
[image: cover-image]

Software Testing Practice: Test Management

About the Authors

[image: Image]

Andreas Spillner is professor of computer science at the Faculty of Electrical Engineering and Computer Science at Bremen University of Applied Sciences. For more than 10 years he was president of the German Special Interest Group in Software Testing, Analysis, and Verification of the German Informatics Society (GI). He is also a member of the German Testing Board. His work emphasis is on software engineering, quality assurance, testing, and object-oriented system development.

[image: Image]

Thomas Rossner is cofounder of imbus AG. As a member of the board of directors, he is responsible for research and technology projects. In this function he has, in recent years, led several international research projects on, among others, software reliability and model-based testing. In addition, he is actively involved in test management projects and in consultancy projects on the subject of test process improvement.

[image: Image]

Mario Winter is professor at the Faculty of Computer Science and Engineering Science of Cologne University of Applied Sciences and a member of the Software Quality Group. From 1983 to 1987, he was engaged in the execution and management of industrial and scientific engineering projects, and between 1994 and 2002, he was research fellow at the FernUniversität Hagen. Currently he is spokesman of the German Special Interest Group in Software Testing, Analysis, and Verification of the German Informatics Society (Gl) and a member of the German Testing Board. His teaching and research focus is on software development and project management, especially on the development and quality assurance of object-oriented software.

[image: Image]

Tilo Linz is CEO of imbus AG, a leading service company for software testing in Germany. He is president of the German Testing Board and was, from 2002 to 2005, president of the ISTQB. His work emphasis is on consulting and coaching projects on software quality management, optimizing software development, and testing processes.

Software Testing Practice:
Test Management

A Study Guide for the Certified Tester Exam

- Advanced Level

- ISTQB compliant

Andreas Spillner · Thomas Rossner · Mario Winter · Tilo Linz

[image: Image]

Andreas Spillner
spillner@informatik.hs-bremen.de

Thomas Rossner
thomas.rossner@imbus.de

Mario Winter
winter@gm.fh-koeln.de

Tilo Linz
tilo.linz@imbus.de

Editor: Jimi DeRouen
Translator: Dieter Wachendorf, Stuttgart, Germany
Copyeditor: Judy Flynn, Santa Barbara, USA
Layout and Type: Josef Hegele, Heiligkreuzsteinach, Germany
Cover Design: Helmut Kraus, www.exclam.de
Printed in the United States of America

ISBN-13: 978-1-933952-13-0

1st Edition
© 2007 by Rocky Nook Inc.
26 West Mission Street Ste 3
Santa Barbara, CA 93101-2432

www.rockynook.com

This 1st English book edition conforms to the 1st German edition
Praxiswissen Softwaretest: Testmanagement (dpunkt.verlag GmbH,
ISBN 978-3-89864-275-0), which was published in August 2006.

Library of Congress catalog application submitted

Distributed by O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472-2811

All product names and services identified throughout this book are trademarks or registered
trademarks of their respective companies.
They are used throughout this book in editorial fashion
only and for the benefit of such companies. No such uses, or the use of any trade name, is intended
to convey endorsement or other affiliation with the book.
No part of the material protected by this copyright notice may be reproduced or utilized in any
form, electronic or mechanical, including photocopying, recording, or bay any information storage
and retrieval system, without written permission from the copyright owner.

This book is printed on acid-free paper.

Foreword by Stephan Goericke

Errors that are missed when testing software may result in an incalculable explosion of costs for a company. In other words, software testing is not only a vital part of the quality assurance process within a software development company, it is also a way for the company to be a responsible partner for its customers, both in terms of the services rendered and the products provided.

The complexity of software projects has risen sharply, and continues to be on the rise. Today, the software in a cell phone has an average of 2.6 million lines of code. This means that any functioning software test management that takes a holistic approach to its task will be facing ever greater challenges. Software testing management comprises tasks such as planning, monitoring, and controlling software tests. The test phases of a project must be accurately planned and documented, and support tools must be carefully selected. Last but not least, the test project must continually be monitored in order to reduce risks, while having an early error detection system in place. Good test management considerably abbreviates the time required before a project is ready to be accepted by the client, and helps keep the maintenance costs and subsequent costs within budget.

In an effort to assess and optimize the skills and abilities of software testers, it must be ensured that the testers are qualified, and reliably so, in the field of test management, and they must have a certificate to prove it. That is why the economic sector is demanding standards that fully satisfy the criteria of independence, transparency, and international acceptance. The International Software Quality Institute (iSQI), headquartered in Erlangen, Germany and Potsdam, Germany, is the coordinating body for software quality standards of this type worldwide. Due to the excellent reputation of the iSQI, the certifications earned from us are recognized and respected all over the world. We are proud to say that by now, certifications according to the Standard ISTQB Certified Tester are being implemented in 34 countries and on 6 continents. This universal certification offers many advantages for the companies concerned, some of which are:

1. Professionalism: Software must be synonymous with dependability. This means software developers must be well trained, and we must be able to rely on that, since otherwise, the reputation of the entire sector will suffer. By giving software developers standardized and proven training that takes into account the practical aspects of programming, we can trust that a minimum qualification for this particular profession is ensured.

2. Lifelong learning: Software is becoming increasingly more complex, and the demands that must be met are growing daily. Lifelong learning is indispensable, since often, the initial training undergone by programmers may become out-dated and may have been too general in nature.

3. Standardization: Standardization that is independent from manufacturers and products creates transparency, and as a result, ensures acceptance and validity of the software across national boundaries and language barriers. Furthermore, employers and employees alike appreciate the ability to compare professional qualifications on a national and international level, which in today’s global market ensures the ability to cooperate and compete internationally.

This book addresses the need to establish such standards in the field of software testing. With its focus on test management, it is excellent reading for those already active in the profession, since it supplements the know-how they have gained in a compact and competent manner. Between 90 and 100 percent of the examination candidates who consulted the first book in this series, Software Testing Foundations, prior to taking the ISTQB Certified Tester – Foundation Level exam, met the requirements and received the certificate. We hope that similar results can be achieved at the Advanced Level with the aid of this book. The authors have, once again, earned high merits in the further development of the Certified Tester scheme. To all of this book’s interested readers: enjoy working through it, good luck in the certification exam you will take later, and, last but not least, the best of success in all your projects!

Stephan Goericke
Director, International Software Quality Institute

Foreword by Tim Koomen

Certification is big. For some years, the number of certified testers has been rising rapidly. And this is great! To make testing into a truly accepted profession, certification is an essential instrument. Although other test certification programs exist, the International Software Testing Qualifications Board (ISTQB) has, without a doubt, the most important and popular program. Supported widely in many countries by many organizations, its success contributes considerably to the worldwide, and still badly needed professionalization of testing.

The thing I like very much about the ISTQB certification is its independence of particular test methods (and yes, I say this even though I’m closely associated to a particular test method) and suppliers; it’s a source of knowledge that is commonly agreed on, but detailed enough to satisfy the often demanding and critical testers of this world.

To certify yourself for the ISTQB Advanced Level, you have to pass a nontrivial exam. How can you increase your chances of passing this ultimate “test of the tester”? Combining your practical experience with detailed knowledge of the ISTQB syllabus is easier said than done. Training is an important method to gain the required knowledge, but in my opinion, which is shared by the authors of this book, at least as important is the ability to read, learn, and understand the subject matter in your own time, at your own pace, as preparation for the exam. The syllabus itself is too concise for this purpose, which is the very reason for this book.

However, to call this book only a good preparation for the ISTQB Advanced exam wouldn’t do justice to the completeness of this work. I’m very glad, therefore, that the authors have decided to publish their book in English and not restrict their work for the German reading audience alone.

I found it easy to summarize what I like about this book:

[image: Image] Easy to learn

Its alignment to the test management topics of the Advanced Level, plus the side column with key points and the summaries at the end of each chapter, greatly facilitate learning. My expectation is that this book will also be popular at universities and colleges. This book would be a very good development tool, as we testers definitely need to raise the far-too-low awareness of testing in most educational organizations where IT is taught.

[image: Image] Complete and thorough in its scope of test management

Virtually every important aspect of test management is dealt with, including test process improvement practices (which has my particular interest) and (many) available standards. This book clearly demonstrates how extensive the test management profession has become. “Another book” is, therefore, not a problem; the profession evolves, and in order to keep up, a test manager must continually extend his or her knowledge and skills. This book supports that further education.

[image: Image] Good combination of practice and theory

Just looking at the background of the four authors will convince you that this book is really a result of “theory meets practice”. From my own experience in writing, I know how hard it is to find the right balance between these two, but the authors have, without a doubt, succeeded in finding this right balance.

All in all, I congratulate the authors on writing this highly inspiring book that you will find very useful, not only for preparing for your ISTQB exam, but also for grasping what modern test management is about and for finding (new or alternative) ideas and solutions for managing your tests.

Tim Koomen
Independent consultant, coauthor of the books
TMap Next and Test Process Improvement (TPI®),
and co-editor of TMap Test Topics.

Foreword by Hans Schaefer

Another book about test management, do we need this?

If you have read many testing books before, then maybe not. But, if you want to learn about test management, and have not read so much yet, then the answer is definitely yes. This should be the first book to read for a new test manager.

Why do I like this book?

This book is short and to the point. It contains the things a test manager needs to know, without all the extra ballast. It helps people to plan and control the testing effort in many projects, with no restriction as to what kind of software is developed. It does not make a science out of the practical skills to manage a testing effort. It greatly helps to prepare for the ISTQB Advanced Level – Test Manager exam, and people do not waste time reading a lot of unnecessary other stuff. The book covers the current ISTQB Advanced Level syllabus, as well as most areas of the draft 2007 version of the advanced syllabus. It should be possible to pass the ISTQB exam based on studying the book.

The application example used throughout the text is the same as in the earlier Software Testing Foundations book, thus making reading a lot easier for the continuing reader.

Chapter 9 about risk-based testing is probably the most important chapter. The language of test managers should revolve around risk. Risk is what stakeholders understand. Testing should measure the residual risk in an application.

But there is a lot more to this:

[image: Image] As test execution comes last in any project, the testing phase will always be under pressure. Often, the option to delay delivery is not open, thus the test manager must know how to prioritize and manage all the problems inherited from other people’s work. Doing this proactively helps a lot. But, not only must test execution get differing priorities; there are also risks to the test project itself. Many of these risks are shown in the book, together with examples of how they can be overcome or dealt with. However, I would have liked to see more details about how to prepare for project risks to materialize. This might, however, be too special for this book.

[image: Image] Chapter 7 deals with process improvement. Several industry standard models are described. With this book and just a few more references, the reader should be able to execute an initial process assessment and find some important improvement ideas. However, one method is described in less detail: Examples for root cause analysis of defects, especially defects found too late, i.e., surviving the testing effort. However, this is a flaw in the ISTQB syllabus and thus outside the scope of this book.

[image: Image] The other chapters in the book contain the more conventional tools for a test manager, such as a description of differing application development models and the place of testing within them; issue tracking and handling; use of metrics; configuration management etc.

[image: Image] The trouble in other literature is that one often needs several books, not just one. Thus, this single book is effective for its readers.

Get it, read it, think through it, and pass the ISTQB advanced test manager exam!

Best regards,

Hans Schaefer
Leader, ISTQB Norway
Software Test Consulting

Foreword

The success of our book Software Testing Foundations greatly encouraged us to write a second book, this time building on the foundation level to address the advanced courses and still provide the same mix of theory and practice the first book contained. We, Tilo Linz and Andreas Spillner, were glad to win Thomas Rossner of imbus AG and Mario Winter of the Cologne University of Applied Sciences as coauthors for this book. All four of us hope that we have yet again succeeded in covering the present topics, from both the theoretical and the practical perspective.

The content of this book on test management conforms to the syllabus of the Certification Course “Advanced Level: Test Manager” (Version 1.2, [URL: ISTQB] -Syllabi). In some places, however, we found it expedient to go beyond the scope of that syllabus and provide the reader with additional advice and information. As a result, this book has become rather more comprehensive than the ISTQB syllabus.

Current syllabus

The training scheme based on the ISTQB Certified Tester Standard [URL: ISTQB] has been well received in many countries. So far, approximately 50,000 Foundation Level examinations and approximately 1,500 examinations on the Advanced Level syllabus (April 2007) have been held.

ISTQB-Standard

Currently, more than 25 nations are represented in the International Software Testing Qualifications Board (ISTQB, [URL: ISTQB]).

Worldwide recognition

Thus, the number of participating countries has almost doubled in the past two years. Representatives from the following countries or national testing boards cooperate in the ISTQB: Austria, Bangladesh, Brazil, Canada, China, Denmark, England, Finland, France, Germany, India, Israel, Japan, Korea, Latin America, Netherlands/Belgium, Norway, Poland, Portugal, Russia, South Eastern Europe, Spain, Sweden, Switzerland, Turkey, Ukraine, the United States, and Australia/New Zealand.

The ISTQB has become truly international, with syllabi and certificates that are recognized worldwide. See chapter 1 for further details on the structure of the ISTQB.

The contents of the Foundation Level syllabus have been adopted by many universities and colleges in Germany. It appears that in higher education, we are seeing the emergence of a common syllabus in the field of software testing. The number of college and university students interested in this field has been increasing steadily over the past years.

Higher education

In software testing, we have now covered a good distance toward our goal, which was formulated by David Parnas in his foreword to the first edition of the German book Basiswissen Softwaretest as being the standardization and regulation of the educational content in the field of informatics.

We want to thank our readers of the German version of this book for their helpful comments and our colleagues in the GTB (German Testing Board) and ISTQB, without whose great work there would be no Certified Tester scheme. We want to cordially thank Stephan Goericke, Tim Koomen, and Hans Schaefer for their forwards.

Thank you notes

Andreas Spillner, Thomas Rossner, Mario Winter, Tilo Linz
Bremen, Möhrendorf, and Wuppertal
April 2007

Table of Contents

Foreword by Stephan Goericke

Foreword by Tim Koomen

Foreword by Hans Schaefer

Foreword

1 Introduction

1.1 Software Testing Foundations – Condensed

1.2 Software Testing Practice: Test Management – Overview

2 Test Process and Test Tools

2.1 Test Process Fundamentals

2.1.1 Test Planning and Control

2.1.2 Test Analysis and Design

2.1.3 Test Implementation and Execution

2.1.4 Test Evaluation and Test Report

2.1.5 Completing the Test Activities

2.2 Test Tools

2.2.1 Tools for Management and Test Control

2.2.2 Tools for Test Data and Test Script Specification

2.2.3 Tools for Static Testing

2.2.4 Tools for Dynamic Testing

2.2.5 Constraints to be Considered

2.3 Summary

3 Testing in the Software Life Cycle

3.1 Test and Development Process

3.2 Classification of Development Processes

3.3 The General V- Model

3.4 The W-Model

3.5 Rational Unified Process (RUP)

3.6 V-Model XT

3.7 Extreme Programming (XP)

3.8 Rapid Application Development (RAD)

3.9 Dynamic Systems Development Method (DSDM)

3.10 Summary

4 Test Policy and Test Handbook

4.1 Quality Policy and Test Policy

4.2 Bring the Test Policy to Life

4.3 Test Policy and Test Handbook

4.4 Summary

5 The Test Plan

5.1 General Test Plan Structure

5.1.1 From Strategy to Implementation

5.1.2 Strategic Parts of the Test Plan

5.1.3 The Test Schedule

5.1.4 The Level Test Plan

5.1.5 IEEE 829 – Standard for Test Documentation

5.2 Test Plan Contents

5.2.1 Test Plan Identifier

5.2.2 Introduction

5.2.3 Test Items

5.2.4 Features to Be Tested

5.2.5 Features Not to Be Tested

5.2.6 Approach

5.2.7 Item Pass/Fail Criteria

5.2.8 Suspension Criteria and Resumption Requirements

5.2.9 Test Deliverables

5.2.10 Testing Tasks

5.2.11 Environmental Needs

5.2.12 Responsibilities

5.2.13 Staffing and Training Needs

5.2.14 Schedule

5.2.15 Risks and Contingencies

5.2.16 Approvals

5.3 Defining a Test Strategy

5.4 Test Effort Estimation

5.4.1 Flat Models

5.4.2 Detailed Models Based on Test Activities

5.4.3 Models Based on Functional Volume

5.5 Organization of Test Teams and Test Levels

5.6 Test Planning as an Iterative Process Accompanying Development

5.6.1 Begin Test Activities Early and Refine Them Step-by-Step

5.6.2 “Plan-Do-Check-Act”-Cycles in Testing

5.7 Summary

6 Test Control

6.1 Initiating the Test Tasks

6.2 Monitoring the Test Progress

6.3 Reacting to Test Results

6.4 Reacting to Changed Circumstances

6.5 Evaluating Test Completion

6.6 Test Report

6.7 Summary

7 Assessing and Improving the Development and Test Processes

7.1 General Techniques and Approaches

7.1.1 Total Quality Management (TQM)

7.1.2 Kaizen

7.1.3 Six Sigma

7.2 Improving the Software Development Process

7.2.1 Capability Maturity Model Integration (CMMI)

7.2.2 ISO/IEC 15504 (SPICE)

7.2.3 Comparing CMMI with SPICE

7.3 Evaluation of Test Processes

7.3.1 Testing Maturity Model (TMM)™

7.3.2 Test Process Improvement® (TPI)

7.3.3 Comparing TMM with TPI

7.4 Audits and Assessments

7.4.1 Performing an Internal Audit or Assessment

7.4.2 Preparing an External Audit or Assessment

7.5 Summary

8 Deviation Management

8.1 Terminology

8.2 Documenting Incidents

8.3 Incident Handling

8.3.1 Roles and Balance of Interests in Deviation Management

8.3.2 Generic Deviation Management Process

8.3.3 Using Deviation Management Tools

8.4 Standardized Classification for Software Anomalies According to the IEEE 1044/1044.1 Standard

8.4.1 Overview of the Classifications Process

8.4.2 Data Model: Categories, Classifications, and Supporting Data Items

8.4.3 Classification Steps in Detail

8.4.4 Tailoring of Standards

8.5 Summary

9 Risk Management and Risk-Oriented Testing

9.1 Introduction

9.2 Context Identification

9.3 Risk Identification

9.3.1 Risk Categories

9.3.2 Techniques and Utilities

9.4 Risk Analysis and Risk Evaluation

9.4.1 Analysis Techniques

9.4.2 Risk Occurrence Indicators

9.4.3 Risk Inventory

9.5 Risk Control and Treatment

9.6 Risk Review and Risk Monitoring

9.7 Risk-Oriented Test Plan Creation and Test Prioritization

9.8 Further Possibilities

9.8.1 Failure Modes and Effect Analysis (FMEA)

9.8.2 Risk-Based Test Effort Optimization

9.9 Summary

10 Staff Qualification and Skills

10.1 Individual Skills

10.2 Functional Team Roles

10.3 Social Team Roles

10.4 The Communication Factor

10.5 The Motivation Factor

10.6 Summary

11 Test Metrics

11.1 Introduction

11.2 Some Measure Theory

11.3 Metrics Definition and Selection

11.4 Presenting Measurement Values

11.5 Several Test Metrics

11.5.1 Test-Case-Based Metrics

11.5.2 Test-Basis- and Test-Object-Based Metrics

11.5.3 Defect-Based Metrics

11.5.4 Cost- and Effort-Based Metrics

11.5.5 Evaluating Test Effectiveness

11.6 Residual Defect Estimations and Reliability

11.6.1 Residual Defect Probability

11.6.2 Reliability Growth Model

11.7 Summary

12 Selecting and Implementing Test Tools

12.1 Why Test Tools?

12.2 Evaluating and Selecting Test Tools

12.2.1 Principal Decision Whether to Use a Tool

12.2.2 Identifying the Requirements

12.2.3 Evaluation

12.2.4 Selecting the Tool to Be Procured

12.3 Introduction of Tools

12.3.1 Pilot Project

12.3.2 Distribution

12.4 Summary

13 Standards

13.1 Objectives and Positioning

13.2 Corporate Standards

13.3 Best Practices and Technical Specifications

13.4 Domain-Specific Standards

13.5 Generally Applicable Standards

13.5.1 Terminology and Contractual Standards

13.5.2 Process Standards

13.5.3 Product and Documentation Standards

13.5.4 Methods and Engineering Standards

13.5.5 Application of Standards

13.6 Summary

Glossary

Literature

Standards

WWW pages

Index

1 Introduction

Like never before, everyday life has become dependent on software and software-based systems. Most of today’s appliances, machines, and devices are completely or at least partly controlled by software. Administrative proceedings in state agencies and industry, too, rely to a large extent on highly complex IT systems. Examples are the management of insurance policies, inventory control systems, biometric characteristics in passports and ID cards, and the electronic health chip card.

High dependency on software

This strong dependency on software requires ever higher investments in quality assurance activities to enable IT systems to perform reliably. Software testing is developing toward a specialized, independent field of study and professional discipline within the computer sciences.

Software testing – a professional discipline in its own right

Within the discipline of software testing, “test management” is of particular importance. Test management comprises classical methods of project and risk management as well as knowledge of the appropriate use of well-defined test methods. With this stock-in-trade, the test manager1 can select and purposefully implement appropriate measures to ensure that a defined basic product quality will be achieved. In doing so, the test manager adopts an engineering approach.

Test management

Whereas today’s project management training is well established, and while there are a tremendous number of study courses, training programs, and specialist literature to choose from, there has, until recently, been hardly any attempt at defining or standardizing the contents of training programs for the “software test manager”. In view of the increasing responsibility assumed by test managers in the execution of their job, this has been an unsatisfactory situation.

Training for test managers

With the ISTQB Certified Tester – Advanced Level – Test Manager we have, for the first time, developed an internationally recognized training and qualification scheme that defines training contents and qualification modules for the tasks of the test manager. This book sets out to convey the associated teaching contents and may be read as a textbook in preparation for the exams.

ISTQB Certified Tester – Advanced Level – Test Manager

The “ISTQB Certified Tester” qualification scheme consists of three levels. The basics of software testing are described in the syllabus for the Foundation Level ([URL: ISTQB] -Syllabi), whereas the corresponding subject matter is explained in detail in Software Testing Foundations [Spillner 07].

Foundation Level

The Advanced Level curriculum ([URL: ISTQB] -Syllabi) defines advanced proficiency skills in software review and testing and shows possible opportunities for specialization:

Advanced Level

[image: Image] Exhaustive treatment of different black box and white box test methods in the Advanced Level, Technical Tester, and Functional Tester modules

[image: Image] Extensive, in-depth presentation of test management methods and techniques in the Test Manager module2

Since the “Advanced Level” syllabus is very comprehensive, it will not be treated in its entirety in this book; instead, we shall concentrate exclusively on the “Advanced Level – Test Manager module”. The topic of “reviews”3, however, will be excluded.

The third level, the “Expert Level”, is in the process of being defined by expert groups and comprises topics such as the specific characteristics of object-oriented software testing, advanced knowledge in Testing & Test Control Notation (TTCN-3, [URL: TTCN-3]), advanced knowledge in test process improvement methodology, and various other areas of expertise associated with software testing.

Expert Level

The “ISTQB” [URL: ISTQB] provides for the homogeneity and comparability of the teaching and examination contents of all participating countries.

International Software Testing Qualifications Board (ISTQB)

Today, the ISTQB has become an affiliation of more than 25 national initiatives and associations worldwide (see figure 1-1). More national boards will follow.

Figure 1–1 Structure of the ISTQB

[image: Image]

As independent expert bodies, the national testing boards are responsible for the provision of training (accreditation of providers of proficiency testing schemes) and examinations (certification by an independent institution) in their respective countries and native languages and for ensuring compliance with ISTQB standards.

National Testing Boards

The three levels of the ISTQB qualification scheme build on one another. This book, Software Testing Practice: Test Management, presumes that the reader is familiar with the subject matters dealt with in the Foundation Level.

Knowledge of software testing foundations required

Readers new to software testing are advised to first acquire knowledge of the content of the Foundation Level, either by attending an accredited provider’s seminar or by working through the book Software Testing Foundations [Spiller 07]. The present book contains only a brief recapitulation of the most important basic principles.

1.1 Software Testing Foundations – Condensed

This section provides a brief summary of the Foundation Level syllabus and of the book Software Testing Foundations.

There is a multitude of approaches and proposals available on how to improve software quality through preventive (constructive) actions and the use of verifying (analytical) methods. The following measures are among the most importìant to improve software quality:

Measures to improve software quality

[image: Image] Defined software development processes that contribute to a structured and traceable development of software systems

[image: Image] A well-defined test process and controlled change and incident management as a requirement for the efficient and effective execution of test activities

[image: Image] The application of metrics and quality data to objectively evaluate software products and development processes, to detect improvement potentials, and to verify the effectiveness of correction and improvement activities

[image: Image] The use of formal methods that allow for the precise formulation of development documents and their verification or evaluation by tools

[image: Image] Methods for the systematic identification and execution of test cases that allow efficient detection of defects and anomalies in the developed programs

[image: Image] Methods for static testing, primarily reviews through which defects and anomalies are detected in design documents at an early stage

Test managers must master or at least be familiar with these methods, techniques, and processes in order to be able to select and apply appropriate measures during the course of the project.

Quality goals and quality attributes

The suitability of quality assurance measures, however, also depends on the defined quality goals. The required quality level can thereby be defined based on different quality attributes. A catalogue of such quality attributes (e.g., functionality, reliability, and usability) is defined by the [ISO 9126] standard.

When do we speak of a defect or an error and what do we actually mean when we use these terms? A situation or result can only be classified as faulty, defective, or erroneous if we have previously defined what the expected, correct situation or result is supposed to look like. If the actual software behavior deviates from the expected behavior, we use words such as defect, fault, bug, and anomaly.

Test oracle

In order to establish expected values or expected behavior, a so-called test oracle is required that serves the tester as a source of information. Requirements documents, formal specifications, and the user guide are examples of such information sources.

The term “error” is actually rather imprecise. We do in fact need to distinguish between error, fault, and failure (including their synonyms). For example, a developer’s error while programming leads to a fault in the software that may (but not necessarily) result in a visible failure. In most cases, the impact of a fault or defect only shows itself in uncommon situations; for instance, the erroneous calculation of the leap year becomes effective only on February 29.

Error terminology

Figure 1-2 illustrates the relationship between error, fault, and failure and shows which countermeasures or methods may be used for their detection.

Figure 1–2 Relationship between the different terms used to denote errors

[image: Image]

Similar to the term error, the word “test” has different meanings.

Test terminology

Testing frequently denotes the entire process of systematically checking a program to gain confidence in the correct implementation of the requirements4 and to detect failures. It is also a generic term for all the activities and (test) levels in the test process. Each individual execution of a test object under specified conditions to verify the correctness of the expected results is also called testing.

Fundamental test process

Testing includes many individual activities. The following basic test process is defined in the Foundation Level syllabus, comprising the following activities:

[image: Image] Test planning and control

[image: Image] Test analysis and test design

[image: Image] Test implementation and test execution

[image: Image] Test evaluation of the test exit criteria

[image: Image] Post testing activities

During testing, the product under test (the test object) can be considered at different levels of abstraction or on the basis of different documents and development products. The corresponding term is test level. We distinguish between the different levels of component test, integration test, system test, and acceptance test.

Test levels

Each test level has is own characteristic test objectives, test methods, and test tools.

Furthermore, we distinguish between different →test types: functional test, nonfunctional test, structural test, change-related test, and regression testing. [Spillner 07, section 3.7]

Test types

During testing, we distinguish whether testing is performed by execution of the test object or whether it is done “only” on the associated program text or underlying specification or documentation.

In the first case, we have the so-called dynamic tests, represented by black box and white box test methods [Spillner 07, chapter 5], and in the second case, we talk about static tests, represented, among other things, by different types of reviews [Spillner 07, chapter 4].

Static and dynamic testing

Regardless of which method is used for testing, it is essential that in terms of organization, development/programming and testing are kept separate and that they are performed independently from each other. A developer testing his own code will be blind toward his own mistakes and not very keen on detecting them himself.

Independence between test and development

There are many supporting tools in use for software testing. Depending on their intended use, we distinguish between different tool classes, such as, for instance, tools for test management and control, tools for test specification, and tools for static, dynamic and nonfunctional testing [Spillner 07, chapter 7].

Test tools

In our discussion of the Foundation Level syllabus, we reviewed the test management fundamentals. In addition to test planning, test control, and test reporting, test management includes topics such as change and configuration management as well as the economy of testing [Spillner 07, chapter 6]. This book will cover these test management tasks in more detail.

Test management

For illustration purposes, we shall continue the case study example introduced in the book Software Testing Foundations:

Case study “VirtualShowRoom” (VSR)

A car manufacturer develops a new electronic sales support system called VirtualShowRoom (VSR). The final version of this software system will be installed at every car dealership worldwide. Customer interested in buying a new car will be able to configure their favorite model (model, type, color, extras, etc.) at the terminal with or without the guidance of a salesperson.

The system shows all possible models and combinations of extra equipment and instantly calculates the accurate price of the configured car.

This functionality will be implemented by a subsystem called DreamCar.

When customers make up their mind, they will be able to calculate the most suitable payment method (EasyFinance) as well as place an order online (JustInTime). Of course, they will have the opportunity to sign up for the appropriate insurance (NoRisk).

Personal information and contract data about the customer is managed by the ContractBase subsystem.

Figure 1-3 shows the general architecture of this software system.

Figure 1–3 Architecture of the VSR-System

[image: Image]

Each subsystem will be designed and developed by separate developer teams.

Altogether, about 50 developers and additional employees from the respective user departments are involved in working on this project. External software companies are also involved.

In Software Testing Foundations, we described the different →test design techniques used for in-depth testing of the VSR system before putting it into operation.

VSR-2 development follows an iterative development process. Based on the current VSR-1 system, VSR-2 is supposed to be developed in four successive iterations. The planned schedule is one year, with approximately one increment per quarter. Each new increment is expected to provide the full functionality of the previous version; it may, however, be based on a better or more efficient implementation. In addition, each increment introduces a set of new functionalities.

The product manager expects two things from the test manager:

[image: Image] First, the test team must ensure that the old functionality is correctly retained in each intermediary VSR-2 version.

[image: Image] Second, the test team should fairly quickly be able to judge objectively if, and how well, a new feature has been implemented.

The tasks that the test manager has to perform regarding such issues will be discussed and illustrated in the following chapters.

1.2 Software Testing Practice: Test Management – Overview

The topics of the book and the contents of each chapter are briefly described here.

Software testing practice – overview

[image: Image] Chapter 2 discusses the fundamental test process and the types of tools that can be used to support it. Both topics were covered in Software Testing Foundations.

[image: Image] Chapter 3 explains how testing is related to the software life cycle. It discusses different life cycle models used in software development and evaluates the particular importance given to testing in each model.

[image: Image] The significance given to testing in an organization is of great importance to the test manager. The organization’s quality and test policy must be defined by management. Chapter 4 deals with these issues.

[image: Image] Chapter 5 takes a closer look at test planning, one of the important, if not most important, tasks of the test manager.

[image: Image] Planning must be adjusted during the project’s life cycle. Control of the test process based on test progress reports is an essential task for the test manager in order to perform successful testing. This aspect is addressed in chapter 6.

[image: Image] The development and test processes themselves can be evaluated and improved. Chapter 7 describes which techniques and processes are to be applied to accomplish this improvement.

[image: Image] How do we deal with deviations and failures detected during testing? Chapter 8 provides some answers.

[image: Image] Risk evaluation and risk-based tests are important instruments for the test manager to allocate limited test resources. They are used to control the test project with minimized risk. Chapter 9 contains advice on how to proceed.

[image: Image] Without qualified and skilled staff – that is, without consideration of the human factor – the test manager will not be able to succeed. Chapter 10 describes what needs to be considered when selecting a test team.

[image: Image] Test metrics help in defining test exit criteria and in finding evidence on the quality of the test object. Chapter 11 will provide some examples.

[image: Image] In most cases, the test process can be performed more efficiently with adequate tool support. Chapter 12 describes how the test manager selects and introduces such tools.

[image: Image] The last chapter, chapter 13, presents relevant standards.

The glossary contains all the terms that are newly mentioned in this book, the first occurence of which will be preceded by an arrow “→”. All glossary terms used in Software Testing Foundations [Spillner 07] can also be found at [URL: ISTQB] -download.

2 Test Process and Test Tools

This chapter introduces the fundamental test process, its associated activities, and appropriate tool support1.

2.1 Test Process Fundamentals

In order to perform structured tests, a general description of the task as found in most development models (see chapter 3) is not sufficient. Besides integrating testing into the development process it is also necessary to provide a detailed test procedure (see figure 2-1). The development task consists of the process phases test planning and control, analysis and design, implementation and execution, evaluation of the test exit criteria and reporting, as well as test completion activities. Although the presentation and description of the individual tasks suggest a sequential procedure they may of course overlap or be performed in parallel.

2.1.1 Test Planning and Control

Planning a comprehensive task such as testing ought to start as soon as possible in the initial stages of software development.

Resource planning

The role and purpose of testing must be defined as well as all the necessary resources, including staff for task execution, estimated time, facilities, and tools.

The associated specifications are to be documented in the test plan. An organizational structure including test management needs to be in place and ought to be adapted, if necessary.

Figure 2–1 Fundamental test process

[image: Image]

Test management is responsible for the administration of the test process, the test infrastructure, and testware. Regular control is necessary to see if planning and project progress are in line. This may result in the need for updates and adjustments to plans to keep the test process under control. The basis for controlling the test process is either staff reporting or relevant data and its evaluation by appropriate tools.

Since exhaustive testing is impossible, priorities must be set. Depending on the risks involved, different test techniques and test exit criteria must be specified when establishing a test strategy. Critical system components must be intensively tested. However, in the case of less critical components a less comprehensive test may suffice or testing may even be waived. The decision must be very well-founded to achieve the best possible allocation of the tests to the “important” parts of the software system.

Determining the test strategy

→Test intensity is determined by the test methods employed and by the intended degree of coverage when executing the test cases. The degree of coverage is one of several criteria for deciding when a test is completed.

Determining test exit criteria

Software projects are often under pressure of time, a fact which must be anticipated during planning. Prioritizing tests causes the most critical software components to be tested first in case not all planned tests can be performed due to time or resource constraints.

Prioritizing tests

Without adequate tools the test process cannot be sufficiently performed. If tools are missing, their selection and procurement must be initiated early in the process.

Tool support

Moreover, parts of the test infrastructure themselves often need to be established, for instance the test environment, in which system components can be executed. They need to be put in place early so that they are available when coding of the test objects is completed.

2.1.2 Test Analysis and Design

The test strategy developed during planning defines the test design techniques to be used. As a first step of test analysis, the test basis needs to be checked to see if all required documents are detailed and accurate enough to be able to derive the test techniques in agreement with the test strategy2. The specification of the test object determines its expected behavior. The test designer uses it to derive the prerequisites and requirements of the test cases.

Verification of the test basis

Depending on the analysis results it may be necessary to rework the test basis so that it can serve as a starting point for the test design techniques techniques defined in the test strategy. For example, if a specification is not accurate enough it may need to be improved. Sometimes it is the test strategy itself which may need to be changed, for instance, if it turns out that the selected test design techniques cannot be applied to the test basis.

During test design, test techniques are applied to identify the respective test cases, which are then documented in the test specification. Ultimately, the →test project or test schedule determines the timing of the test execution sequence and the assignment of the test cases to the individual testers.

When specifying test cases, logical test cases must be defined first. Once this is done, concrete, i.e., actual input and expected output, values may be defined.

Logical and concrete test cases

However, this is done during implementation, which is the next step of the fundamental test process.

Logical test cases can be identified based on the specification of the test objects (black box techniques) or based on program text (white box techniques). Thus, the specification of the test cases may take place at quite different times during the software development process (before or after or parallel to coding, depending on the test techniques selected in the test strategy). In this connection, many of the life cycle models described in the next chapter show only test execution phases (e.g., the general V-model). Test planning and specification activities can and should take place concurrently with earlier development activities, as explicitly pointed out in the W-model or in extreme programming.

Black box and white box techniques

During test case specification the particular starting situation (precondition) must be described for each test case. Test constraints to be observed must be clearly defined. Prior to test execution it needs to be defined in the post-condition which results or which behavior is expected.

Test cases comprise more than just test data

In order to determine the expected results a test oracle is queried which predicts the expected outcomes for every test case. In most cases the specification or the requirements are used as the test oracle to derive the expected results from individual test cases.

Test oracle

Test cases can be distinguished according to two criteria:

Positive and negative test cases

[image: Image] Test cases for testing specified results and reactions to be delivered by the test object (including treatment of specified exceptional and failure situations)

[image: Image] Test cases for testing the reaction of the test objects to invalid or unexpected inputs or other conditions for which “exception handling” has not been specified and which test the test object for robustness

The required test infrastructure to run the test object with the specified test cases is to be established in parallel to the other activities so as to prevent delays in the execution of the test cases. At that point the test infrastructure should be set up, integrated, and also tested intensively.

Setting up the infrastructure

2.1.3 Test Implementation and Execution

In this step of the test process, concrete test cases must be derived from the logical test cases, and executed. In order to run the tests, test infrastructure and test environment must both be implemented and in place. The individual test runs are to be performed and logged.

The actual tests are to be run observing the priorities that we defined earlier. It is best to group individual test cases into test sequences or test scenarios in order to allow for the tests to be run efficiently and to gain a clear structure of the test cases.

Timing and test case sequence

The required test harness must be installed in the test environment before the test cases can be executed.

At the lower test levels, component and integration testing, it makes sense to run automated rather than manual tests (e.g., using JUnit [URL: JUnit])

During test execution an initial check is done to see if the test object is, in principal, able to start up and run. This is followed by a check of the main functions (“smoke test” or acceptance test during entry check of the individual test levels).

Checking main function completeness

If failures occur already at this stage further testing makes little sense.

Test execution must be logged accurately and completely. Based on test protocols, test execution must be traceable and evidence must be provided that the planned test strategy has actually been implemented. The test protocol also contains details concerning which parts were tested when, by whom, to what extent, and with what result.

Tests without a test protocol are useless

With each failure recorded in the test log a decision needs to be made whether its origin is thought to lie inside or outside the test object. For instance, the test framework may have been defective or the test case may have been erroneously specified.

Evaluating the test protocols

If a failure exists it needs to be adequately documented and assigned to a incident class.

Based on the incident class the priority for defect removal is to be determined. Successful defect correction needs to be ascertained: has the defect been removed and are we sure that no further failures have occurred?

Correction successful?

The earlier made prioritization has the effect that the most important test cases are executed first and that serious failures can be detected and corrected early.

Most important tests come first!

The principle of equal distribution of limited test resources over all test objects of a project is of little use since such an approach leads to equally intensive testing of critical and non-critical program parts.

2.1.4 Test Evaluation and Test Report

It needs to be checked if the test exit criteria defined in the plan have been met. This check may lead to the conclusion that test activities may be considered completed but may also show that test cases were blocked and that not all planned test cases could be executed. It may also mean that additional test cases are required to meet the criteria.

Test completion reached?

Closer analysis, however, may reveal that the necessary effort to meet all exit criteria is unreasonably high and that further test cases or test runs had best be eliminated. The associated risk needs to be evaluated and taken into account for the decision.

If further tests are necessary, the test process must be resumed and the step has to be identified from where test activities are to be resumed. If necessary, planning must be revised as additional resources are required.

Besides test coverage criteria, additional criteria may be used to determine the end of the test activities (see chapter 11).

Test cycles develop as a result of observed failures, their correction, and necessary retesting. Test management must take such correction and test cycles into account in their planning (see also the W-model in section 3.4). Otherwise, project delays are the rule. It is rather difficult to calculate the effort needed for the test cycles in advance. Comparative data from earlier, similar projects or from already completed test cycles may help.

Allow for several test cycles

In practice, time and cost often determine the end of testing and lead to the termination of test activities.

Exit criteria in practice: time and cost

Even if during testing there is more budget spent than planned, testing as a whole does cause savings through the detection of failures and subsequent correction of software defects. Defects not detected here usually cause considerably higher cost when found during operation.

At the end of this activity of the test process, a summary report must be prepared for the decision makers (project manager, test manager, and customer, if necessary) (see also [IEEE 829]).

Test report

2.1.5 Completing the Test Activities

Unfortunately, in practice, the closing phase of the test processes is mostly neglected. At this stage, the experiences gained during the test process should be analyzed and made available to other projects. In this connection, the presumed causes of differences between planning and implementation are of particular interest.

Learning from experience

A critical evaluation of the activities performed in the test process, taking into account effort spent and the achieved results, will definitely reveal improvement potential. If these findings are documented and applied to subsequent projects in an understandable manner, continuous process improvement has been achieved. Chapter 7 will take a closer look at the models for analysis, evaluation, and test process improvement.

A further finishing activity is the “conservation” of the testware for future use. During the operational use of software systems, hitherto undetected failures will occur despite all previous testing, or customers will require changes. In both cases this will lead to revised versions of the program and require renewed testing. If testware (test cases, test protocols, test infrastructure, tools, etc.) from development is still available, test effort will be reduced during the maintenance or operational phases of the software.

Testware “conservation”

2.2 Test Tools

The following section provides an overview over different types of test tools3. Tool types are comprehensively described in Software Testing Foundations ([Spillner 07, chapter 7]). A closer look is taken at tools that support test management. It is particularly important for the test manager to learn how to select and use such tools (see chapter 12).

Short overview

There are many tools supporting or automating test activities, all of which are known as CAST tools (Computer Aided Software Testing), analgous to CASE tools (Computer Aided Software Engineering).

CAST tools

Depending on which activities or phases in the test process are supported, we may distinguish between different tool types.

As a rule, not all available test tools are applied in a project. However, the test manager should know available tool types in order to be able to decide if and when to use a tool efficiently in a project.

The following sections describe the various functions provided by the different tool types.

2.2.1 Tools for Management and Test Control

Planning and control are the first activities in the test process. The respective test management tools offer mechanisms for easy capturing, prioritizing, cataloguing, and administration of test cases. They allow test case status tracking, i.e., they document and evaluate if, when, how often, and with which result a test case has been executed. Moreover, they may be used to support resource and schedule planning for the tests. The test manager can plan the tests and remain informed at all times about the status of hundreds or thousands of test cases.

Test management tool

In addition to these core tasks, test management tools offer support for tasks and activities such as:

Support for advanced management tasks

[image: Image] Requirements-based testing: system requirements are linked with those tests that check the corresponding requirement. Different consistency checks can be performed, for instance to see if for each requirement at least one test case has been planned.

[image: Image] Defect management: tool support is indispensable for the management of problem or incident reports. Capturing, administration, and statistical evaluation of incident reports should not be done manually, since this is simply too error-prone. Tools help the test manager to be kept informed about the actual project at all times.

[image: Image] Preparing test reports and test documents: both test management and incident management tools provide extensive analysis and reporting features, including the possibility to generate complete test documentation (test plan, test specification, test report) from their data repository.

2.2.2 Tools for Test Data and Test Script Specification

So-called test (data) generators can support the test designer in generating test data. There are several approaches, depending on the test basis used:

Test data and test script generators

[image: Image] Database-based test data generators create test data on the basis of database schemas or database content.

[image: Image] Code-based test data generators analyze the source code to derive the test data. Target or expected values, however, cannot be derived.

[image: Image] Interface-based test data generators derive test data through identification of interface parameter domains (for example, using equivalence class partitioning and boundary value analysis). Here, too, the problem exists that target values cannot be generated.

[image: Image] Specification-based test data generators derive test data and associated target values from a formal specification.

[image: Image] Model-based test generators derive test scripts from formal models, starting, for instance, from a UML sequence diagram specifying the call sequences of methods.

2.2.3 Tools for Static Testing

Static checks can be carried out on design documents, given the availability of a formal notation, and on (also only partially available) source code, i.e., even before executable program (parts) are available. Tools supporting the static test help to detect defects and discrepancies already in the early phases of the development process. Therefore a test manager should consider using these tools.

Static analysis

[image: Image] Static analyzers provide measures of miscellaneous characteristics of the program code which can be used to identify complex and hence defect-prone or risky code sections. Violations of programming guidelines, broken or invalid links in website contents and many other anomalies or discrepancies can be analyzed statically.

[image: Image] Model checkers analyze specifications if they are available in a formal notation or as a formal model. For example, they can find missing states, missing state transitions, and other inconsistencies in the state model to be checked.

[image: Image] Furthermore, there are tools to support reviewing and which help in the planning, execution, and evaluation of review results.

2.2.4 Tools for Dynamic Testing

Test tools for automating test execution relieve the tester from carrying out unnecessary mechanical tasks. The tools supply the test object with test data, record the test object’s reactions, perform a comparison with the expected reactions, and log the test execution.

Tool support for functional tests

[image: Image] In the narrow sense, a debugger is not a test tool but is very useful for root cause analysis and for enforcing exception handling in the program code.

[image: Image] Test drivers and test bed generators offer a mechanism to address test objects via their application programming interface (API), or via another interface not directly accessible to the end user, such as, for example, the Ethernet, serial interface, and so on.

[image: Image] Simulators can be used to emulate an operating environment. They are particularly used for testing embedded software if the target system is not yet available, or if testing in the target system is very expensive or if it requires a disproportionally high effort.

[image: Image] Test robots (capture and replay tools) record all input that is manually performed inputs (keyboard inputs, mouse clicks) during a test session and save them in a test script. The recorded test can be automatically repeated by replaying the test script as often as one likes.

[image: Image] Comparators are used to identify differences between expected and actual results. They are typically included in other tools.

[image: Image] Dynamic analyzers acquire additional information during program execution, for instance on allocation, usage, and release of memory (memory leaks, pointer allocation, pointer arithmetic problems, and so on).

[image: Image] Coverage analyzers provide structural test coverage values measured at code level during test execution (see also chapter 11).

Besides tools that support functional testing there are also tools for testing non-functional features of the test objects:

Tool support for non-functional tests

[image: Image] Load and performance test tools generate a synthetic load, e.g., database queries, user transactions, or network traffic, for the execution of volume, stress, and performance tests.

[image: Image] Monitors are used to support tests and analysis in that they identify and evaluate necessary data. They are typically integrated in load and performance test tools.

[image: Image] Tools for checking access and data security analyze possible security gaps in the test object.

2.2.5 Constraints to be Considered

Creative test activities can be supported by tools. The mechanical test execution can be automated, reducing the test effort or allowing the execution of more test cases without spending any additional effort. More test cases, however, do not necessarily mean better tests.

Tool use and test process

Without a well-established test process and adequate test methods, tools cannot achieve the desired cost reduction. The introduction and efficient use of tools requires a thorough evaluation of the test processes and accompanying process improvement activities (see also chapters 7 and 12).

On the other hand, the economic execution of the test processes can only be achieved with appropriate tool support; for instance, to be able to execute and evaluate many test cases within an adequate time frame.

The test manager must be aware of all these constraints and must act accordingly.

2.3 Summary

Testing must be divided into individual process steps. A fundamental test process is divided into the following steps:

[image: Image] Test planning and control: Define required resources (staffing, schedule, tools), define the test strategy together with the selection of the test methods to be used, the respective coverage criteria, and prioritization of the tests. Also, determine the sequence of test execution in the test schedule. Intervene to control during the whole test processes if there are any deviations from the plan.

[image: Image] Test analysis and design: Check the test basis for completeness and sufficient accuracy. Design logical test cases using the test methods of the test oracle. Begin creating the test infrastructure.

[image: Image] Test implementation and execution: Draw up test cases and group them to test sequences or scenarios, and complete the test infrastructure. The first step in the execution is to check that the test object is executable and that calling up main functions does not cause any serious failures. All test runs are to be recorded and evaluated in detail.

[image: Image] Test evaluation and report: Show that the test exit criteria have been satisfactorily fulfilled. If not, decide if further tests are to follow or if the test process may be finished nonetheless. Draw up a summary test report.

[image: Image] Completion of the test activities: The main task of this last activity of the test process is to learn from experience and to provide the testware needed for maintenance.
OEBPS/page-template.xpgt

	

	
	

	

	
	

OEBPS/graphics/f00ii-02.jpg

OEBPS/graphics/f00ii-01.jpg

OEBPS/graphics/01fig03.jpg
DreamCar

Iw

ContractBase[*
2 2 I J 2
v
JustinTime NoRisk EasyFinance
/ 1 exchange of car data
2 exchange of contract data
3 exchange of order data
IHost!
VirtualShowRoom (VSR)

OEBPS/graphics/f00ii-04.jpg

OEBPS/graphics/f00ii-03.jpg

OEBPS/graphics/02fig01.jpg
Planning

I

Analysis and Design

J

Implementation and
Execution

i

Evaluation
and Reporting

!

Completion

and

Control

OEBPS/graphics/pub.jpg
rocky

OEBPS/graphics/squear.jpg

OEBPS/graphics/01fig02.jpg
error made
by a person

causing a
noticeable failure

in the system

avoidable through training,
process improvement,
or similar

detectable in
areview

detectable
through testing

OEBPS/graphics/01fig01.jpg
ISTQB

International Software Testing|

Qualifications Board

Working Parties.

Australian/

American Feiombusobit Austrian Bangladeshi Brazilian
Testing Board | | Tegting oard | | TestingBoard | | Testing Board | | Testing Board

Canadian Chinese Danish Dutch Finnish
Testing Board | | Testing Board | | Testing Board | | Testing Board | | Testing Board

French German Indian Israeli Japanese

Testing Board

Testing Board

Testing Board

Testing Board

Testing Board

Korean
Testing Board

Latin American
Testing Board

Norwegian
Testing Board

Polish
Testing Board

Portuguese
Testing Board

Russian South East Sparish Swedish Suiss
Tosing Board | | EroPeen || roging Boara | | Tosting Boara | | Testng Boara
K Uisainen ather

Testing Board

Testing Board

Testing Boards

OEBPS/graphics/9781933952130.jpg
rockynook
~ > COMPUTING

Andreas Spillner, Thomas Rossner
Mario Winter, Tilo Linz

Software Testing Practice:

Test Management

A Study Guide for the Certified Tester Exam
ISTQB Advanced Level

