registers,
and syscalls. SQL is an abstraction that hides complex on-disk and in-memory data structures,
concurrent requests from other clients, and inconsistencies after crashes. Of course, when
programming in a high-level language, we are still using machine code; we are just not using it
directly, because the programming language abstraction saves us from having to think about it.


However, finding good abstractions is very hard. In the field of distributed systems, although there
are many good algorithms, it is much less clear how we should be packaging them into abstractions
that help us keep the complexity of the system at a manageable level.


Throughout this book, we will keep our eyes open for good abstractions that allow us to extract
parts of a large system into well-defined, reusable components.

















Evolvability: Making Change Easy




It’s extremely unlikely that your system’s requirements will remain unchanged forever. They are much more
likely to be in constant flux: you learn new facts, previously unanticipated use cases emerge,
business priorities change, users request new features, new platforms replace old platforms, legal
or regulatory requirements change, growth of the system forces architectural changes, etc.



In terms of organizational processes, Agile working patterns provide a framework for adapting to
change. The Agile community has also developed technical tools and patterns that are helpful when
developing software in a frequently changing environment, such as test-driven development (TDD) and
refactoring.



Most discussions of these Agile techniques focus on a fairly small, local scale (a couple of source
code files within the same application). In this book, we search for ways of increasing agility on
the level of a larger data system, perhaps consisting of several different applications or services
with different characteristics. For example, how would you “refactor” Twitter’s architecture for
assembling home timelines (“Describing Load”) from approach 1 to approach 2?


The ease with which you can modify a data system, and adapt it to changing requirements, is closely
linked to its simplicity and its abstractions: simple and easy-to-understand systems are usually
easier to modify than complex ones. But since this is such an important idea, we will use a
different word to refer to agility on a data system level: evolvability
[34].


























Summary


In this chapter, we have explored some fundamental ways of thinking about data-intensive
applications. These principles will guide us through the rest of the book, where we dive into deep
technical detail.



An application has to meet various requirements in order to be useful. There are functional
requirements (what it should do, such as allowing data to be stored, retrieved, searched, and processed in
various ways), and some nonfunctional requirements (general properties like security,
reliability, compliance, scalability, compatibility, and maintainability). In this chapter we
discussed reliability, scalability, and maintainability in detail.



Reliability means making systems work correctly, even when faults occur. Faults can be in hardware
(typically random and uncorrelated), software (bugs are typically systematic and hard to deal with),
and humans (who inevitably make mistakes from time to time). Fault-tolerance techniques can hide
certain types of faults from the end user.



Scalability means having strategies for keeping performance good, even when load increases. In
order to discuss scalability, we first need ways of describing load and performance quantitatively.
We briefly looked at Twitter’s home timelines as an example of describing load, and response time
percentiles as a way of measuring performance. In a scalable system, you can add processing capacity
in order to remain reliable under high load.



Maintainability has many facets, but in essence it’s about making life better for the engineering
and operations teams who need to work with the system. Good abstractions can help reduce complexity
and make the system easier to modify and adapt for new use cases. Good operability means having good
visibility into the system’s health, and having effective ways of managing it.


There is unfortunately no easy fix for making applications reliable, scalable, or maintainable.
However, there are certain patterns and techniques that keep reappearing in different kinds of
applications. In the next few chapters we will take a look at some examples of data systems and
analyze how they work toward those goals.


Later in the book, in Part III, we will look at patterns for systems that consist of
several components working together, such as the one in Figure 1-1.










Footnotes
i Defined
in “Approaches for Coping with Load”.
ii A term borrowed from electronic
engineering, where it describes the number of logic gate inputs that are attached to another gate’s
output. The output needs to supply enough current to drive all the attached inputs. In transaction
processing systems, we use it to describe the number of requests to other services that we need to
make in order to serve one incoming request.
iii In an ideal world, the running time of a
batch job is the size of the dataset divided by the throughput. In practice, the running time is often
longer, due to skew (data not being spread evenly across worker processes) and needing to wait for the
slowest task to complete.
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Chapter 2. Data Models and Query Languages



  The limits of my language mean the limits of my world.

  Ludwig Wittgenstein, Tractatus Logico-Philosophicus (1922)





  




Data models are perhaps the most important part of developing software, because they have such a
profound effect: not only on how the software is written, but also on how we think about the problem
that we are solving.


Most applications are built by layering one data model on top of another. For each layer, the key
question is: how is it represented in terms of the next-lower layer? For example:


	

As an application developer, you look at the real world (in which there are people,
organizations, goods, actions, money flows, sensors, etc.) and model it in terms of objects or
data structures, and APIs that manipulate those data structures. Those structures are often
specific to your application.



	
When you want to store those data structures, you express them in terms of a general-purpose
data model, such as JSON or XML documents, tables in a relational database, or a graph model.



	
The engineers who built your database software decided on a way of representing that
JSON/XML/relational/graph data in terms of bytes in memory, on disk, or on a network. The
representation may allow the data to be queried, searched, manipulated, and processed in various
ways.



	
On yet lower levels, hardware engineers have figured out how to represent bytes in terms of
electrical currents, pulses of light, magnetic fields, and more.









In a complex application there may be more intermediary levels, such as APIs built upon APIs, but
the basic idea is still the same: each layer hides the complexity of the layers below it by
providing a clean data model. These abstractions allow different groups of people—for example,
the engineers at the database vendor and the application developers using their database—to work
together effectively.


There are many different kinds of data models, and every data model embodies assumptions about how
it is going to be used. Some kinds of usage are easy and some are not supported; some operations are
fast and some perform badly; some data transformations feel natural and some are awkward.


It can take a lot of effort to master just one data model (think how many books there are on
relational data modeling). Building software is hard enough, even when working with just one data
model and without worrying about its inner workings. But since the data model has such a profound
effect on what the software above it can and can’t do, it’s important to choose one that is
appropriate to the application.


In this chapter we will look at a range of general-purpose data models for data storage and
querying (point 2 in the preceding list). In particular, we will compare the relational model,
the document model, and a few graph-based data models. We will also look at various query languages
and compare their use cases. In Chapter 3 we will discuss how storage engines work; that is,
how these data models are actually implemented (point 3 in the list).








Relational Model Versus Document Model





The best-known data model today is probably that of SQL, based on the relational model proposed by
Edgar Codd in 1970 [1]:
data is organized into relations (called tables in SQL), where each relation is an unordered collection
of tuples (rows in SQL).



The relational model was a theoretical proposal, and many people at the time doubted whether it
could be implemented efficiently. However, by the mid-1980s, relational database management systems
(RDBMSes) and SQL had become the tools of choice for most people who needed to store and query data
with some kind of regular structure. The dominance of relational databases has lasted around
25‒30 years—an eternity in computing history.





The roots of relational databases lie in business data processing, which was performed on
mainframe computers in the 1960s and ’70s. The use cases appear mundane from today’s perspective:
typically transaction processing (entering sales or banking transactions, airline reservations,
stock-keeping in warehouses) and batch processing (customer invoicing, payroll, reporting).


Other databases at that time forced application developers to think a lot about the internal
representation of the data in the database. The goal of the relational model was to hide that
implementation detail behind a cleaner interface.


Over the years, there have been many competing approaches to data storage and querying. In the 1970s
and early 1980s, the network model and the hierarchical model were the main alternatives, but
the relational model came to dominate them. Object databases came and went again in the late 1980s
and early 1990s. XML databases appeared in the early 2000s, but have only seen niche adoption. Each
competitor to the relational model generated a lot of hype in its time, but it never lasted
[2].


As computers became vastly more powerful and networked, they started being used for increasingly
diverse purposes. And remarkably, relational databases turned out to generalize very well, beyond
their original scope of business data processing, to a broad variety of use cases. Much of what you
see on the web today is still powered by relational databases, be it online publishing,
discussion, social networking, ecommerce, games, software-as-a-service productivity applications,
or much more.










The Birth of NoSQL




Now, in the 2010s, NoSQL is the latest attempt to overthrow the relational model’s dominance. The
name “NoSQL” is unfortunate, since it doesn’t actually refer to any particular technology—it was
originally intended simply as a catchy Twitter hashtag for a meetup on open source, distributed, nonrelational
databases in 2009 [3]. Nevertheless, the term struck a nerve and quickly spread through the
web startup community and beyond. A number of interesting database systems are now associated with
the #NoSQL hashtag, and it has been retroactively reinterpreted as Not Only SQL
[4].


There are several driving forces behind the adoption of NoSQL databases, including:



	
A need for greater scalability than relational databases can easily achieve, including very large
datasets or very high write throughput



	
A widespread preference for free and open source software over commercial database products



	
Specialized query operations that are not well supported by the relational model



	
Frustration with the restrictiveness of relational schemas, and a desire for a more dynamic and
expressive data model [5]







Different applications have different requirements, and the best choice of technology for one use
case may well be different from the best choice for another use case. It therefore seems likely that
in the foreseeable future, relational databases will continue to be used alongside a broad variety
of nonrelational datastores—an idea that is sometimes called polyglot persistence
[3].

















The Object-Relational Mismatch





Most application development today is done in object-oriented programming languages, which leads to
a common criticism of the SQL data model: if data is stored in relational tables, an awkward
translation layer is required between the objects in the application code and the database model of
tables, rows, and columns. The disconnect between the models is sometimes called an
impedance mismatch.i





Object-relational mapping (ORM) frameworks like ActiveRecord and Hibernate reduce the amount of
boilerplate code required for this translation layer, but they can’t completely hide the differences
between the two models.





For example, Figure 2-1 illustrates how a résumé (a LinkedIn profile) could be
expressed in a relational schema. The profile as a whole can be identified by a unique identifier,
user_id. Fields like first_name and last_name appear exactly once per user, so they can be
modeled as columns on the users table. However, most people have had more than one job in their
career (positions), and people may have varying numbers of periods of education and any number of
pieces of contact information. There is a one-to-many relationship from the user to these items,
which can be represented in various ways:



	
In the traditional SQL model (prior to SQL:1999), the most common normalized representation is to
put positions, education, and contact information in separate tables, with a foreign key reference
to the users table, as in Figure 2-1.



	







Later versions of the SQL standard added support for structured datatypes and XML data;
this allowed multi-valued data to be stored within a single row, with support for querying and
indexing inside those documents. These features are supported to varying degrees by Oracle, IBM
DB2, MS SQL Server, and PostgreSQL [6,
7].
A JSON datatype is also supported by several databases, including IBM DB2, MySQL, and PostgreSQL
[8].



	

A third option is to encode jobs, education, and contact info as a JSON or XML document, store it on a text column
in the database, and let the application interpret its structure and content. In this setup,
you typically cannot use the database to query for values inside that encoded column.







[image: ddia 0201]
Figure 2-1. Representing a LinkedIn profile using a relational schema. Photo of Bill Gates courtesy of Wikimedia Commons, Ricardo Stuckert, Agência Brasil.










For a data structure like a résumé, which is mostly a self-contained document, a JSON
representation can be quite appropriate: see Example 2-1. JSON has the appeal of being
much simpler than XML. Document-oriented databases like MongoDB
[9],
RethinkDB
[10],
CouchDB
[11],
and Espresso
[12]
support this data model.


Example 2-1. Representing a LinkedIn profile as a JSON document


{
  "user_id":     251,
  "first_name":  "Bill",
  "last_name":   "Gates",
  "summary":     "Co-chair of the Bill & Melinda Gates... Active blogger.",
  "region_id":   "us:91",
  "industry_id": 131,
  "photo_url":   "/p/7/000/253/05b/308dd6e.jpg",
  "positions": [
    {"job_title": "Co-chair", "organization": "Bill & Melinda Gates Foundation"},
    {"job_title": "Co-founder, Chairman", "organization": "Microsoft"}
  ],
  "education": [
    {"school_name": "Harvard University",       "start": 1973, "end": 1975},
    {"school_name": "Lakeside School, Seattle", "start": null, "end": null}
  ],
  "contact_info": {
    "blog":    "https://www.gatesnotes.com/",
    "twitter": "https://twitter.com/BillGates"
  }
}



Some developers feel that the JSON model reduces the impedance mismatch between the application code
and the storage layer. However, as we shall see in Chapter 4, there are also problems with
JSON as a data encoding format. The lack of a schema is often cited as an advantage; we will discuss
this in “Schema flexibility in the document model”.



The JSON representation has better locality than the multi-table schema in
Figure 2-1. If you want to fetch a profile in the relational example, you need to
either perform multiple queries (query each table by user_id) or perform a messy multi-way join
between the users table and its subordinate tables. In the JSON representation, all the relevant
information is in one place, and one query is sufficient.



The one-to-many relationships from the user profile to the user’s positions, educational history, and
contact information imply a tree structure in the data, and the JSON representation makes this tree
structure explicit (see Figure 2-2).



[image: ddia 0202]
Figure 2-2. One-to-many relationships forming a tree structure.



















Many-to-One and Many-to-Many Relationships


In Example 2-1 in the preceding section, region_id and industry_id are given as IDs,
not as plain-text strings "Greater Seattle Area" and "Philanthropy". Why?




If the user interface has free-text fields for entering the region and the industry, it makes sense
to store them as plain-text strings. But there are advantages to having standardized lists of
geographic regions and industries, and letting users choose from a drop-down list or autocompleter:



	
Consistent style and spelling across profiles



	
Avoiding ambiguity (e.g., if there are several cities with the same name)



	
Ease of updating—the name is stored in only one place, so it is easy to update across the board if
it ever needs to be changed (e.g., change of a city name due to political events)



	
Localization support—when the site is translated into other languages, the standardized lists can
be localized, so the region and industry can be displayed in the viewer’s language



	
Better search—e.g., a search for philanthropists in the state of Washington can match
this profile, because the list of regions can encode the fact that Seattle is in Washington (which
is not apparent from the string "Greater Seattle Area")






Whether you store an ID or a text string is a question of duplication. When you use an ID, the
information that is meaningful to humans (such as the word Philanthropy) is stored in only one
place, and everything that refers to it uses an ID (which only has meaning within the database).
When you store the text directly, you are duplicating the human-meaningful information in every
record that uses it.



The advantage of using an ID is that because it has no meaning to humans, it never needs to change:
the ID can remain the same, even if the information it identifies changes. Anything that is
meaningful to humans may need to change sometime in the future—and if that information is duplicated,
all the redundant copies need to be updated. That incurs write overheads, and risks
inconsistencies (where some copies of the information are updated but others aren’t). Removing such
duplication is the key idea behind normalization in
databases.ii

Note


Database administrators and developers love to argue about normalization and denormalization, but
we will suspend judgment for now. In Part III of this book we will return to this topic and
explore systematic ways of dealing with caching, denormalization, and derived data.









Unfortunately, normalizing this data requires many-to-one relationships (many people live in one
particular region, many people work in one particular industry), which don’t fit nicely into the
document model. In relational databases, it’s normal to refer to rows in other tables by ID, because
joins are easy. In document databases, joins are not needed for one-to-many tree structures, and
support for joins is often weak.iii


If the database itself does not support joins, you have to emulate a join in application code by
making multiple queries to the database. (In this case, the lists of regions and industries are
probably small and slow-changing enough that the application can simply keep them in memory. But
nevertheless, the work of making the join is shifted from the database to the application code.)


Moreover, even if the initial version of an application fits well in a join-free document model,
data has a tendency of becoming more interconnected as features are added to applications. For
example, consider some changes we could make to the résumé example:


	Organizations and schools as entities

	
In the previous description, organization (the company where the user worked) and school_name
(where they studied) are just strings. Perhaps they should be references to entities instead?

Then each organization, school, or university could have its own web page (with logo, news feed,
etc.); each résumé could link to the organizations and schools that it mentions, and include their
logos and other information (see Figure 2-3 for an example from LinkedIn).



	Recommendations

	
Say you want to add a new feature: one user can write a recommendation for another user. The
recommendation is shown on the résumé of the user who was recommended, together with the name and
photo of the user making the recommendation. If the recommender updates their photo, any
recommendations they have written need to reflect the new photo. Therefore, the recommendation
should have a reference to the author’s profile.







[image: ddia 0203]
Figure 2-3. The company name is not just a string, but a link to a company entity. Screenshot of linkedin.com.




Figure 2-4 illustrates how these new features require many-to-many
relationships. The data within each dotted rectangle can be grouped into one document, but the
references to organizations, schools, and other users need to be represented as references, and
require joins when queried.



[image: ddia 0204]
Figure 2-4. Extending résumés with many-to-many relationships.






















Are Document Databases Repeating History?



While many-to-many relationships and joins are routinely used in relational databases, document
databases and NoSQL reopened the debate on how best to represent such relationships in a database.
This debate is much older than NoSQL—in fact, it goes back to the very earliest computerized
database systems.



The most popular database for business data processing in the 1970s was IBM’s Information
Management System (IMS), originally developed for stock-keeping in the Apollo
space program and first commercially released in 1968
[13].
It is still in use and maintained today, running on OS/390 on IBM mainframes
[14].



The design of IMS used a fairly simple data model called the hierarchical model, which has some
remarkable similarities to the JSON model used by document databases
[2]. It represented all data as a tree
of records nested within records, much like the JSON structure of Figure 2-2.


Like document databases, IMS worked well for one-to-many relationships, but it made many-to-many
relationships difficult, and it didn’t support joins. Developers had to decide whether to duplicate
(denormalize) data or to manually resolve references from one record to another. These problems of
the 1960s and ’70s were very much like the problems that developers are running into with document databases
today [15].


Various solutions were proposed to solve the limitations of the hierarchical model. The two most
prominent were the relational model (which became SQL, and took over the world) and the network
model (which initially had a large following but eventually faded into obscurity). The “great
debate” between these two camps lasted for much of the 1970s
[2].


Since the problem that the two models were solving is still so relevant today, it’s worth briefly
revisiting this debate in today’s light.












The network model




The network model was standardized by a committee called the Conference on Data Systems Languages
(CODASYL) and implemented by several different database vendors; it is also known as the
CODASYL model [16].


The CODASYL model was a generalization of the hierarchical model. In the tree structure of the
hierarchical model, every record has exactly one parent; in the network model, a record could have
multiple parents. For example, there could be one record for the "Greater Seattle Area" region,
and every user who lived in that region could be linked to it. This allowed many-to-one and
many-to-many relationships to be modeled.



The links between records in the network model were not foreign keys, but more like pointers in a
programming language (while still being stored on disk). The only way of accessing a record was to
follow a path from a root record along these chains of links. This was called an access path.


In the simplest case, an access path could be like the traversal of a linked list: start at the head
of the list, and look at one record at a time until you find the one you want. But in a world of
many-to-many relationships, several different paths can lead to the same record, and a programmer
working with the network model had to keep track of these different access paths in their head.


A query in CODASYL was performed by moving a cursor through the database by iterating over lists of
records and following access paths. If a record had multiple parents (i.e., multiple incoming
pointers from other records), the application code had to keep track of all the various
relationships. Even CODASYL committee members admitted that this was like navigating around an
n-dimensional data space [17].


Although manual access path selection was able to make the most efficient use of the very limited
hardware capabilities in the 1970s (such as tape drives, whose seeks are extremely slow), the
problem was that they made the code for querying and updating the database complicated and
inflexible. With both the hierarchical and the network model, if you didn’t have a path to the data
you wanted, you were in a difficult situation. You could change the access paths, but then you had
to go through a lot of handwritten database query code and rewrite it to handle the new access
paths. It was difficult to make changes to an application’s data model.

















The relational model


What the relational model did, by contrast, was to lay out all the data in the open: a relation
(table) is simply a collection of tuples (rows), and that’s it. There are no labyrinthine nested
structures, no complicated access paths to follow if you want to look at the data. You can read any
or all of the rows in a table, selecting those that match an arbitrary condition. You can read a
particular row by designating some columns as a key and matching on those. You can insert a new row
into any table without worrying about foreign key relationships to and from other
tables.iv



In a relational database, the query optimizer automatically decides which parts of the query to
execute in which order, and which indexes to use. Those choices are effectively the “access path,”
but the big difference is that they are made automatically by the query optimizer, not by the
application developer, so we rarely need to think about them.


If you want to query your data in new ways, you can just declare a new index, and queries will
automatically use whichever indexes are most appropriate. You don’t need to change your queries to
take advantage of a new index. (See also “Query Languages for Data”.) The relational model thus made
it much easier to add new features to applications.


Query optimizers for relational databases are complicated beasts, and they have consumed many years
of research and development effort
[18].
But a key insight of the relational model was this: you only need to build a query optimizer once,
and then all applications that use the database can benefit from it. If you don’t have a query
optimizer, it’s easier to handcode the access paths for a particular query than to write a
general-purpose optimizer—but the general-purpose solution wins in the long run.

















Comparison to document databases


Document databases reverted back to the hierarchical model in one aspect: storing nested records
(one-to-many relationships, like positions, education, and contact_info in
Figure 2-1) within their parent record rather than in a separate table.



However, when it comes to representing many-to-one and many-to-many relationships, relational and
document databases are not fundamentally different: in both cases, the related item is referenced by
a unique identifier, which is called a foreign key in the relational model and a document
reference in the document model [9]. That
identifier is resolved at read time by using a join or follow-up queries. To date, document
databases have not followed the path of CODASYL.






















Relational Versus Document Databases Today




There are many differences to consider when comparing relational databases to document databases,
including their fault-tolerance properties (see Chapter 5) and handling of concurrency (see
Chapter 7). In this chapter, we will concentrate only on the differences in the data model.


The main arguments in favor of the document data model are schema flexibility, better performance
due to locality, and that for some applications it is closer to the data structures used by the
application. The relational model counters by providing better support for joins, and many-to-one
and many-to-many relationships.












Which data model leads to simpler application code?



If the data in your application has a document-like structure (i.e., a tree of one-to-many
relationships, where typically the entire tree is loaded at once), then it’s probably a good idea to
use a document model. The relational technique of shredding—splitting a document-like structure
into multiple tables (like positions, education, and contact_info in
Figure 2-1)—can lead to cumbersome schemas and unnecessarily complicated
application code.


The document model has limitations: for example, you cannot refer directly to a nested item
within a document, but instead you need to say something like “the second item in the list of
positions for user 251” (much like an access path in the hierarchical model). However, as long as
documents are not too deeply nested, that is not usually a problem.



The poor support for joins in document databases may or may not be a problem, depending on the
application. For example, many-to-many relationships may never be needed in an analytics application
that uses a document database to record which events occurred at which time
[19].




However, if your application does use many-to-many relationships, the document model becomes less
appealing. It’s possible to reduce the need for joins by denormalizing, but then the application
code needs to do additional work to keep the denormalized data consistent. Joins can be emulated in
application code by making multiple requests to the database, but that also moves complexity into
the application and is usually slower than a join performed by specialized code inside the
database. In such cases, using a document model can lead to significantly more complex application
code and worse performance [15].


It’s not possible to say in general which data model leads to simpler application code; it depends
on the kinds of relationships that exist between data items. For highly interconnected data, the
document model is awkward, the relational model is acceptable, and graph models (see
“Graph-Like Data Models”) are the most natural.

















Schema flexibility in the document model



Most document databases, and the JSON support in relational databases, do not enforce any schema on
the data in documents. XML support in relational databases usually comes with optional schema
validation. No schema means that arbitrary keys and values can be added to a document, and when
reading, clients have no guarantees as to what fields the documents may contain.




Document databases are sometimes called schemaless, but that’s misleading, as the code that reads
the data usually assumes some kind of structure—i.e., there is an implicit schema, but it is not
enforced by the database [20]. A more accurate term is schema-on-read (the structure
of the data is implicit, and only interpreted when the data is read), in contrast with
schema-on-write (the traditional approach of relational databases, where the schema is explicit
and the database ensures all written data conforms to it)
[21].





Schema-on-read is similar to dynamic (runtime) type checking in programming languages, whereas
schema-on-write is similar to static (compile-time) type checking. Just as the advocates of static
and dynamic type checking have big debates about their relative merits
[22],
enforcement of schemas in database is a contentious topic, and in general there’s no right or wrong
answer.


The difference between the approaches is particularly noticeable in situations where an application
wants to change the format of its data. For example, say you are currently storing each user’s full
name in one field, and you instead want to store the first name and last name separately
[23].
In a document database, you would just start writing new documents with the new fields and have
code in the application that handles the case when old documents are read. For example:


if (user && user.name && !user.first_name) {
    // Documents written before Dec 8, 2013 don't have first_name
    user.first_name = user.name.split(" ")[0];
}






On the other hand, in a “statically typed” database schema, you would typically perform a
migration along the lines of:


ALTER TABLE users ADD COLUMN first_name text;
UPDATE users SET first_name = split_part(name, ' ', 1);      -- PostgreSQL
UPDATE users SET first_name = substring_index(name, ' ', 1);      -- MySQL



Schema changes have a bad reputation of being slow and requiring downtime. This reputation is not
entirely deserved: most relational database systems execute the ALTER TABLE statement in a few
milliseconds. MySQL is a notable exception—it copies the entire table on ALTER TABLE, which
can mean minutes or even hours of downtime when altering a large table—although various tools exist to work
around this limitation [24,
25,
26].



Running the UPDATE statement on a large table is likely to be slow on any database, since every
row needs to be rewritten. If that is not acceptable, the application can leave first_name set to
its default of NULL and fill it in at read time, like it would with a document database.


The schema-on-read approach is advantageous if the items in the
collection don’t all have the same structure for some reason (i.e., the data is heterogeneous)—for example, because:



	
There are many different types of objects, and it is not practicable to put each type of object in
its own table.



	
The structure of the data is determined by external systems over which you have no control and
which may change at any time.






In situations like these, a schema may hurt more than it helps, and schemaless documents can be a
much more natural data model. But in cases where all records are expected to have the same
structure, schemas are a useful mechanism for documenting and enforcing that structure. We will
discuss schemas and schema evolution in more detail in Chapter 4.

















Data locality for queries







A document is usually stored as a single continuous string, encoded as JSON, XML, or a binary variant
thereof (such as MongoDB’s BSON). If your application often needs to access the entire document
(for example, to render it on a web page), there is a performance advantage to this storage
locality. If data is split across multiple tables, like in Figure 2-1, multiple
index lookups are required to retrieve it all, which may require more disk seeks and take more time.


The locality advantage only applies if you need large parts of the document at the same time. The
database typically needs to load the entire document, even if you access only a small portion of it,
which can be wasteful on large documents. On updates to a document, the entire document usually
needs to be rewritten—only modifications that don’t change the encoded size of a document can
easily be performed in place [19]. For these
reasons, it is generally recommended that you keep documents fairly small and avoid writes that
increase the size of a document [9]. These
performance limitations significantly reduce the set of situations in which document databases are
useful.









It’s worth pointing out that the idea of grouping related data together for locality is not limited
to the document model. For example, Google’s Spanner database offers the same locality properties in
a relational data model, by allowing the schema to declare that a table’s rows should be interleaved
(nested) within a parent table
[27].
Oracle allows the same, using a feature called multi-table index cluster tables
[28].
The column-family concept in the Bigtable data model (used in
Cassandra and HBase) has a similar purpose of managing locality
[29].


We will also see more on locality in Chapter 3.

















Convergence of document and relational databases





Most relational database systems (other than MySQL) have supported XML since the mid-2000s. This
includes functions to make local modifications to XML documents and the ability to index and query
inside XML documents, which allows applications to use data models very similar to what they would
do when using a document database.






PostgreSQL since version 9.3 [8],
MySQL since version 5.7, and IBM DB2 since version 10.5
[30]
also have a similar level of support for JSON documents. Given the popularity of JSON for web APIs,
it is likely that other relational databases will follow in their footsteps and add JSON support.






On the document database side, RethinkDB supports relational-like joins in its query language, and
some MongoDB drivers automatically resolve document references (effectively performing a client-side
join, although this is likely to be slower than a join performed in the database since it requires
additional network round-trips and is less optimized).


It seems that relational and document databases are becoming more similar over time, and that is a
good thing: the data models complement each
other.v If a database is able to handle document-like data and also perform
relational queries on it, applications can use the combination of features that best fits their
needs.


A hybrid of the relational and document models is a good route for databases to take in the future.


































Query Languages for Data






When the relational model was introduced, it included a new way of querying data: SQL is a
declarative query language, whereas IMS and CODASYL queried the database using imperative code.
What does that mean?



Many commonly used programming languages are imperative. For example, if you have a list of animal
species, you might write something like this to return only the sharks in the list:


function getSharks() {
    var sharks = [];
    for (var i = 0; i < animals.length; i++) {
        if (animals[i].family === "Sharks") {
            sharks.push(animals[i]);
        }
    }
    return sharks;
}





In the relational algebra, you would instead write:


sharks  =  σfamily = “Sharks” (animals)



where σ (the Greek letter sigma) is the selection operator, returning only those animals that
match the condition family = “Sharks”.



When SQL was defined, it followed the structure of the relational algebra fairly closely:


SELECT * FROM animals WHERE family = 'Sharks';


An imperative language tells the computer to perform certain operations in a certain order. You can
imagine stepping through the code line by line, evaluating conditions, updating variables, and
deciding whether to go around the loop one more time.


In a declarative query language, like SQL or relational algebra, you just specify the pattern of the
data you want—what conditions the results must meet, and how you want the data to be transformed (e.g.,
sorted, grouped, and aggregated)—but not how to achieve that goal. It is up to the database
system’s query optimizer to decide which indexes and which join methods to use, and in which order
to execute various parts of the query.


A declarative query language is attractive because it is typically more concise and easier to work
with than an imperative API. But more importantly, it also hides implementation details of the
database engine, which makes it possible for the database system to introduce performance
improvements without requiring any changes to queries.


For example, in the imperative code shown at the beginning of this section, the list of animals
appears in a particular order. If the database wants to reclaim unused disk space behind the scenes,
it might need to move records around, changing the order in which the animals appear. Can the
database do that safely, without breaking queries?


The SQL example doesn’t guarantee any particular ordering, and so it doesn’t mind if the order
changes. But if the query is written as imperative code, the database can never be sure whether the
code is relying on the ordering or not. The fact that SQL is more limited in functionality gives the
database much more room for automatic optimizations.



Finally, declarative languages often lend themselves to parallel execution. Today, CPUs are getting
faster by adding more cores, not by running at significantly higher clock speeds than before
[31].
Imperative code is very hard to parallelize across multiple cores and multiple machines, because it
specifies instructions that must be performed in a particular order. Declarative languages have a
better chance of getting faster in parallel execution because they specify only the pattern of the
results, not the algorithm that is used to determine the results. The database is free to use a
parallel implementation of the query language, if appropriate
[32].










Declarative Queries on the Web




The advantages of declarative query languages are not limited to just databases. To illustrate the
point, let’s compare declarative and imperative approaches in a completely different environment: a
web browser.



Say you have a website about animals in the ocean. The user is currently viewing the page on sharks,
so you mark the navigation item “Sharks” as currently selected, like this:


<ul>
    <li class="selected"> [image: 1]
        <p>Sharks</p> [image: 2]
        <ul>
            <li>Great White Shark</li>
            <li>Tiger Shark</li>
            <li>Hammerhead Shark</li>
        </ul>
    </li>
    <li>
        <p>Whales</p>
        <ul>
            <li>Blue Whale</li>
            <li>Humpback Whale</li>
            <li>Fin Whale</li>
        </ul>
    </li>
</ul>


	[image: 1]

	The selected item is marked with the CSS class "selected".


	[image: 2]

	<p>Sharks</p> is the title of the currently selected page.






Now say you want the title of the currently selected page to have a blue background, so that it is
visually highlighted. This is easy, using CSS:


li.selected > p {
    background-color: blue;
}


Here the CSS selector li.selected > p declares the pattern of elements to which we want to apply
the blue style: namely, all <p> elements whose direct parent is an <li> element with a CSS class
of selected. The element <p>Sharks</p> in the example matches this pattern, but <p>Whales</p>
does not match because its <li> parent lacks class="selected".



If you were using XSL instead of CSS, you could do something similar:


<xsl:template match="li[@class='selected']/p">
    <fo:block background-color="blue">
        <xsl:apply-templates/>
    </fo:block>
</xsl:template>


Here, the XPath expression li[@class='selected']/p is equivalent to
the CSS selector li.selected > p in the previous example. What CSS and XSL have in common is that
they are both declarative languages for specifying the styling of a document.


Imagine what life would be like if you had to use an imperative approach. In JavaScript, using the
core Document Object Model (DOM) API, the result might look something like this:


var liElements = document.getElementsByTagName("li");
for (var i = 0; i < liElements.length; i++) {
    if (liElements[i].className === "selected") {
        var children = liElements[i].childNodes;
        for (var j = 0; j < children.length; j++) {
            var child = children[j];
            if (child.nodeType === Node.ELEMENT_NODE && child.tagName === "P") {
                child.setAttribute("style", "background-color: blue");
            }
        }
    }
}




This JavaScript imperatively sets the element <p>Sharks</p> to have a blue background, but the code is
awful. Not only is it much longer and harder to understand than the CSS and XSL equivalents, but it
also has some serious problems:



	
If the selected class is removed (e.g., because the user clicks a different page), the blue
color won’t be removed, even if the code is rerun—and so the item will remain highlighted
until the entire page is reloaded. With CSS, the browser automatically detects when the li.selected > p
rule no longer applies and removes the blue background as soon as the selected class is
removed.



	
If you want to take advantage of a new API, such as document.getElementsByClassName("selected")
or even document.evaluate()—which may improve performance—you have to rewrite the code.
On the other hand, browser vendors can improve the performance of CSS and XPath without breaking
compatibility.








In a web browser, using declarative CSS styling is much better than manipulating styles imperatively in
JavaScript. Similarly, in databases, declarative query languages like SQL turned out to be much
better than imperative query APIs.vi

















MapReduce Querying






MapReduce is a programming model for processing large amounts of data in bulk across many
machines, popularized by Google
[33]. A limited form of MapReduce is supported by
some NoSQL datastores, including MongoDB and CouchDB, as a mechanism for performing read-only
queries across many documents.


MapReduce in general is described in more detail in Chapter 10. For now, we’ll just briefly
discuss MongoDB’s use of the model.


MapReduce is neither a declarative query language nor a fully imperative query API, but somewhere
in between: the logic of the query is expressed with snippets of code, which are called repeatedly
by the processing framework. It is based on the map (also known as collect) and reduce (also
known as fold or inject) functions that exist in many functional programming languages.



To give an example, imagine you are a marine biologist, and you add an observation record to your
database every time you see animals in the ocean. Now you want to generate a report saying how many
sharks you have sighted per month.


In PostgreSQL you might express that query like this:


SELECT date_trunc('month', observation_timestamp) AS observation_month, [image: 1]
       sum(num_animals) AS total_animals
FROM observations
WHERE family = 'Sharks'
GROUP BY observation_month;


	[image: 1]

	The date_trunc('month', timestamp) function determines the calendar month
containing timestamp, and returns another timestamp representing the beginning of that month. In
other words, it rounds a timestamp down to the nearest month.





This query first filters the observations to only show species in the Sharks family, then groups
the observations by the calendar month in which they occurred, and finally adds up the number of
animals seen in all observations in that month.



The same can be expressed with MongoDB’s MapReduce feature as follows:


db.observations.mapReduce(
    function map() { [image: 2]
        var year  = this.observationTimestamp.getFullYear();
        var month = this.observationTimestamp.getMonth() + 1;
        emit(year + "-" + month, this.numAnimals); [image: 3]
    },
    function reduce(key, values) { [image: 4]
        return Array.sum(values); [image: 5]
    },
    {
        query: { family: "Sharks" }, [image: 1]
        out: "monthlySharkReport" [image: 6]
    }
);


	[image: 1]

	The filter to consider only shark species can be specified declaratively (this is a
MongoDB-specific extension to MapReduce).


	[image: 2]

	The JavaScript function map is called once for every document that matches query, with
this set to the document object.


	[image: 3]

	The map function emits a key (a string consisting of year and month, such as "2013-12" or
"2014-1") and a value (the number of animals in that observation).


	[image: 4]

	The key-value pairs emitted by map are grouped by key. For all key-value pairs with the same
key (i.e., the same month and year), the reduce function is called once.


	[image: 5]

	The reduce function adds up the number of animals from all observations in a particular month.


	[image: 6]

	The final output is written to the collection monthlySharkReport.





For example, say the observations collection contains these two documents:


{
    observationTimestamp: Date.parse("Mon, 25 Dec 1995 12:34:56 GMT"),
    family:     "Sharks",
    species:    "Carcharodon carcharias",
    numAnimals: 3
}
{
    observationTimestamp: Date.parse("Tue, 12 Dec 1995 16:17:18 GMT"),
    family:     "Sharks",
    species:    "Carcharias taurus",
    numAnimals: 4
}


The map function would be called once for each document, resulting in
emit("1995-12", 3) and
emit("1995-12", 4). Subsequently, the reduce function
would be called with reduce("1995-12", [3, 4]), returning
7.



The map and reduce functions are somewhat restricted in what they are allowed to do. They must be
pure functions, which means they only use the data that is passed to them as input, they cannot
perform additional database queries, and they must not have any side effects. These restrictions
allow the database to run the functions anywhere, in any order, and rerun them on failure. However,
they are nevertheless powerful: they can parse strings, call library functions, perform calculations,
and more.



MapReduce is a fairly low-level programming model for distributed execution on a cluster of
machines. Higher-level query languages like SQL can be implemented as a pipeline of MapReduce
operations (see Chapter 10), but there are also many distributed implementations of SQL that don’t
use MapReduce. Note there is nothing in SQL that constrains it to running on a single machine, and
MapReduce doesn’t have a monopoly on distributed query execution.



Being able to use JavaScript code in the middle of a query is a great feature for advanced queries,
but it’s not limited to MapReduce—some SQL databases can be extended with JavaScript functions
too [34].





A usability problem with MapReduce is that you have to write two carefully coordinated JavaScript
functions, which is often harder than writing a single query. Moreover, a declarative query language
offers more opportunities for a query optimizer to improve the performance of a query. For these
reasons, MongoDB 2.2 added support for a declarative query language called the aggregation pipeline
[9]. In this language, the same shark-counting
query looks like this:


db.observations.aggregate([
    { $match: { family: "Sharks" } },
    { $group: {
        _id: {
            year:  { $year:  "$observationTimestamp" },
            month: { $month: "$observationTimestamp" }
        },
        totalAnimals: { $sum: "$numAnimals" }
    } }
]);


The aggregation pipeline language is similar in expressiveness to a subset of SQL, but it uses a
JSON-based syntax rather than SQL’s English-sentence-style syntax; the difference is perhaps a
matter of taste. The moral of the story is that a NoSQL system may find itself accidentally
reinventing SQL, albeit in disguise.





























Graph-Like Data Models




We saw earlier that many-to-many relationships are an important distinguishing feature between
different data models. If your application has mostly one-to-many relationships (tree-structured
data) or no relationships between records, the document model is appropriate.



But what if many-to-many relationships are very common in your data? The relational model can handle
simple cases of many-to-many relationships, but as the connections within your data become more
complex, it becomes more natural to start modeling your data as a graph.




A graph consists of two kinds of objects: vertices (also known as nodes or entities) and
edges (also known as relationships or arcs). Many kinds of data can be modeled as a graph.
Typical examples include:


	Social graphs

	
Vertices are people, and edges indicate which people know each other.



	The web graph

	
Vertices are web pages, and edges indicate HTML links to other pages.



	Road or rail networks

	
Vertices are junctions, and edges represent the roads or railway lines between them.







Well-known algorithms can operate on these graphs: for example, car navigation systems search for
the shortest path between two points in a road network, and PageRank can be used on the web graph to
determine the popularity of a web page and thus its ranking in search results.



In the examples just given, all the vertices in a graph represent the same kind of thing (people, web
pages, or road junctions, respectively). However, graphs are not limited to such homogeneous data:
an equally powerful use of graphs is to provide a consistent way of storing completely different
types of objects in a single datastore. For example, Facebook maintains a single graph with many
different types of vertices and edges: vertices represent people, locations, events, checkins, and
comments made by users; edges indicate which people are friends with each other, which checkin
happened in which location, who commented on which post, who attended which event, and so on
[35].



In this section we will use the example shown in Figure 2-5. It could be taken from a
social network or a genealogical database: it shows two people, Lucy from Idaho and Alain from
Beaune, France. They are married and living in London.



[image: ddia 0205]
Figure 2-5. Example of graph-structured data (boxes represent vertices, arrows represent edges).










There are several different, but related, ways of structuring and querying data in graphs. In this
section we will discuss the property graph model (implemented by Neo4j, Titan, and InfiniteGraph) and
the triple-store model (implemented by Datomic, AllegroGraph, and others). We will look at three
declarative query languages for graphs: Cypher, SPARQL, and Datalog. Similar concepts appear in
other graph query languages such as Gremlin
[36]
and graph processing frameworks like Pregel (see Chapter 10).










Property Graphs






In the property graph model, each vertex consists of:



	
A unique identifier



	
A set of outgoing edges



	
A set of incoming edges



	
A collection of properties (key-value pairs)







Each edge consists of:



	
A unique identifier



	
The vertex at which the edge starts (the tail vertex)



	
The vertex at which the edge ends (the head vertex)



	
A label to describe the kind of relationship between the two vertices



	
A collection of properties (key-value pairs)









You can think of a graph store as consisting of two relational tables, one for vertices and one for
edges, as shown in Example 2-2 (this schema uses the PostgreSQL json datatype to
store the properties of each vertex or edge). The head and tail vertex are stored for each edge; if
you want the set of incoming or outgoing edges for a vertex, you can query the edges table by
head_vertex or tail_vertex, respectively.


Example 2-2. Representing a property graph using a relational schema


CREATE TABLE vertices (
    vertex_id   integer PRIMARY KEY,
    properties  json
);

CREATE TABLE edges (
    edge_id     integer PRIMARY KEY,
    tail_vertex integer REFERENCES vertices (vertex_id),
    head_vertex integer REFERENCES vertices (vertex_id),
    label       text,
    properties  json
);

CREATE INDEX edges_tails ON edges (tail_vertex);
CREATE INDEX edges_heads ON edges (head_vertex);



Some important aspects of this model are:


	
Any vertex can have an edge connecting it with any other vertex. There is no schema that
restricts which kinds of things can or cannot be associated.



	
Given any vertex, you can efficiently find both its incoming and its outgoing edges, and thus
traverse the graph—i.e., follow a path through a chain of vertices—both forward and backward.
(That’s why Example 2-2 has indexes on both the tail_vertex and head_vertex
columns.)



	
By using different labels for different kinds of relationships, you can store several different
kinds of information in a single graph, while still maintaining a clean data model.







Those features give graphs a great deal of flexibility for data modeling, as illustrated in
Figure 2-5. The figure shows a few things that would be difficult to express in a
traditional relational schema, such as different kinds of regional structures in different countries
(France has départements and régions, whereas the US has counties and states), quirks of
history such as a country within a country (ignoring for now the intricacies of sovereign states and
nations), and varying granularity of data (Lucy’s current residence is specified as a city, whereas
her place of birth is specified only at the level of a state).


You could imagine extending the graph to also include many other facts about Lucy and Alain, or
other people. For instance, you could use it to indicate any food allergies they have (by
introducing a vertex for each allergen, and an edge between a person and an allergen to indicate an
allergy), and link the allergens with a set of vertices that show which foods contain which
substances. Then you could write a query to find out what is safe for each person to eat.

Graphs are good for evolvability: as you add features to your application, a graph can easily be
extended to accommodate changes in your application’s data structures.

















The Cypher Query Language








Cypher is a declarative query language for property graphs, created for the Neo4j graph database
[37]. (It is named after a character in the movie The Matrix
and is not related to ciphers in cryptography [38].)


Example 2-3 shows the Cypher query to insert the lefthand portion of
Figure 2-5 into a graph database. The rest of the graph can be added similarly and is
omitted for readability. Each vertex is given a symbolic name like USA or Idaho, and other parts
of the query can use those names to create edges between the vertices, using an arrow notation:
(Idaho) -[:WITHIN]-> (USA) creates an edge labeled WITHIN, with Idaho as the tail node and USA
as the head node.


Example 2-3. A subset of the data in Figure 2-5, represented as a Cypher query


CREATE
  (NAmerica:Location {name:'North America', type:'continent'}),
  (USA:Location      {name:'United States', type:'country'  }),
  (Idaho:Location    {name:'Idaho',         type:'state'    }),
  (Lucy:Person       {name:'Lucy' }),
  (Idaho) -[:WITHIN]->  (USA)  -[:WITHIN]-> (NAmerica),
  (Lucy)  -[:BORN_IN]-> (Idaho)



When all the vertices and edges of Figure 2-5 are added to the database, we can start
asking interesting questions: for example, find the names of all the people who emigrated from the
United States to Europe. To be more precise, here we want to find all the vertices that have a BORN_IN edge to a
location within the US, and also a LIVING_IN edge to a location within Europe, and return the
name property of each of those vertices.


Example 2-4 shows how to express that query in Cypher. The same arrow notation is used in a
MATCH clause to find patterns in the graph: (person) -[:BORN_IN]-> () matches any two vertices
that are related by an edge labeled BORN_IN. The tail vertex of that edge is bound to the
variable person, and the head vertex is left unnamed.


Example 2-4. Cypher query to find people who emigrated from the US to Europe


MATCH
  (person) -[:BORN_IN]->  () -[:WITHIN*0..]-> (us:Location {name:'United States'}),
  (person) -[:LIVES_IN]-> () -[:WITHIN*0..]-> (eu:Location {name:'Europe'})
RETURN person.name



The query can be read as follows:


Find any vertex (call it person) that meets both of the
following conditions:


	
person has an outgoing BORN_IN edge to some vertex. From that vertex, you can follow a chain
of outgoing WITHIN edges until eventually you reach a vertex of type Location, whose name
property is equal to "United States".



	
That same person vertex also has an outgoing LIVES_IN edge. Following that edge, and then a
chain of outgoing WITHIN edges, you eventually reach a vertex of type Location, whose name
property is equal to "Europe".







For each such person vertex, return the name property.



There are several possible ways of executing the query. The description given here suggests that you
start by scanning all the people in the database, examine each person’s birthplace and residence,
and return only those people who meet the criteria.


But equivalently, you could start with the two Location vertices and work backward. If there is
an index on the name property, you can probably efficiently find the two vertices representing the
US and Europe. Then you can proceed to find all locations (states, regions, cities, etc.) in the US
and Europe respectively by following all incoming WITHIN edges. Finally, you can look for people
who can be found through an incoming BORN_IN or LIVES_IN edge at one of the location vertices.


As is typical for a declarative query language, you don’t need to specify such execution details when
writing the query: the query optimizer automatically chooses the strategy that is predicted to be
the most efficient, so you can get on with writing the rest of your application.

















Graph Queries in SQL







Example 2-2 suggested that graph data can be represented in a relational database. But
if we put graph data in a relational structure, can we also query it using SQL?


The answer is yes, but with some difficulty. In a relational database, you usually know in advance
which joins you need in your query. In a graph query, you may need to traverse a variable number of
edges before you find the vertex you’re looking for—that is, the number of joins is not fixed in
advance.


In our example, that happens in the () -[:WITHIN*0..]-> () rule in the Cypher query. A person’s
LIVES_IN edge may point at any kind of location: a street, a city, a district, a region, a state,
etc. A city may be WITHIN a region, a region WITHIN a state, a state WITHIN a country, etc.
The LIVES_IN edge may point directly at the location vertex you’re looking for, or it may be
several levels removed in the location hierarchy.


In Cypher, :WITHIN*0.. expresses that fact very concisely: it means “follow a WITHIN edge, zero
or more times.” It is like the * operator in a regular expression.









Since SQL:1999, this idea of variable-length traversal paths in a query can be expressed using
something called recursive common table expressions (the WITH RECURSIVE syntax).
Example 2-5 shows the same query—finding the names of people who emigrated from the
US to Europe—expressed in SQL using this technique (supported in PostgreSQL, IBM DB2, Oracle, and
SQL Server). However, the syntax is very clumsy in comparison to Cypher.


Example 2-5. The same query as Example 2-4, written in SQL using recursive common table expressions


WITH RECURSIVE

  -- in_usa is the set of vertex IDs of all locations within the United States
  in_usa(vertex_id) AS (
      SELECT vertex_id FROM vertices WHERE properties->>'name' = 'United States' [image: 1]
    UNION
      SELECT edges.tail_vertex FROM edges [image: 2]
        JOIN in_usa ON edges.head_vertex = in_usa.vertex_id
        WHERE edges.label = 'within'
  ),

  -- in_europe is the set of vertex IDs of all locations within Europe
  in_europe(vertex_id) AS (
      SELECT vertex_id FROM vertices WHERE properties->>'name' = 'Europe' [image: 3]
    UNION
      SELECT edges.tail_vertex FROM edges
        JOIN in_europe ON edges.head_vertex = in_europe.vertex_id
        WHERE edges.label = 'within'
  ),

  -- born_in_usa is the set of vertex IDs of all people born in the US
  born_in_usa(vertex_id) AS ( [image: 4]
    SELECT edges.tail_vertex FROM edges
      JOIN in_usa ON edges.head_vertex = in_usa.vertex_id
      WHERE edges.label = 'born_in'
  ),

  -- lives_in_europe is the set of vertex IDs of all people living in Europe
  lives_in_europe(vertex_id) AS ( [image: 5]
    SELECT edges.tail_vertex FROM edges
      JOIN in_europe ON edges.head_vertex = in_europe.vertex_id
      WHERE edges.label = 'lives_in'
  )

SELECT vertices.properties->>'name'
FROM vertices
-- join to find those people who were both born in the US *and* live in Europe
JOIN born_in_usa     ON vertices.vertex_id = born_in_usa.vertex_id [image: 6]
JOIN lives_in_europe ON vertices.vertex_id = lives_in_europe.vertex_id;


	[image: 1]

	First find the vertex whose name property has the value "United States", and make it the first element of the set
of vertices in_usa.


	[image: 2]

	Follow all incoming within edges from vertices in the set in_usa, and add them to the same
set, until all incoming within edges have been visited.


	[image: 3]

	Do the same starting with the vertex whose name property has the value "Europe", and build up
the set of vertices in_europe.


	[image: 4]

	For each of the vertices in the set in_usa, follow incoming born_in edges to find people
who were born in some place within the United States.


	[image: 5]

	Similarly, for each of the vertices in the set in_europe, follow incoming lives_in edges to find people who live in Europe.


	[image: 6]

	Finally, intersect the set of people born in the USA with the set of people living in Europe, by
joining them.






If the same query can be written in 4 lines in one query language but requires 29 lines in
another, that just shows that different data models are designed to satisfy different use cases.
It’s important to pick a data model that is suitable for your application.

















Triple-Stores and SPARQL





The triple-store model is mostly equivalent to the property graph model, using different words to
describe the same ideas. It is nevertheless worth discussing, because there are various tools and
languages for triple-stores that can be valuable additions to your toolbox for building
applications.



In a triple-store, all information is stored in the form of very simple three-part statements:
(subject, predicate, object). For example, in the triple (Jim, likes, bananas), Jim is
the subject, likes is the predicate (verb), and bananas is the object.


The subject of a triple is equivalent to a vertex in a graph. The object is one of two things:


	
A value in a primitive datatype, such as a string or a number. In that case,
the predicate and object of the triple are equivalent to the key and value of a property on the
subject vertex. For example, (lucy, age, 33) is like a vertex lucy with properties
{"age":33}.



	
Another vertex in the graph. In that case, the predicate is an edge in the
graph, the subject is the tail vertex, and the object is the head vertex. For example, in
(lucy, marriedTo, alain) the subject and object lucy and alain are both vertices, and
the predicate marriedTo is the label of the edge that connects them.









Example 2-6 shows the same data as in Example 2-3, written as
triples in a format called Turtle, a subset of Notation3 (N3)
[39].


Example 2-6. A subset of the data in Figure 2-5, represented as Turtle triples


@prefix : <urn:example:>.
_:lucy     a       :Person.
_:lucy     :name   "Lucy".
_:lucy     :bornIn _:idaho.
_:idaho    a       :Location.
_:idaho    :name   "Idaho".
_:idaho    :type   "state".
_:idaho    :within _:usa.
_:usa      a       :Location.
_:usa      :name   "United States".
_:usa      :type   "country".
_:usa      :within _:namerica.
_:namerica a       :Location.
_:namerica :name   "North America".
_:namerica :type   "continent".



In this example, vertices of the graph are written as _:someName. The name doesn’t mean anything
outside of this file; it exists only because we otherwise wouldn’t know which triples refer to the
same vertex. When the predicate represents an edge, the object is a vertex, as in _:idaho :within
_:usa.  When the predicate is a property, the object is a string literal, as in _:usa :name
"United States".


It’s quite repetitive to repeat the same subject over and over again, but fortunately you can use
semicolons to say multiple things about the same subject. This makes the Turtle format quite nice
and readable: see Example 2-7.


Example 2-7. A more concise way of writing the data in Example 2-6


@prefix : <urn:example:>.
_:lucy     a :Person;   :name "Lucy";          :bornIn _:idaho.
_:idaho    a :Location; :name "Idaho";         :type "state";   :within _:usa.
_:usa      a :Location; :name "United States"; :type "country"; :within _:namerica.
_:namerica a :Location; :name "North America"; :type "continent".













The semantic web




If you read more about triple-stores, you may get sucked into a maelstrom of articles written about
the semantic web. The triple-store data model is completely independent of the semantic web—for
example, Datomic
[40]
is a triple-store that does not claim to have anything to do with
it.vii
But since the two are so closely linked in many people’s minds, we should discuss them briefly.



The semantic web is fundamentally a simple and reasonable idea: websites already publish information
as text and pictures for humans to read, so why don’t they also publish information as
machine-readable data for computers to read? The Resource Description Framework (RDF)
[41] was intended as a mechanism for different websites
to publish data in a consistent format, allowing data from different websites to be automatically
combined into a web of data—a kind of internet-wide “database of everything.”


Unfortunately, the semantic web was overhyped in the early 2000s but so far hasn’t shown any sign
of being realized in practice, which has made many people cynical about it. It has also suffered
from a dizzying plethora of acronyms, overly complex standards proposals, and hubris.


However, if you look past those failings, there is also a lot of good work that has come out of the
semantic web project. Triples can be a good internal data model for applications, even if you have
no interest in publishing RDF data on the semantic web.

















The RDF data model




The Turtle language we used in Example 2-7 is a human-readable format for RDF data.
Sometimes RDF is also written in an XML format, which does the same thing much more verbosely—see
Example 2-8. Turtle/N3 is preferable as it is much easier on the eyes, and tools like
Apache Jena
[42]
can automatically convert between different RDF formats if necessary.


Example 2-8. The data of Example 2-7, expressed using RDF/XML syntax


<rdf:RDF xmlns="urn:example:"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

  <Location rdf:nodeID="idaho">
    <name>Idaho</name>
    <type>state</type>
    <within>
      <Location rdf:nodeID="usa">
        <name>United States</name>
        <type>country</type>
        <within>
          <Location rdf:nodeID="namerica">
            <name>North America</name>
            <type>continent</type>
          </Location>
        </within>
      </Location>
    </within>
  </Location>

  <Person rdf:nodeID="lucy">
    <name>Lucy</name>
    <bornIn rdf:nodeID="idaho"/>
  </Person>
</rdf:RDF>



RDF has a few quirks due to the fact that it is designed for internet-wide data exchange. The
subject, predicate, and object of a triple are often URIs. For example, a predicate might be an URI
such as <http://my-company.com/namespace#within> or <http://my-company.com/namespace#lives_in>,
rather than just WITHIN or LIVES_IN. The reasoning behind this design is that you should be able
to combine your data with someone else’s data, and if they attach a different meaning to the word
within or lives_in, you won’t get a conflict because their predicates are actually
<http://other.org/foo#within> and <http://other.org/foo#lives_in>.


The URL <http://my-company.com/namespace> doesn’t necessarily need to resolve to anything—from
RDF’s point of view, it is simply a namespace. To avoid potential confusion with http:// URLs, the
examples in this section use non-resolvable URIs such as urn:example:within. Fortunately, you can
just specify this prefix once at the top of the file, and then forget about it.

















The SPARQL query language









SPARQL is a query language for triple-stores using the RDF data model
[43].
(It is an acronym for SPARQL Protocol and RDF Query Language, pronounced “sparkle.”)
It predates Cypher, and since Cypher’s pattern matching is borrowed from SPARQL, they look quite
similar [37].


The same query as before—finding people who have moved from the US to Europe—is even more concise
in SPARQL than it is in Cypher (see Example 2-9).


Example 2-9. The same query as Example 2-4, expressed in SPARQL


PREFIX : <urn:example:>

SELECT ?personName WHERE {
  ?person :name ?personName.
  ?person :bornIn  / :within* / :name "United States".
  ?person :livesIn / :within* / :name "Europe".
}



The structure is very similar. The following two expressions are equivalent (variables start with a
question mark in SPARQL):


(person) -[:BORN_IN]-> () -[:WITHIN*0..]-> (location)   # Cypher

?person :bornIn / :within* ?location.                   # SPARQL


Because RDF doesn’t distinguish between properties and edges but just uses predicates for both, you
can use the same syntax for matching properties. In the following expression, the variable usa is
bound to any vertex that has a name property whose value is the string "United States":


(usa {name:'United States'})   # Cypher

?usa :name "United States".    # SPARQL


SPARQL is a nice query language—even if the semantic web never happens, it can be a powerful tool
for applications to use internally.






Graph Databases Compared to the Network Model



In “Are Document Databases Repeating History?” we discussed how CODASYL and the relational model competed to solve
the problem of many-to-many relationships in IMS. At first glance, CODASYL’s network model looks
similar to the graph model. Are graph databases the second coming of CODASYL in disguise?


No. They differ in several important ways:



	
In CODASYL, a database had a schema that specified which record type could be nested within which
other record type. In a graph database, there is no such restriction: any vertex can have an edge
to any other vertex. This gives much greater flexibility for applications to adapt to changing
requirements.



	

In CODASYL, the only way to reach a particular record was to traverse one of the access paths to
it. In a graph database, you can refer directly to any vertex by its unique ID, or you can use an
index to find vertices with a particular value.



	
In CODASYL, the children of a record were an ordered set, so the database had to maintain that
ordering (which had consequences for the storage layout) and applications that inserted new
records into the database had to worry about the positions of the new records in these sets. In a
graph database, vertices and edges are not ordered (you can only sort the results when making a
query).



	
In CODASYL, all queries were imperative, difficult to write and easily broken by changes in the
schema. In a graph database, you can write your traversal in imperative code if you want to, but
most graph databases also support high-level, declarative query languages such as Cypher or
SPARQL.




























The Foundation: Datalog







Datalog is a much older language than SPARQL or Cypher, having been studied extensively by academics
in the 1980s
[44,
45,
46].
It is less well known among software engineers, but it is nevertheless important, because it
provides the foundation that later query languages build upon.




In practice, Datalog is used in a few data systems: for example, it is the query language of Datomic
[40], and Cascalog
[47]
is a Datalog implementation for querying large datasets in
Hadoop.viii


Datalog’s data model is similar to the triple-store model, generalized a bit. Instead of writing a
triple as (subject, predicate, object), we write it as predicate(subject, object).
Example 2-10 shows how to write the data from our example in Datalog.


Example 2-10. A subset of the data in Figure 2-5, represented as Datalog facts


name(namerica, 'North America').
type(namerica, continent).

name(usa, 'United States').
type(usa, country).
within(usa, namerica).

name(idaho, 'Idaho').
type(idaho, state).
within(idaho, usa).

name(lucy, 'Lucy').
born_in(lucy, idaho).




Now that we have defined the data, we can write the same query as before, as shown in
Example 2-11. It looks a bit different from the equivalent in Cypher or SPARQL, but don’t
let that put you off. Datalog is a subset of Prolog, which you might have seen before if you’ve
studied computer science.


Example 2-11. The same query as Example 2-4, expressed in Datalog


within_recursive(Location, Name) :- name(Location, Name).     /* Rule 1 */

within_recursive(Location, Name) :- within(Location, Via),    /* Rule 2 */
                                    within_recursive(Via, Name).

migrated(Name, BornIn, LivingIn) :- name(Person, Name),       /* Rule 3 */
                                    born_in(Person, BornLoc),
                                    within_recursive(BornLoc, BornIn),
                                    lives_in(Person, LivingLoc),
                                    within_recursive(LivingLoc, LivingIn).

?- migrated(Who, 'United States', 'Europe').
/* Who = 'Lucy'. */




Cypher and SPARQL jump in right away with SELECT, but Datalog takes a small step at a time. We
define rules that tell the database about new predicates: here, we define two new predicates,
within_recursive and migrated. These predicates aren’t triples stored in the database, but
instead they are derived from data or from other rules. Rules can refer to other rules, just like
functions can call other functions or recursively call themselves. Like this, complex queries can be
built up a small piece at a time.


In rules, words that start with an uppercase letter are variables, and predicates are matched like
in Cypher and SPARQL. For example, name(Location, Name) matches the triple
name(namerica, 'North America') with variable bindings
Location = namerica and Name = 'North America'.


A rule applies if the system can find a match for all predicates on the righthand side of the
:- operator. When the rule applies, it’s as though the lefthand side of the :- was added to the
database (with variables replaced by the values they matched).


One possible way of applying the rules is thus:


	
name(namerica, 'North America') exists in the database, so rule 1
applies. It generates within_recursive(namerica, 'North America').



	
within(usa, namerica) exists in the database and the previous step generated
within_recursive(namerica, 'North America'), so rule 2 applies. It generates
within_recursive(usa, 'North America').



	
within(idaho, usa) exists in the database and the previous step generated
within_recursive(usa, 'North America'), so rule 2 applies. It generates
within_recursive(idaho, 'North America').







By repeated application of rules 1 and 2, the within_recursive predicate can tell us all the
locations in North America (or any other location name) contained in our database. This process is
illustrated in Figure 2-6.



[image: ddia 0206]
Figure 2-6. Determining that Idaho is in North America, using the Datalog rules from Example 2-11.




Now rule 3 can find people who were born in some location BornIn and live in some location
LivingIn. By querying with BornIn = 'United States' and
LivingIn = 'Europe', and leaving the person as a variable Who, we ask
the Datalog system to find out which values can appear for the variable Who.
So, finally we get the same answer as in the earlier Cypher and SPARQL queries.


The Datalog approach requires a different kind of thinking to the other query languages discussed in
this chapter, but it’s a very powerful approach, because rules can be combined and reused in
different queries. It’s less convenient for simple one-off queries, but it can cope better if your
data is complex.





























Summary


Data models are a huge subject, and in this chapter we have taken a quick look at a broad variety of
different models. We didn’t have space to go into all the details of each model, but hopefully the
overview has been enough to whet your appetite to find out more about the model that best fits your
application’s requirements.


Historically, data started out being represented as one big tree (the hierarchical model), but that
wasn’t good for representing many-to-many relationships, so the relational model was invented to
solve that problem. More recently, developers found that some applications don’t fit well in the
relational model either. New nonrelational “NoSQL” datastores have diverged in two main
directions:


	
Document databases target use cases where data comes in self-contained documents and
relationships between one document and another are rare.



	
Graph databases go in the opposite direction, targeting use cases where anything is potentially
related to everything.







All three models (document, relational, and graph) are widely used today, and each is good in its
respective domain. One model can be emulated in terms of another model—for example, graph data can
be represented in a relational database—but the result is often awkward. That’s why we have
different systems for different purposes, not a single one-size-fits-all solution.


One thing that document and graph databases have in common is that they typically don’t enforce a schema for the data they store, which can make it easier to adapt applications to changing requirements.
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