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PREFACE 

The Symposium on Mathematical Foundations of the Finite Element 
Method with Applications to Partial Differential Equations was held 
June 26-30, 1972, at the University of Maryland, Baltimore County Campus. 
Its purpose was to bring together a number of active numerical analysts 
currently involved in research in both theoretical and practical aspects of the 
finite element method. Among 250 participants were scientists from Canada, 
England, France, Germany, Ireland, Israel, Japan, Sweden, and Switzerland, 
thus providing the conference with a definite international flavor. 

In recent years the scientific community, in particular the engineers, 
have focused considerable attention on the use of the finite element method. 
This is evidenced by the numerous national and international conferences 
held on this topic. In the last two years alone, 15 principal international con
ferences have been devoted to the finite element method, with the main 
emphasis on engineering applications. 

As can be seen from the table of contents of these proceedings, the 
present symposium aims at bridging the gap between the mathematical and 
the practical aspects of the finite element method. 

These proceedings consist of three parts. Part I gives the content of the 
10 one-hour lectures given by Professor I. Babuska on the mathematical 
foundations of the field, while Part II contains all but one of the 16 one-hour 
lectures given by the invited speakers. These papers cover a large number of 
important results of both a theoretical and a practical nature. Part III con
tains the abstracts of 15-minute contributed talks. 

The Division of Mathematics of the University of Maryland, Baltimore 
County Campus, and the U. S. Office of Naval Research were the joint 
sponsors of the symposium. The generous financial assistance of the U. S. 
Navy and the combined hard work of many members of the University of 
Maryland, faculty and staff, contributed immeasurably to the success of this 
meeting. 

The editor wishes to express his sincere thanks to all these contributors. 
The advice and encouragement given by Professors I. Babuska, R. B. Kellogg, 
and G. J. Fix have been particularly helpful. 

Xlll 
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PART I 
SURVEY LECTURES ON THE 

MATHEMATICAL FOUNDATIONS 
OF THE FINITE ELEMENT METHOD 

Ivo Babuska and A. K. Aziz 
with the collaboration of 
G. Fix and R. B. Kellogg 
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FOREWORD 

As indicated in the preface, numerous meetings and con
ferences in the last few years have been devoted to recent 
developments in theory and applications of the finite ele
ment method. The symposium at the University of Maryland, 
Baltimore County Campus, differed from the others in its 
orientation which was exclusively directed toward the theo
retical foundations of the method. 

To this end the organizing committee, which consisted 
of A.K. Aziz (Chai rman), I. Babuska, N.P. Bhatia, and R.B. 
Kellogg, included in the program a series of ten lectures 
dealing exclusively with basic theoretical concepts. 

The notes which follow are an attempt to focus on some 
of the most important of these principles. In their prepara
tion, some constraints were imposed by the nature and goals 
of the conference. Therefore, they should be considered as 
notes describing the content of the ten lectures and not as 
a monograph on the finite element method. 

The notes were prepared by I. Babuska·*- and A.K. Aziz^ 
with significant contributions and help provided by R.B. 
Kellogg3 and G. Fix.4· In particular, Chapter 3 on regular
ity of the solution was written by R.B. Kellogg; Chapter 11 
and parts of Chapter 10 were written jointly with G. Fix. 

This work was supported in part by: 
!The Atomic Energy Commission, Contract No. AEC AT (40-1) 
3443/5. 

2The Naval Ordnance Laboratory Independent Research fund, 
and the Office of Naval Research, Contract No. NR-044-453. 

3The National Science Foundation, Grant No. NSF GP 20555. 
4The National Science Foundation, Grant No. NSF GP 18064. 
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I. BABUSKA AND A. K. AZIZ 

We would like to express our gratitude to Professors 
Kellogg and Fix for their valuable assistance and under
standing. We must not fail also to thank Mrs. L. Lau and 
Mrs. M. Small for their generous services, including the 
typing of the manuscript. 

I. BABUSKA and A. K. AZIZ 
College Park 
September 1972 

4 



CHAPTER 1. PRELIMINARY REMARKS 

1.1. Introduction. 

The development of approximate methods for the 
numerical solution of partial differential equations has 
attracted attention of mathematicians, physicists and en
gineers for a long time. The methods, their mathematical 
foundation and their implementation have had a considerable 
impact on theoretical mathematics and on the level of so
phistication of computational aids. Roughly speaking we 
may distinguish two stages in this development, namely the 
precomputer period and the computer era. 

An excellent survey of the state of the art con
cerning the numerical solution of differential equations,up 
to the end of the precomputer period may be found in [1] 
and [2]. 

The application to partial differential equations 
is exemplified by the work of Southwell (see [3])and others. 

The advent of the computer served as a stimulus 
for new ideas in theory and in applications. Engineers, 
physicists and others have suggested many sophisticated, 
but often not theoretically founded, methods; nonetheless a 
great deal of experience has been gained. Mathematics has 
played a very central and essential role in this develop
ment, in particular in the understanding of the theoretical 
foundation of these methods, their applications and further 
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I. BABUSKA AND A. K. AZIZ 

very effective and new computer oriented methods have been 
devised by the numerical analysts. It can be stated without 
exaggeration that the present day numerical methods are es
sentially different from those of the precomputer period, 
and are primarily based on the achievements in the last 15 
to 20 years. 

The development of numerical methods for partial 
differential equations was particularly influenced by the 
innovations brought about by the computer era. One of the 
typical by-product is the present day1s frequent use of the 
finite element method for the numerical solution of partial 
differential equations especially as far as the elliptic 
partial differential equations are concerned. 

In recent years considerable attention has been 
focused on the finite element method primarily in the en
gineering literature. In the last few years an increasing 
number of papers on the finite element method has also 
appeared in the numerical analysis literature. 

An extensive bibliography may be found in [4], 
[10] and [11]. For an excellent account of the interplay 
of mathematical and engineering ideas in the finite element 
method the reader is referred to [5]. [6] may be consulted 
for a mathematical formulation and [12] for a survay of the 
method. 

The attention accorded to the finite element 
method by the scientific community is further evidenced by 
numerous national and international conferences held on 
this topic. In the last two years alone, 15 principal 
international conferences have been devoted to the finite 
element method, not counting a large number of small 
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FOUNDATIONS OF THE FINITE ELEMENT METHOD 

symposia, workshops and short courses in this field. 

1.2. Numerical solution of partial differential equations. 

In numerically solving a partial differential 
equation one first expresses approximately the solution by 
a finite number of parameters. Since, in general the 
solution is sought in a given class of functions, it is 
essential that one be able to express any function of this 
class in terms of a finite number of parameters, with a 
reasonable accuracy. Further details in this connection 
may be found in [7] and [8]. 

Secondly, we need to transform the given differ
ential operator to expressions relating these parameters. 
For a general abstract approach the reader may consult 
chapter 14 of [9]. If the differential operator is linear 
then, in general, the relations among the parameters ex
pressing the solution is also linear i.e., we are led to a 
linear system of algebraic equations. However, as supported 
by the general theory (see [7], [8])> in this process one 
cannot avoid dealing with a large number of parameters of 
order of at least a hundred or a thousand. Moreover, we 
need to determine the coefficients of the matrix, the number 

4 6 of which may be of order 10 or 10 
To avoid this complication it is necessary (but 

not sufficient) to choose the parameters in such a way that 
the resulting matrix is sparse. If we are seeking an ap
proach which is applicable to the problems encountered in 
general practical cases, there are other restrictions too. 

One of the most successful methods reflecting 
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I. BABUSKA AND A. K. AZIZ 

these features and other important aspects is the finite 
element method. 

1.3. Finite Element Method. 

The name finite element method was invented by 
engineers (see [4]). We will be interested in a slightly 
more general version which we feel reflects all essential 
theoretical features of the classical finite element method. 
We shall call it the general finite element method. For the 
sake of brevity we will not in the sequel emphasize the 
word "general" nevertheless we shall always interpret it in 
this general context. 

A cursory analysis of the so called finite 
element method reveals that there are two principles which 
appear to be essential from a mathematical point of view. 

1) The choice of local parameters of the 
solution. 

2) The use of various types of variational 
principles for transforming the given 
equations to relations among the para
meters of the solution. 

By the choice of local parameters it is under
stood that if the approximate solution u is expressed 
in terms of the parameters a. as u = £ α,φ, , then the 
base functions φ have only small supports and if the number 
of the parameters is increased then the support of φ. is 
decreased. A typical case is the introduction of the para
meters which describe the set S. of the piecewise linear 

h r 
function (see Fig. 1.3.1). 
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FOUNDATIONS OF THE FINITE ELEMENT METHOD 

It is clear that a change in one parameter, say ou , changes 
the function only in the interval <2h,4h>. Obviously, for 
the set of piecewise linear functions, parameters may be in
troduced which are not local. There is a question as to 
whether one can find local parameters for every finite 
dimensional subspace. To answer this question consider the 
subspace S = £ ou cos ix of all trigonometric poly
nomials. Indeed here we have quite a different situation. 
Thus, the assumption concerning the possibility of the 
introduction of local parameters for the solution means the 
possibility of a suitable selection of a finite dimensional 
subspace and a proper choice of the basis. 

We remark that the term variational principle, in 
general, is understood in a broad sense. We interpret 
this term in a narrow sense. More precisely, we use the 
variational principle to mean that its application to a 
linear differential equation, transforms the given equation 
to a system of linear algebraic equations with the matrix 
M , provided the space S of possible approximate 

9 
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I. BABUSKA AND A. K. AZIZ 

solutions is linear. The elements of M are given by the bi
linear form Β(φ.,φ.) , where φ. and φ. are basis 
functions. Moreover, we assume that the bilinear form is 
such that whenever φ. and φ. have disjoint support then 
Β(φ1,φ:)) = 0 . 

This is what we generally understand when we say 
that the differential equation has been transformed to 
relations among the parameters of the solution, by the use 
of the variational principle. Under our assumptions the 
matrix M is sparse and the number of entries in the 
rows of the matrix is relatively very small, in fact is 
most frequently independent of the size of the matrix. 

The introduction of the parameters and the con
struction of the matrix (variational principle) have very 
important physical significance in every stage in the 
application of the finite element method to engineering 
problems. This feature has greatly contributed to the 
widespread use of the finite element method. However, from 
the theoretical point of view, this aspect does not appear 
to be so significant. 

1.4. The sources of the theory of the finite element 
method. 

The theory of the finite element method in all 
its complexity is based on the fundamental knowledge in 
different fields. We feel that the heart of the theory of 
the finite element method lies in the following sources. 

1) Functional analytic theory of partial 
differential equations. 

2) Theory of approximation by piecewise 
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FOUNDATIONS OF THE FINITE ELEMENT METHOD 

polynomial functions. 
3) Computer science. 
4) Concrete applications in different 

fields such as mechanics etc. 
It is clear that all these sources have contrib

uted greatly to the present day development of the finite 
element method. It would be impossible (and would not 
serve a useful purpose) if we tried to trace the different 
sources with important impact on the method, other than the 
advent of computers. 

1.5. The mathematical foundations of the finite element 
method. 

The main purpose of these notes is to assemble 
some basic results, and to treat them from a unified point 
of view. 

These notes do not pretend to be complete, never
theless they aim to develop the fundamentals of the method 
in such a way that it may be applied to a fairly large 
number of problems in different fields. For obvious 
limitations the discussion has been confined to some im
portant preliminaries and basic ideas. 

The aim of these notes is the development of a 
general and complete theory. Our goal is to underline the 
basic ideas and illustrate them by considering a selective 
number of examples. The chosen examples are very simple in 
appearance; however, they exhibit the typical characteristic 
of the problems encountered in general applications and at 
the same time, because of the simplicity of the form of the 
equations, many difficulties of a technical nature are 

11 
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avoided. For the above reason we have confined our dis
cussion to two dimensional problems only. The setting of 
the problems is in a general framework and the approach 
utilized admits in all cases immediate and far reaching 
generalizations. In some cases a more special treatment 
could prove to be shorter and easier, but without a general 
character. 

The model problems are selected not merely be
cause of their mathematical interest, but also for their 
relevance from the point of view of applications. Therefore 
we have not restricted ourselves to the case of self-adjoint 
problems. In mechanics in the case of the second order 
equations it is natural to consider the self-adjoint form, 
but this is not the case in the diffusion problems e.g., 
diffusion in a moving medium etc. 

12 
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CHAPTER 2. THE FUNDAMENTAL NOTIONS. 

2.1. Introduction. 

In these notes for the sake of technical simplicity 
we shall be concerned primarily with problems in two dimen
sions, but the approach used will be of quite general char
acter. The properties of the domains considered play a 
fundamental role as far as the behavior of the solutions of 
partial differential equations are concerned. In the sequel 
we will be mainly interested in bounded domains, and of 
course in the entire plane R? . First, we shall classify 
more precisely the type of domains which will be considered 
in this sequel. 

2.2 Domains. 

Let R? denote the two dimensional Euclidean 
space. For x Ξ (x ,x ) 6 R we use the notations: 

2, 2 ||x|| = /χχ+χ2 and |x| = max( \x±\ , |x2 | ) 

Further let Ω be a given bounded domain, with 
the boundary Ω# which fulfills the following assumptions. 

rs] There exists a system of local coordinates x. , i = 1,2, 
s = 1,2,···,ν and open intervals I € R- and I T ^ Ί , r s i s s 
and functions φ defined on I which induce a mapping s s 
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Y of I such that *s s 

(2.2.1) xs(is) = «; =|ί3],Φ3(χί8]))|χ{8]€ΐ3} 

V 
and U- Ω'1 = Ω* , 

s=l s 

where 

<2.2.2, «;· - | 4 s , -* s <4 s l ' ) i4 s : i € I i } · 
with Ω locally on one side of Ω Ts , 
We shall say that the domain Ω is smooth if all functions 
φ have derivatives of all orders. The domain Ω is Ts 
called Lipschitzian if every function φ satisfies a 
Lipschitz condition. 

We remark that in many of our considerations we 
do not need that φ be infinitely differentiable, we 
merely require that they be sufficiently smooth. Neverthe
less in order to avoid technical difficulties we shall al
ways assume that φ are infinitely differentiable, when
ever we use the term smooth domain. The Lipschitzian 
domain would be the most general domain with which we shall 
deal. In this setting inevitably we exclude some important 
domains such as those shown in Fig. 2.2.1. 

(a) (b) (c) 
Fig. 2.2.1 
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or a more general domain. 
We shall also deal with some special domains where 

the functions φ are merely piecewise smooth. 
£ 2.3. Sobolev spaces H (Ω) . 

Consider a Lipschitz domain Ω and let Ε(Ω) be 
the space of all [real] infinitely differentiable functions 
on Ω such that all the derivatives have continuous exten
sions to Ω . Furthermore, denote by Ρ(Ω) C Ε(Ω) the 
subspace consisting of all functions with compact support 
in Ω . As usual let L (Ω) be the space of square inte-
grable functions u on Ω with the norm 

(2.3.1) ||u|£ = j u 2 d x , 
Ω 

where dx = dx-, dx . The scalar product will be denoted as 
(u,v) .v . Sometimes we shall use the notation 

L2(fl) = Η°(Ω) . 
Suppose now that I £ 1 is an integer. The 

Sobolev space H (Ω) (respectively HQ(Ω)) will be defined 
as the closure of Ε(Ω) (respectively Ρ(Ω)) in the norm 
||· || , where 

ΕΓ(Ω) 

(2.3.2) ||- ir o = £ l|Dau 
H (Ω) 0*|a|*A 2 

and 
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(2.3.3) -.<* 3 
al+ a2 

8xl 3x2 
a a ' a " («1»a2) 

(a. are non-negative integers.) 

We now define the Sobolev spaces with fractional 
derivatives which were introduced by Aronszajn [1] and 
Slobodetska [2] (see also [3]). For 0 < a = [a] + σ , 
0 < σ < 1 and [a] = integral part of α , we define for 
u € EÖÖ 

(2 .3 .4) ||u||2 = ||u||2 + 
Ηα(Ω) H l a J ( n ) Σ IAI 

K|=[a] Ησ(Ω) 

where 

( 2 . 3 . 5 ) 
Η°(Ω) 

Ω Ω 

f Kt)-u(T)J2 dtdT 
;t-T||2+2a 

and H (Ω) is defined as the closure of Ε(Ω) in the norm 
(2.3.4). Similary H (Ω) will be defined as the closure 
of Ρ(Ω) in the norm defined by (2.3.4). In this defini-

Û / 1 tion of H (Ω) the value a = n + — , where n is an 
integer is excluded. For this value of a the norm must be 
defined differently. 

The spaces H (Ω) respectively H (Ω) are 
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obviously Hilbert spaces. We may define the space HCi(n)
and H~(n) also for negative value of a as the closure

of E(IT) in the norm II· II Ci where for Ci < a
H (n)

(2.3.6) Ilull Ci
H (n)

JnUVdX

and the norm in H~(n) is similarly define. Obviously

we may identify HCi(n) and H~(n) , Ci < a with the dual
-Ci

spaces to H (n) and H~a(n) respectively.

We define the Sobolev spaces for a bounded domain

n , our definition is also valid for n = R2 . In this

case we may introduce the norm also by means of Fourier

transform.

(Fu) (0) 0.(0) J i4r x>e ' u(x)dx

R2

where ° = (°1 ,°2) and ~,x>= °lxl + °2x2 · It is well

known that

cwhere L2 (R2) is the usual space of complex square

integrable functions.

19
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Therefore for I an i n t e g e r 

(2 .3 .7 ) | |u| |2. = ( 2 π ) - 2 

H (Ω) 

2 2 ,
2 with μ = σ + σ~ 

[ |(Fu)(o)|2[l+p2+---+y2^da , 
R2 

This norm i s obviously equ iva len t to the norm ||u|| 
Hj(n) 

given by 

(2 .3 .8 ) ||u||2 = (2ir) 2 f | (Fu) (σ) | 2 [l+μ2] Ada . 
Η;(Ω) J L J 

R2 

We may define also the space H (R ) for non-
integral values of £ by formula (2.3.8). By direct 
computation it is possible to verify that 

||u|| « ||u|| 1 ) , for a l l I . (We note t h a t the 
H*<R2) H^(R2) 

Ï ) Norms || · II and | | · | | a re sa id to be equ iva len t 
« i H2 

i f t he r e e x i s t cons tan ts 0 < C- < C- < « such t h a t 

c J u L * IM!H * c2|u|| 
We abreviate this by writing ||· L ~ ||· UH . Throughout 
these notes C denotes a generic constant with possibly 
different values in different contexts. 

20 
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constants C- and C appearing in the definition of the 
equivalent norms are not uniformly bounded in the case of 
the value λ lies between two integers.) 

We shall list some basic well known properties of 
the Sobolev spaces. For a survey of the recent results in 
the theory of Sobolev spaces the reader is referred to [4]. 

Obviously for I $ I9 H λ(Ω) 3 H 2(Ω) , with 

||·|Ι ο < C IMI o , i.e., the imbedding of H (Ω) into 1 V 2 H (Ω) Η (Ω) 

H (Ω) is continuous. Moreover for £- < ß« and Ω 
bounded this imbedding is also compact, i.e., the unit 
sphere in H 2(Ω) is compact in H *(Ω) . 

If u £ H (Ω) , & > 1 , then u is continuous 
and ||u|| * C||u|| where ||u|| =max|u(x)| λ \ [Inn 

C H (Ω) c χ£Ω 

dimensional case we need to require that % > — ]. The 
continuity assertion of u does not hold for I = 1 . 

I The spaces H (Ω) as we have defined generate a 
Hilbert scale, more precisely they are equivalent to a 
Hilbert scale. For a detailed study of Hilbert scales the 
reader may consult [5]. 

Λ 1) Since the norm in H is given by an integral in the 
sense of Lebesgue function u is continuous after 
possible change of its values on the set of measure 
zero. 

21 
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In what follows we shall describe briefly the 
main ideas involved in a Hilbert scale which connects the 

£1 Z2 
space H (Ω) with the space H (Ω) , £ > £- . 

For v £ H (Ω) we define the functional 

I € [H (Ω)] so that for w € H (Ω) we have 

(2.3.8) A(w) = (w,v) £ 
H Χ(Ω) 

and may write 

(2.3.9) Ä(w) = (w,z) - (w,Vv) 
2 2 

H Ζ(Ω) Η Ζ(Ω) 

The operator V may be considered as an operator in 

H (Ω) or in H (Ω) . In both cases the operator is 
h 

bounded, self-adjoint, positive, and in H (Ω) , V is a 
compact operator % h 

Denoting by V the positive square root (which 
exists and it is uniquely determined), it is easy to show 

h that V induces an isometric isomorphism of the spaces 
£- &2 ι̂  &Ί 
H (Ω) and H (Ω) , the operator V2 maps H (Ω) into 
^9 V \s 

H (Ω) , with (u,v) = (V2u,V2v) and its 1 2 
H (Ω) H (Ω) 

-^ ^2 ^Ι 
inverse V 2 maps H (Ω) onto H (Ω) with 
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(u,v) Ä = (V \,V \) % 

H 2(Ω) Η 1(Ω) 

-h By denoting T = V we may write 

(2.3.10) V = T 2 = y~\2P 
L-j k k 
k=l 

where λ, are the eigenvalues and P, are the projection 
operators onto the subspaces of eigenfunctions g of the 
equation 

Vu = X^u 

We know that λ^ - S λ^ and 0 < >k + 0 as k -> «> . Thus 
we have 

(2.3.11) T2 = £ λ " \ 
k-l 

We have 

(2.3.12) ||u|| £ = ||Tu|| £ 

H 2(Ω) Η Χ(Ω) 

and for £χ <: γ * %2 , w e define 
γ-£1 

(2.3.13) ||u|H ( Ω ) - | | / r t u|| % 
Ύ H Χ(Ω) 

23 
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Now i f 

(2.3.14) u = £ a ^ 
k = l 

then 

(2.3.15) ||u||2£ = £ 1^ 2 

"V 
H """(Ω) k = l 

(2.3.16) |lu||2 = £ Χ~2\% 
H 2(Ω) k = l 

2 V Ä 1 . i 2 (2·3·ΐ7> " 4 (Ω) = Σ V2 2 _ 1 i \ i 
γ k = l 

and hence we s e e t h a t 

ft2-r Y-A1 

(2.3.18, |„iH (e ) , W » | *> · M ' J - « . 
Ύ H 1 (Ω) Η 2(Ω) 

It is possible to show that | · | ( . is equivalent to the 
norm | · | (see [5]) introduced earlier. 

ΗΥ(Ω) 

We notice that when connecting any 
γ1 Ύ2 two spaces H (Ω) and H (Ω) , I < γ < γ < 1~ , by 

a Hilbert scale we obtain equivalent spaces to those 
described above. 
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