RODD'S CHEMISTRY OF CARBON COMPOUNDS

SECOND EDITION

EDITED BY

S. COFFEY

M. Sc., D. Sc., F.R.I.C.

VOLUME I

ALIPHATIC COMPOUNDS

PART C:

MONOCARBONYL DERIVATIVES OF ALIPHATIC HYDROCARBONS

ANALOGUES AND DERIVATIVES

ELSEVIER PUBLISHING COMPANY

RODD'S CHEMISTRY OF CARBON COMPOUNDS

ELSEVIER PUBLISHING COMPANY 335 JAN VAN GALENSTRAAT, P.O. BOX 211, AMSTERDAM

AMERICAN ELSEVIER PUBLISHING COMPANY, INC. 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017

ELSEVIER PUBLISHING COMPANY LIMITED 12B, RIPPLESIDE COMMERCIAL ESTATE RIPPLE ROAD, BARKING, ESSEX

LIBRARY OF CONGRESS CATALOG CARD NUMBER 51-14658

WITH 17 TABLES

ALL RIGHTS RESERVED

THIS BOOK OR ANY PART THERE OF MAY NOT BE REPRODUCED IN ANY FORM, INCLUDING PHOTOSTATIC OR MICROFILM FORM, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS

PRINTED IN THE NETHERLANDS

RODD'S CHEMISTRY OF CARBON COMPOUNDS

ADVISORS

Professor Sir ROBERT ROBINSON, O.M., M.A. (Oxon.), D.SC. (Manc.), HON. D.SC. (Lond., Liv., Wales, Dunelm, Sheff., Belfast, Bris. and Oxon.), HON. LL.D. (Manc., Edin., Birm., St. Andrews, Glas.), HON. D. PHARM. (Madrid and Paris), HON. F.R.S.E., F.R.S., London

Chairman

- Sir JAMES COOK, PH.D., D.SC. (Lond.), HON. SC.D. (Dublin), HON. D.SC. (Nigeria), HON.D. DE L'U. (Rennes), F.R.S., F.R.I.C., Exeter
- Professor R. N. HASZELDINE, M.A., PH.D., SC.D. (Cantab.), PH.D., D.SC. (Birm.), F.R.I.C., Manchester

Professor R. D. HAWORTH, D.SC., PH.D. (Manc.), B.SC. (Oxon.), F.R.S., F.R.I.C., Sheffield

Professor Sir Edmund Hirst, M.A., PH.D. (St. Andrews), D.SC. (Birm.), F.R.S., F.R.I.C., *Edinburgh*

Professor Sir EWART JONES, M.A. (Oxon.), PH.D. (Wales), D.SC. (Manc.), F.R.S., F.R.I.C., Oxford

Dr. E. H. RODD, D.SC. (Lond.), F.C.G.I., F.R.I.C., Limpley Stoke, Bath

Professor Lord TODD, M.A. (Cantab.), D.PHIL. (Oxon.), D.SC., HON. LL.D. (Edin. and Glas.), DR. PHIL. NAT. (Frankfurt), HON. D.SC. (Exeter, Leics., Lond., Madrid and Wales), F.R.S., F.R.I.C., Cambridge

RODD'S CHEMISTRY OF CARBON COMPOUNDS

VOLUME I

GENERAL INTRODUCTION

ALIPHATIC COMPOUNDS

*

VOLUME II

ALICYCLIC COMPOUNDS

*

VOLUME III

AROMATIC COMPOUNDS

*

VOLUME IV

HETEROCYCLIC COMPOUNDS

*

VOLUME V

MISCELLANEOUS

GENERAL INDEX

×

RODD'S CHEMISTRY OF CARBON COMPOUNDS

A modern comprehensive treatise

SECOND EDITION

Edited by

S. COFFEY M.Sc. (London), D.Sc. (Leyden), F.R.I.C. formerly of I.C.I. Dyestuffs Division, Blackley, Manchester

VOLUME I PART C

MONOCARBONYL DERIVATIVES OF ALIPHATIC HYDROCARBONS

> THEIR ANALOGUES AND DERIVATIVES

ELSEVIER PUBLISHING COMPANY

AMSTERDAM LONDON NEWYORK

1965

CONTRIBUTORS TO THIS VOLUME

M. F. ANSELL, D.SC., PH.D., F.R.I.C. Department of Chemistry, Queen Mary College, London, E.I

J. G. BUCHANAN, M.A., PH.D., Department of Organic Chemistry, The University, Newcastle upon Tyne, 1

R. E. FAIRBAIRN, B.SC., PH.D., F.R.I.C. Dyestuffs Division, I.C.I. Ltd., Hexagon House, Blackley, Manchester 9 (Index)

R. H. GIGG, B.SC., PH.D., A.R.I.C., National Institute for Medical Research, Mill Hill, London, N.W.7

R. HOWE, B.SC., PH.D., A.R.I.C. Pharmaceuticals Division, I.C.I. Ltd., Alderley Park, Macclesfield

N. A. HUGHES, B.A., PH.D. Department of Organic Chemistry, The University, Newcastle upon Tyne, 1

F. J. McQUILLIN, M.A., D.PHIL. Department of Organic Chemistry, The University, Newcastle upon Tyne, 1

G. A. SWAN, D.SC., PH.D., F.R.I.C. Department of Organic Chemistry, The University, Newcastle upon Tyne, 1

PREFACE TO VOLUME IC

THE reasons for this revised edition of *Rodd's* "Chemistry of Carbon Compounds", the general details with regard to Volume I, which deals with aliphatic (acyclic) compounds and the method adopted for splitting up the primary volume into a series of smaller sub-volumes for the greater convenience of the reader, are set out in the Prefaces to Volumes IA and IB.

The descriptive chapters in Volume IA dealt with aliphatic hydrocarbons and their halogen-substituted derivatives; those in Volume IB described the remaining singly-linked, mono-substituted aliphatic hydrocarbons.

The present book, Volume IC, contrives to describe a single broad class of compounds, namely, aliphatic monocarbonyl compounds, their analogues and derivatives, *i.e.* derivatives of aliphatic hydrocarbons in which one carbon atom carries a doubly-linked oxygen, sulphur or nitrogen atom, or two or more such atoms linked singly or by both modes of attachment. Aldehydes and ketones and their derivatives are discussed in Chapter 8, monocarboxylic acids and their analogues in Chapter 9, while Chapter 10 describes the chemistry of carbon monoxide, isocyanides and fulminic acid, compounds containing a single "bivalent" carbon atom, and Chapter 11, that of carbonic acid and its wide range of derivatives. Again, for obvious chemical reasons, halogeno- and nitro-aldehydes and -ketones are also described in Chapter 8 and halogeno-alkanemonocarboxylic acids are included in Chapter 9; nitroalkanemonocarboxylic acids will be described in Chapter 15 (Volume ID) along side aminoalkanecarboxylic acids.

S. Coffey

January, 1965

This page intentionally left blank

Preface	•						VII
List of common abbreviations and symbols used							XIV
Official publications							XVI
Scientific journals and periodicals							XVI

Chapter 8. Aldehydes and Ketones

by J. G. Buchanan, N. A. Hughes, F. J. McQuillin and G. A. Swan

Ι,	Introduction	I							
2.	Saturated aldehydes	3							
	a. Aldehydes, alkanals, $C_n H_{2n+1}$ CHO	3							
	(i) Formation and preparation, 4 - (ii) Reactions of the aldehydes, 10 -	-							
	(iii) Aldehydes in synthetic reactions, 14 – (iv) Individual compounds, 18								
	b. Halogen substitution products of the saturated aldehydes	24							
	c. Nitro-aldehydes	26							
	d. Aldehyde peroxides	26							
	e. Ethers and esters of the aldehyde hydrates	27							
	(i) Hemiacetals; 1-alkoxyalkan-1-ols, 27 – (ii) Acetals; 1,1-dialkoxyalka-	•							
	nes, 28 - (iii) 1,1-Dihalogenoalkanes, 1-halogeno-1-hydroxyalkanes and 1-								
	alkoxy-1-halogenoalkanes, 30 – (iv) Carboxylic esters of the aldehyde								
	hydrates, 31 – (v) Aldehyde bisulphite compounds and aldehyde sulph-								
	oxylates, 32								
	f. Sulphur derivatives of the saturated aldehydes	- 33							
	(i) Alkane-1,1-dithiols, 34 – (ii) Thioaldehydes; alkanethials, polymeric								
	thioaldenydes and their sulphones, 34 – (11) Inioacetals; I,I-Disalkythio-								
	Alkanes and arkyndenesurphones; $1,1$ -disarkynsurphonynarkanes, $37 - (10)$								
	a Nitrogen containing derivatives of the aldehydes	40							
	(i) Compounds derived from aldehydes and ammonia $A_0 = (ii)$ Compounds	40							
	derived from aldehydes and alkylamines. $44 - (iii)$ Aldoximes. $45 - (iv)$								
	Azines and substituted hydrazones. 47								
3.	Unsaturated aldehydes	48							
2	a. Olefinic aldehydes: alkenals, C.H., CHO	48							
	b. Acetylenic aldehydes; alkynals, C, H _{2,-2} CHO	5 I							
	c. Di- and poly-olefinic aldehydes	52							
4.	Saturated ketones	52							
•	a. Ketones: alkanones: oxoalkanes. C.H., O	52							
	(i) Methods of formation and preparation, 53 - (ii) Properties and re-								
	actions, 58 – (iii) Individual ketones, 65								
	b. Halogen substitution products of the ketones	70							
	c. Nitrosoketones	71							
	d. Nitroketones	71							

	 e. Derivatives of the ketone hydrates (i) Ketone acetals; ketals; dialkoxyalkanes, 72 - (ii) Ketone halides, 72 - (iii) Ketone bisulphite compounds and sulphoxylates, 73 	72
	 f. Sulphur analogues of the saturated ketones (i) Alkane-gem-dithiols, 73 - (ii) Thioketones, polymeric thioketones and their sulphones, 74 - (iii) Thioketals; bisalkylthioalkanes and derived sulphones, 75 	73
	g. Nitrogen analogues of the ketones (i) Nitro compounds, 76 - (ii) Compounds with ammonia, 76 - (iii) Compounds with alkylamines, 76 - (iv) Hydroxylamine derivatives; ketoximes, 76 - (v) Hydrazine derivatives, 78 - (vi) Ketone semicarbazones, 80 - (vii) Miscellaneous derivatives, 80	76
5.	Unsaturated ketones and ketens.	81
0	a. Ketens, RR'C:CO	8т
	(i) Formation and preparation, 81 – (ii) Properties, 82	
	b Olefinic ketones C H. (C) C H.	82
	(i) Formation and preparation $82 - (ii)$ Reactions 84	05
	C Diolefinic ketones	87
	 (i) Individual compounds, 87 - (ii) The action of ammonia on acetone, me- sityl oxide and phorone, 88 - (iii) Action of hydroxylamine and semicarba- zide on mesityl oxide and phorone. 80 	
	d Acetylenic ketones	00
		90
	Chapter 9. Monobasic Carboxylic Acids	
	by M. F. Ansell and R. H. Gigg	
T	Introduction	02
 	Saturated monocarboxylic acide	95
4.	E E E E E E E E E E E E E E E E E E E	90
	d. Formis sold of (ii) Motol formatos xoo (iii) Holidas of formis sold	90
	(i) Formic acid, $90 - (11)$ Metal formates, $100 - (11)$ Handes of formic acid	
	(vi) Hydrogen evanide $104 - (vii)$ Eunctional derivatives of formic acid	•
	(v_1) Tryutogen cyanide, 104 – (v_1) Functional derivatives of formic acid too – (v_1) Derivatives of orthoformic acid 112	
	b Saturated fatty acids	
	 (i) Formation and preparation of primary and secondary fatty acids, 115 - (ii) Synthesis of acids with tertiary groups, 123 - (iii) Physical properties 	
	of fatty acids, 124 (iv) Chemical properties and reactions of fatty acids	,
	126 – (v) Individual fatty acids, 130	
3.	Functional derivatives of the fatty acids	139
	a. Esters	139
	(i) Methods of formation, 139 – (ii) Properties, 144 – (iii) Reactions, 144 -	-
	(iv) Individual esters, 146	
	b. Acid or acyl halides	150
	(i) Formation, 150 – (ii) Properties and reactions of acyl halides, 152 -	-
	(iii) Individual acyl halides, 154	
	c. Mixed anhydrides with inorganic oxy-acids	155
	d. Carboxylic acid anhydrides	156
	(i) Formation of simple anhydrides, 156 - (ii) Formation of mixed anhy	
	drides, 158 – (iii) Properties and reactions of acid anhydrides, 158 – (iv	١
	drides, 158 – (iii) Properties and reactions of acid anhydrides, 158 – (iv Individual anhydrides, 159)
	 drides, 158 - (iii) Properties and reactions of acid anhydrides, 158 - (iv Individual anhydrides, 159 e. Peroxy-acids (per-acids) and acyl peroxides	160
	 drides, 158 - (iii) Properties and reactions of acid anhydrides, 158 - (iv Individual anhydrides, 159 e. Peroxy-acids (per-acids) and acyl peroxides	. 160
	 drides, 158 - (iii) Properties and reactions of acid anhydrides, 158 - (iv Individual anhydrides, 159 e. Peroxy-acids (per-acids) and acyl peroxides (i) Formation of peroxy-acids, 160 - (ii) Properties of peroxy-acids, 162 - (iii) Reactions of peroxy-acids, 162 - (iv) Peroxy-esters, 163 - (v) Diacy 	160 - 1

x

 f. Amides (i) General methods of preparation, 166 – (ii) Properties and reactio amides, 171 – (iii) Individual carboxamides, 173 	165 ns of
 g. Carbohydrazides (i) Preparation, 173 – (ii) Properties and reactions, 174 – (iii) Individual Carbohydrazides, 174 	173 idual
h. Acyl azides	175
i. Nitriles or alkyl cyanides	· · 177
(1) General methods of preparation, 177 – (11) Properties and reactions – (iii) Individual nitriles, 182	, 179
j. Carboxamide chlorides and imidoyl chlorides	182
k . Alkyl imidates \ldots \ldots \ldots \ldots \ldots	183
I. Amidines	185
(i) Hydroxamic acids, 189 – (ii) Hydroximoyl chlorides, 190	189
n. Amidoximes	191
b. Hydroxamic acid-oximes (oxyamidoximes) and mitroso-oximes	191
p. Hydraziumes, amurazones and 1,2-umydroiormazans	192
4. Infocationarboxylic acids and esters	193
(i) Preparation of thiocarboxylic acids. $194 - (ii)$ Preparation of thio	ol- or
S-alkyl thio-esters, 195 – (iii) Preparation of thion-esters or O-alkyl	thio-
esters, 195 – (iv) Reactions of monothiocarboxylic acids, 196 – (v) In	divi-
dual monothiocarboxylic acids, 196	
 b. Dithiocarboxylic acids and their derivatives (i) Preparation, 196 – (ii) Reactions, 196 – (iii) Individual dithiocarbox acids, 197 	196 xylic
c. Nitrogen derivatives of thiocarboxylic acids	197
(i) Thionamides; thioamides, 197 – (ii) Thiolimidates (isothioam iminothioethers, thiolimidic esters, S-alkyl thioimidates), 200	ides,
5. Halogen substitution products of the fatty acids	201
a. Halogenated acetic acids	207
b. Halogenated propionic acids	212
c. Halogen derivatives of higher fatty acids	214
6. Derivatives of ortho-fatty acids	215
a. Ortho-esters (i) Preparation, 215 – (ii) Reactions, 216 – (iii) Individual ortho-esters	215
b. Other ortho-compounds	218
7. Unsaturated aliphatic monocarboxylic acids	218
 a. Introduction	218 Siolo-
b. Synthesis of unsaturated acids	220
(i) $\alpha\beta$ -Ethylenic acids, 220 – (ii) $\beta\gamma$ - and $\gamma\delta$ -Ethylenic acids, 221 – Ethylenic acids with isolated double bonds, 222 – (iv) $\alpha\beta$ -Acety acids, 222 – (v) Acetylenic acids with isolated triple bonds, 223 – Allenic acids, 223	(iii) lenic (vi)
c. Properties and reactions	224
(i) Hydrogenation and reduction, 224 – (ii) Polymerisation, 225 – (iii) dation, 225 – (iv) Action of alkalis, 226 – (v) Action of sulphuric acid – (vi) Addition of halogens, 227 – (vii) Addition of mercuric acetate, 2 (viii) Characteristic reactions of $\alpha\beta$ -unsaturated acids, 227	Oxi- , 226 227 –

XI

d.	Unsaturated acids with three carbon atoms	228
e.	Unsaturated acids with four carbon atoms	230
f.	Unsaturated acids with 5–10 carbon atoms	233
	(i) C_5 -acids, 223 – (ii) C_6 -acids, 234 – (iii) C_7 -acids, 237 – (iv) C_8 -acids, 238 –	
	(v) C ₉ -acids, 239 – (vi) C ₁₀ -acids, 239	
g.	Unsaturated acids with 11-17 carbon atoms	240
	(i) C_{11} -acids, 240 - (ii) C_{12} -acids, 241 - (iii) C_{13} -acids, 242 - (iv) C_{14} -acids,	•
	242 – (v) C ₁₅ -acids, 243 – (vi) C ₁₆ -acids, 243	
h.	Unsaturated acids with 18 carbon atoms	244
	(i) -Enoic and -ynoic acids, 244 – (ii) -Dienoic and -enynoic acids, 246 –	
	(iii) -Trienoic and -enediynoic acids, 247 - (iv) -Tetraenoic acids, 249	
i.	Unsaturated with more than 18 carbon atoms	249
	(i) C_{20} -acids, 249 (ii) C_{22} -acids, 251 (iii) C_{23} -acids, 252 (iv) C_{24} -acids,	

 $252 - (v) C_{26}$ -acids, $252 - (vi) C_{27}$ -acids, 252

Chapter 10. Carbon Monoxide, Isocyanides and Fulminic Acid

by M. F. Ansell

• •	•		254
 			255
 			257
 			258
 			262
 			264
· · ·	· · · ·	· · · · ·	· · · · · · ·

Chapter 11. Carbonic Acid and its Derivatives

by R. Howe

Metacarbonic acid and its esters	268
a. Esters of carbonic acid.	271
(i) Primary esters of carbonic acid; alkyl hydrogen carbonates, 271 - (ii)	-
Neutral esters, dialkyl carbonates, alkoxycarbonyloxyalkanes, 272 - (iii)	
Percarbonates, 274	
b. Anhydrides of primary esters of carbonic acid	274
(i) Esters of dicarbonic acid, 274 - (ii) Mixed anhydrides of primary carbo-	
nates and monocarboxylic acids; alkoxycarbonyl esters, 275	
Halides of carbonic acid	-276
a. Monohalide esters	277
(i) Chloroformic esters, alkyl chloroformates, chlorocarbonates or alkoxy-	
carbonyl chlorides, 277 – (ii) Alkyl fluoroformates, 278	
b. Carbonyl halides	279
Sulphur analogues of carbonic acid and their derivatives	281
a. Carbon oxysulphide and carbon disulphide	282
b. Thiocarbonic acids	284
(i) Monothiocarbonic acids, 284 - (ii) Dithiocarbonic acids, 285 - (iii)	•
Trithiocarbonic acid, 287	
c. Halides of the thiocarbonic acids	-289
Amides and related derivatives of carbonic acid and the thiocarbonic	
acida	200
	 Metacarbonic acid and its esters. a. Esters of carbonic acid. (i) Primary esters of carbonic acid; alkyl hydrogen carbonates, 271 - (ii) Neutral esters, dialkyl carbonates, alkoxycarbonyloxyalkanes, 272 - (iii) Percarbonates, 274 b. Anhydrides of primary esters of carbonic acid (i) Esters of dicarbonic acid, 274 - (ii) Mixed anhydrides of primary carbonates and monocarboxylic acids; alkoxycarbonyl esters, 275 Halides of carbonic acid (i) Chloroformic esters, alkyl chloroformates, chlorocarbonates or alkoxy- carbonyl chlorides, 277 - (ii) Alkyl fluoroformates, 278 b. Carbonyl halides (i) Carbonic acids (ii) Alkyl fluoroformates, 278 (iii) Carbonic acids (iiii) Carbonic acids (iiiii) Carbonic acids (iii) Carbonic acids (iiii) Carbonic acids (iii) Carbonic acids (iii) Carbonic acids (iii) Carbonic acids (iii) Carbonic acid, 287 (iii) Chloroformic acids (iii) Carbonic acid, 287 (iiii) Carbonic acid, 287 (iii) Chlorafonic acids (iii) Carbonic acid, 287 (iii) Carbonic acids (iii) Carbonic acid, 287 (iii) Carbonic acid and the thiocarbonic acid (iii) Carbonic acid, 287 (iii) Carbonic acid, 287 (iii) Carbonic acid, 287

XII

 a. Carbamic acid derivatives (i) Alkyl carbamates, urethanes, 291 – (ii) Carbamic acid derivatives of amino-carboxylic acids, 297 – (iii) N-Halogeno-, nitroso- and nit urethanes, 299 – (iv) Carbamoyl chlorides, "urea chlorides", 301 – Carbamoyl phosphates, 302 	290 the tro- (v)
 b. Urea and its derivatives	303 rea, mi- (iv)
 c. Derivatives of iminodicarboxylic acid and nitrilotricarboxylic a (i) Derivatives of iminodicarboxylic acid, 316 - (ii) Derivatives of nitr tricarboxylic acid, 320 	cid 316 ilo-
 d. Derivatives of iminocarbonic acid and isourea (i) Derivatives of iminocarbonic acid, 320 – Derivatives of isourea, 321 	320
 e. Hydrazino, hydrazo, azo, azido and hydroxyamino derivatives carbonic acid	01 322 urb- urb-
 f. Sulphur analogues of carbamic acid and urea	328 (ii) and
5. Guanidine and its derivatives	34I
6. Nitriles and imides of carbonic and thiocarbonic acids	· · 354
a. Cyanic acid and its derivatives	· · 354
 b. Sulphur compounds of cyanogen	363 nio- tes,
c. Cyanamide and its derivatives	· · 373
d. Derivatives of carbodi-imide	376
7. Derivatives of orthocarbonic acid	· · 379
a. Esters, tetra-alkoxymethanes	· · 379
b. Amino-derivatives of orthocarbonic acid	· · 379
c. Sulphur derivatives of orthocarbonic acid	380
Index	383

VOLUMES IA, B, D, E, F AND G

Vol. IA	General	Introdu	ction; H	ydrocar	bons; I	Halo	ogen I	Derivatives
---------	---------	---------	----------	---------	---------	------	--------	-------------

- Vol. IB Monohydric Alcohols, Their Ethers and Esters; Sulphur Analogues; Nitrogen Derivatives; Organometallic Compounds
- Vol. ID Dihydric Alcohols, Their Oxidation Products and Derivatives
- Vol. IE Tri- and Tetra-hydric Alcohols, Their Oxidation Products and Derivatives
- Vol. IF Penta- and Higher-hydric Alcohols, Their Oxidation Products and Derivatives; Saccharides
- Vol. IG Enzymes; Macromolecules; Cumulative Index Vols. IA-IG

LIST OF COMMON ABBREVIATIONS AND

SYMBOLS USED

Α	acid
Å	Ångström units
Ac	acetyl
a	axial
as	asymmetrical
at.	atmosphere
В	base
Bu	butyl
b.p.	boiling point
C, mC and μ C	curie, millicurie and microcurie
conc.	concentrated
crit.	critical
D	Debye unit, $I \times 10^{-18}$ e.s.u.
D	dissociation energy
D	dextro-rotatory
DL	optically inactive (externally compensated)
d	density
dec. or decomp.	with decomposition
deriv.	derivative
Ε	energy; extinction; electromeric effect
E1, E2	uni- and bi-molecular elimination mechanisms
EICB	unimolecular elimination in conjugate base
E.S.R.	electron spin resonance
Et	ethyl
e	nuclear charge; equatorial
f	oscillator strength
f.p.	freezing point
G	free energy
G.L.C.	gas liquid chromatography
g	spectroscopic splitting factor, 2.0023
H	applied magnetic field; heat content
h	Planck's constant
Ι	spin quantum number; intensity; inductive
	effect
K	dissociation constant
k	Boltzmann constant; velocity constant
kcal.	kilocalories
L	laevorotatory
M	molecular weight; molar; mesomeric effect
Me	methyl
m	mass; mole; molecule; meta-

ml	millilitre
m D.	melting point
ſM1	molecular rotation
N	Avogadro number: normal
NMR	nuclear magnetic resonance
11.14.1C.	normal: refractive index: principal quantum
72	normar, remactive index, principal quantum
<u>^</u>	artho
D	polarization: probability: orbital state
Г Пт	polarisation, probability, orbital state
	phenyi
P	para-, orbital
R C	clockwise configuration
3	counterclockwise configuration; entropy; net
	spin of incompleted electronic shells; orbital
6 6	state
$S_N I, S_N 2$	uni- and bi-molecular nucleophilic substitution
C i	mechanisms
S _N 1	internal nucleophilic substitution mechanisms
ŝ	symmetrical; orbital
sec	secondary
soln.	solution
	absolute temperature
Tosyl	<i>p</i> -toluenesulphonyl
Irityl	triphenylmethyl
t	time
temp.	temperature (in degrees centigrade)
tert	tertiary
U	potential energy
v	velocity
α	optical rotation (in water unless otherwise
r .	stated)
[α]	specific optical rotation
$\alpha_{\rm A}$	atomic susceptionity
$\alpha_{\rm E}$	distantia susceptibility
ε	dielectric constant; extinction coefficient
μ	microns (10-* cm); dipole moment; magnetic
	moment Bebrussester
$\mu_{\rm B}$	Bonr magneton
٨	wavelength
v v v v	irequency; wave number
λ , λ _d , λ _{μ}	magnetic, diamagnetic and paramagnetic
	susceptionities
\sim	about
(+)	
	nacyolotatory
D	negative charge
\oplus	positive charge

OFFICIAL PUBLICATIONS

B.P.	British (United Kingdom) Patent
F.P.	French Patent
G.P.	German Patent
Sw.P.	Swiss Patent
U.S.P.	United States Patent
B.I.O.S.	British Intelligence Objectives Sub-Committee
	Reports, H.M. Stationery Office, London.
C.I.O.S.	Combined Intelligence Objectives Sub-Com- mittee Reports
F.I.A.T.	Field Information Agency, Technical Reports
	of U.S. Group Control Council for Germany
B.S.	British Standards Specification
A.S.T.M.	American Society for Testing and Materials

SCIENTIFIC JOURNALS AND PERIODICALS

With few obvious and self-explanatory modifications the abbreviations used in references to journals and periodicals comprising the extensive literature on organic chemistry, are those used in the World List of Scientific Periodicals.

Chapter 8

Aldehydes and Ketones

J. G. BUCHANAN, N. A. HUGHES, F. J. MCQUILLIN AND G. A. SWAN

1. Introduction

The close relationship which exists, on the one hand, between the primary alcohols, the aldehydes and the carboxylic acids, and, on the other hand, between the secondary alcohols and the ketones has already been pointed out.

Aldehydes and ketones resemble each other in containing the carbonyl group CO; in aldehydes this is combined with either two hydrogen atoms, in formaldehyde, or with one alkyl group and a hydrogen atom, in the higher members of the series; in ketones it is combined with two alkyl groups:

R·CO·H	R•CO·R'
Aldehyde	Ketone

Aldehydes and ketones can be regarded as the anhydrides of dihydroxy compounds in which both hydroxyl groups are attached to the same carbon atom. Where a reaction leads to a compound containing the group $C(OH)_2$, the corresponding compound containing the CO group is formed by loss of water, except in a few cases where the dihydroxy compound, the aldehyde or ketone hydrate, is stable. In aqueous solution there is an equilibrium between the two forms,

$$>C(OH)_2 \rightleftharpoons >CO + H_2O$$

The ethers of the two hydrated forms $R \cdot CH(OR')_2$ and $R \cdot C(OR')_2 \cdot R''$, known as acetals and ketals, respectively, are stable compounds.

A comprehensive account of the chemistry of aldehydes is to be found in "Die Methoden der Organischen Chemie", J. Houben and T. Weyl, 4th Edn., Ed. E. Müller, Thieme, Stuttgart, 1954, Vol. VII, Part I.

Preparation. The following methods are common to aldehydes and ketones. (I) Oxidation of the alcohols, whereby aldehydes are formed from the primary, and ketones from the secondary, alcohols:

 $\begin{array}{ll} R\cdot CH_{2}OH + O \longrightarrow R\cdot CHO + H_{2}O \\ Primary alcohol & Aldehyde \\ R\cdot CH(OH)\cdot R' + O \longrightarrow R\cdot CO\cdot R' + H_{2}O \\ Secondary alcohol & Ketone \end{array}$

These reactions involve dehydrogenation and H. Wieland showed that they can occur in the absence of free oxygen, in the presence of finely divided palladium and a suitable hydrogen-acceptor, such as a quinone (Ber., 1912, 45, 484; 1913, 46, 3327). Biological oxidations may be similar in mechanism (Wieland, ibid., 1914, 47, 2085; E. Baldwin, "Dynamic Aspects of Biochemistry", 2nd Edn., Cambridge, 1953, Chap. 6). More recently, the oxidation of alcohols by chromic acid has been shown to involve chromate esters as intermediates (F. H. Westheimer, Chem. Reviews, 1949, 45, 419; W. A. Waters, Quart. Reviews, 1958, 12, 277).

By further oxidation the aldehydes yield carboxylic acids having the same number of carbon atoms, whilst the ketones are broken down to smaller fragments.

Conversely, aldehydes and ketones are reconverted into primary and secondary alcohols by the addition of hydrogen:

 $\begin{array}{c} CH_{3} \cdot CHO + H_{2} \longrightarrow CH_{3} \cdot CH_{2} \cdot OH \\ Acetaldehyde & Ethanol \\\\ CH_{3} \cdot CO \cdot CH_{3} + H_{2} \longrightarrow (CH_{3})_{2}CH \cdot OH \\ Acetone & Isopropyl alcohol \end{array}$

(2) The dry distillation of the calcium, barium or other heavy metal salts of monobasic fatty acids or of a mixture of salts of two different acids, gives in the first case symmetrical and in the second unsymmetrical ketones:

> $(CH_3 \cdot CO_2)_2Ca \longrightarrow CH_3 \cdot CO \cdot CH_3 + CaCO_3$ Calcium acetate Acetone

 $(CH_3 \cdot CO_2)_2Ca + (C_2H_5 \cdot CO_2)_2Ca \longrightarrow C_2H_5 \cdot CO \cdot CH_3 + 2CaCO_3$ Calcium acetate Calcium propionate Ethyl methyl ketone If one acid is formic acid, an aldehyde is produced:

 $(H \cdot CO_2)_2Ca + (CH_3 \cdot CO_2)_2Ca \longrightarrow 2CH_3CHO + 2CaCO_3$ Calcium formate Calcium acetate Acetaldehyde

When this reaction is applied to the calcium salts of dibasic acids such as adipic, pimelic and suberic acid, *cyclic* ketones are produced.

(3) Aldehydes and ketones are obtained by direct addition of water to acetylenic hydrocarbons in the presence of a mercury salt as catalyst (see Vol. IA, p. 457).

(4) Alkyl hypochlorites, obtained from the alcohols by the action of chlorine and alkali, decompose under suitable conditions of light and temperature to yield aldehydes or ketones and hydrogen chloride. The hypochlorites of tertiary alcohols yield ketones and alkyl chlorides (F. D. Chattaway and O. G. Backeberg, J. chem. Soc., 1923, 123, 2999):

 $R \cdot CH_2OCI \longrightarrow R \cdot CHO + HCI$ $R_2CHOCI \longrightarrow R \cdot CO \cdot R + HCI$ $R_3C \cdot OCI \longrightarrow R \cdot CO \cdot R + RCI$

2. Saturated aldehydes

(a) Aldehydes, alkanals, C_nH_{2n+1} ·CHO

The homologous aldehydes show in their properties a gradation similar to that of the alcohols. The lower members are gaseous or volatile liquids, soluble in water, and have a characteristic odour, but the higher are solids, insoluble in water. In general, they are less soluble in water and more volatile than the alcohols. Chemically, they are neutral substances. Their reactivity places them amongst the most important synthetic reagents.

Nomenclature and isomerism. Empirically, the aldehydes are distinguished from the alcohols by possessing two atoms less of hydrogen—hence their name, suggested by Liebig (from Alcohol dehydrogenatus).

The common name of an aldehyde is derived from that of the acid of the same number of carbon atoms to which it gives rise on oxidation *e.g.* acetaldehyde from acetic acid. In the Geneva nomenclature, now adopted by the I.U.P.A.C., the names of the aldehydes are formed from the corresponding saturated hydrocarbons by substituting the final "e" by the suffix al; thus acetaldehyde, $CH_3 \cdot CHO$ is ethanal. The systematic numbering starts from the CHO group; *e.g.* $(CH_3)_2CH \cdot CHO$ is 2-methylpropanal.

The number of isomeric aldehydes of definite carbon content equals the number of possible primary alcohols having the same carbon content. The aldehydes are isomeric with the ketones, the ethylenic alcohols and the anhydrides of the ethylene glycol series, containing an equal number of carbon atoms; thus the following are isomeric:

(i) Formation and preparation

(1) By the oxidation of primary alcohols, whereby the $CH_2 \cdot OH$ is converted into the CHO group, e.g. by potassium dichromate and dilute sulphuric acid or by atmospheric oxygen in the presence of a catalyst (R. R. Davies and H. H. Hodgson, J. chem. Soc., 1943, 282).

When chlorine is used as an oxidising agent, the aldehyde is first formed, but chlorination of the alkyl group follows.

The main by-products in the oxidation of primary alcohols to aldehydes are carboxylic acids which may become esterified during the reaction. Volatile aldehydes should therefore be removed by distillation as formed (Org. Synth., 1932, 12, 64).

Aldehydes may be prepared by a modification of the Oppenauer method of oxidation (Vol. IB, p. 14) (A. Lauchenauer and H. Schinz, Helv., 1949, 32, 1265).

tert-Butyl chromate is a fairly specific reagent for the oxidation of primary alcohols to aldehydes (R. V. Oppenauer and H. Oberrauch, Anales Asoc. quím. argentina, 1949, 37, 246).

(2) By direct decomposition (dehydrogenation) of a primary alcohol by passing alcohol vapours through a red-hot tube or better over finely divided copper at 200-250° (W. Ipatiew, Ber., 1903, 36, 1990; P. Sabatier and J. B. Senderens, Compt. rend., 1903, 136, 738; L. Bouveault, Bull. Soc. chim. Fr., 1908, [iv], 4, 119; H. Adkins et al., J. Amer. chem. Soc., 1933, 55, 2992; R. E. Dunbar and M. R. Arnold, J. org. Chem., 1945, 10, 501).

Dehydrogenation can also be effected by heating with Raney nickel. In the case of optically active alcohols, such as 2-methylbutan-1-ol, this can occur without loss of optical activity (E.J. Badin and E. Pacsu, J. Amer. chem. Soc., 1944, 66, 1963).

(3) By heating the calcium salts of fatty acids with calcium formate (F. Krafft, Ber., 1880, 13, 1413).

(4) By the reduction of acid chlorides by sodium in moist ether (W. H. Perkin jun. and J. J. Sudborough, Proc. chem. Soc., 1894, 10, 216) or prefer-

ably by hydrogenation in the presence of a poisoned palladium-barium sulphate catalyst (K. W. Rosenmund, Ber., 1918, 51, 585; E. Mosettig and R. Mozingo, Org. Reactions, 1948, 4, 362),

$$CH_3COCI + 2H \longrightarrow CH_3CHO + HCI$$

or by lithium tri-*tert*-butoxyaluminohydride at -70° ; at 0° the aldehydes, are themselves reduced further (*H. C. Brown* and *R. F. McFarlin*, J. Amer. chem. Soc., 1958, 80, 5372).

(5) By the reduction of carboxylic acids with sodium amalgam (Davies and Hodgson, J. Soc. chem. Ind., 1943, 62, 128).

(6) From alkyl cyanides. (a) By way of their iminochlorides.

The cyanide is added to a solution of stannous chloride in ether saturated with hydrogen chloride. The product is hydrolysed by warm water to the aldehyde, which is extracted with a solvent or steam-distilled. The yields are very good with the higher cyanides (*H. Stephen*, J. chem. Soc., 1925, 127, 1874; *Mosettig*, Org. Reactions, 1954, 8, 246):

$$RCN + HCI \longrightarrow RCCI:NH$$

 $RCCl: NH + SnCl_2 + 2HCl \longrightarrow RCH: NH, HCl + SnCl_4$

 $RCH: NH + H_2O \longrightarrow RCHO + NH_3$

(b) By catalytic hydrogenation in the presence of semicarbazide (H. *Plieninger* and G. Werst, Ber., 1955, 88, 1956).

(c) By reduction with lithium triethoxyaluminohydride (Brown, C. J. Shoaf and C. P. Garg, Tetrahedron Letters, 1959, 3, 9), lithium trimethylborohydride (A. Khuri, Diss. Abs., 1960, 21, 55) or lithium aluminium hydride (Mosettig, loc. cit. p. 252).

(7) By reduction of a N, N-disubstituted amide derived from N-methylaniline (F. Weygand et al., Angew. Chem., 1953, 65, 525; S. S. Nigam and B. C. L. Weedon, J. chem. Soc., 1957, 3320), ethyleneimine (Brown and A. Tsukamoto, J. Amer. chem. Soc., 1961, 83, 2016) or a pyrazole (W. Ried and F. J. Königstein, Angew. Chem., 1958, 70, 165), with lithium aluminium hydride. Alternatively, the N,N-dimethylamide may be reduced with lithium diethoxyaluminohydride (Brown and A. Tsukamoto, J. Amer. chem. Soc., 1959, 81, 502). Reduction of substituted amides to aldehydes by alkali metals in liquid ammonia is also possible (A. J. Birch, J. Cymerman-Craig and M. Slaytor, Chem. and Ind., 1954, 1559; Australian J. Chem., 1955, 8, 512).

(8) By the hydrolysis of Reissert's compounds (1-acyl-1,2-dihydroquinaldonitriles); this provides an indirect method for the conversion of carboxylic acids into aldehydes (J. M. Grosheintz and H. O. L. Fischer, J. Amer. chem. Soc., 1941, 63, 2021; Mosettig, loc. cit. p. 220).

(9) By the alkaline decomposition of benzenesulphonacylhydrazides (M. Sprecher, M. Feldkimel and M. Wilchek, J. org. Chem., 1961, 26, 3664).

(10) By hydrolysis of some of their derivatives; this method is of practical importance.

(a) From aldehyde-ammonia and aldehyde-bisulphite compounds (see pp. 40, 31); from oximes and hydrazones (pp. 45, 47).

(b) From alkylidene dihalides, e.g. $CH_3 \cdot CHCl_2$ by heating them with water and a base such as lead oxide.

(c) From acetals and alkylidene diacetates, by dilute acids or (in the latter case) alkalis:

$$CH_3 \cdot CH(OR)_2 \longrightarrow CH_3 \cdot CH(OH)_2 \longrightarrow CH_3 \cdot CHO$$

(11) From $\alpha\beta$ -glycols or their ethers, containing at least one primary alcoholic group, by loss of water or alcohol, or from the corresponding ethylene oxide, by molecular rearrangement.

(a) Ethylene glycol yields acetaldehyde when heated with dilute sulphuric acid (K. Krassusky, J. Soc. phys.-chem. russe, 1902, 34, 537, 556).

(b) Primary-secondary glycols under the same conditions yield a mixture of aldehyde and ketone:

(c) Primary-tertiary ethylene glycols yield aldehydes when heated with anhydrous formic or oxalic acid (A. Béhal and M. Sommelet, Compt. rend., 1904, 138, 89); the ethers $R_2C(OH) \cdot CH_2OR$ react particularly easily (R. A. Barnes and W. M. Budde, J. Amer. chem. Soc., 1946, 68, 2339):

$$R_{2}C(OH) \cdot CH_{2}OC_{2}H_{5} \longrightarrow R_{2}CH \cdot CHO + C_{2}H_{5}OH$$

(d) Ethylene oxide and its homologues, especially the primary-tertiary compounds, undergo rearrangement when heated with alumina (W. Ipatiew and W. Leontowitsch, Ber., 1903, 36, 2016) or on boiling with dilute acid (J. von Braun, ibid., 1923, 56, 2178; Barnes and Budde, loc. cit.):

$$\begin{array}{c} CH_{2} \\ | \\ CH_{2} \\ CH_{2} \end{array} \xrightarrow{CH_{3}} R \\ CH_{0} \\ CH_{0} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{2} \\ CH_{1} \\ CH_{2} \\ CH_{1} \\ CH_{1} \\ CH_{2} \\ CH_{1} \\ CH_{$$

(12) From sodium salts of primary nitroparaffins, which yield aldehydes and