
Introduction to Risk and Failures

Tools and Methodologies

D.H. Stamatis

Introduction to Risk and Failures

Tools and Methodologies

Introduction to Risk and Failures

Tools and Methodologies

D.H. Stamatis

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20140305

International Standard Book Number-13: 978-1-4822-3480-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

То

Jeanna

Contents

List of Figures	xiii
List of Tables	
Acronyms	
Preface	
Acknowledgments	
Author	
Introduction	
1. Risk	
General Definition	
Other Definitions	
Economic Risks	
Health Risks	
Health, Safety, and Environment (HSE) Risks	
Information Technology (IT) and Information Security Risl	
Insurance Risks	
Business and Management Risks	
Human Services Risks	
High Reliability Organizations (HROs)	
Security Risks	
Societal Risks	
Human Factors Risks	7
Risk Assessment and Analysis	8
Quantitative Analysis	8
Fear as Intuitive Risk Assessment	9
Audit Risk	
Other Considerations	
Risk versus Uncertainty	
Risk Attitude, Appetite, and Tolerance	11
Risk as Vector Quantity	12
Disaster Prevention and Mitigation	12
Scenario Analysis	
Notes	15
References	20
Selected Bibliography	22
2. Approaches to Risk	25
Zero Mind-Set	25
ALARP	27
U.K. Statistics: Work Accidents Involving Young People	
between 1996 and 2001	

U.S. Statistics (2011)	30
How to Tell if a Risk Is ALARP	
Risk Leverage	
Failures, Accidents, and Hazards	37
ALARP Fallacies	37
Example	
Differentiating Risks	
Major Risks	
Serious Risks	41
Minor Risks	41
Risk Priorities	41
Reference	43
Selected Bibliography	43
3. Types of Risk Methodologies	45
Qualitative Methodologies	45
Preliminary Risk Analysis	45
Hazard and Operability (HAZOP) Studies	46
Failure Mode and Effects Analysis (FMEA) and Failure Mode	
and Criticality Effects Analysis (FMCEA)	46
Advantage	50
Disadvantages	50
General Comments	50
Tree-Based Techniques	52
Fault Tree Analysis (FTA)	52
Event Tree Analysis (ETA)	52
Cause-Consequence Analysis	53
Management Oversight Risk Tree (MORT) Analysis	53
Safety Management Organization Review Technique (SMORT)	53
General Comments	53
Methodologies for Analysis of Dynamic Systems	54
GO Method	54
Digraph or Fault Graph	54
Markov Analysis (MA)	55
Dynamic Event Logic Analytical Methodology (DYLAM)	56
Dynamic Event Tree Analysis Method (DETAM)	
General Comments	57
Traditional Methodologies	57
What-If Method	
Checklist	
What-If and Checklist Combination	65
Indexing	
Interface Hazards Analysis	
References	

4.	Preliminary Hazard Analysis (PHA)	
	Example PHA: Home Electric Pressure Cooker	
	Severity and Probability	
	PHA Limitations	
	Preventive and Corrective Measures	
	References	
	Selected Bibliography	
5.	HAZOP Analysis	
	Overview	
	Definitions	84
	Process	
	Minimum Requirements	
	Defining Risk	
	Trigger Events	
	Use of Analysis	
	HAZOP Process	
	Definition	90
	Preparation	
	Examination	
	Documentation and Follow-Up	
	Detailed Analysis	
	Sequence of Examination	
	Deviations from Design Intent	
	Details of Study Procedure	
	Effectiveness Factors	
	Team	
	Team Leader (Chairperson)	100
	Engineers	
	Description of Process	
	Relevant Guidewords	
	Point of Reference Concept	102
	Screening for Causes of Deviations	
	Consequences and Safeguards	
	Deriving Recommendations (Closure)	
	Conditions Conducive to Brainstorming	
	Meeting Records	106
	Meeting Questions	107
	Follow-Up	108
	Computer HAZOP (CHAZOP)	
	Advantages and Disadvantages	
	Human Factors HAZOP	
	Report	
	Study Title Page	
	Table of Contents	

Glossary and Abbreviations	111
Aim	
Guidewords	111
Summary of Main Findings and Recommendations	111
Scope of Report	
Description of Facility	
Team Members	
Methodology	113
Overview	113
Analysis of Main Findings	114
Findings	114
Review	114
Input Documents	114
Review Information Pack	115
Review Team Composition	115
Full-Time or Core Team	116
Part-Time Team (Contractors or Consultants Engaged as	
Needed)	116
Preparation	116
Methodology	117
Recommendations	118
Success Factors	119
Before Study	119
Throughout Study	120
After Study	120
Revisions	121
References	
Selected Bibliography	122
6. Fault Tree Analysis (FTA)	
Overview	
Benefits	
General Construction Rules	
References	
Selected Bibliography	132
7. Other Risk and HAZOP Analysis Methodologies	
Process Flowchart	
Functional Flow or Block Diagram	
Advantages and Disadvantages	
Sketches, Layouts, and Schematics	
Failure Mode Analysis (FMA)	
Control Plan	137
Process Potential Study (PPS)	

	Need and Feasibility Analysis	. 138
	Task Analysis	
	Advantages and Disadvantages	
	Human Reliability Analysis	
	Advantages and Disadvantages	
	Failure Mode and Critical Analysis	
	Hazard Identification (HAZID)	
	Phase 1: Planning	
	Phase 2: Identifying Hazards	
	Phase 3: Evaluating Hazards	
	Phase 4: Assessing Risks	
	Phase 5: Managing Risks	
	Phase 6: Monitoring Risks	
	Crisis Intervention in Offshore Production (CRIOP)	
	Hazard Analysis and Critical Control Points (HACCP)	
	Near-Miss Reporting	
	Incident and Accident Investigation and Reporting	
	Semi-Quantitative Risk Assessment (SQRA)	
	Audits	
	Event Tree Analysis (ETA)	
	Characteristics	
	Process	
	Advantages and Disadvantages	
	Example	
	References	
	Selected Bibliography	
		100
8.	Teams and Team Mechanics	. 161
	Team Members, Qualifications, and Activities	
	Benefits of Using Teams	
	HAZOP Team	
	Technicians	
	Mid-Level Managers	
	Senior Managers	
	Consensus	
	Team Process Check	
	Difficult Team Members	
	Problem Solving	
	Meeting Planning	
	In-Process Meeting Management	
	Common Meeting Pitfalls	
	Utilizing Meeting Management Guidelines	
	References	
	1	

9. OSHA Job Hazard Analysis	177
Reference	
Selected Bibliography	
10. Hazard Communication Based on Standard CFR 910.1200	187
Hazard Communication Program and Hazardous Materials	
Control Committee	188
Members	
Responsibilities	
Employee Training	
Employee Access	
Information Sources	
Labels	
Safe Use Instructions	
Chemical Materials Lists	
Material Safety Data Sheets	
References	
Appendix A: Checklists	201
Appendix B: HAZOP Analysis Example	215

List of Figures

Figure P.1	Typical view of risk	xx
Figure P.2	Relationship between risk and uncertainty	xx
Figure I.1	Preliminary HAZOP.	xxix
Figure I.2	Selection of HAZOP process.	xxx
Figure I.3	Node selection	xxxi
Figure 3.1	Typical flow for generating FMEA.	48
Figure 3.2	Interconnectivity.	66
Figure 4.1	PHA overview.	70
Figure 5.1	P&ID of feed section of process.	
Figure 5.2	Revised P&ID of feed section of process	
Figure 5.3	HAZOP procedure flow	95
Figure 5.4	Operation with deviations	96
Figure 5.5	Cooling water facility.	97
Figure 6.1	Typical partial engine FTA diagram.	126
Figure 6.2	Relationship of FTA and FMEA	126
Figure 6.3	FTA depiction of parallel system	130
Figure 6.4	Typical block diagram.	131
Figure 7.1	Simple flowchart	134
Figure 7.2	Logic depiction used in functional diagrams	135
Figure 7.3	Block diagram with designated boundary line	136
Figure 7.4	Overview of ETA	152
Figure 7.5	Generic ETA showing primary and secondary trees	152
Figure 7.6	Generic ETA associated with FTA and propabilities	154
Figure 7.7 failure	Typical ETA showing individual events of success and	155
Figure 7.8	ETA and FTA relationship.	157
Figure 7.9	Anti-flooding system.	158

Figure 7.10	Reliability diagram of flooding system	158
Figure 7.11	ETA reliability diagram with associated probabilities	159
Figure 8.1	Team overview	. 162
Figure 8.2	Team performance factors.	162
Figure B.1	Drawing DOP 001, Rev. 1	. 218
Figure B.2	Drawing DOP 001, Rev. 2.	.226

List of Tables

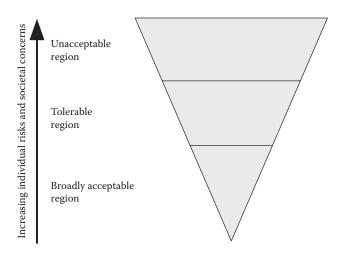
Table 1.1	ISO/IEC 27001 Clauses Related to Risk	6
Table 2.1	Typical Cash Valuation for Cost-Benefit Analysis	34
Table 2.2	Screening Measures	39
Table 2.3	Risk Assessment Matrix: Hazard Probability	42
Table 2.4	Categories of Risk Assessment Matrix	43
Table 3.1	Initial FMEA Documentation	47
Table 3.2	Typical HAZOP/FMEA Worksheet	49
Table 3.3	FMEA and FMECA Worksheet	51
Table 3.4	Topics for Generating Checklist Questions	62
Table 3.5	Sample Chemical Storage Checklist	63
Table 4.1	Typical Severity and Probability Classifications	71
Table 4.2	Typical Source for PHA Checklist	73
Table 4.3	PHA Worksheet	77
Table 4.4	Preliminary Hazard Matrix	78
Table 4.5	Typical PHA Brainstorming Record	78
Table 4.6	Typical PHA Report	79
Table 5.1	A Simple Evaluation Method to Risk	87
Table 5.2	HAZOP Steps	91
Table 5.3	HAZOP Recording Form	93
Table 5.4	Typical Guidewords	. 103
Table 5.5	HAZOP Meeting Record	. 107
Table 5.6	Guidewords and Parameters	. 112
Table 5.7	Revisions and Recommendations	. 121
Table 6.1	Typical FTA Symbols	. 127
Table 6.2	FTA Logic Symbols	. 127
Table 7.1	Typical Hazards Outside Envelope of Process Equipment	. 143

Table 7.2	Worksheet for HAZID with SQRA	151
Table 7.3	Flow of ETA	153
Table 7.4	Flow of ETA in Application Format	153
Table 9.1	Specific Hazards by Categories	178
Table 9.2	Hazard Categories and Controls	180
Table 9.3	Hazard Analysis Form	181
Table 9.4	Hazard Analysis of Grinding Castings	183
Table 10.1	Chemical Container Label	192
Table 10.2	Typical SUI Form	194
Table 10.3	Generic Material Safety Data Sheet	197
Table A.1	Safety Plan Checklist	203
Table A.2	Facility Location Checklist	205
Table B.1	HAZOP Log Report	220

Acronyms

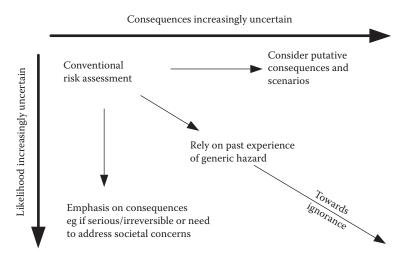
Acronym	Meaning
ACOP	Approved Code of Practice
ACTS	Advisory Committee on Toxic Substances
ALARA	As Low as Reasonably Achievable
ALARP	As Low as Reasonably Practicable
CBA	Cost Benefit Analysis
CD	Consultative Document
CEN	Comité Européen de Normalisation
CENELEC	Comité Européen de Normalisation Electrotechnique
CLAW	Control of Lead at Work Regulations
COSHH	Control of Substances Hazardous to Health Regulations
CPF	Cost of Preventing a Fatality
CSF	Critical Safety Function
EC	European Communities
E/E/PE	Electrical, Electronic or Programmable Electronic
EU	European Union
FMRI	Final Mishap Risk Index
HSC	Health and Safety Commission
HSE	Health and Safety Executive
the HSW	The Health and Safety at Work, etc. Act
ICRP	International Commission on Radiological Protection
IEC	International Electrotechnical Commission
IMRI	Initial Mishap Risk Index
ISO	International Organization for Standardization
MEL	Maximum Exposure Limit
MHSWR	Management of Health and Safety at Work Regulations
NOAEL	No Observed Adverse Effect Level
OEL	Occupational Exposure Limit
OES	Occupational Exposure Standard
PHA	Process Hazard Analysis
PHL	Preliminary Hazard List
P&ID	Process and Instrumentation Diagrams
	<i>Note</i> : In the chemical industry sometimes this acronym means Pipe and
	Instrumentation Diagrams)
PPE	Personal Protective Equipment
QRA	Quantitative Risk Assessment
RBMK	Reactor Bolshoi Mozjnoct Kanali
SFAIRP	So Far As Is Reasonably Practicable
SSR	System Safety Requirement
TLM	Top Level Mishap
TOR	Tolerability of Risk
VPF	Value for Preventing a Fatality
WATCH	Working Group on the Assessment of Toxic Chemicals

Preface


It has been said many times by many individuals that risk is everywhere. We can never avoid it. It is present in whatever we do. Obviously, we must try to understand the risks we face and minimize them if possible. This book is in fact an extension of my first edition published in 1995 and a second in 2003 on failure mode and effects analysis (FMEA) in which I discussed the benefits of prevention based on an up-front analysis of failures.

As time passed, I noticed that, whereas FMEA is a powerful tool to forecast failures of designs and processes, a missing link involving safety issues, catastrophic events, and their consequences had to be covered. The second edition briefly mentioned HAZOP analysis but did not expand on the methodology. In this book, I focus on risk and HAZOP as they relate to major catastrophic events and safety issues. Specifically, I address processes and implementation and explain the fundamentals of using risk methodology in any organization to evaluate major safety and/or catastrophic problems. A classical and typical view of risk is shown in Figure P.1.

The significance of Figure P.1 is that the risk is emphasized and indeed becomes more serious as both individual and societal risks become evident. In fact, the hidden and untold significance is that implicitly the figure also represents a level of uncertainty as shown in Figure P.2. Both risk and uncertainty in the final analysis may be viewed and analyzed from the following five perspectives (Callaghan and Walker 2001). In some cases, one factor may be predominant, but combinations of factors often must be identified and evaluated. The five perspectives are as follows:


Individual concerns—how individuals see the risk from a particular hazard affecting them, their families, and the things they value. While they may be prepared to engage voluntarily in activities that often involve high risks, as a rule they are far less tolerant of risks imposed on them and over which they have little control unless they see the risks as negligible. Moreover, while they may be willing to live with a risk that they do not regard as negligible that secures them or society certain benefits, they would want the risk levels low and clearly controlled.

Societal concerns—the risks or threats from hazards that impact society and, if realized, may produce adverse repercussions for the institutions responsible for putting in place the provisions and arrangements for protecting people through legislation. These concerns are often associated with hazards that give rise to risks that, if materialized, could provoke a socio-political response, for example, events causing widespread or large-scale consequences or multiple fatalities. Typical examples relate to nuclear power generation, transportation accidents, or the genetic modification of organisms. Societal concerns arising from multiple fatalities in a single

FIGURE P.1

Typical view of risk. (*Source:* www.HSE.gov.uk and public sector information published by the U.K. Health and Safety Executive and licensed under Open Government Licence v1. 0)

FIGURE P.2

Relationship between risk and uncertainty. (*Source:* www.HSE.gov.uk and public sector information published by the U.K. Health and Safety Executive and licensed under the Open Government Licence v1. 0)

event are known as *societal risks*. Societal risk is therefore a subset of societal concern.

Complexity in government regulations—regulations that affect and effect intra- and inter-state commerce and international commerce as well. Throughout the long history of legislation introduced to eliminate or

minimize risks, the first areas to be regulated have always been the most obvious, often requiring little scientific insight for identifying problems and possible solutions. For example, it was not difficult to realize that controlling airborne dust would reduce the risk of silicosis in miners and that making it mandatory to guard moving parts of machinery would prevent workers from being killed or maimed. In short, dramatic progress toward tackling such problems could be (and was) made without unduly taxing existing scientific knowledge or the state of available technology. However, as the most obvious risks have been tackled, new and less visible hazards have emerged and gained prominence. Typical examples include hazards arising from biotechnology and processes that emit gases that contribute to global warming.

Patterns of employment defined by changing demographics present some challenges. The regulatory environment must cope with the increasing trend of industries to outsource work (and the attendant risks), resulting in changes in patterns of employment and in the fragmentation of large companies into autonomous organizations working closely together. Dramatic increases in self-employment and home working have been noted; small and medium size firms are now major forces in creating jobs. Moreover, many monolithic organizations have split into separate companies, for example, railways now operate as separate companies responsible for operating the tracks, rolling stock, and networks.

Polarization of approaches between large and small firms as a result of the patterns of employment. Some of these changes have blurred legal responsibilities for occupational health and safety, traditionally placed on those who created the risks and were best situated to control them. In certain industries, it has become difficult to determine who may be in that position. While case law clarified some situations, the fact remains that in many sectors it is very difficult to coordinate the adoption of measures to control risks. Many more players are involved, and some have little access to expertise.

Chapter 1 of this book serves as an introduction to risk and provides several definitions relevant to a number of industries. A distinction is also made between risk and uncertainty. Chapter 2 discusses approaches to risk and the zero mind-set philosophy. In conjunction with the concept of zero mindset, the ALARP principle for determining what risk is and what its effects is also discussed. This chapter also addresses the major, serious, and minor categories of risks. Chapter 3 covers 18 risk methodologies dealing with analysis, failures, safety, and hazards.

Chapter 4 is about preliminary hazard analysis and explains how to evaluate a hazard in the early stages of a design. Chapter 5 covers hazard and operability (HAZOP) studies. It begins with an overview of HAZOP and provides key definitions. It also provides a detailed discussion of the study process, its effectiveness, and the team required to perform the study. It concludes with a full description of the process and report preparation. Chapter 6 focuses on fault tree analysis (FTA) and discusses the general rules of construction and the need for a top-to-bottom approach for defining failures and how they relate to HAZOP. Chapter 7 provides 14 additional risk analysis methodologies for handling HAZOP.

Chapter 8 is titled "Teams and Team Mechanics" and provides a rationale for utilizing teams in performing HAZOP analyses. It also defines what is necessary for a team to be effective, qualifications of team members, consensus, team process checks, problem solving, and logistical issues concerning meetings.

Chapter 9 discusses job hazard analysis and OSHA regulations and how they effect and affect risks in work environments. Chapter 10 is titled "Hazard Communication Based on CFR 910.1200" and covers a typical automotive hazard communication program. Specifically, it addresses the individuals involved, their responsibilities, appropriate training, and the importance of safe use instructions, chemical materials lists, and material safety data sheets.

Appendix A provides sample checklists for devising a safety plan and a facility location plan and guidelines of the Australian Health Administration. Appendix B details a HAZOP project.

Bibliography

Callaghan, B. and T. Walker. (2001). *Reducing Risks: Protecting People: Decision-Making Process*. Norwich, U.K.: Crown Publications.

http://www.hse.gov.uk/risk/theory/r2p2.pdf

Acknowledgments

No single individual is ever capable enough to undertake any topic and develop it into a book form so that others may benefit. Everyone depends on many individuals who either have contributed to that topic before commencement of the work or during the writing. This work is no different.

Even though I have been in the field of quality for over 30 years, I have always valued the contributions of others in the areas of their expertise and certainly in contributing to the development of my own thoughts and suggestions for the topics that I write about. Over the years, I have come to appreciate many colleagues for their suggestions and recommendations on issues dealing with reliability, risk, and quality in general. To mention them all is impractical. However, there are some who stand out both because of their suggestions and also for their faith in me to complete this project. I am grateful indeed to several individuals.

C. Wong from APRC in Singapore has relentlessly been one of my strongest friends and a generator of ideas for writing technical books. He was instrumental in persuading me of the need of this book, and I finally took the project on.

Ka Wong showed dedication and thoroughness in drawing the figures in this book patiently and without complaining even after they had to be redrawn when I lost them all in a computer error.

L. Lamberson, PhD, and professor of mechanical engineering at Western Michigan University provided help with some technical issues, particularly the FTA and ETA techniques, and helped me address them in simple terms.

R. Kapur, PhD, director of quality at Tompkins Products posed thoughtprovoking questions about ALARP during the writing of this book.

Ken Wolf of Ford Motor Company made many detailed suggestions for handling FTA and ETA as they relate to traditional FMEA.

C. Michalakis, the GM-UAW safety coordinator, provided insight about safety and hazards communications. His help in explaining some of the firstline issues made this book more realistic and practical.

My son, C. Stamatis, prepared the graphs on a computer and helped with all the logistical computer issues that arose during the writing.

My other son, S. Stamatis, PhD, spent countless hours debating and discussing chemical hazards and their impacts on organizations and society at large.

Ian Sutton permitted me to use the interconnectivity and node figures from http://www.stb07.com/process-safety-management/process-hazardsanalysis.html and http://www.stb07.com/process-safety-management/hazop .html I thank the State of New South Wales through the Department of Planning for giving me permission to use Figure 1, 2, 3, and 4 January 2008 and 2011 Pg. vi, 7, 25-31 and 33. Hazardous Industry Planning Advisory Paper No 8. (In this book they are Figures I.1,5.3 and Appendix B). HAZOP Guidelines are from www.planning.nsw.gov.au

I thank Elsevier Publishing for granting permission through the Copyright Clearance Center for using material from Chapter 3 of Sutton's 2010 book titled *Process Risk and Reliability Management*.

Thanks also to the editors for a superb job on the layout and improvements to the original manuscript. Your efforts made this book more readable and certainly more functional to follow.

I thank all my clients and friends who provided me with insights many times in the application of risk analysis in the area of hazards, including safety and environmental issues.

Finally, the biggest thank you goes to my chief editor and critic—my wife, Carla. She has been very supportive during the entire project, pulling me out of lethargic moods and encouraging me to continue writing. Without her, this book would never have been finished.

Author

Dean H. Stamatis, PhD, ASQC Fellow, CQE, CMfgE, MSSBB, ISO 9000 Lead Assessor (graduate), is the president of Contemporary Consultants Co. in Southgate, Michigan. He is a specialist in management consulting, organizational development, and quality science. He has taught project management, operations management, logistics, mathematical modeling, economics, management, and statistics at both graduate and undergraduate levels at Central Michigan University, University of Michigan, ANHUI University (Bengbu, China), University of Phoenix, and Florida Institute of Technology.

With over 30 years of experience in management, quality training, and consulting, Dr. Stamatis has served numerous private sector industries, including steel, automotive, general manufacturing, tooling, electronics, plastics, food, maritime, defense, pharmaceutical, chemical, printing, health-care, and medical device industries.

He has consulted for such companies as Ford Motor Co., Federal Mogul, GKN, Siemens, Bosch, SunMicrosystems, Hewlett Packard, GM Hydromatic, Motorola, IBM, Dell, Texas Instruments, Sandoz, Dawn Foods, Dow Corning Wright, British Petroleum, Bronx North Central Hospital, Mill Print, St. Claire Hospital, Tokheim, Jabill, Koyoto, SONY, ICM/Krebsoge, Progressive Insurance, B. F. Goodrich, and ORMET, to name just a few.

Dr. Stamatis has created, presented, and implemented quality programs with a focus on total quality management, statistical process control (both normal and short run), design of experiments (both classical and Taguchi), Six Sigma (DMAIC and DFSS), quality function deployment, failure mode and effects analysis (FMEA), value engineering, supplier certification, audits, reliability and maintainability, cost of quality, quality planning, ISO 9000, QS-9000, ISO/TS 16949, and TE 9000 series. He has created, presented, and implemented programs on project management, strategic planning, teams, self-directed teams, facilitation, leadership, benchmarking, and customer service.

Dr. Stamatis is a certified quality engineer through the American Society of Quality Control, a certified manufacturing engineer through the Society of Manufacturing Engineers, a certified master black belt through IABLS, and is a graduate of BSI's ISO 9000 lead assessor training program.

He has written over 70 articles, presented many speeches, and participated in national and international conferences on quality. He is a contributing author to several books and the sole author of 42 books. His consulting extends across the United States, South East Asia, Japan, China, India, Australia, Africa, and Europe. In addition, he has performed more than 100 automotive-related audits, 25 preassessment ISO 9000 audits, and helped several companies attain certification,