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Preface 

One motivation for this conference was to bring together researchers from the concrete, 
rock and ceramics communities to seek common approaches to the study of fracture in 
these quasi-brittle materials. The intention then was to provide a blend of expertise in 
theoretical, computational and experimental mechanics, applied to different materials, 
to maximize dissemination of knowledge. 

This concept proved very successful in several ways. Researchers were made 
aware of developments in other areas which could be transferred to their own; 
discussions on the nature of softening and the length of the damage/process zone and the 
mechanisms of toughening provided clear advances in this sense. Where approaches 
seemed quite distinct, positive benefit was derived from the reasons for the differences 
and the knowledge of the corresponding tradition; notable examples included the very 
definition of a process zone and relative crack tip, and hence the meaning of bridging 
forces, as well as the emphasis on crack growth versus strength considerations. There 
was undoubtedly common ground in numerical modelling, albeit with different 
objectives. Importantly, different experiences provided interesting challenges for 
computational modelling; the influence of crack closures and the loss of frictional 
cohesion due to sliding abrasions were raised as particular difficulties. Localization both 
in micromechanical and macroscopic modelling arose naturally as topics of current 
concern. Size and scale effects were prominent, with the inherent particle/grain sizes of 
the three materials being so different. 

In following IUTAM's policy that all lectures should be invited, with full review 
of abstracts and final papers, the opportunity arose to programme for substantial 
presentations. The result was that discussion was always lively and incisive, and many 
new ideas were generated. In a slight departure from the norm, five posters were 
accepted from research students and recent post-doctoral researchers. These were 
summarized in a special session, and short papers are correspondingly published under 
a separate heading in these proceedings. 

Financial support was generously provided by The International Union of 
Theoretical and Applied Mechanics (IUTAM) and the Department of Civil Engineering 
of The University of Queensland. There is no doubt that without this assistance we 
would not have been able to mount such an important scientific meeting, with the 
participation of so many active researchers and practitioners in the field. This financial 
support is greatly appreciated. 

We believe that these proceedings will provide a useful basis for further and 
innovative research in the field of fracture of quasi-brittle materials. Many important 
issues were raised during the conference, some of which are consequently already under 
investigation. We hope that new scientists to the field might be motivated by topics 
discussed to instigate new lines of endeavour, and that fertilization across the discipline 
boundaries may continue to flourish. 



χ Preface 

We would like to thank the staff in the Department of Civil Engineering at The 
University of Queensland, and particularly graduate students Stefan Essebier and Lars 
Rassmussen, for their invaluable assistance throughout. We would like also to thank 
Professor Ε. T. Brown, Deputy Vice-Chancellor, for his wise and encouraging opening 
address. Finally, and perhaps most of all, we wish to thank the delegates who attended 
this meeting, many of whom came just to be involved in discussions. 

Graham Baker 
Bhushan Karihaloo 

Brisbane, November 1993 
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1 THE SCALING LAWS AND 
RENORMALIZATION GROUP IN THE 
MECHANICS AND MICROMECHANICS 
OF FRACTURE 

G.L BARENBLATT 
Department of Applied Mathematics and Theoretical Physics, 
University of Cambridge, Cambridge, U K 

Abstract 
The concepts of scaling and self-similarity will be analyzed both 
from the viewpoints of the intermediate asymptotics, known in 
applied mathematics, and renormalization group, known in theo­
retical physics. 

The general outline will be given of micromechanics, the branch 
of continuum mechanics studying the phenomena where the vari­
ations of the material microstructure are of governing influence 
on the macroscopic behaviour of bodies. Fracture is going on in 
zones of high stress concentration where the phenomenon is com­
plicated by phase transformations, chemical transformations and 
heat generation. This makes natural the application of the mi-
cromechanical approach in the sense just mentioned to the fracture 
phenomenon, however the mathematical models become extremely 
complicated. 

Examples will be presented of the application of intermedi­
ate asymptotics, scaling and renormalization group approach to 
constructing mechanical and micromechanical models of fracture 
phenomena. Special attention will be given to fatigue fracture 
phenomena, where these concepts simplify essentially mathemati­
cal models and lead to practically important quantitative relation­
ships. 
Keywords: Scaling, Self-similarity, Micromechanics, Fracture, Fa­
tigue. 

Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics. Edited by G. Baker and B.L. Karihaloo. 
Published in 1995 by Taylor & Francis, 2 Park Square, Milton Park, Abingdon, Oxon, ΟΧ14 4RN. ISBN: 0 419 19050 3. 
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D 

Fig. 1 Benbow conical crack (principal scheme) 

1 Introduction 

The characteristic time of all kinetic processes in solids, includ­
ing phase transformation and breaking of bonds between the ele­
ments of microstructure decreases very strongly, in fact exponen­
tially, with growing tensile stresses. Therefore at the tips of the 
cracks where there is strong stress concentration fracture processes 
are usually complicated by microstructural transformations, heat 
generation and microscopic damage accumulation. It makes the 
traditional approach of mechanics based on constitutive equations 
sometimes insufficient. The approach of micromechanics seems 
to be more adequate, according to which the macroscopic equa­
tions of mechanics, and the equations of the kinetics of microstruc­
tural transformations and heat generation are considered simulta­
neously. Of course, it makes the mathematical models much more 
complicated. However, such tools as intermediate asymptotical 
approach, scaling and renormalization group could be helpful in 
constructing mathematical models. It is specially important for 
fatigue studies: fatigue now is one of the greatest challenges both 
for mathematicians and engineers. 

2 Scaling, self-similarity, intermediate asymptotics 

2.1 Example: J.J. Benbow conical crack 
Benbow (1960) observed (Figure 1) a conical crack formed when 

Punch 

Block of fused silica 

Conical crack 
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a punch of small diameter d is penetrating under a load Ρ into 
a block of fused silica having a large length-scale size D. From a 
general viewpoint it is clear that the diameter S of the base of this 
conical crack depends on the following quantities: P,d,D, Poisson 
ratio ν and cohesion modules Κ (here we deal with a stable crack, 
therefore the cohesion modulus, and not KJC should be used). 
Dimensional analysis gives 

Now we bear in mind that D ^> d and, moreover, the diameter 
of the base S is much more that the diameter of the punch, but 
simultaneously, much less than D, so that 

d D 
« l w n / , ^ > 1 ( 2 ) (P / /0 2 / 3 ' (P/TO 2/ 3 

It seems natural due to ( 2 ) to avoid the last two arguments in 
( 1 ) , so the following law is obtained 

S = Const(^)2'3 (3) 

where the Const in fact depends on the Poisson ratio. This is a 
typical example of a scaling, power-type law. It was quite satis­
factorily confirmed by experiments. 

2.2 Next examples. Complete and incomplete similarity. 
The renormalization group 
The next example will show us that the idyllic situation of the 
conical crack was a rare exception. Consider an infinite elastic 
wedge equally loaded on its sides by two identical systems of forces 
p(r) , distributed over small regions of radius rn, and statically 
equivalent to couples with moment M / 2 . It is known that for 
plane elasticity the solution is reduced to the determining of the 
biharmonic Airy stress-function φ through which the whole elastic 
field can be simply determined. The Airy function depends, in 
addition to the quantities M , r 0 on the polar coordinates r, θ and 
the wedge opening angle of α. So, the dimensional analysis gives 
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φ = ΜΦ(γ,θ,α) (4) 

We will consider the elastic field at the distances r much larger 
than r 0 , so that r0/r «C 1. Following the logic of the previous 
example we can neglect the argument r0/r in (4). That means that 
an elastic wedge is considered as loaded by a couple in its apex. 
Substituting the resulting relation into biharmonic equation which 
the Airy function is supposed to satisfy and using the appropriate 
boundary conditions, we can obtain the solution in the simple form 

_ M ( 2 0 c o s 2 a - s i n 2 0 ) 
~ 2 ( s i n 2 a - 2 a c o s 2 a ) ' ' 

This solution was obtained by S.D. Carothers (1912) and C.E. 
Inglis (1922). E. Sternberg and W.T. Koiter (1958) noticed that 
this solution has a seemingly strange property: when a, the wedge 
opening angle tends to α* ~ 0.715π, the root of denominator of (5), 
admissible from the physical viewpoint, the stresses at all ponts of 
the wedge according to (5) tend to infinity. The problem is linear, 
and the solution can be obtained and investigated effectively also 
for finite r 0 . Sternberg and Koiter (1958) solved this problem by 
the method of integral transforms, and the results obtained turned 
out to be instructive. 

Indeed, solving this problem we are interested exactly as in the 
first example not in the limit of the solution at r/rn, but in its 
'intermediate asymptotics' for 

^ « 1, - » 1 (6) 
r r 

where R is some external length-scale of the wedge. However, 
this intermediate asymptotics appeared to be entirely different for 
a < a*, a > a* and a = a*. As Sternberg and Koiter calculations 
showed, the basic term of it is like (5) for a < a*, like 

φ = Ρ(χ)*Λ«,θ)ρ{λ)= r p { r y + l d r ( 7 ) 

f Jo 



Scaling laws and renormalization group in fracture mechanics 7 

for a > a*, where the function λ (a) decreases monotonically from 
λ = 0 at a = a* to λ = — 1/2 at a = π, and 

φ = M[g(r0) - Ιη-]Φ(Θ), g(r0) = Α Γ p(r)r ln-dr (8) 
ro Μ j 0 r0 

We emphasize that this is a rigorous result. The relationship for 
p(X) can be transformed to p(X) = ConstMr^ where Const is 
dimensionless, whence the function Φ in (4) has a scaling power-
type asymptotics for small values of the first argument 

Φ = φ λΦ!(Μ) (9) 

Thus, for a > a* the parameter r 0 cannot be removed from the 
governing parameters as it was for a < a*. At the same time the 
asymptotics of the Airy function is determined not by the moment 
M , but by the combination Mr$, where the degree λ cannot be 
obtained from simple dimensional considerations. For a — a* the 
parameters Μ and r 0 enter the asymptotics separately. In the 
cases like conical crack or the wedge at a < a* we say that there 
is a complete similarity in the parameter rQ/r. It means also that 
the asymptotics we are interested in are invariant with respect to 
additional transformation groups correspondingly, 

S' = 5, Ρ = Ρ, d = Ad; φ =φ,Μ = Μ , r'0 = Ar0, (10) 

where 1 > A > 0 is the group parameter. For the wedge with the 
opening angle a > a* the group is more complicated: 

φ = Αλφ, Μ =M,r'0 = Ar0 (11) 

This is a simple example of renormalization group, a concept very 
popular now in theoretical physics. We say that there is an in­
complete similarity in the parameter r 0 / r . For a = a* there is no 
similarity. 

Another example of the same kind is a geometric one. Consider 
a smooth curve, like anormal circle. We inscribe a regular n—gon 
with the side length of 77 in it. For the length of the perimeter Lv 



8 Barenblatt 

of the polygon we obtain from dimensional analysis 

Ln = Σ>Φ(η/Ό) (12) 

where D is the diameter of the curve. For sufficiently small η/Ό 
the function Φ is arbitrarily close to its limit, equal to π for 
the circle, so, asymptotically Ση = πΌ. It is clear that this 
asymptotics is invariant with respect to a transformation group 
Ση = LV,D = Ό,η = Αη. It is another example of complete 
similarity. As an example of incomplete similarity we consider 
the Mandelbrot fractal, for instance von Koch curve. The asymp­
totics of the function Φ in (12) for such a curve is at small η/Ό 
like Φ ~ C{j]/Ό)~α, where a = Const, 0 < a < 1, so that for Lv 

a scaling, power-law holds: Lv = ConstO1+a/ηα. This asymp­
totics is invariant with respect to a simple renormalization group 
L'v = Α~αΙη,Ό' =Ό,η =Αη. 

3 Micromechanics 
According to the micromechanical approach the properties of the 
material microstructure directly or indirectly observable, are ex­
plicitly introduced into consideration. The equations of macro­
scopic motions and those of kinetics of microstructural transfor­
mation are considered simultaneously. Thus, in our understand­
ing, the micromechanics is the branch of mechanics studying the 
phenomena for which the variations of the microstructure are of 
governing influence for macroscopic behaviour of bodies. 

If the time scales of the processes under consideration are such 
that the variations of the microstructure can be considered either 
as instantaneous, or as negligible ones, we return to the classical 
approach of continuum mechanics. 

I would like to mention here three persons who performed the 
milestone works in micromechanics in the sense just mentioned. 
These persons are generally accepted as outstanding members of 
the mechanical community, and it is specially important because 
the mechanical community in general is rather conservative - in 
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the good sense of the word - in what concerns the subject of the 
mechanical research. Therefore the example of the outstanding 
people within - non outside - the mechanical community is spe­
cially important. To be modern in mechanics researchers should 
know micromechanics, and apply its methods. I would like to 
mentioned here Th.von Karman who launched 'Aerothermochem­
istry',a branch of fluid mechanics concerning the fluid motions with 
chemical transformations and heat generation. I want to mention 
G.K. Batchelor (1976) who launched 'Microhydrodynamics' and 
considered the fundamentals of the motion of small bodies in fluids 
which became later the basis of modern hydrodynamics of suspen­
sions. I mention here B. Budiansky (1981, 1986) who outlined the 
general approach of micromechanics of deformable solids in the 
papers entitled 'Micromechanics'. I am pleased to present here a 
citation from his second paper. It is very appropriate: 'Microme­
chanics is the currently fashionable designation of what is really 
an old subject, but one that is receiving increasing attention from 
theoreticians in applied mechanics. Armed with their repertoire 
of analytical tools, they try to relate the overall deformation and 
strength properties of the materials to the behaviours and inter­
actions of their microscopic constituents.' 

The natural question arises whether the coining of a new term is 
justified, legitimizing a new branch of continuum mechanics, and 
so giving it a status of certain independence? I give a positive an­
swer to this question. The examples of the theory of oscillations, 
considering oscillations in a way irrelevant to their physical nature, 
functional analysis, cybernetics, to a lesser extent cynergetics con­
firm it. A general approach appears as well as unified style of the 
analysis of new phenomena, to a certain extent new general ide­
ology. Seemingly uncoordinated results appear in a unified form. 
The transfer of results from one subject to another becomes pos­
sible as well as prediction of results based on previous experience. 
Therefore the legitimization of micromechanics to a unified new 
branch of continuum mechanics seems to be well deserved and 
expedient. 

I will mention here a seemingly special problem of microme­
chanics of solids, which seems to me a characteristic and funda-
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mental one for this subject. In aerothermochemistry such a prob­
lem is obviously the problem of flame propagation in combustible 
gas: a steady state regime of propagation of the chemical reac­
tion zone, accompanied with the heat generation, heat conduction 
and diffusion. In micromechanics of solids such a problem is the 
mathematically similar problem of neck propagation in polymers 
(Barenblatt 1974a, b) . This phenomenon, discovered by chemists 
in the early 30s was immediately noticed by A. Nadai as funda­
mentally important. The 'neck' - steady state fast deformation 
zone - propagation is accompanied with the transformation of the 
material microstructure, specific stress induced diffusion and heat 
generation. 

4 Application of scaling approach to the kinetics of fatigue 
crack propagation 
A classical result in fatigue fracture is the well-known scaling law 
by Paris and Erdogan (1963) for the velocity of the crack propa­
gation in multi-cycle fatigue 

§1=Λ(ΑΚΓ (13) 

Here dl/dn is the fatigue crack velocity per cycle averaged over 
the cycle, Δ/ν is the stress intensity factor amplitude. The quan­
tities A and m are usually considered as universal constants for a 
given material. To analyse that let us consider the kinetic diagram 
(13) from the viewpoint of the similarity approach (Barenblatt & 
Botvina, 1981, 1983). The average velocity dl/dn can depend in 
principle upon the following quantities: AK = KM8LX — Kmm, R = 
^ m i n M m a x - asymmetry of the loading ( J v m a x , / i m i n are corre­
spondingly maximal and minimal stress intensity factors over the 
cycle), h - characteristic specimen size, /-frequency, KJC - frac­
ture toughness, a standard characteristic of strength, ay- the yield 
stress, t-time. 
The dimensional analysis gives 
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where 

is the basic similarity parameter. An asymptotic stage is consid­
ered, where the influence of the argument ft disappears. Interme­
diate asymptotic character of the fatigue crack extension is clearly 
confirmed by the analysis of the fracture surface: a regular sys­
tem of striations appears at this stage. Moreover, the argument 
AK/Kic is small, and we want to consider asymptotic relations. 
Then, two possibilities appear: complete similarity when the limit 
of Φ at AK/Kic - » 0 is finite or not. If it is finite, we would 
obtain the scaling law (13) with m = 2, which is practically never 
the case, except of some aluminium alloys. Let us assume that 
the incomplete similarity in the parameter AK/KJC takes place 
at the intermediate stage of the fatigue crack extension: 

It means that the scaling law (13) is valid, but the quantities A 
and m = a + 2 depend on the basic similarity parameter z. That 
means that they depend not only upon the material properties, but 
also upon the specimen size. The processing of the experimental 
data showed that this dependence could be very strong (Figure 2), 
so that the designers should be careful in using the results of the 
standard fatigue experiments with small specimens for predicting 
the life-time of large structures. 

An important note. In the middle of kinetic diagram the 
mechanism of fracture starts to change: the traces of static fa­
tigue modes, such as dimples appear on the fracture surface. It 
is connected quantitatively with reaching a certain critical stress-
intensity factor KQY equal by order of magnitude to σγ y/d, where 
d is the microstructural length-size. Therefore, plausibly, the Paris-
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6 

m 
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1 2 3 4 

ζ 
Fig. 2 The dependence of the exponent in the Paris-Erdogan 

scaling law (13) on the similarity parameter ζ for steel 
4340 for specimens of various orientation with respect to the 
rolling direction (Barenblatt, Botvina (1981), processing of 

data of F.A. Heiser and W. Mortimer) 

Erdogan kinetic curve consists of two pieces corresponding to AK 
KQY and AK <C KGY- Apparently it was not properly identified 
because the values of m, corresponding to two branches of kinetic 
curve were sufficiently close. 

5 Self-similar, self-oscillation regime of fatigue crack 
extension 

5 . 1 Forsyth effect 
Sometimes the kinetic diagrams are not single-valued curves and 
there exists a rather large overlapping range on these curves. Frac­
ture surface analysis shows that upper and lower branches of non-
single-valued kinetic curves correspond to different micromecha-
nisms of fracture. This phenomenon gives rise to a peculiar and 
practically important regime of self-oscillational and simultane­
ously self-similar phenomenon of fatigue crack propagation dis-
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covered by P.J.E. Forsyth (1976). Forsyth performed a fatigue 
experiment with constant amplitude of loading on a slotted plate 
aluminium alloy DTD 687 specimen. On the fracture surface 
he observed a sequence of alternating smooth and rough strips 
sharply bounded by curved lines (Figure 3). Forsyth noted that 
in neighbouring strips different micromechanisms of fracture took 
place. By processing his experimental results he discovered that 
for both sequences of curvilinear boundaries (smooth-rough and 

2 2 2 

Fig. 3 Alternating parts of the fracture surface in the 
experiments of Forsyth (1976) (Schematic representation). 

1. Smooth parts, 2. Rough parts. 

rough-smooth transitions) the scaling relationship is valid 

= const, (17) 
t 

a being the maximum crack depth, / the crack front contour length, 
Const is different for different sequences. Forsyth immediately un­
derstood the value of this result for the purpose of failure analysis, 
'fractodiagnostics', as we call this technique now (Botvina, 1989). 
Since that time Forsyth's discovery has received further confir­
mations and practical applications (Botvina, 1989; Botvina et al 
(1981)). Nowadays it is clear that the Forsyth effect is a manifes­
tation of a phenomenon of fundamental importance. Therefore an 
attempt to understand it from the general viewpoint of fracture 
mechanics (Barenblatt & Botvina, 1993) seems to be expedient. 
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5.2 The model 
The proposed model is based on two key points. The first point 
is the existence, at least for some aluminium and titanium al­
loys and certain steels, of discontinuities in the fatigue fracture 
kinetic diagrams. It was discovered by Shabalin (1958) and later 
confirmed by other authors. The second point is the formation 
of a self-similar intermediate asymptotic regime of scaling type: 
incomplete similarity. 

So we assume that the kinetic diagram relating crack exten­
sion rate dl/dn (averaged over a cycle) with stress-intensity factor 
amplitude is a non-single-valued curve with a large overlapping 
range of stress-intensity-factor amplitude. The examples of such 
curves can be found in the book by Botvina (1989). It is essential 
that the upper and lower branches of this non-single-valued kinetic 
curve correspond to different micromechanisms of fracture. As of­
ten appears in such cases (the Van der Waals curve is a classical 
example) it is plausible that there exists an intermediate unstable 
regime of fracture. It is more convenient for us to transform the 
coordinate along the abscissa axis. Indeed, 

so, bearing in mind that R is kept constant during the experiment, 
it is always possible to replot the kinetic curve in the form (Fig:. 4) 

AK = - f tmax ( l — Λ ) , R = Km\n/K, max (18) 

dn 

Fig. 4 Schematic kinetic diagram of fatigue fracture and 
proposed hysteresis regime. 
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where Κ the material property - is maximal stress intensity fac­
tor, corresponding to a given crack extension rate dl/dn averaged 
over the cycle. We emphasize that Κ does not coincide with Kic> 
Indeed, Κ is a variable fracture toughness which corresponds to 
stable crack propagation whereas Kic requires for its determina­
tion the beginning of catastrophic crack extension in static loading. 
Two critical values of Κ are shown on the Figure: K* correspond­
ing to the highest value for the 'slow' mode of crack propagation, 
and K* to the lowest value of the fast propagation mode. A plau­
sible unstable regime is shown by a dotted line. 

We emphasize first of all that the crack contour is a curvilin­
ear one. Indeed, if it were rectilinear, the crack under constant 
load cannot stop after beginning its extension, because the stress 
intensity factor would only increase. We assume furthermore that 
the crack extension process follows the hysteresis loop (1) - (2) -
(3) - (4) shown in the Figure, so that the transition from slow to 
fast regime corresponds to Κ — Κ*, and the transition from fast 
to slow regime corresponds to Κ = Κ*. 

Note that the very possibility of an analytic consideration of 
such a complicated problem of mixed mode extension of a crack 
with a curvilinear contour is due to the following important fact: 
after the first jumps, when the crack contour length becomes sig­
nificantly larger than the specimen thickness /n an intermediate 
asymptotic self-similar regime begins. During this regime each 
step repeats (on a different length scale) the previous one from 
the same sequence. Certainly, this regime can last only until the 
crack head closely approaches the specimen side-edge, when the 
terminal stage of static failure begins. Transition boundaries (the 
slow-fast and fast flow transition curves) correspond to transition 
from one branch of the kinetic diagram to another. 

It is important that for the intermediate asymptotic self-similar 
regime, covering a major part of Forsyth's observation the double 
inequality 

Jo « I < α (20) 
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is valid. 
Now to the most essential point of the model construction. 

According to the dimensional analysis, we can write at an arbitrary 
point of the contour of the crack for the stress intensity factor 
(coefficient at the singularity at the crack contour, obtained from 
the solution of the corresponding elasticity problem): 

Ν = a m a x V a 0(y, j ) (21) 

where φ is a certain dimensionless function of its dimensionless 
arguments, s is the arc-length along the crack contour reckoned 
from the most advanced point of the crack contour. According to 
the inequality (20) the argument lo/l is small. 

Furthermore, at every point of the transition lines one of the 
limiting conditions 

Κ* Κ 
Ν = — or T V = — (22) 

π π 

should hold, according to which sequence belongs to the transition 
line. The scaling law (17) is valid if and only if 

φ(ί,!ΐ) = Οοη3^, (23) 

i.e. if there is incomplete similarity in the small argument lo/L 
The relations (21) and (23) give 

γ / β Κ* ν / α ^ K* 
- y - = Const — or ^— = Const (24) 

which are similar (but not identical) with the empirical relation 
proposed by Forsyth. In Forsyth's relation instead of K* and K* 
there enters Jv j c which seems to be less appropriate. 
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6 Conclusion 

The work is material science, and specially in disordered materi­
als like ceramics is now of primary importance for the whole of 
mankind. The flavour of coming discoveries is felt in everyday 
work in this field, discoveries of decisive value not only for science 
and technology but also for everyday life. We should not miss our 
chance to contribute to this stream of research efforts. I am sure 
that advanced scaling and similarity methods presented here could 
be very helpful in our understanding and mathematical modelling. 
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Abstract 

Damage, strain localization, and fracture are not always interpretable in the frame­
work of continuum mechanics. In particular, the scale effect on nominal tensile 
strength has not found satisfactory explanations. The reason for this has to be 
sought in the fact that the micromechanical damage phenomena, and thus the 
inherent disorder of the material, have been disregarded. Fractal geometry and 
renormalization group theory can provide today a rational and consistent expla­
nation, harmonizing and enriching the empirical approach of Weibull and the phe-
nomenological assumption of Griffith. Material ligaments at peak stress can be 
considered as multifractals, of dimension 1.5 at small scales, and dimension 2 at 
large scales. This means that, at large scales, the disorder is not visible, the size 
of the heterogeneities being limited. A transition from extreme disorder (slope 
— 1/2) to extreme order (zero slope) may therefore be evidenced in the bilogarith-
mic strength versus size diagram. A Multifractal Scaling Law (MFSL) is proposed 
with a concavity opposite to that of the Bazant's Size Effect Law (SEL). The size 
effects on some significant experimental tests reported in the literature are inter­
preted by the MFSL very consistently. 

1 I n t roduc t i on 

Several physical phenomena can be analyzed through continuum mechanics, when­
ever only one length or energy scale is relevant, namely the macroscopic scale. 
On the other hand, it is generally true that, where a critical phenomenon (e.g., 
material failure) is imminent, also other length or energy scales become relevant 
together with the macroscopic one: they represent those microscopic or mesoscopic 
phenomena that are interacting and concurring to produce the macroscopic phe­
nomenon. Continuum mechanics has been the basis for structural mechanics for 
more than a century. Only recently has it emerged that damage, strain localization, 
and fracture phenomena are not always interpretable in the framework of contin­
uum mechanics. In particular, the scale effects on nominal tensile strength have 
not found satisfactory explanations (Carpinteri, 1986). The reason for this has to 
be sought in the fact that the micromechanical damage phenomena, and thus the 
inherent disorder of the material, have been disregarded. A dramatic dichotomy is 

Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics. Edited by G. Baker and B.L. Karihaloo. 
Published in 1995 by Taylor & Francis, 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN. ISBN: 0 419 19050 3. 
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still present between, on the one hand, structural engineers, who pay close atten­
tion to macroscopic phenomena and whose models present an excessive regularity, 
and, on the other, material scientists, who devote greater attention to microscopic 
phenomena and whose models present an excessively local character. 

The present paper represents an attempt to break down these barriers by adopt­
ing approaches that are completely new for solid mechanics, i.e., fractal geome­
try (Mandelbrot, 1982; Falconer, 1990) and renormalization group theory (Wilson, 
1971, 1979; Barenblatt, 1979; Herrmann and Roux, 1990). This is the only way to 
provide a rational and consistent explanation of the size effects on tensile strength 
of disordered materials. 

2 Fractal nature o f material l igament at m a x i m u m load 

It is well-known that the nominal tensile strength of many materials under­
goes very clear size effects. The usual trend is that of a strength decrease with 
size, and this is more evident for disordered (i.e., macroscopically heterogeneous 
and/or damaged) materials. Griffith (1921) explained the strength size effect in 
the case of glass filaments, assuming the existence of inherent microcracks of a size 
proportional to the filament cross-sectional diameter. Some years later Weibull 
(1939) gave a purely statistical explanation to the same phenomenon according to 
the weakest-link-in-a-chain concept. Only recently have the two views been har­
monized, enriching the empirical approach of Weibull with the phenomenological 
assumption of Griffith (Freudenthal, 1968; Jayatilaka, 1979; Carpinteri, 1989). A 
statistical size distribution of self-similarity may be defined (Carpinteri, 1986, 1989) 
for which the most dangerous defect proves to be of a size proportional to the struc­
tural size. This corresponds to materials presenting a considerable dispersion in 
the statistical microcrack size distribution (disordered materials). In this case, the 
power of the LEFM stress singularity, 1/2, turns out to be the slope of the strength 
versus size decrease in a bilogarithmic diagram. When the statistical dispersion is 
relatively low (ordered materials) the slope is less than 1/2 and tends to zero for 
regular distributions (perfectly ordered materials). 

Although the above-described view contains the fractal concept of self-similarity, 
this is circumscribed only to the defect of maximum size, whereas the disordered 
nature of the material microstructure is completely disregarded. The real nature 
of the material will be herein described using a more complex fractal model, where 
the property of self-similarity is extended to the whole defect population. On the 
other hand, slope values higher than 1/2 would represent, with both models, a 
degree of disorder that is so high as to be usually absent in real materials. 

Let us assume that the reacting section or ligament of a disordered material at 
peak stress could be represented as a fractal space of dimension a = 2 — άσ, with 
1 < a < 2 and, therefore, 0 < da < 1. The dimensional decrement άσ may be 
due to the presence of cracks and voids and hence, generally, to a cross-sectional 
weakening. A typical fractal set - the middle-third Cantor set - is shown in Fig.l. 
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Fig. 1. Fractal nature of material ligament. 

This set may be constructed from a unit interval by a sequence of self-similarity 
deletion operations. It can be demonstrated that the fractal dimension of the set is 
0.631, and therefore that it can be measured consistently only as a length raised to 
0.631. Let us consider two bodies, geometrically similar and made up of the same 
disordered material (Fig. 2). If the ratio of geometrical similitude is equal to d and 
the renormalized tensile strength σ*Ν is assumed to be a material constant and to 
have the physical dimensions [force]x[length]~( 2 - d < T ), we have (Carpinteri, 1992) 

Fi 
(1) 

^ \2-άσ (f-da 
Fi and F2 being the ultimate tensile forces acting on the two bodies respectively 

1 

Fig. 2 . Size-scaled bodies. 

On the other hand, the apparent nominal tensile strengths are respectively 

r(2) 

l 2 

(Ρ 

(2) 

(3) 
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log d 

Fig. 3. Size-scale effect on tensile strength. 

An alternative way to explain the decrease of the nominal tensile strength with 
specimen size is that of considering a sequence of scales of observation. If the 
total force F transmitted to the specimen is invariant with respect to the scale of 
observation, we have 

F = σιΑι — σ2Α2 = ... = ση_χΑη_ι = σηΑη = ση+ιΑη+ι = ... = σ ^ Α » (6) 

where the first scale of observation could be the macroscopic one, with σ\Α\ = σ^Α, 
A being the cross-sectional area, and the asymptotic scale of observation could be 
the microscopic one, with σ^Α^ = σ*ΝΑ*, A* being the measure of the fractal set 
representing the damaged ligament. 

From the equality between the extreme members of eq.(6) we get 

and therefore 

where the latter, according to eq. (1), becomes 

4] = ̂  (4) 

We can write the relationship between nominal strengths related to different sizes 
in logarithmic form 

log σΛτ = l o g σ Ν ( 1 ) - άσ logd (5) 

Eq. (5) represents a straight line with slope — da in the log versus log d plane 
(Fig. 3). 

log σ Ν 
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(8) 

with d equal to the characteristic dimension of the cross section. From eq.(8) we 
can get a generalization of eq.(5) 

Renormalization group relations analogous to eq. (9) have been proposed by 
Wilson (1971, 1979) in quantum field theory and statistical mechanics, as well as 
by Barenblatt (1979) in the intermediate asymptotics description of turbulence and 
blasting. 

3 Mult i f racta l Scaling Law 

For size scales tending to infinity, or, in other words, for very large specimens, 
tensile strength σ # may appear constant by varying the specimen size (Tang et 
al., 1992; Kim and Eo, 1990), whereas, for size scales where random self-similarity 
holds, the so-called "universal property" of the system (σ*Ν) is constant, although 
it is represented by a physical quantity with unusual dimensions. The last result 
represents the target of the so-called "renormalization" procedure (Wilson, 1971, 
1979), i.e., the determination of physical quantities that are invariant under a 
change of length scale. 

In physical reality, material ligaments at peak stress can be considered as mul-
tifractals (Mandelbrot, 1982; Falconer, 1990), of dimension 1.5 at small scales, and 
dimension 2 at large scales. This means that, at large scales, the disorder is not 
visible, the size of the heterogeneities being limited. A transition from extreme 
disorder (slope — 1 /2 ) to extreme order (zero slope) may therefore be evidenced in 
the diagram log σ^ν versus log d (Fig 4). Probably, for even smaller scales, a chaotic 
disorder could prevail over the maximum fractal disorder with slope —1/2. 

The asymptotic trends of tensile strength can be described also in the corre­
sponding proportional diagram as in Fig. 5. For size scale tending to zero, tensile 
strength tends to infinity and renormalization group theory, already applied in 
other branches of science, is able to provide a definitive explanation of the size ef­
fects on strength. On the other hand, we should recall the first attempt by Griffith 
(1921) to give some rational explanation to the strength increase by decreasing the 
cross-sectional area of glass filaments. 

The analytical expression of the Multifractal Scaling Law (MFSL) is the fol­
lowing (Fig. 5): 

log σΝ = log - da log d (9) 

(10) 
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extreme disorder log σ Ν 

extreme order 

logd 

Fig. 4 . Multifractal Scaling Law (bilogarithmic diagram). 

Nt/2 

° » = ( A + - f ) 

V a 

d 

Fig. 5. Multifractal Scaling Law (proportional diagram). 

where: 

= nominal tensile strength; 

d = characteristic structural size; 

A = [[F][L]~2]2 = constant with physical dimensions equal to the square of a stress; 

Β = [[F][L]~2]2 = constant with physical dimensions equal to the square of a 
stress-intensity factor. 

The two constants will be determined in each case by means of a non-linear least-
squares numerical algorithm, such as the Levenberg-Marquardt method (1963), in 
order to perform the best-fitting of the experimental data. The physical require­
ments previously exposed are thus respected 

lim (a + ̂ Y =VA ( Π ) 
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J X = log d 
log B/A 

Fig. 6. Physical meaning of the parameters A and B. 

In the bilogarithmic diagram shown in Fig. 6 (X = logd;Y = \ogaN), the 

analytical expression becomes 

The asymptotes in the bilogarithmic plot present peculiar physical meanings (Fig. 
6). The horizontal asymptote, corresponding to the large sizes (homogeneous 
regime), has the following expression: 

ffi(X) = logVI (14) 

while the oblique asymptote, which corresponds to the macroscopic dimension d 
tending to zero (i.e., X —• — oo) and governs the disordered or fractal regime, has 
the following expression: 

H2(X) = -±X + \ogy/B (15) 

We wish to emphasize the fundamental difference with respect to Bazant's 
Size Effect Law (SEL), where the underlying physical arguments are conceptually 
the opposite. In that case, in fact, a constant asymptotic value of strength is 
reached for sizes tending to zero, where Limit Analysis is supposed to govern the 
failure mechanism, whereas, in the MFSL, Limit Analysis comes into play only in 
correspondence with the homogeneous regime, when the disordered microstructure 
has been homogeneized at the larger scales. 
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On the other hand, according to the MFSL, Linear Elastic Fracture Mechanics 
is supposed to govern the collapse mechanism of an unnotched material as the char­
acteristic flaw size α becomes comparable to the macroscopic dimensions or, that 
is the same, as the disorder comes essentially into play. Thus, as the structural size 
progressively decreases, the behavior (Fig. 6) tends to the oblique asymptote (dis­
ordered or fractal regime) which is controlled by the parameter B, whose dimensions 
are, significantly, those of a stress-intensity factor raised to square. Furthermore, 
as the structural size d tends to zero, the slope of the bilogarithmic diagram tends 
to —0.5, which is the LEFM scale effect simply provided by Dimensional Analysis 
(Carpinteri, 1982). The Griffith's mode of collapse, governed by a 0.5 stress singu­
larity, becomes the main failure mechanism only in the limit of macroscopic size d 
tending to zero. From this point of view, the MFSL represents an ideal prosecution 
of Griffith's pioneering work (1921), where the glass fiber's strength was found to 
be surprisingly high if compared with that of normal sized glass specimens. 

Fig . 7. Multifractal Scaling Law for two different material microstructures. 

The intersection points are indicated in Fig. 6. Point Q is the intersection of 
the two asymptotes, and its horizontal coordinate is given by 

XQ = \ogj (16). 

where the dimension of the quantity B/A is that of a length. Point Q ideally 
separates the disordered regime from the ordered (homogeneous) regime. It seems 
to be natural to associate this quantity with the microstructural characteristic size 
I, which could be, in the case of concrete, proportional to the maximum aggregate 
size dmax 

I — . — cndmax (17) 
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It is reasonable to suppose that, for fine grained materials (rocks, ceramics, 
metals) this value should be considerably smaller than in the case of concrete, thus 
providing the MFSL to shift horizontally to the left in the bilogarithmic diagram. 
Given a particular size di, for example, a concrete specimen could behave according 
to the fractal disordered regime, whereas a ceramic or glass specimen of the same 
size could be set in the (nearly) horizontal branch (Fig. 7). 

The ranges of pronounced scale effects, corresponding to the fractal regime, 
have then to be individuated case by case for each material and, more precisely, for 
each microstructure. This explains why, in materials such as metals, the strength 
size effect is not observed, in the absence of initial cracks, at the usual structural 
dimensions. In order to clarify the physical meaning of the various terms, eq. (10) 
may be rearranged in the form 

where the non-dimensional term in the brackets represents the positive deviation, 
due to disorder, from a limit nominal strength / / , valid for infinitely large sizes. In 
this case a and / / represent the two constant parameters to be determined by the 
best-fitting of the experimental data. 

4 Exper imen ta l conf i rmat ion 

The Multifractal Scaling Law, proposed in the previous section, will now be used to 
analize the size effect on some significant experimental tests reported in the litera­
ture. The experimental results concern tests on four different unnotched specimen 
geometries. In addition, the Bazant's Size Effect Law (SEL) will be compared with 
the MFSL. The SEL, obtained from the hypothesis that a notch of length propor­
tional to the specimen size exists, not always gives reliable results. Furthermore, 
the validity of that hypotesis may be questionable. 

The first geometry that will be discussed is that of a four-point bending test 
carried out by Sabnis and Mirza (1979) for unnotched specimens. A number of 
plain model concrete beams with rectangular section were cast from the same mix 
(0.7:1:3.6), using sand passing sieve No.8, and they were then cured identically. 
These specimens ranged from 6 mm χ 9 mm to 100 mm χ 150 mm in cross section 
sizes. Each beam presented a span of four times its depth. The loading supports 
were accomplished with steel plates and rollers which were modelled to the same 
scale as the test beams. Conventional bending theory was used to calculate the 
extreme-fiber stress. 

The test results (average values) are plotted as circular data points in a l o g a ^ 
versus logrf diagram (Fig. 8). The MFSL in the form of eq.(10) was fitted us­
ing a standard computer library subroutine based on the Levenberg-Marquardt 
algorithm. In this way we obtain the MFSL as the regression curve. The val-

(18) 
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Fig. 8. Multifractal Scaling Law against Size Effect Law (Sabnis and Mirza, 
1979). 

ues of the parameters A and Β are the following: A = 14.668 MPa 2 and Β = 
616.31 MPa 2 mm. The square root of the parameter A represents the asymptotic 
value of the nominal strength for d —• oo. In this case we obtain f't = y/A = 
3.830 MPa while the parameter I = B/A = 42.02 mm could represent a character­
istic size for the microstructure. 

The correlation coefficient R is equal to 1.000 for MFSL and to 0.952 for SEL. 
This means that the MFSL gives an excellent fitting for the test data. Moreover, 
graphically it is evident how the data in the log σ/ν versus logd plane suggest 
a curvature opposite to that of SEL and that, increasing the structural size d, 
the decrement of the nominal strength tends to attenuate. This means that, for 
d —• oo, the nominal strength should have an horizontal asymptote, as predicted 
by the MFSL. 

The second geometry that we consider is a splitting cylinder test by Hasegawa, 
Shioya and Okada (1985). The size range of these tests was 1:30. All the specimens 
had the thickness of 500 mm and the maximum aggregate size of concrete was 25 
mm. The average compressive strength of the 100 mm diameter and 200 mm height 
cylinders, was 23.4 MPa. The values of the MFSL constants are the following: 
A = 2.09 MPa 2 and Β = 416.3 MPa 2 mm. The horizontal asymptote for d —> oo 
is given by f[ = y/A = 1.45 MPa, while the characteristic size is I = B/A — 199.2 
mm. The ratio between I and the maximum aggregate size is l/dmax = 7.69. The 
fitting of the test data with the MFSL gives a correlation coefficient R=0.966 while 
from SEL we obtain a value R=0.663. The fitting is performed by considering the 
strength values averaged for the same size. It is important to note how in this 
case the SEL not only presents a worste fitting but also indicates a trend that is 
completely different from the experimental one (Fig. 9). 
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Fig. 9. Multifractal Scaling Law against Size Effect Law (Hasegawa et a l , 1985). 

The third geometry regards the pull-out tests performed by Eligehausen, Bouska, 
Cervenka and Pukl (1992). Specimens and headed anchor bolts with three different 
sizes and the same geometrical shape were used. For corresponding dimensions the 
scaling ratio 1:3:9 was applied, the actual embedment length being 50, 150 and 450 
mm, respectively. All the specimens were made of concrete of nominally identical 
quality with a specified cube strength f'c = 30 MPa while the tensile strength, mea­
sured by splitting test, was f[ = 3.0 MPa. The water-cement ratio was 0.58 and 
the maximum aggregate size of 22 mm. The tensile force was transferred to the 
anchor through a shaft with two spherical hinges to minimize bending moments. 
In all tests failure was caused by pulling out a concrete cone. The shape of this 
cone was approximately similar for all embedment depths. 

Applying the MFSL and fitting the strength average values (Fig. 10), the pa­
rameters A=0.269 MPa 2 and B=117.98 MPa 2 mm are obtained. The strength for 
d —> oo proves to be f[ = y/~A = 0.518 MPa while the characteristic size I — B/A 
is 438.6 mm. The value of the nondimensional quantity l/dmax is equal to 19.9. 
The comparison between the correlation coefficients R, equal to 0.996 for MFSL 
and to 0.977 for SEL, allows us to affirm that, even in this case, the MFSL fits the 
experimental data better than the SEL. 

The last geometry that will be presented is that of a torsional test of reinforced 
concrete beams realized by Bazant, Sener and Prat (1988). The test specimens 
were square prisms of cross-section side d and length L. Three specimen sizes 
characterized by d=38.1, 76.2 and 152.4 mm were used, and the ratio L/d=8/3 
was the same for all beams. The beams were loaded in torsion by opposite couples 
at their ends. The arms of the loading couples at the beam ends were 19.1, 38.2 
and 127 mm. The forces of the couples were applied at distance a from the beam 
end, such that a / L = 3 / 3 2 for all beams. The specimens were made of microconcrete 
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Fig. 10. Multifractal Scaling Law against Size Effect Law (Eligehausen et a l , 
1992). 

with maximum gravel size 4.8 mm and maximum sand size 3.35 mm. The mix ratio 
(cement:sand:gravel:water) was 1:2:2:0.6. Three companion cylinders of diameter 
76.2 mm and length 152.4 mm were also cast from each batch. The uniaxial 
compression strength of these cylinders was fc= 43.6 + 44.1 MPa. The reinforced 
specimens of the aforementioned three sizes contained four longitudinal bars placed 
in the cross-section corners with a cover of 8.1, 16.3 and 31.5 mm, respectively. 
Deformed bars of diameters 3.18, 6.35 and 12.7 mm were used. For the smallest 
diameters, the yield strength was / y = 3 1 0 MPa and for the largest ones it was 
/ „ = 4 1 3 MPa. 

The parameters A and Β of the MFSL in this case are equal to 1.869 MPa 2 

and to 494.52 MPa 2 mm, respectively. The asymptotic strength for d —+ oo results 
r'N — \f~A = 1.367 MPa, while the characteristic size, B/A, is I = 246.6 mm 
with the ratio l/dmax equal to 55.11. The fitting was performed for both laws on 
the average strength values. In this case the MFSL goes exactly through all the 
experimental data giving a correlation coefficient equal to 1.000. On the other 
hand, for the SEL the value i?=0.979 is obtained. From Fig. 11 it is possible to 
observe how the two laws have a similar trend only in the range of the experimental 
data. 
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3 TENSION SOFTENING DIAGRAMS AND 
LONGITUDINALLY REINFORCED 
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Abstract 
This paper will present several two- and three-dimensional micromechanical models for 
describing the tension softening response of plain concrete. It will be shown that the rela­
tionship between the residual stress transfer capability and the crack opening displacement 
depends on only the fracture toughness of the matrix material (i.e. cement mortar) and the 
volume fraction of the stiff second phase (i.e. coarse aggregate). The models can therefore 
also describe the tension softening behaviour of any quasi-brittle material. 
The tension softening diagrams are useful not only in studying the fracture process in 
plain concrete but also in investigating the bond stress transfer from a reinforcing bar to 
surrounding concrete in reinforced concrete beams. A method for the splitting failure of 
reinforced concrete beams will be briefly presented and shown to be quite insensitive to 
the shape of the tension softening diagram. The latter may however play an important 
role, if the beam is submerged in water. 
Keywords: Tension Softening, Plain Concrete, Bond Stress, Reinforced Concrete, Beams, 
Splitting Failure. 

1 Introduction 

Plain concrete which has traditionally been regarded as brittle in fact exhibits a moderately 
strain-hardening behaviour prior to the attainment of its ultimate tensile strength. This 
behaviour is reminiscent of that of the high strength metals. However, unlike the latter, 
concrete is characterized by an increase in deformation with decreasing tensile carrying 
capacity past the ultimate strength, i.e. by tension softening. The tension softening 
response is a result of the existence of a diffuse zone of microdamage (a process zone). 

In this paper we shall first discuss briefly the reasons behind the observed moderate pre-
peak nonlinearity of concrete. We shall then consider several two- and three-dimensional 
micromechanical models for the description of its tension softening behaviour. The de­
creasing tensile stress transfer capacity with increasing deformation in the tension softening 
regime is a result of the progressive rupture of the intact ligaments that break the con­
tinuity of flaws. In practice for ease of computation, the tension softening relationships 
determined from micromechanical considerations are approximated by monomial, expo-

Fracture of Brittle Disordered Materials: Concrete, Rock and Ceramics. Edited by G. Baker and B.L. Karihaloo. 
Published in 1995 by Taylor & Francis, 2 Park Square, Milton Park, Abingdon, Oxon, ΟΧ14 4RN. ISBN: 0 419 19050 3. 
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nential or polynomial functions depending upon the available test data. We shall use such 
approximate tension softening diagrams for predicting the longitudinal splitting force of a 
reinforced concrete beam. 

2 Pre-peak nonlinear response 

Figure 1 illustrates the typical load-deformation response of concrete in tension recorded 
using a closed-loop testing machine. The post-peak portion of the response curve can only 
be obtained by controlling a monotonically growing deformation parameter, e.g. crack 
opening, but not by controlling the force which must decrease. 

Β 

Deformation 

Fig.l Typical load-deformation response of a quasi-brittle 
material in tension showing 

(i) the transition from linear to nonlinear response (point A) ; 
(ii) pre-peak nonlinearity (AB); 
(iii) onset of localization of deformation (point B); 
(iv) post-peak tension softening response (BCD) 

The pre-peak strain hardening behaviour (stage AB in Fig. 1) is due to diffuse progres­
sive damage of the material under increasing tensile stress as a result of the formation of 
microcracks along the interfaces between the mortar matrix and coarse aggregate particles 
and of their deflection into the matrix. The transition from linear to nonlinear response 
(point A in Fig. 1) is primarily governed by the extent of available interfaces. Kaplan 
(1963) measured accurately the strain at this transition for concrete under several tensile 
loading combinations (e.g. direct tension, three-point bending, four-point bending) and 
found that it depends on only the volume fraction of coarse aggregate in the concrete mix. 

The interfacial microcracks first form between the matrix and largest coarse aggregate 
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particles. With a further increase in tensile stress not only do the existing microcracks 
propagate stably but also more microcracks are progressively formed at interfaces between 
the matrix and coarse aggregate particles of smaller sizes. As concrete usually contains 
a range of sizes, the process of formation, stable growth and deflection of microcracks 
continues under increasing tensile stress resulting in the pre-peak nonlinearity. 

This pre-peak strain hardening behaviour has been successfully explained using the 
concepts of damage mechanics (Krajcinovic and Fonseka, 1981; Lemaitre, 1985; Karihaloo 
and Fu, 1989,1990). Their description is however beyond the scope of this paper. 

3 Post-peak tension softening 

The microcracks resulting in the pre-peak nonlinearity are not too numerous and the damage 
is distributed throughout the material. However, when sufficient damage has accumulated 
a dominant macroflaw localizes along the eventual failure plane (point Β in Fig. 1). This 
macroflaw would lead to immediate fracture in a brittle material. In concrete its immediate 
catastrophic advance is prevented by mechanisms other than those responsible for pre-peak 
nonlinearity. The major mechanism is the so-called bridging mechanism which breaks the 
continuity of the dominant macroflaw so that the (smaller) discontinuous segments can no 
longer grow unstably. It is however worth noting that the strength of bridging is not by 
itself enough to allow recording of the tension softening behaviour without a feed-back 
signal. This control signal is provided by any monotonically increasing deformation but 
not by the decreasing force. 

The bridging is provided by the interlocking of coarse aggregate particles, by the strain 
hardening capacity of unbroken ligaments between macrocrack segments and by any voids 
which attract and trap macrocracks. Several two- and three-dimensional tension softening 
models have been proposed, and we will now consider these. 

3.1 Two-dimensional models 
A two-dimensional tension softening model was proposed by Horii et al (1987) and by 
Ortiz (1988). In this model, the discontinuous macroflaw is regarded as an infinite row 
of collinear cracks separated by uncracked material ligaments. The cracks are assumed to 
lie along the eventual failure plane and the mechanics of their growth is studied under a 
normal tensile stress σ which is assumed to be well removed from the crack plane . At the 
onset of tension softening (point Β in Fig. 1) each segment of the discontinuous macroflaw 
is of size 2£0 and is separated from the neighbouring segment by an uncracked ligament of 
length (d - 2io), so that 2£o/d = 70 may be regarded as the (small) accumulated damage 
per unit area (volume) at this instant. To study the tension softening response we need 
to know how the tensile stress transfer capability σ decreases as the uncracked ligaments 
progressively break so that the relative cracked area increases until eventually rupture 
occurs. Each cracked segment of the discontinuous macroflaw will grow when the stress 
intensity factor which will be the same at either tip, reaches the intrinsic matrix critical 
stress intensity factor Kfc (i.e. the fracture toughness of cement mortar which is regarded 
as a material constant). 

This two-dimensional model predicts that past a certain maximum value the inelastic 
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deformation must also decrease with the stress in order to satisfy the crack growth criterion 
Kj = Kfc along the tension softening curve. Such an unexpected and unstable situation 
should not however be confused with the response of real material. In fact, it was to be 
expected from this model, because of the assumption that the cracked segments will grow 
until they coalesce and result in complete rupture. A proper stability analysis of this model 
however shows (Melin, 1983) that when the tips of adjacent straight cracks approach so 
close to each other that their straight paths would be unstable, they would avoid each other 
by curving and form "eyelets". Such crack curving and formation of eyelets have been 
repeatedly observed in tensile tests on cement mortar and concrete (van Mier and Vonk, 

The tension softening response of concrete is generally characterized by a pronounced 
tail (Reinhardt et al, 1986), i.e. a relatively large value of critical crack opening displace­
ment wc at rupture, without the instability predicted by the foregoing two-dimensional 
model. There could be many reasons for the observed pronounced tail. For instance, it 
could be the result of the presence of pores in the material because they are known to attract 
and arrest cracks. It could be because the fragmented macroflaw does not lie in one plane 
but in a thick band such that the failure can only occur when the cracks in neighbouring 
planes are connected by diagonal cracks. In the next two- dimensional model we shall 
only explore the first possibility in an approximate manner. 

We shall assume for simplicity that at the onset of tension softening the discontinuous 
macroflaw consists of a row of collinear cracks separated not only by uncracked material 
ligaments, as in the preceding model, but also by circular pores. The latter, it will be 
noticed, add a certain "thickness" to the eventual failure plane. At the onset of tension 
softening each segment of the discontinuous macroflaw in this model (Fig. 2) is assumed 
to consist of cracks of length 2£0 interspersed by circular pores of diameter 2a 0 , such 
that the initial "thickness" of the eventual failure band also equals 2αο· The neighbouring 
segments are separated by uncracked ligaments each of length d - 2(a0 + 4 ) , so that now 
2(α 0 + ίο)Id = 7o is the accumulated damage per unit area (volume) at the onset of tension 
softening. 

The mathematical problem corresponding to the assumed tension softening model 
consists of an infinite row of collinear circular holes with edge cracks subjected to a 
remote tensile stress σ. It has been solved by Karihaloo et al. (1991). Unlike the 
preceding problem, the solution is not available in an analytical form. However, the 
numerical results for the stress intensity factor Κι at each crack tip in the infinite row 
and for the opening displacement of each macroflaw segment [v] have been fitted by 
polynomial approximations. We shall only present the polynomial approximations for K\ 
and [v] without going into detail. 

Κ ι at each crack tip in the row is given by 

1991). 

(1) 

where 

(2) 
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Fig.2 Tension softening model in which the discontinuous 
macroflaw is modelled by microvoids with edge 
microcracks interspersed by unbroken ligaments 

with β = a/(a + £) and 7 = 2(a + £)/d. The coefficients Crs are listed in Table 1. It 
is noted that the polynomial approximation ( 2 ) differs from the numerical values by less 
than 0.7%. It was deliberately chosen in the form ( 2 ) in order to be able to recover easily 
the exact analytical result of the preceding model by setting a = 0, i.e. β = 0. When this is 
done, ( 2 ) reduces to 

t a n π 7 / 2 
/ ( 0 , 7 ) = 7Γ7/2 

(3) 

which when substituted into eqn (1), together with a = 0, indeed reproduces the exact 
result. We impose now the crack growth criterion in the tension softening regime, namely 
Kj = Kfc, and get the following relation between σ and ft 

(4) (flo + £0) /(A), 70) 

ft \ (a + i) ί(β, 7) ' 

where βο and 70 refer to the values of β and 7, respectively at the onset of tension softening. 
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Next, we report the polynomial approximation for the average opening of macrocrack 
segment [V]. We note first that the solution of the mathematical problem exploited the 
periodicity of circular holes with edge cracks, so that it was only necessary to solve over 
a quadrant after imposing the appropriate stress and displacement conditions. Note that 
over the quadrant of the hole, the total opening is V+(X) + \JA2 — Χ2 (0 < Χ < α) , where 
V+(X) refers to the opening displacement of the upper right quadrant of the flaw segment. 

The average opening of each flaw segment over the period d to account for the unbroken 
bridging ligaments is 

wt = ^GTFN), (5) 

where the best-fit polynomial approximation ς(β, η) to the numerical results is 

<?(/?, 7 ) = ( l + _ L = ^ D r . ^ îog(sec )̂) . (6) 

The coefficients Drs are listed in Table 1. 

Table 1. Coefficients CRS and Drs in the polynomial approximations (2) and (6) 

Γ s CRS D„ 
1 0 -0.0131246 1.0012000 
1 1 -0.1801658 -0.8720340 
1 2 0.3349874 0.5115431 
1 3 1.3436450 0.8064520 
2 0 0.6175492 -1.1061990 
2 1 0.8620229 1.1268440 
2 2 -2.0971480 -2.4623200 
2 3 -3.1807730 -1.3658990 
3 0 -0.8855224 0.4455536 
3 1 -0.5714183 -0.7251084 
3 2 0.8950143 2.4867950 
3 3 3.0786150 0.5254524 

The polynomial approximation was again deliberately chosen in the form (6) with a view 
to recovering the result of the preceding model, when α = 0. It differs from the numerical 
values by less than 3%, except near the termination of tension softening (7 ->· 1) when the 
error increases to about 6.3%. 

The net inelastic deformation in the tension softening regime is given by 

w σ 

wo ft 

In the present model, the tension softening relation between the residual tensile carrying 
capacity σ and the inelastic deformation w is given by eqns (4) and (7). In addition to 
the two material parameters 70 and Kfc of the previous model, it contains the parameter β 
which is a measure of the relative fractions of microvoids and microcracks in the localized 

- 1. (7) 
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deformation band. Thus β = 0 denotes absence of any microvoids, whereas β « 1 implies 
microvoids with negligibly small edge cracks. Note that for the validity of the present 
model edge cracks however small, must be present. It is not valid when no edge cracks 
are present (β = 1). 

The tension softening diagrams for three values of if a and several values of 70 are 
shown in Fig. 3. The curves in Fig. 3a for £/a = lO (or β = 1/11) are already very nearly 
the same as for β = 0 and exhibit the same unstable behaviour. 

As β increases, not only does the critical value of crack tip opening displacement wc 

increase, but, more importantly, the failure is less unstable. In fact, at if a = 0.1 (Fig. 3c) 
the unstable branch is totally absent, confirming the stabilizing role of voids in the tension 
softening process. To illustrate this, we now show that the present model indeed predicts 
that u ; - > - o o a s 7 - + l a t complete rupture. For this, it is convenient to rewrite eqn (7), 
using eqn (4), in the following form 

Substituting (2) and (6) into (8) and taking the limit as 7 —>· 1, we find that for β greater than 
0» 9{β, l)l 1{β·> l) 00. whereas when β = 0, # ( 0 , 7 ) / / ( 0 , 7 ) ->· 0, thereby confirming 
the instability inherent in the preceding collinear crack model. 

It should be mentioned that tension softening models cannot predict the exact value of 
the critical crack opening at rupture (7 = 1). A notional value may be used by limiting 7 
to 1 - 8 with 8 governed by the frictional pull-out characteristics of coarse aggregate from 
the cement mortar matrix. 

Another two-dimensional model, proposed by Li and Huang (1990) assumes that the 
tensile strength of concrete is limited by the branching of the largest interfacial crack 
into the matrix which then becomes the dominant discontinuous macroflaw. The latter 
subsequently propagates into a "homogeneous" material with a fracture toughness which 
reflects the distribution of interfacial cracks and the possible deflection of the macroflaw 
when it meets hard second phase particles. 

The tension softening curve according to this model is 

where V) is the volume fraction of coarse aggregate in the mix. 
As with the second model described above, the w - σ curve as expressed by eqn 

(9) exhibits a long tail decaying indefinitely to σ = 0, as w -> 00. In reality though, a 
frictional pull-out mode takes over whereby the hard second phase particles even after 
being completely debonded from the matrix are prevented from pull-out by friction. 

To complete the description of this model, let us make a few observations on the 
calculation of the fracture toughness K^m of the "homogenized" medium. When the 
dominant macroflaw along the interface between the largest coarse aggregate particles 
and matrix grows and encounters another particle it is most likely to deflect around this 

wE' = /(/fa,70) / 7 0 y <?(/?,7) ff(/?0,7o) 

ltd 2 \ Ί ) / ( / ? , 7 ) / ( A , 70) 
(8) 

(9) 
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Fig.3 Tension softening curves predicted by the model shown in Fig.2 
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particle because the matrix-particle interface is usually weak. This deflection reduces the 
stress intensity factor at the new crack tip because the latter is no longer oriented normal 
to the applied tensile stress. Thus the material is effectively toughened. In addition to 
crack deflection toughening, the presence of microcracks at the matrix-particle interfaces 
reduces the elastic modulus of the material ahead of the dominant macroflaw leading to 
a shielding effect whereby its tip "feels" a reduced stress intensity factor. The separate 
analysis of these two toughening mechanisms is beyond the scope of the present paper. 
Suffice it to say that such an analysis allows us explicitly to relate the second phase volume 
fraction to the fracture toughness increment over and above the matrix fracture toughness. 
The interested reader will find the details in Li and Huang (1990). Here, we just report the 
final result 

For ν=0.25, and Vf = 0.1,0.3,0.5, and 0.7, the fracture toughness of the "homogenized" 
material is 7, 23,41, and 64% higher than the matrix fracture toughness. 

3.2 Three-dimensional model 

The two-dimensional models studied above predict a rather sudden drop in the tensile 
carrying capacity immediately after the onset of tension softening. This may partly be 
a consequence of the two-dimensionality of the models. The constraint provided by the 
thickness direction may indeed result in a more gradual reduction in the initial post-peak 
tensile carrying capacity. To verify this, we shall now consider a three-dimensional analog 
of the two-dimensional collinear crack model for which results are available (Huang 
and Karihaloo, 1992). In this three-dimensional model, the discontinuous macroflaw is 
modelled by a doubly periodic array of penny-shaped (circular) cracks (period = £) in the 
eventual failure plane (Fig. 4). For simplicity the cracks are assumed to be of identical 
size (radius = a) and to grow in a self-similar manner under a remote normal tensile stress 
σ until the neighbouring cracks touch one another (i.e. £ = 2d). At that instant the degree 
of damage in the material 7 = πα2/£2 takes the value π/4. Because of severe mathematical 
difficulties associated with the study of overlapping circular cracks, the analysis has not 
been carried to complete rupture when 7 = 1. Nevertheless, the limited analysis that has 
been performed gives a good indication of the constraint provided by the third dimension. 

The mathematical problem corresponding to the above model has been solved by two 
methods. Both methods require the numerical solution of a system of integral equations. 
The first method does not involve any approximations and thus suffers from slow con­
vergence, especially as 7 ->• π/4. To improve the rate of convergence without at the 
same time unduly sacrificing the accuracy of results, a key assumption akin to the Saint 
Venant approximation in the Theory of Elasticity is made in the second method. The key 
assumption is that the difference between the actual opening displacement of any one crack 
in the array and the average opening displacement of all the remaining cracks is so small 
as to be ignored. This allows the reduction of the governing integral equations to highly 
convergent ones even at the instant when the neighbouring cracks come in contact (i.e. 7 

1.0 + 0.87V) 
(10) 
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Fig.4 A doubly periodic array of square penny-shaped cracks 
along the eventual fracture plane (z = 0 ) 

= π/4). 
We shall omit details of mathematical formulation and solution procedure and only 

present the results that parallel those of the corresponding two-dimensional model. How­
ever, we can no longer talk about crack tips, but have to consider the whole circumference 
of the circular crack. The stress intensity factor along the circumference (the edge) varies 
with the polar angle φ measured from the positive x-axis in the eventual failure plane, i.e. 
2 = 0 (Fig. 4) . It is maximum at the poles φ = 0, π/2, π, and 3π/2, so that the crack growth 
criterion now has to be applied to the average stress intensity factor along the edge, i.e. 
Κ ι = Kfc. As with the two-dimensional model, we shall relate Kj to the average crack 
opening volume. 

The results corresponding to the two-dimensional model are 

σ 

J 
3wE' 
I6a0ft 

To 

Τ 

g(7o) 
y/lo 

/ ( T o ) 

/ ( 7 ) 

9{l) (σ 9(l) Λ U 9(Ίο) J ' 

( I D 

(12) 

where 7 o = π ( α 0 β ) 2 and ft = πΚγο/[^/2α~0 /(7o)]. 
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As before, the numerical values of }(η) and 0(7) have been fitted with polynomial 
approximations chosen such that as £/(2a) - » 00, the results for a solitary circular crack 
under a uniform normal tension are retrieved 

The coefficients Cr and Dr are listed in Table 2. 

Table 2. Coefficients Cr and Dr in the polynomial approximations (13) and (14) 

r C r Dr 

1 2.2649 0.3224 
2 -19.7365 -0.1192 
3 82.8536 1.1977 
4 -142.0318 -2.6264 
5 85.0150 2.1644 

The error in the polynomial approximation (13) for the dimensionless average stress 
intensity factor is less than 4.7% over the range 0.02< 7 < π/4, whereas that of the 
polynomial approximation (14) for the dimensionless average crack opening volume is 
less than 1.05% over the same range. 

The tension softening curves determined by (11) and (12) are shown in Fig. 5 for 
several values of the accumulated damage at the onset of tension softening. A comparison 
of these curves with those on Fig. 3a clearly shows that the tri-axiality does indeed produce 
a more gradual loss in the tensile carrying capacity immediately after the onset of tension 
softening. In comparing the curves on Figs. 3a and 5, the differences in the horizontal 
scales ought to be borne in mind. 

The solution of the above three-dimensional model requires the summation of doubly-
infinite series, resulting from the consideration of multiple interactions among all the 
cracks in the doubly-periodic array. If only the first-order interactions among the cracks 
are retained, the solution can be considerably simplified because the series can be summed 
analytically by the application of the mean value theorem. This first order approximation 
can be expected to be reasonably accurate when the cracks are well apart, i.e. when 7 
is small. It has the advantage that it can be readily extended to the more general array 
configuration shown in Fig. 6 (and not only to the array considered above for which a = 
π/2), thereby providing an indication of the dependence of ί(η) and 0(7) on the geometry 
of the array, in addition to their primary dependence on the cracked area fraction 7. This 
has been investigated by Huang et al (1993) who found that the initial stage of the tension 
softening curve is not particularly sensitive to the distribution of discontinuous macroflaws 
in the eventual fracture plane. 

In practice for ease of computation, the tension softening curves for concrete are 
approximated by monomial (Reinhardt, 1984), exponential (Reinhardt et al, 1986) or 

(13) 

0(7) = vEw1- (14) 
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Fig.5 Tension softening curves for the doubly periodic array of Fig.4 

polynomial (Karihaloo and Nallathambi, 1989) functions depending on the available test 
data. We shall demonstrate the use of these approximate functions in the next section for 
the determination of the longitudinal splitting force in a reinforced concrete beam. 

4 Splitting failure of longitudinally reinforced concrete beams 

When a deformed reinforcing bar surrounded by concrete is pulled, movement of the steel 
ribs will be resisted by concrete. Large inclined compressive forces will radiate from the 
ribs to the surrounding concrete giving rise to circumferential forces in the latter (Fig. 
7). Tepfers (1979) assumed that this radial component of bond stress can be considered 
as hydrostatic pressure acting on a thick-walled concrete ring, and concrete will crack 
if the induced stress reaches its tensile capacity. However, the maximum pull-out force 
is reached only when the cracks penetrate some distance into the material. Hence, the 
concrete ring will be comprised of an outer elastic part surrounding an inner cracked part 
at failure. The ultimate bond stress is therefore given by superposition of the contributions 
from the individual parts of the ring, i.e. Uuit = Ue,uit + Uc,uit. 

The contribution of the elastic part UeyUu of the concrete ring is calculated using 
the elastic the elastic theory. For the cracked part of the concrete ring, if compatibility 
at the interface between the cracked and uncracked parts (Fig. 8) is cinsidered, the 
total elongation at that section can be expressed in terms of the number and width of 
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Fig.6 Various doubly periodic arrays with different distribution angle α 

cracks. When the power function relation for the tension softening of concrete proposed 
by Reinhardt (1984) 

7, = > (") 
\wcJ 

0.248 

(15) 

is substituted, the stress for a finite section in the cracked part is obtained. On integration, 
the force and hence the bond resistance contributed by the cracked part of the ring can be 
calculated. The tension softening curve (15) predicts a sudden stress drop at small w as 
compared with the test results. To overcome this deficiency, Reinhardt et al (1986) later 
proposed a more complicated relationship in the form 

y = [1 + ( d - ) 3 ] e x p ( - C 2 - ) - - ( 1 + C 3 ) e x p ( - C 2 ) , 

ft Wc Wc ™c 

(16) 

where C\ = 3 and C2 = 6.93. However, as this approximate relationship still has a finite 
slope when w approaches wCi Karihaloo and Nallathambi (1989) proposed the following 
approximation 

^ = 1 - 9 . 2 4 3 1 ( — ) 2 + 33 .8259(—) 3 - 5 9 . 4 2 4 8 ( — ) 4 

ft wc 


