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Foreword

To write a foreword to this book is a pleasure but the task also presents
some difficulties. The pleasure arises from the great importance of the
work, but I feel I should first dispose of my 'difficulties'.

As Francois de Larrard acknowledges in his letter inviting me to write
this foreword, my approach to concrete is pragmatic, coupled with
doubts about ready-to-use mathematical models for mix design. This is
true; in my book Properties of Concrete (4th edition), published in 1995, I
say: 'an exact determination of mix proportions by means of tables or
computer data is generally not possible: the materials used are essentially
variable and many of their properties cannot be assessed truly
quantitatively. For example, aggregate grading, shape and texture cannot
be defined in a fully satisfactory manner.'

My views arose from consideration of commercial models, developed
in Australia, the United Kingdom and the United States, each based on a
limited range of experimental data, and yet each claiming universal
validity. The critical feature of those models is that they are more-or-less
statistical fits to experimental data, without the necessary explanation in
terms of actual physical phenomena. Correlation of variables should not
necessarily be taken to imply causation. For example, over a period of ten
years, in a given state, the consumption of alcohol increased and, at the
same time, the salaries of teachers increased too. It was concluded that
the more the teachers are paid the more alcohol is drunk. This may be an
apocryphal story, but si non e ve.ro e ben trovato.

The fact is that some engineers fall into that kind of trap. Not so, de
Larrard. His models are physical models of which the parameters, in so
far as possible, correspond to measured quantities. Herein lies one
considerable virtue of his work. There is no denying that, if observed
phenomena cannot be expressed in mathematical terms, generalized use
of the observed relations is not possible. At the same time, if the
mathematical terms are not related to physical phenomena in a manner
that stands up to a logical interpretation, there is a great risk of using a
model whose limits of validity are not known.
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Having read de Larrard's book, I fully accept that he is on the right
path. This path must be followed in order to bring the use of concrete
and, above all, the mix design, into line with the use of other materials,
such as polymers and metals. In other words, de Larrard's approach will
make concrete a truly purpose-designed manmade material, instead of
just a reconstituted rock.

My use of the future tense might give the impression that the problem
has not been fully solved. This is no criticism of de Larrard's work:
nobody could achieve more today, if only because we are still unable to
quantify all the properties of aggregate, as I mentioned earlier. And this
is a formidable task. The physical means to achieve it are available
without further basic research; the difficulty lies in the fact that no
commercial part of the 'concrete system' has an interest in financing the
necessary development.

As for de Larrard's models, I am impressed by the way in which he has
validated them by independent assemblies of coherent data, without ever
contradicting practical experience. His approach is the best way to
progress from today's most common building material, that is, bad
concrete, to concrete which, in every case, will be purpose-designed and
tailored to the expected use.

There are a few, more general, comments which I would like to make.
Francois de Larrard, a Frenchman in the great tradition of Ecole
Polytechnique, has chosen to write this book, not in what the French
love to call la langue de Moliere, which is also la langue de Descartes, quoted
by de Larrard, but in what has indubitably become the worldwide
language of technology, science, and much more. Yet he has retained the
Cartesian approach and, for bringing this rigour to concrete, we should
be very grateful to him.

Indeed, up to now, there has been very little interaction between the
French, very mathematical, approach to concrete on the one hand and, on
the other, the British and American pragmatic approach. French books on
concrete are rarely translated into English; likewise, it is only in 1998 that,
for example, my book Properties of Concrete appeared in a French
translation (having, over the years, been translated into twelve other
languages). An yet, it is the same well-designed concrete mix that is
needed on both sides of the Channel and on both sides of the Atlantic,
and the marrying of the French and Anglo-American approaches cannot
but be highly beneficial for all concrete users. So, this 'French' book in
English is very welcome. Its title includes the words 'a scientific
approach'. It is a scientific approach by a civil engineer, and this is the
way forward.

Adam Neville CBE, FEng
London

15 April 1998



Preface

... diviser chacune des difficultes que j'examinerais en autant de parcelles
qu'il se pourrait, et qu'il serait requis pour les mieux resoudre...
... conduire par ordre mes pensees, en commengant par les objets les plus
simples et les plus aises a connaitre, pour remonter peu a peu, comme par
degres, jusques a la connaissance des plus composes—
... faire partour des denombrements si entiers et des revues si generates,
que je fusse assure de ne rien omettre.

. . . to divide every difficulty that I should examine into as many parts as possible
and as necessary to better solve it...
. . . to drive my thoughts in order, starting by the most simple objects, the easiest
to know, so as to rise gradually, step by step, up to the knowledge of the most
compound ones...
. ..to make such complete accounts and so general reviews, that I might be
assured of missing no thing.

(Rene Descartes, Discours de la methode, 1637)

The aim of this book is to build a consistent, rational and scientifically
based approach to designing concrete mixtures for most civil engineering
applications. An attempt has been made to consider the following facts,
which change the nature of the problem, as compared with the situation
faced by our predecessors (from Rene Feret and Duff Abrams to more
recent contributors):

• Concretes are no longer made of aggregate, Portland cement and
water only. Often, if not always, they incorporate at least one of the
following products: organic admixtures, supplementary cementi-
tious materials, fibres.

• Nowadays concretes must meet a comprehensive list of require-
ments, which are not limited to the final compressive strength, but
include rheological properties, early-age characteristics, deformabil-
ity properties and durability aspects.
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• As for the desired properties, the range of attainable values has
displayed a dramatic increase in the past few years. For instance, no-
slump to self-compacting concrete can be used. The compressive
strength at 28 days may be as low as 10 MPa for some dam mass
concretes, or as high as 200 MPa or more for some special precast
products.

• A purely experimental and empirical optimization is less and less
likely to succeed, because of the high number of parameters involved
(both input and output), the high labour expenses of such studies,
and the economic and time constraints that are characteristics of the
industrial world.

But besides these negative aspects (with regard to the ease of optimizing
a concrete), there are, fortunately, positive ones:

• Concrete technology is no longer a young technology; since the
beginning of this century a huge amount of experimental data has
been published, which can be exploited and synthesized. The latest
edition of Adam Neville's book provides a unique survey of this
literature (Neville, 1995).

• The development of computers helps the researcher to manage large
amounts of experimental data. From these data, he may discover the
physical laws underlying the behaviour of the concrete system, and
translate them into semi-empirical mathematical models, linked with
databases (Kaetzel and Clifton, 1995).

• Once those models are incorporated in user-friendly software,
practitioners may readily use them, even with limited knowledge
of the vast complexity of the system. Thus optimal responses to
industrial problems may be given quickly. At the present state of
development, experiments are still necessary, but the software allows
the formulator to cut the number of tests drastically, to focus the
experimental programmes better and take maximum advantage of
the new data generated.

On the basis of these statements, the objectives of this book are twofold:
(i) to develop simplified models linking concrete composition and
properties, so that an analytical solution of optimization problems
becomes possible, allowing one to demonstrate the main rules and trends
observed, and therefore understand the concrete system better; (ii) to
build more comprehensive and complex models, which may be easily
implemented in software and be used in practice for designing concretes
with real materials for real applications.

Designing a concrete is first of all a packing problem. All existing
methods implicitly recognize this statement, either by suggesting
measurement of the packing parameters of some components (ACI
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211), or by approximating an 'ideal' grading curve that is assumed to
lead to maximum compactness with real materials. It is noteworthy that
all authors propose different curves (or families of curves), which raises
doubts as the soundness of this concept. Chapter 1 of this book presents
in detail a theory developed by the author and his colleagues after a 12-
year research effort. It is the first one, to the author's knowledge, to solve
the question of the packing density of dry mixtures in all its general
extent, with sufficient accuracy for practical application. The theory
agrees with most classical results, and shows that the ideal proportions of
a given set of aggregate fractions depend not only on the grading curves,
but also on the packing abilities of each grain fraction, including the fine
ones.

Chapter 2 is devoted to an analysis of the relationships between the
composition of concrete and its properties. The models developed often
refer to packing concepts, considering either the whole range of solid
materials in fresh concrete or the aggregate skeleton in hardened
concrete. Most engineering properties are dealt with, but with less
emphasis on durability. This is not because the subject is not important,
but simply because at present few data are available that both cover a
wide range of concretes and relate to true durability-related material
properties.

Chapter 3 lists the constituent properties that control concrete
properties in the previously developed models. It is noteworthy that
this list appears limited compared with the huge collections of
parameters that encumber some concrete studies.

Chapter 4 shows how to use the models presented in Chapter 2. It is
the core of the book. With the help of simplified models, optimization
problems are first solved analytically. This approach qualitatively
highlights the most important features of the concrete system. Then a
more refined solution is worked out by using the complete models
together with a spreadsheet package containing an optimization module
(solver). General questions dealing with mixture proportioning are
discussed in the light of numerical simulations, and some existing
empirical methods are critically reviewed.

Chapter 5 presents a number of applications of the proposed approach
to a series of industrial problems. It is shown here that the book provides
a conceptual framework that applies to any cementitious granular
material, including mortars, roller-compacted concrete and sprayed
concrete. A special emphasis is put on high-performance concrete, but it
is demonstrated that the approach applies just as well to very common
'commodity' concrete. Real concrete formulae, with measured properties,
are presented, and are compared with the model predictions obtained for
the same specifications.

In the conclusion, research needs for improving the models are
stressed. Clearly, the area of durability is one that deserves the highest
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effort. Engineers must eventually be able to design a concrete for a given
structure life span, in a given environment. Today we are lagging far
behind this objective. It is also recognized that some models are too
empirical, because the scientific basis for some problems is still lacking,
making extrapolations sometimes hazardous. However, the author's
defence is that an engineer must solve a problem with the most
appropriate means that are available to him. Nevertheless, future
research should aim to decrease as much as possible the part that
empiricism plays.

In regard to the practical use of this book, a flowchart is provided in
Appendix 1, which makes it possible to implement the various models in
software. Also, it is briefly shown that the concepts presented may be
used not only for designing new mixtures but also for quality control
purposes. In an industrial production process, as raw materials are
continuously changing, the concrete system should remain alive,
adapting itself to give an output that is as constant as possible (Day,
1995). This is probably one of the greatest challenges of today's concrete
industry, equal to the development of new and 'exotic' formulae.

This book is not a state of the art: that is, a compilation of existing and
published knowledge about mixture proportioning. It contains essen-
tially original findings, acquired by the author and his colleagues at the
Laboratoire Central des Fonts et Chaussees (Central Laboratory for
Roads and Bridges), Paris. Here the author had the chance to spend 12
years in an exceptional scientific environment, while being in contact
with the 'real concrete world' through the network of the regional 'Fonts
et Chaussees' laboratories. The approach tries to be ahead of the current
technology. However, the views presented herein are often personal, and
it is the author's hope that this book will help in sharing them with the
international scientific and technical community.

A last remark addressed to civil engineers: this book contains very little
(if any) chemistry.1 This is partly because the author is not a chemist, but
also because the level at which mix design of concrete is envisaged is that
of assembling the components. Facts related to the phases are taken as
hypotheses; only their consequences in concrete are studied in this book.
However, the author is conscious that more chemistry would be
required, if a comparable approach were to be extended to all durability
aspects.

F. de Larrard
Bouguenais, January 1998

1 This remark may be considered either as negative or positive, depending on the reader's
background.
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1 Packing density and
homogeneity of granular
mixes

The packing density of a granular mix is defined as the solid volume <I> in
a unit total volume. Alternatively, the compaction may be described by
the porosity:

7 T = 1 - * (1.1)

or by the voids index:

7T 1

e = - = --l (1.2)

The prediction of the packing density of a granular mixture is a problem
of extreme relevance for concrete (Johansen and Andersen, 1991), but it is
also relevant in many other industrial sectors (Guyon and Troadec, 1994).
Many composite materials, like concrete, are made up of granular
inclusions embedded in a binding matrix. The aim is often to combine
grains in order to minimize the porosity, which allows the use of the least
possible amount of binder.

The packing density of a polydisperse grain mixture depends on three
main parameters:

• the size of the grains considered (described by the grading curves);
• the shape of the grains;
• the method of processing the packing.

In the past, the design strategy has generally been to proportion the
different grains to obtain a grading curve close to an 'ideal' grading
curve, which is supposed to produce the maximum packing density. The
final optimization is achieved by trial and error. Empirical models exist
to describe the variation of the packing density of a given mixture with
some parameters describing the compaction process. But few models
were available (to the author's knowledge) that provided sufficient
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accuracy to design granular mixtures (accounting for the three
parameters listed above). In particular, most available models (Johansen
and Andersen, 1991; Dewar, 1993) either deal with a limited number of
aggregate fractions, or assume a simplified grading distribution of each
individual granular class. By contrast, the compressible packing model
(CPM), the theoretical content of which is described in this chapter,
covers combinations of any number of individual aggregate fractions,
having any type of size distribution.

The CPM is a refined version of a previous model, the linear packing
density model for grain mixtures (Stovall el al., 1986; de Larrard, 1988),
which was later transformed into the solid suspension model (de Larrard
et al., 1994a,b). This work has been carried out independently of another
model, similar to the linear model, which has been proposed by Lee
(1970). In section 1.1, the fundamentals of the linear model are presented.
Here the virtual packing density is dealt with, defined as the maximum
packing density attainable with a given grain mixture (with maximum
compaction). From this virtual packing density the actual packing
density is deduced, by reference to a value of a compaction index. The
calculation of the actual packing density, together with a series of
experimental validations, is given in section 1.2. Then the question of the
influence of the boundary conditions is examined and modelled in
section 1.3 (namely the wall effect exerted by the container, and the
perturbation due to inclusion of fibres). In section 1.4 the model
developed is used for the research of optimal grain size distributions.
Finally, the limited knowledge of segregation is briefly reviewed in
section 1.5, and the definition of two new concepts, namely the filling
diagram and segregation potential, is proposed, with a view to
characterizing mixtures that are likely to segregate.

1.1 VIRTUAL PACKING DENSITY OF A GRANULAR MIX

The virtual packing density is defined as the maximum packing density
achievable with a given mixture, each particle keeping its original shape
and being placed one by one. For instance, the virtual packing density of
a mix of monosize spheres is equal to 0.74 (or K/3V2), the packing
density of a face-centred cubic lattice of touching spheres, while the
physical packing density that can be measured in a random mix is close to
0.60/0.64 (see e.g. Cumberland and Crawford, 1987), depending on the
compaction. Throughout this section, the packing density dealt with is
the virtual one.

1.1.1 Binary mix without interaction

Let us consider a mixture of grains 1 and 2, the diameters of which are d\
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and d2. The two grain classes are said to be without interaction if

d^d2 (1.3)

'Without interaction' means that the local arrangement of an assembly of
grains of one size is not perturbed by the vicinity of a grain of the second
size.

Let us calculate the (virtual) packing density of a mixture of these
grains. First, we must know the result of the packing for each class on its
own. The residual packing density of each class is denoted by fl\ and /32

for grains 1 and 2 respectively. Second, the mutual volume fractions are
j/i and y2, with

y2 = 1 (1.4)

The partial volumes $1 and $2 are the volumes occupied by each class in a
unit bulk volume of the granular mix. We have

(1.5)

and the packing density is

7 = $1 + $2 (1.6)

We now make a distinction between two situations: dominant coarse
grains and dominant fine grains.

When the coarse grains are dominant, they fill the available volume as
if no fine grains were present (Fig. 1.1) so that

$i=/9i (1.7)

Figure 1.1 Binary mixture without interaction. Coarse grains dominant.
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Therefore the packing density may be calculated as follows:

7 =

1/2

= ft +7y2

then

7 = 7i ='
l-y2

(1.8)

When the small grains are dominant, they are fully packed in the
porosity of the coarse grains (Fig. 1.2), so that

(1.9)

(1.10)

With a similar approach, it is deduced that

7 = 72 = •
1 - (1 -

Note that 71 and 72 may be calculated, whatever the dominant class.
Hence in any case we can state

7<7i

1-
$2

(1.11)

Figure 1.2 Binary mixture without interaction. Fine grains dominant.
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in which we recognize equation (1.7). This last inequality is called the
impenetrability constraint relative to class 1. Similarly, we always have

$2)

• $2 (1.12)

because of the validity of the impenetrability constraint relative to class 2.
As either class 1 or 2 is dominant,1 we can write, with no more concern
about which is the dominant class:

(1.13)

In Fig. 1.3 we can see the evolution of the packing density, from pure
coarse-grain packing on the left-hand side to pure fine-grain packing on
the right. Going from 1/2 = 0 towards the peak, the packing density
increases since a part of the coarse grain interstices is filled by fine grains.
At the peak, the fine grains just fill all the space that is made available by
the coarse grains. For larger values of y2, coarse grains are replaced by an
equivalent bulk volume of fine grains, decreasing the overall solid volume.

1.1.2 Binary mix with total interaction

Two grain populations are said to have total interaction when

d,=d2 (1.14)

while the /3; are generally different. For calculating the packing density of
such a mix we state that total segregation does not change the mean

dominant
coarse

Figure 1.3 Evolution of the packing density vs. fine grain proportion, for a
binary mix without interaction.
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compactness, so that it is possible to consider that part of the container is
filled with only class 1 grains, while the rest is filled with class 2 grains
(Fig. 1.4). Therefore

— + — =1 (1.15)

The packing density is calculated by replacing in equation (1.6) one of the
partial volumes by its expression as a function of the other one, taken
from equation (1.15). In order to keep the same formalism as in section
1.1.1 we may write

71 = 1 - (i -
(1.16)

72 =
1 - (i -

so that equation (1.13) still applies. By using the relation y\ +1/2 = 1, it is
easy to see that in this particular case 7 = 71 = 72 (Fig. 1.5).

1.1.3 Binary mix with partial interaction

We now consider a partial interaction between the classes, defined by the
following inequality:

(1.17)

Figure 1.4 Calculation of the packing density in the case of total interaction.
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Figure 1.5 Evolution of the packing density vs. fine grain proportion, for a
binary mix with total interaction.

We shall begin by describing two physical effects that can be found in
binary mixes. Then we shall build general equations, incorporating these
effects consistently with the two previous and ideal cases.

If a class 2 grain is inserted in the porosity of a coarse-grain packing
(coarse grains dominant), and if it is no longer able to fit in a void, there
is locally a decrease of volume of class 1 grains (loosening effect, Fig.
1.6). If each fine grain is sufficiently far from the next, this effect can
be considered as a linear function of the volume of class 2 grains, so
that

7 =

where is a constant that depends on the characteristics of both

loosening effect

Figure 1.6 Loosening effect exerted by a fine grain in a coarse grain packing.
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grain populations. The packing density is then

ft

l-(l-ftA2-,i)y2

(1.18)

However, to adopt a continuous model that covers all the cases, we
prefer the following form:

71 =
l-(l-«i2ft/&)y2

(1.19)

where a\i is the loosening effect coefficient. When d\ > di (no interaction),
012 = 0, while when d\ = d^ (total interaction), au — 1.

When some isolated coarse grains are immersed in a sea of fine grains
(which are dominant), there is a further amount of voids in the packing
of class 2 grains located in the interface vicinity (wall effect, Fig. 1.7). If
the coarse grains are sufficiently far from each other this loss of solid
volume can be considered as proportional to <J>i/(l - $1), so that we can
write:

7 =

1-$!

wal l effect

Figure 1.7 Wall effect exerted by a coarse grain on a fine grain packing.
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where AI _» 2 is another constant, depending on the characteristics of both
grain populations. The packing density is then

132
(1.20)

which we prefer to write as follows:

02
72=' (1.21)

Z>2i is the wall effect coefficient. When A\ z> &i (no interaction), &2i = 0, while
when d\ = AI (total interaction), \>i\ — \.

As for the binary mix without interaction, it is easy to demonstrate that
for any set of proportions y; we have

1.1.4 Polydisperse mix without interaction

Let us now consider a mix with n classes of grains (n > 2), with

di>d2...>dn

Class i grains are dominant if

(1.22)

(1.23)

No -i

Partial -I—interaction

Figure 1.8 Evolution of the packing density of a binary mix vs. fine grain
proportion. General case.
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In that case, the packing density is calculated as follows:

/ + E *;

= A + 7

i - l

Then

A

;=1

(1.24)

- E
;=:+!

Now, let us demonstrate that there is always at least one dominant class.
If class 1 is not dominant, then we have

< A (1-25)

Focusing on the interstitial medium of class 1 grains (that is, the packing
of finer particles and the voids volume), if class 2 is not dominant, we can
state

< 02(1 - $0 (1.26)

By considering smaller and smaller scales, and still assuming that no
class is dominant, we have finally:

*„ - $!-...*„_!) (1.27)

When these n inequalities are strictly and simultaneously verified, each
class of grain has a certain clearance as regards the volume available
(Fig. 1.9). Therefore the mix is no longer a packing, but rather a
suspension. We conclude that at least one equation of the type (1.24) is
verified. Otherwise, as for the case dealt with in the previous section
dealing with binary mixes, the impenetrability constraint relative to the



Scale 1

Scale 2
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Scale n

Figure 1.9 A poly disperse mix examined at various scales, where no class is
dominant.

ith class is equivalent to

so that

7 = Mm 7;
1 < S t < n

(1.28)

(1.29)

1.1.5 Polydisperse mix: general case

Let us first consider the case of a ternary mix, in which

d\ > di > dj, (1.30)

Let us assume that class 2 is dominant. Here, class 2 grains are
submitted to a loosening effect exerted by class 3 grains, plus a wall
effect exerted by class 1 grains (Fig. 1.10). Therefore the packing density

- Loosening effect

Wall effect

figure 1.10 Perturbations exerted on the intermediate class by coarse and
fine grains in a ternary mix.
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of the mix is

(1.31)

and

7 = 72

i - [i - ft + fcifta - Vft)]yi - (i - fl23ft//%)y3
(1.32)

The linear formulation ensures the additivity of all interactions suffered
by one class. This derivation can be easily generalized for n classes of
grains with interactions. Also, equation (1.29) still applies, and the
equation defining the packing density when class i is dominant is

7i= - — - - - - - (1.33)

giving the most general formulation for the virtual packing density of a
granular mix.

As the virtual packing density is, by definition, non-accessible by
experiments, we are going first to continue with the theory to show how
we can calculate the actual packing density. Then we shall be able to
calibrate and validate the model. The calibration of the model consists
essentially in the determination of the fly and by coefficients.

1.2 ACTUAL PACKING DENSITY: THE COMPRESSIBLE
PACKING MODEL

We now consider an actual packing of particles, which has been
physically built by a certain process. Let <E> be the total solid content,
with $ < 7.
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1.2.1 Compaction index and actual packing density

We are looking for a scalar index K, which would take a value that
depends only on the process of building the packing. By analogy with
some viscosity models (Mooney, 1951), we assume that this index is of
the following form:

,with Ki = H \ —

where <frj is the actual solid volume of class i, while $f is the maximum
volume that particles i may occupy, given the presence of the other
particles. In other words, the n classes of grain with partial volumes equal
to <3?o/ $i/ —, ®i-i, <£*/ 3>i + i/ •••/ ®n would form a virtual packing.

Function H can be calculated by considering only the self-consistency of
the model. Let us deal with a binary mix, the two classes of which are
identical (that is, d\ = di; j3\ = $2 = ft). The only impenetrability constraint is

$i + $2</? (1.35)

For calculating the compaction index of the mix, we can write

K = H\ — +H —— =H (1.36)
{(!-**) {(!-**) ( 0 )

which corresponds to the following functional equation:

= H(x + y) (1.37)

with x = —; y = —
(3 (3

Let us show that the only functions for which equation (1.37) is verified
are of the form

(1.38)
1 - u
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Define the function k(u) such that

= k(u)
l-u

Replacing H in the functional equation (1.37), it becomes

(1.39)

l-x

If x = y = u/2 then

k(u) = i
1 - u/2

=k
u/4

= ... jlc

2 4

M/2"

1- I 1-— u
2" /

(1.40)

(1.41)

Therefore fc(u) is a constant for u 6 [0,1[, which is the domain of variation
of $i/$* For the sake of simplicity, we take

k=l

Thus the compaction index becomes

(1.42)

(1.43)

$f is equal to $; when class i is dominant, so that we can use the
same approach as in equation (1.31), replacing $*by the expression
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(generalized to n classes, i is dominant)

1

. ~^.

which gives for K:

$; - V^ — $,
• • i B-1 = 1 + 1 Pj

(1.44)

(1.45)

E
Uij y{

Vi + —n- R.; = ! + ! Pi Pi

However, replacing 1 by \J y; in equation (1.33), we recognize that

i - l

E
A.

«./

^ ^
;' = i + l Pj

so we reach the final expression for the compaction index

(1.46)

- 1/7,
(1.47)

As X is a characteristic of the packing process, the packing density is then the
value of $ defined implicitly by equation (1.47). Actually, X is a strictly
increasing function of $, as the sum of such functions, so that there is a
unique value of $ satisfying this equation for any positive K value (Fig. 1.11).

The y, are the control parameters of the experiment, ft are
characteristics of the grain classes, the 7; are given by equation (1.33),
and the value of K depends on the process of making the mixture. For a

Kt

y i o
Figure 1.11 Variation of K vs. $.
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monodisperse packing, it follows that

1
K = - (1.48)

1.2.2 Calibration of the model with binary data

Tests related in this section have been carried out at the Laboratoire
Regional des Fonts et Chaussees de Blois (de Larrard et al., 1994b). The
aim was first to prepare a series of binary mixes, for calibration of the
interaction coefficients. The individual fractions were selected in order to
be as monodisperse as possible.

Materials

Two families of aggregate were selected and sieved:

• rounded aggregate from the Loire (Decize quarry), with nearly
spherical shapes;

• crushed angular aggregate from the Pont de Colonne quarry at
Arnay le Due.

These materials were expected to cover the range of civil engineering
materials, from smooth quasi-spherical grains (such as those of fly ash) to
angular, flat and elongated ones (such as certain crushed aggregate).

For each family, five monosize classes were prepared, limited by two
adjacent sieves in the Renard series. This French standard series has
diameters in geometrical progression, with a ratio of \/10 (~1.26). The
mean sizes of the classes were chosen for obtaining size ratios of 1/2, 1/4,
1/8 and 1/16. Extreme diameters were limited on the high side, for
container dimension purposes, and on the low side, to avoid materials that
were too humidity sensitive. For polydisperse mixtures (see section 1.2.3) a
sixth class was added, ranging between 0.08 and 0.5 mm, for increasing
both the grading span and the maximum packing values obtained.
Photographs of the particles used are given in the original publication (de
Larrard et al., 1994b), and their characteristics appear in Tables 1.1 and 1.2.

Packing process used

After weighing the granular classes, selected to obtain a 7 kg sample, the
mixes were homogenized. When the size ratio did not exceed 4, the
grains were poured in a Deval machine (following French standard
P 18 577), equipped with a modified cylindrical container. This container
was then rotated around an oblique axis (with regard to the symmetry
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Table 1.1 Characteristics of rounded aggregates used in packing experiments. As
the same grains were used for a series of experiments, a certain attrition
took place, increasing the /3; values. Corrected packing density values
have been obtained by linear regressions in the binary mixes.

Names

R<05
R05
Rl
R2
R4
R8

^min
(mm)

0.08
0.5
1
2
4
8

^max
(mm)

0.5
0.63
1.25
2.5
5

10

Packing density

0.593
0.592
0.609
0.616
0.6195
0.628

Corrected packing
density

_
0.594
0.613
0.620
0.629
0.632

Table 1.2 Characteristics of crushed aggregate used in the packing experiments.

Names

C<05
COS
Cl
C2
C4
C8

Umin
(mm)

0.08
0.5
1
2
4
8

"max
(mm)

0.5
0.63
1.25
2.5
5

10

Packing density

0.630
0.516
0.507
0.529
0.537
0.572

Corrected packing
density

_
0.523
0.528
0.525
0.557
0.585

axis), for 2 min or 66 revolutions. The cylinder has a diameter of 160 mm
and a height of 320 mm, and supported another 160 x 160 mm cylinder,
used for pouring the uncompacted mixture. After removal, the container
served for measuring the packing density.

For the other binary mixes that were prone to segregation, a manual
homogenization was carried out: aggregates were poured after mixing in
horizontal layers, and then removed vertically with a shovel and cast
by successive layers in the cylindrical mould. Both techniques of
preparation were used for polydisperse mixtures.

Then the cylinder containing aggregates was closed with a 20 kg steel
piston, applying a mean compression of 10 kPa on the top of the sample.
The whole set was put on a vibrating table and submitted to the
following vibration sequence: 2 min at a 0.4 mm amplitude, 40 s at
0.2 mm and 1 min at 0.08 mm. The height of the sample was recorded
continuously by an ultrasound telemeter having a precision of 0.001 mm.
The vibration process was fixed for having a comparable response with
all granular classes, while keeping the total process within a reasonable
time. Hence no definite stabilization of the height appears in such a
process, which confirms that actual packing density is not a material
property, but rather depends on the mixture and the process. The packing
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density of the mixture was calculated by dividing the mass of the sample
by the mean density of the aggregate and by the total volume of the
specimen. Each experimental value obtained for the model was the mean
of two successive measurements carried out on the same aggregate
sample. Between the two measurements, the cylinder was emptied and
reconstructed using the entire process.

Packing density of monosize classes

Actual packing densities are given in Tables 1.1 and 1.2. For the two
families, they increase with the diameter of the particles (Fig. 1.12). This
could be due to differences in the shape of the grains, but is mostly due
to the fact that in spite of our efforts, vibration is more efficient in
compacting coarse grains than fine ones, because fewer contacts are
present per unit volume of the mix. At equal size, rounded aggregates are
more compact than crushed ones. Incidentally, no general law seem to
govern the relationship between size and packing density of aggregates.

Calibration of the model

The interaction coefficients, fly and by, were expected to depend mainly
on the ratio between the particle diameters dj and dj. However, to assess
the soundness of this hypothesis, an attempt has been made to duplicate,
when possible, the binary series of a given size ratio, for both coarse grain
and fine grain. For the smallest ratio (1/16), only a single series could be
produced. For each class combination, the variation of packing density
was expected to be steeper on the dominant coarse grain side than on the
dominant fine grain side (Fig. 1.8). This is why the fine grain proportion
was incremented by 5% steps between 0 and 30%, and by 10% steps
afterwards. Obtained packing density values are summarized in Tables
1.3 and 1.4, and Figs 1.17 and 1.18. Here we note that, while the size ratio

0.01 0.1 1

log d(mm)

Figure 1.12 Experimental packing density of monodisperse classes vs. size of
particles.



Table 1.3 Packing densities of binary mixtures: rounded grains.

%fim

0
5

10
15
20
25
30
40
50
60
70
80
90

100

R8R05

exp

0.628
0.657
0.6865
0.71
0.729
0.754
0.758
0.753
0.7385
0.7165
0.68
0.652
0.6195
0.592

theo

0.632
0.6557
0.6808
0.7069
0.733
0.7558
0.7677
0.7544
0.7256
0.6959
0.6677
0.6414
0.6168
0.594

R8R1

exp

0.628
0.6545
0.6795
0.707
0.724
0.742
0.748
0.7285
0.7095
0.6965
0.677
0.6585
0.635
0.609

theo

0.632
0.6526
0.6743
0.6966
0.7189
0.7391
0.7528
0.7496
0.7277
0.7029
0.6786
0.6554
0.6336
0.613

R4R05

exp

0.6195
0.645
0.6715
0.689
0.706
0.7265
0.7485
0.736
0.725
0.7
0.6745
0.648
0.614
0.592

theo

0.629
0.6492
0.6703
0.692
0.7136
0.7326
0.7446
0.7379
0.7138
0.6875
0.662
0.6379
0.6152
0.594

R8R2

exp

0.628
0.653
0.682
0.697
0.714
0.7235
0.728
0.723
0.705
0.689
0.671
0.646
0.632
0.616

theo

0.632
0.6481
0.6646
0.6813
0.6976
0.7122
0.7229
0.7251
0.7111
0.6927
0.6737
0.6551
0.6371
0.62

R2R05

exp

0.616
0.635
0.663
0.678
0.692
0.708
0.718
0.708
0.693
0.67
0.656
0.633
0.613
0.592

theo

0.62
0.6354
0.6512
0.6671
0.6826
0.6964
0.7063
0.7067
0.6909
0.6709
0.6506
0.6308
0.6119
0.594

R8R4

exp

0.628
0.6375
0.643
0.654
0.66
0.663
0.6595
0.6565
0.6535
0.649
0.6445
0.638
0.629
0.6195

theo

0.632
0.6416
0.6511
0.6603
0.6689
0.6762
0.6817
0.6853
0.6806
0.6719
0.6616
0.6508
0.6398
0.629

R1R05

exp

0.609
0.624
0.633
0.64
0.656
0.666
0.6705
0.6635
0.6545
0.644
0.636
0.6215
0.61
0.592

theo

0.613
0.6217
0.6304
0.6386
0.6462
0.6526
0.6572
0.659
0.6525
0.6421
0.6303
0.6181
0.6059
0.594

ô
5"

53
n

1"
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0
5

10
15
20
25
30
40
50
60
70
80
90

100

¥ 1 cmvULj

C8C05

exp

0.572
0.62
0.642
0.676
0.705
0.731
0.7365
0.723
0.6941
0.6585
0.616
0.583
0.5655
0.516

^ ueii&iiit

theo

0.585
0.6066
0.6295
0.6535
0.6779
0.7001
0.7137
0.6998
0.6666
0.6331
0.6019
0.5732
0.547
0.523

:s ui ulna

C8C1

exp

0.572
0.613
0.646
0.6755
0.699
0.7215
0.7245
0.7025
0.6705
0.638
0.611
0.5965
0.5435
0.507

iy 11UALUJ

theo

0.585
0.6034
0.6226
0.6425
0.6624
0.6806
0.693
0.6861
0.6586
0.629
0.6008
0.5746
0.5504
0.528

.CS. L1USJ.L

C4C05

exp

0.537
0.591
0.6185
0.638
0.669
0.693
0.711
0.691
0.667
0.64
0.603
0.571
0.545
0.516

CU gidllLt

theo

0.557
0.575
0.594
0.6137
0.634
0.6536
0.67
0.6741
0.6502
0.6219
0.5945
0.5688
0.545
0.523

>.

CSC2

exp

0.572
0.597
0.611
0.625
0.634
0.643
0.651
0.643
0.6335
0.6245
0.5975
0.5695
0.5435
0.529

theo

0.585
0.5986
0.6125
0.6264
0.6398
0.6516
0.6594
0.6554
0.6349
0.6111
0.5877
0.5654
0.5445
0.525

C2C05

exp

0.529
0.54
0.552
0.5515
0.566
0.573
0.594
0.588
0.582
0.579
0.568
0.5555
0.534
0.516

theo

0.525
0.5388
0.5531
0.5679
0.583
0.5979
0.6115
0.626
0.617
0.5987
0.5788
0.5593
0.5406
0.523

C8C4

exp

0.572
0.5825
0.5875
0.588
0.592
0.5955
0.594
0.5875
0.587
0.587
0.572
0.564
0.553
0.537

theo

0.585
0.5931
0.6011
0.6087
0.6158
0.6217
0.6259
0.6271
0.6198
0.6084
0.5956
0.5825
0.5696
0.557

C1C05

exp

0.507
0.527
0.532
0.545
0.552
0.5485
0.555
0.556
0.549
0.546
0.5425
0.537
0.53
0.516

theo

0.528
0.5362
0.5444
0.5524
0.5602
0.5673
0.5733
0.5792
0.576
0.5674
0.5567
0.5455
0.5341
0.523
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appears to be the main parameter controlling the behaviour of the binary
mix, significant differences appear for pairs of equal size ratio.

Each binary mixture series displays one experimental point for the two
coefficients a and b. The relationship between the voids index and the
fine grain proportions appears to be two straight lines linked by a curved
part. The slope of these lines directly expresses the granular interaction
between classes (Powers, 1968) (Fig. 1.13).

In the case of an infinite value for the compaction index (that is, when
dealing with virtual packing density), one can easily show using
equation (1.33) that

ft I
de
—
dy2

1

+ —
* = o *)

I/ft -ii
Oe

dy2 yz = i

(1.49)

I/ft -1
Actually, for sufficiently high values of K, the real packing density curves
have approximately the same tangent as the virtual one (Fig. 1.14). One
may therefore apply the previous equation to the present data, replacing
the /3; by the a; (actual residual packing densities of monodisperse
classes). Obtained values for a and b are given in Table 1.5.

In Fig. 1.16, the experimental points for a and b have been plotted
against the size ratios. These coefficients increase with the ratio Aijd\,
which matches the theory. At first sight, other parameters should also
play a role. However, no systematic trend appears between rounded and
crushed aggregate, or between coarse and fine pairs (as shown by the

Voids index
0.80 T

0.60-1

0.40-

0.20-

n nn -

1 *
• «

\» • •"*

1 1

0 0.5 1

Fine/fine + coarse

Figure 1.13 Voids index vs. fine grain proportion, for the R8/R01 mixture.
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Packing density

0.8

0.6

0.4 0.6

Fine/fine + coarse

Figure 1.14 Packing density of binary mix of grains with a size ratio of 1/8
after the compressible packing model. Actual residual packing
densities of the two classes are assumed to be equal to 0.64, and
the different curves stand for low to high K values.

Table 1.5 Experimental values for the interaction functions deducted from binary
mix experiments.

Rounded
a
b
Crushed
a
b

di/d2

16

R8R05
0.26

-0.05
C8C05

0.21
-0.03

8

R8R1
0.31
0.30
C8C1
0.14
0.28

8

R4R05
0.50
0.08
C4C05
0.31
0.05

4

R8R2
0.63
0.33
C8C2
0.50
0.11

4

R2R05
0.46
0.33
C2C05
0.67
0.47

2

R8R4
0.71
0.65
C8C4
0.77
0.68

2

R1R05
0.66
0.56
C1C05
0.72
0.70

comparison of the R8R4 and R1R05, or C8C4 and C1C05 mix series.
However, the sieves used in civil engineering often suffer some flaws
(either initial ones, or those that result from the wear exerted by
aggregates). Thus the actual ratio of a fraction couple with a theoretical
ratio of 1/2 may probably range between 0.4 and 0.6. This would
correspond to a horizontal shifting of the corresponding points in the
figures. One may conclude that the scattering of the points is not
necessarily the sign of another influence, related to the grains' shape, for
example.

This hypothesis of inaccurate sieve size does not explain the two
negative values of the b coefficient, obtained for the R8R05 and C8C05 mix
series. For those couples, on the fine dominant grain side, the packing
density evolves faster than in the case without interaction. In other terms,
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the fine grains suffered an anti-wall effect. This observation is related to
the effect of vibration on compaction. Coarse grains probably act as
internal vibrators in the mixture of fine grains (Aitcin and Albinger,
1989). In smoothing the results, this phenomenon has been neglected, as
the model is expected to apply in general, including non-vibrated
mixtures (see section 1.2.3).

The regression function used to fit the experimental values has to
satisfy the following conditions:

• Continuity with the case of binary mixture without interaction
(dz/di = 0):a = b = 0.

• Continuity with the case of binary mixture with total interaction
(d2/dl = 1): a = b = 1.

• Moreover, if one considers the case of a binary mixture in which \j\ is
small, d2 is fixed, and d\ varies around d2 (Fig. 1.15), one should have

when d\ >d2:

7

when di<d2:

(1.50)

(1.51)

and the derived function should be also continuous in d2=d\ = d,

Figure 1.15 Continuity between dominant coarse grain and dominant fine
grain cases.
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which gives

db

dx

8a

dx
= 0 (1.52)

where x is the ratio of fine to coarse grain diameters.
As the two factors in this equation are positive, this implies for the

derived values of a and b:

da

dx

db

dx
= 0 (1.53)

The following functions verify the three listed conditions, while giving a
reasonable approximation of the experimental points:

(1.54)

For the calibration of the model, the compaction index remains to be fixed.
As shown in Fig. 1.14, the higher the value of K, the sharper the binary
curves. With the above interaction functions and a K value of 9, the
experimental values of packing density obtained are best smoothed with a
mean error in absolute value equal to 0.77% for the rounded grains and
1.71% for the crushed grains (Figs 1.17,1.18). By comparison, the means of
within-test standard deviations, describing the repeatability of the
measurements, are 0.0026 and 0.0078 for rounded and crushed aggregates
respectively. Therefore one may estimate that the better predictions

Function a Function b

0 0.2 0.4 0.6 0.8 1

Figure 1.16 Fitting of interaction functions a or b vs. size ratio. Squares and
circles stand for crushed and rounded aggregates respectively.
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Figure 1.17 Binary mixes of rounded grains. Packing density vs. fine grain
proportion. The dots stand for experimental points, while the
curves are the model smoothing.


