[image: Pthreads Programming]
Pthreads Programming

Dick Buttlar

Jacqueline Farrell

Bradford Nichols

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9781565921153/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.
Examples

	Example 1-1

	Example 1-2

	Example 1-3

	Example 1-4

	Example 1-5

	Example 1-6

	Example 1-7

	Example 1-8

	Example 1-9

	Example 1-10

	Example 2-1

	Example 2-2

	Example 2-3

	Example 2-4

	Example 2-5

	Example 2-6

	Example 2-7

	Example 2-8

	Example 2-9

	Example 2-10

	Example 2-11

	Example 3-1

	Example 3-2

	Example 3-3

	Example 3-4

	Example 3-5

	Example 3-6

	Example 3-7

	Example 3-8

	Example 3-9

	Example 3-10

	Example 3-11

	Example 3-12

	Example 3-13

	Example 3-14

	Example 3-15

	Example 3-16

	Example 3-17

	Example 3-18

	Example 3-19

	Example 3-20

	Example 3-21

	Example 3-22

	Example 3-23

	Example 3-24

	Example 3-25

	Example 3-26

	Example 3-27

	Example 3-28

	Example 4-1

	Example 4-2

	Example 4-3

	Example 4-4

	Example 4-5

	Example 4-6

	Example 4-7

	Example 4-8

	Example 4-9

	Example 4-10

	Example 4-11

	Example 4-12

	Example 4-13

	Example 4-14

	Example 4-15

	Example 4-16

	Example 4-17

	Example 4-18

	Example 4-19

	Example 4-20

	Example 4-21

	Example 4-22

	Example 4-23

	Example 4-24

	Example 4-25

	Example 4-26

	Example 4-27

	Example 4-28

	Example 4-29

	Example 5-1

	Example 5-2

	Example 5-3

	Example 5-4

	Example 5-5

	Example 5-6

	Example 5-7

	Example 5-8

	Example 6-1

	Example 6-2

	Example 6-3

	Example 6-4

	Example 6-5

	Example 6-6

	Example 6-7

	Example 6-8

	Example 6-9

	Example A-1

	Example A-2

	Example A-3

Preface

It’s been quite a while since the people from whom we get our project assignments accepted the excuse “Gimme a break! I can only do one thing at a time!” It used to be such a good excuse, too, when things moved just a bit slower and a good day was measured in written lines of code. In fact, today we often do many things at a time. We finish off breakfast on the way into work; we scan the Internet for sports scores and stock prices while our application is building; we’d even read the morning paper in the shower if the right technology were in place!
Being busy with multiple things is nothing new, though. (We’ll just give it a new computer-age name, like multitasking, because computers are happiest when we avoid describing them in anthropomorphic terms.) It’s the way of the natural world—we wouldn’t be able to write this book if all the body parts needed to keep our fingers moving and our brains engaged didn’t work together at the same time. It’s the way of the mechanical world—we wouldn’t have been able to get to this lovely prefabricated office building to do our work if the various, clanking parts of our automobiles didn’t work together (most of the time). It’s the way of the social and business world—three authoring tasks went into the making of this book, and the number of tasks, all happening at once, grew exponentially as it went into its review cycles and entered production.
Computer hardware and operating systems have been capable of multitasking for years. CPUs using a RISC (reduced instruction set computing) microprocessor break down the processing of individual machine instructions into a number of separate tasks. By pipelining each instruction through each task, a RISC machine can have many instructions in progress at the same time. The end result is the heralded speed and throughput of RISC processors. Time-sharing operating systems have been allowing users nearly simultaneous access to the processor for longer than we can remember. Their ability to schedule different tasks (typically called processes) really pays off when separate tasks can actually execute simultaneously on separate CPUs in a multiprocessor system.
Although real user applications can be adapted to take advantage of a computer’s ability to do more than one thing at once, a lot of operating system code must execute to make it possible. With the advent of threads we’ve reached an ideal state—the ability to perform multiple tasks simultaneously with as little operating system overhead as possible.
Although threaded programming styles have been around for some time now, it’s only recently that they’ve been adopted by the mainstream of UNIX programmers (not to mention those erstwhile laborers in the vineyards of Windows NT and other operating systems). Software sages swear at the lunchroom table that transaction processing monitors and real-time embedded systems have been using thread-like abstractions for more than twenty years. In the mid-to-late eighties, the general operating system community embarked on several research efforts focused on threaded programming designs, as typified by the work of Tom Doeppner at Brown University and the Mach OS developers at Carnegie-Mellon. With the dawn of the nineties, threads became established in the various UNIX operating systems, such as USL’s System V Release 4, Sun Solaris, and the Open Software Foundation’s OSF/1. The clash of platform-specific threads programming libraries advanced the need of some portable, platform-independent threads interface. The IEEE has just this year met this need with the acceptance of the IEEE Standard for Information Technology Portable Operating System Interface (POSIX) Part 1: System Application Programming Interface (API) Amendment 2: Threads Extension [C Language]—the Pthreads standard, for short.
This book is about Pthreads—a lightweight, easy-to-use, and portable mechanism for speeding up applications.
Organization

We’ll start off Chapter 1, by introducing you to multithreading as a way of performing the many tasks of a program with greater efficiency and speed than would be possible in a serial or multiprocess design. We’ll then examine the pitfalls of serial and multiprocess programming, and discuss the concept of potential parallelism, the cornerstone of any decision to write a multitasking program. We’ll introduce you to your first Pthreads call—pthread_create—and look at those structures by which a thread is uniquely identified. We’ll briefly examine the ways in which multiple threads in the same process exchange data, and we’ll highlight some synchronization issues.
We’ll continue our discussion of planning and structuring a multithreaded program in Chapter 2. Here, we’ll look at the types of applications that can benefit most from multithreading. We’ll present the three classic methods for distributing work among threads—the boss/worker model, the peer model, and the pipeline model. We’ll also compare two strategies for creating threads—creation on demand versus thread pools. After a brief discussion of thread data-buffering techniques, we’ll introduce the ATM server application example that we’ll use as the proving ground for thread concepts we’ll examine throughout the rest of the book.
In Chapter 3, we’ll look at the tools that the Pthreads library provides to help you ensure that threads access shared data in an orderly manner. This chapter includes lengthy discussions of mutex variables and condition variables, the two primary Pthreads synchronization tools. It also describes reader/writer locks, a more complex synchronization tool built from mutexes and condition variables. By the end of the chapter, we will have added synchronization to our ATM server example and presented most of what you’ll need to know to write a working multithreaded program.
We’ll look at the special characteristics of threads and the more advanced features of the Pthreads library in Chapter 4. We’ll cover some large topics, such as keys (a very handy way for threads to maintain private copies of shared data) and cancellation (a practical method for allowing your threads to be terminated asynchronously without disturbing the state of your program’s data and locks). We’ll cover some smaller topics, such as thread attributes, including the one that governs the persistence of a thread’s internal state. (When you get to this chapter, we promise that you’ll know what this means, and you may even value it!) A running theme of this chapter are the various tools that, when combined, allow you to control thread scheduling policies and priorities. You’ll find these discussions especially important if your program includes one or more real-time threads.
In Chapter 5, we’ll describe how multithreaded programs interact with features of the UNIX operating system that many serial programs take for granted. First, we’ll examine the special challenges UNIX signals pose to multithreaded programs; we’ll look at the types of signals threads must worry about and how you can direct certain signals to specific threads. We’ll then focus on the requirements the Pthreads library imposes on system calls and libraries to allow them to work correctly when multiple threads from the same process are using them at the same time. Finally, we’ll show you what the UNIX fork and exec calls do to threads. (It isn’t always pretty.)
After we’ve dealt with the fundamentals of Pthreads programming in the earlier chapters, we turn to the more basic issues you’ll face in deploying a multithreaded application in Chapter 6. The theme of this chapter is speed. We’ll look at those performance concerns over which you have little control—those that are inherent in a given platform’s Pthreads implementation. Here, we’ll profile the three major ways implementors design a Pthreads-compliant platform, listing the advantages and drawbacks of each. We’ll move on to a discussion of debugging threads, where we’ll illustrate a number of debugging strategies using a thread-capable debugger. Finally, we’ll look at various alternatives for improving our program’s performance. We’ll run some tests on various versions of our ATM server to test their performance as contention and workload increase.
We’ve also included three brief appendixes:
	Appendix A, shows how a multithreaded program might be written using the Open Software Foundation’s Distributed Computing Environment (DCE).

	Appendix B, lists the differences between Draft 4 of the Pthreads standard and Draft 10, its final version.

	Appendix C, is meant to help you find the syntax of any Pthreads library call quickly, without the need for another book.

Example Programs

You can obtain the source code for the examples presented in this book from O’Reilly & Associates through their Internet server.
The example programs in this book are available electronically by FTP.
FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown, with what you should type in boldface.
% ftp ftp.oreilly.com
Connected to ftp.oreilly.com.
220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.oreilly.com:yourname) : anonymous
331 Guest login ok, send domain style e-mail address as password.
Password: yourname@domain.name (use your user name and host here)
230 Guest login ok, access restrictions apply.
ftp> cd /work/nutshell/pthread
250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for
compressed files.)
200 Type set to I.
ftp> get examples.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for examples.tar.gz.
226 Transfer complete.
ftp> quit
221 Goodbye.
%
The file is a gzip compressed tar archive; extract the files from the archive by typing:
% gzcat examples.tar.gz | tar xvf -
System V systems require the following tar command instead:
% gzcat examples.tar.gz | tar xof -
If gzcat is not available on your system, use separate gunzip and tar or shar commands.
% gunzip examples.tar.gz
% tar xvf examples.tar

Typographical Conventions

The following font conventions are used in this book:
	Italic is used for function names, filenames, program names, commands, and variables. It’s also used to identify new terms and concepts when they are introduced.

	Constant Width is used for code examples and for the system output portion of interactive examples.

	Constant Bold is used in interactive examples to show commands or other text that would be typed literally by the user.

	Constant Italic identifies programmer-supplied variables in the C language function bindings that appear in Appendix C.

Acknowledgments

First of all, we’d like to thank Andy Oram, our editor at O’Reilly & Associates. He stuck with us through the long haul, and the book benefits from his attentive reviews, technical expertise, and sheer professionalism on this book beyond measure. We’re also indebted to our technical reviewers: Jeff Denham, Bill Gallmeister, and Dean Brock. Jeff, Greg Nichols, and Bernard Farrell read and commented on early drafts of the book. Thank you all!
Brad: “The inspiration for this book came from a threads programming seminar I developed back in 1991 for the Institute for Software Advancement (ISA). I’d like to express my appreciation to Rich Mitchell of ISA and Nick Uginow of DEC for setting me on this track, as well as the good folks at DECwest in Seattle and DEC software engineering in Nashua, New Hampshire, who attended my seminars and helped the course evolve. I’d like to acknowledge the support and encouragement of my former colleagues at DEC: Andy Kegal, Fred Glover, Ed Cande, and Steve Strange. On the personal side, I’d like to acknowledge my grandmother, Natalie Bunker, for the desire to write a book, my wife Susan for supporting me through the long project, and my friend Paul Silva for modeling the determination needed to complete it.”
Dick: “I’d like to thank Kathleen Johnson, Thomas Doeppner, Stan Amway, Cheryl Wiecek, Steve Fiorelli, and Dave Long. Each can lay a claim to some flavor and vintage of threads information I filed away somewhere in my head just in case someone asked. Special thanks to Ruth Goldenberg (the most technical and generous of writers), Mike Etzel, and Howard Littlefield. I want to especially thank Connie, my wife, for her love, patience, and permission to skip this year’s spring cleanup. (Another book for the snow-shovelling season, Brad and Jackie?) Finally, love to my kids: Jenn (who wants a giraffe on the cover), Maggie (a doggie), and Tom (a lobster ... on a pirate’s shoulder... with one leg....).
Jackie: “I’d like to thank Bernard, who is not only a superb technical resource but an absolutely wonderful, supportive husband. I’d also like to thank Mark Sanders and Jonathan Swartz for my first introductions to threads concepts. Thanks also to the whole DECthreads team, and Peter Portante in particular, for helping refine my understanding of the practical matters of programming with Pthreads.”

Chapter 1. Why Threads?

In this chapter:
	What Are Pthreads?

	Potential Parallelism

	Specifying Potential Parallelism in a Concurrent Programming Environment

	Parallel vs. Concurrent Programming

	Synchronization

	Who Am I? Who Are You?

	Terminating Thread Execution

	Why Use Threads Over Processes?

	A Structured Programming Environment

	Choosing Which Applications to Thread

When describing how computers work to someone new to PCs, it’s often easiest to haul out the old notion that a program is a very large collection of instructions that are performed from beginning to end. Our notion of a program can include certain eccentricities, like loops and jumps, that make a program more resemble a game of Chutes and Ladders than a piano roll. If programming instructions were squares on a game board, we can see that our program has places where we stall, squares that we cross again and again, and spots we don’t cross at all. But we have one way into our program, regardless of its spins and hops, and one way out.
Not too many years ago, single instructions were how we delivered work to computers. Since then, computers have become more and more powerful and grown more efficient at performing the work that makes running our programs possible. Today’s computers can do many things at once (or very effectively make us believe so). When we package our work according to the traditional, serial notion of a program, we’re asking the computer to execute it close to the humble performance of a computer of yesterday. If all of our programs run like this, we’re very likely not using our computer to its fullest capabilities.
One of those capabilities is a computing system’s ability to perform multitasking. Today, it’s frequently useful to look at our program (our very big task) as a collection of subtasks. For instance, if our program is a marine navigation system, we could launch separate tasks to perform each sounding and maintain other tasks that calculate relative depth, correlate coordinates with depth measurements, and display charts on a screen. If we can get the computer to execute some of these subtasks at the same time, with no change in our program’s results, our overall task will continue to get as much processing as it needs, but it will complete in a shorter period of time. On some systems, the execution of subtasks will be interleaved on a single processor; on others, they can run in parallel. Either way, we’ll see a performance boost.
Up until now, when we divided our program into multiple tasks, we had only one way of delivering them to the processor—processes. Specifically, we started designing programs in which parent processes forked child processes to perform subtasks. In this model, each subtask must exist within its own process. Now, we’ve been given an alternative that’s even more efficient and provides even better performance for our overall program—threads. In the threads model, multiple subtasks exist as individual streams of control within the same process.
The threads model takes a process and divides it into two parts:
	One contains resources used across the whole program (the processwide information), such as program instructions and global data. This part is still referred to as the process.

	The other contains information related to the execution state, such as a program counter and a stack. This part is referred to as a thread.

To compare and contrast multitasking between cooperating processes and multitasking using threads, let’s first look at how the simple C program in Example 1-1 can be represented as a process (Figure 1-1), a process with a single thread (Figure 1-2), and, finally, as a process with multiple threads (Figure 1-3).
Example 1-1. A Simple C Program (simple.c)
#include <stdio.h>
void do_one_thing(int *);
void do_another_thing(int *);
void do_wrap_up(int, int);

int r1 = 0, r2 = 0;

extern int
main(void)
{
 do_one_thing(&r1);
 do_another_thing(&r2);
 do_wrap_up(r1, r2);
 return 0;
}

void do_one_thing(int *pnum_times)
{
 int i, j, x;

 for (i = 0; i < 4; i++) {
 printf("doing one thing\n");
 for (j = 0; j < 10000; j++) x = x + i;
 (*pnum_times)++;
 }
}

void do_another_thing(int *pnum_times)
{
 int i, j, x;

 for (i = 0; i < 4; i++) {
 printf("doing another \n");
 for (j = 0; j < 10000; j++) x = x + i;
 (*pnum_times)++;
 }
}

void do_wrap_up(int one_times, int another_times)
{
 int total;

 total = one_times + another_times;
 printf("wrap up: one thing %d, another %d, total %d\n",

 one_times, another_times, total);
}

Figure 1-1 shows the layout of this program in the virtual memory of a process, indicating how memory is assigned and which resources the process consumes. Several regions of memory exist:
	A read-only area for program instructions (or “text” in UNIX parlance)

	A read-write area for global data (such as the variables r1 and r2 in our program)
[image: The simple program as a process]

Figure 1-1. The simple program as a process

	A heap area for memory that is dynamically allocated through malloc system calls

	A stack on which the automatic variables of the current procedure are kept (along with function arguments and other information needed to link it to the procedure that called it), just below similar information for the procedure that called it, just below similar information for the procedure that called it, and so on and so on. Each of these procedure-specific areas is known as a stack frame, and one exists for each procedure in the program that remains active. In the stack area of this illustration you can see the stack frames of our procedures do_one_thing and main.

To complete our inventory of system resources needed to sustain this process, notice:
	Machine registers, including a program counter (PC) to the currently executing instruction and a pointer (SP) to the current stack frame

	Process-specific include tables, maintained by the operating system, to track system-supplied resources such as open files (each requiring a file descriptor), communication end points (sockets), locks, and signals

Figure 1-2 shows the same C program as a process with a single thread. Here, the machine registers (program counter, stack pointer, and the rest) have become part of the thread, leaving the rest as the process. As far as the outside observer of the program is concerned, nothing much has changed. As a process with a single thread, this program executes in exactly the same way as it does when modeled as a nonthreaded process. It is only when we design our program to take advantage of multiple threads in the same process that the thread model really takes off.
Figure 1-3 shows our program as it might execute if it were designed to operate in two threads in a single process. Here, each thread has its own copy of the machine registers. (It’s certainly very handy for a thread to keep track of the instruction it is currently executing and where in the stack area it should be pushing and popping its procedure-context information.) This allows Thread 1 and Thread 2 to execute at different locations (or exactly the same location) in the program’s text. Thread 1, the thread in which the program was started, is executing do_one_thing, while Thread 2 is executing do_another_thing. Each thread can refer to global variables in the same data area. (do_one_thing uses r1 as a counter; do_another_thing uses r2.) Both threads can refer to the same file descriptors and other resources the system maintains for the process.
[image: The simple program as a process with a thread]

Figure 1-2. The simple program as a process with a thread

[image: The simple program as a process with multiple threads]

Figure 1-3. The simple program as a process with multiple threads

What Are Pthreads?

How do you design a program so that it executes in multiple threads within a process? Well, for starters, you need a thread creation routine and a way of letting the new thread know where in the program it should begin executing. But at this point, we’ve passed beyond the ability to generalize.
Up to this point, we’ve discussed the basics of threads and thread creation at a level common to all thread models. As we move on to discuss specifics (as we will in the remainder of this book), we encounter differences among the popular thread packages. For instance, Pthreads specifies a thread’s starting point as a procedure name; other thread packages differ in their specification of even this most elementary of concepts. Differences such as this motivated IEEE to create the Pthreads standard.
Pthreads is a standardized model for dividing a program into subtasks whose execution can be interleaved or run in parallel. The “P” in Pthreads comes from POSIX (Portable Operating System Interface), the family of IEEE operating system interface standards in which Pthreads is defined (POSIX Section 1003.1c to be exact). There have been and still are a number of other threads models—Mach Threads and NT Threads, for example. Programmers experience Pthreads as a defined set of C language programming types and calls with a set of implied semantics. Vendors usually supply Pthreads implementations in the form of a header file, which you include in your program, and a library, to which you link your program.

Potential Parallelism

If we return to the simple program in our examples, we see that it has three tasks to complete. The three tasks are represented by the routines do_one_thing, do_another_thing, and do_wrap_up. The do_one_thing and do_another_thing tasks are simply loops that print out slightly different messages and then perform some token calculations to while away the time. The do_wrap_up task adds together the return values from the other two tasks and prints the result. Many real programs can be split, in a similar way, into individual tasks representing different CPU-based and I/O-based activities. For instance, a program that retrieves blocks of data from a file on disk and then performs computations based on their contents is an eminent candidate for multitasking.
When we run the program, it executes each routine serially, always completely finishing the first before starting the second, and completely finishing the second before starting the third. If we take a closer look at the program, we see that the order in which the first two routines execute doesn’t affect the third, as long as the third runs after both of them have completed. This property of a program — that statements can be executed in any order without changing the result — is called potential parallelism.
To illustrate parallelism, Figure 1-4 shows some possible sequences in which the program’s routines could be executed. The first sequence is that of the original program; the second is similar but with the first two routines exchanged. The third shows interleaved execution of the first routines; the last, their simultaneous execution. All sequences produce exactly the same result.
An obvious reason for exploiting potential parallelism is to make our program run faster on a multiprocessor. However, there are additional reasons for investigating a program’s potential parallelism:
	Overlapping I/O
	If one or more tasks represent a long I/O operation that may block while waiting for an I/O system call to complete, there may be performance advantages in allowing CPU-intensive tasks to continue independently. For example, a word processor could service print requests in one thread and process a user’s editing commands in another.
[image: Possible sequences of the routines in the simple program]

Figure 1-4. Possible sequences of the routines in the simple program

	Asynchronous events
	If one or more tasks is subject to the indeterminate occurrence of events of unknown duration and unknown frequency, such as network communications, it may be more efficient to allow other tasks to proceed while the task subject to asynchronous events is in some unknown state of completion. For example, a network-based server could process in-progress requests in one group of threads while another thread waits for the asynchronous arrival of new requests from clients through network connections.

	Real-time scheduling
	If one task is more important than another, but both should make progress whenever possible, you may wish to run them with independent scheduling priorities and policies. For example, a stock information service application could use high priority threads to receive and update displays of online stock prices and low priority threads to display static data, manage background printing, and perform other less important chores.

Threads are a means to identify and utilize potential parallelism in a program. You can use them in your program design both to enhance its performance and to efficiently structure programs that do more than one thing at a time. For instance, handling signals, handling input from a communication interface, and managing I/O are all tasks that can be done—and done very well—by multiple threads executing simultaneously.

Specifying Potential Parallelism in a Concurrent Programming Environment

Now that we know the orderings that we desire or would allow in our program, how do we express potential parallelism at the programming level? Those programming environments that allow us to express potential parallelism are known as concurrent programming environments. A concurrent programming environment lets us designate tasks that can run in parallel. It also lets us specify how we would like to handle the communication and synchronization issues that result when concurrent tasks attempt to talk to each other and share data.
Because most concurrent programming tools and languages have been the result of academic research or have been tailored to a particular vendor’s products, they are often inflexible and hard to use. Pthreads, on the other hand, is designed to work across multiple vendors’ platforms and is built on top of the familiar UNIX C programming interface. Pthreads gives you a simple and portable way of expressing multithreading in your programs.
UNIX Concurrent Programming: Multiple Processes

Before looking at threads further, let’s examine the concurrent programming interface that UNIX already supports: allowing user programs to create multiple processes and providing services the processes can use to communicate with each other.
Example 1-2 recasts our earlier single-process program as a program in which multiple processes execute its procedures concurrently. The main routine starts in a single process (which we will refer to as the parent process). The parent process then creates a child process to execute the do_one_thing routine and another to execute the do_another_thing routine. The parent waits for both children to finish (as parents of the human kind often do), calls the do_wrap_up routine, and exits.
Example 1-2. A Simple C Program with Concurrent Processes
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/wait.h>
void do_one_thing(int *);
void do_another_thing(int *);
void do_wrap_up(int, int);

int shared_mem_id;
int *shared_mem_ptr;
int *r1p;
int *r2p;
extern int
main(void)
{
 pid_t child1_pid, child2_pid;
 int status;

 /* initialize shared memory segment */
 shared_mem_id = shmget(IPC_PRIVATE, 2*sizeof(int), 0660);
 shared_mem_ptr = (int *)shmat(shared_mem_id, (void *)0, 0);
 r1p = shared_mem_ptr;
 r2p = (shared_mem_ptr + 1);

 *r1p = 0;
 *r2p = 0;

 if ((child1_pid = fork()) == 0) {
 /* first child */
 do_one_thing(r1p);
 exit(0);
 }

 /* parent */
 if ((child2_pid = fork()) == 0) {
 /* second child */
 do_another_thing(r2p);
 exit(0);
 }

 /* parent */
 waitpid(child1_pid, &status, 0);
 waitpid(child2_pid, &status, 0);

 do_wrap_up(*r1p, *r2p);
 return 0;

}

Creating a new process: fork

The UNIX system call that creates a new process is fork. The fork call creates a child process that is identical to its parent process at the time the parent called fork with the following differences:
	The child has its own process identifier, or PID.

	The fork call provides different return values to the parent and the child processes.

Figure 1-5 shows a process as it forks. Here, both parent and child are executing at the point in the program just following the fork call. Interestingly, the child begins executing as if it were returning from the fork call issued by its parent. It can do so because it starts out as a nearly identical copy of its parent. The initial values of all of its variables and the state of its system resources (such as file descriptors) are the same as those of its parent.
If the fork call returns to both the parent and child, why don’t the parent and child execute the same instructions following the fork? UNIX programmers specify different code paths for parent and child by examining the return value of the fork call. The fork call always returns a value of 0 to the child and the child’s PID to the parent. Because of this semantic we almost always see fork used as shown in Example 1-3.
Example 1-3. A fork Call (simple_processes.c)
if ((pid = fork()) < 0) {
 /* Fork system call failed */
 .
 .
 .
 perror("fork"), exit(1);
}else if (pid == 0) {
 /* Child only, pid is 0 */
 .
 .
 .
 return 0;
}else {
 /* Parent only , pid is child's process ID */
 .
 .
 .
}

After the program forks into two different processes, the parent and child execute independently unless you add explicit synchronization. Each process executes its own instructions serially, although the way in which the statements of each may be interwoven by concurrency is utterly unpredictable. In fact, one process could completely finish before the other even starts (or resumes, in the case in which the parent is the last to the finish line). To see what we mean, let’s look at the output from some test runs of our program in Example 1-2.
[image: A program before and after a fork]

Figure 1-5. A program before and after a fork

simple_processes
doing another
doing one thing
doing another
doing one thing
doing another
doing one thing
doing one thing
doing another
wrap up: one thing 4, another 4, total 8
simple_processes
doing another
doing another
doing one thing
doing another
doing one thing
doing one thing
doing another
doing one thing
wrap up: one thing 4, another 4, total 8
#
This program is a good example of parallelism and it works—as do the many real UNIX programs that use multiple processes. When looking for concurrency, then, why choose multiple threads over multiple processes? The overwhelming reason lies in the single largest benefit of multithreaded programming: threads require less program and system overhead to run than processes do. The operating system performs less work on behalf of a multithreaded program than it does for a multiprocess program. This translates into a performance gain for the multithreaded program.

Pthreads Concurrent Programming: Multiple Threads

Now that we’ve seen how UNIX programmers traditionally add concurrency to a program, let’s look at a way of doing so that employs threads. Example 1-4 shows how our single-process program would look if multiple threads execute its procedures concurrently. The program starts in a single thread, which, for reasons of clarity, we’ll refer to as the main thread. For the most part, the operating system does not recognize any thread as being a parent or master thread — from its viewpoint, all threads in a process are equal.
Using Pthreads function calls, the creator thread spawns a thread to execute the do_one_thing routine and another to execute the do_another_thing routine. It waits for both threads to finish, calls the do_wrap_up routine, and exits. In the same way that the processes behave in our multiprocess version of the program, each thread executes independently unless you add explicit synchronization.
Example 1-4. A Simple C Program with Concurrent Threads (simple_threads.c)
#include <stdio.h>
#include <pthread.h>

void do_one_thing(int *);
void do_another_thing(int *);
void do_wrap_up(int, int);

int r1 = 0, r2 = 0;

extern int
main(void)
{
 pthread_t thread1, thread2;

 pthread_create(&thread1,
 NULL,
 (void *) do_one_thing,
 (void *) &r1);

 pthread_create(&thread2,
 NULL,
 (void *) do_another_thing,
 (void *) &r2);

 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 do_wrap_up(r1, r2);
 return 0;
}

Creating a new thread: pthread_create

Whereas you create a new process by using the UNIX fork system call, you create a new thread by calling the pthread_create Pthreads function. You provide the following arguments:
	A pointer to a buffer to which pthread_create returns a value that identifies the newly created thread. This value, or handle, is of type pthread_t.[1] You can use it in all subsequent calls to refer to this specific thread.

	A pointer to a structure known as a thread attribute object. A thread attribute object specifies various characteristics for the new thread. In the example program, we pass a value of NULL for this argument, indicating that we accept the default characteristics for the new thread.

	A pointer to the routine at which the new thread will start executing.

	A pointer to a parameter to be passed to the routine at which the new thread starts.

Like most Pthreads functions, pthread_create returns a value that indicates whether it has succeeded or failed. A zero value represents success, and a nonzero value indicates and identifies an error.
The formal prototype of a start routine is (void*)routine(void*arg). In our code example, we are adding threads to an existing program (a not atypical scenario) and using the (void *) cast to quit the compiler. In later examples, we redeclare the routine to the correct prototype where possible.

Threads are peers

In the multiprocess version of our example (Example 1-2), we could refer to the caller of fork as the parent process and the process it creates as the child process. We could do so because UNIX process management recognizes a special relationship between the two. It is this relationship that, for instance, allows a parent to issue a wait system call to implicitly wait for one of its children.
The Pthreads concurrent programming environment maintains no such special relationship between threads. We may call the thread that creates another thread the creator thread and the thread it creates the spawned thread, but that’s just semantics. Creator threads and spawned threads have exactly the same properties in the eyes of the Pthreads. The only thread that has slightly different properties than any other is the first thread in the process, which is known as the main thread. In this simple program, none of the differences have any significance.
Once the two pthread_create calls in our example program return, three threads exist concurrently. Which will run first? Will one run to completion before the others, or will their execution be interleaved? It depends on the default scheduling policies of the underlying Pthreads implementation. It could be predictable, but then again, it may not be. The output on our system looks like this:
simple_threads
doing another
doing one thing
doing another
doing one thing
doing another
doing one thing
doing another
doing one thing
wrap up: one thing 4, another 4, total 8
simple_threads
doing another
doing one thing
doing another
doing one thing
doing one thing
doing another
doing one thing
doing another
wrap up: one thing 4, another 4, total 8
#

Parallel vs. Concurrent Programming

Let’s make a distinction between concurrent and parallel programming for the remainder of the book. We’ll use concurrent programming in a general sense to refer to environments in which the tasks we define can occur in any order. One task can occur before or after another, and some or all tasks can be performed at the same time. We’ll use parallel programming to specifically refer to the simultaneous execution of concurrent tasks on different processors. Thus, all parallel programming is concurrent, but not all concurrent programming is parallel.
The Pthreads standard specifies concurrency; it allows parallelism to be at the option of system implementors. As a programmer, all you can do is define those tasks, or threads, that can occur concurrently. Whether the threads actually run in parallel is a function of the operating system and hardware on which they run. Because Pthreads was designed in this way, a Pthreads program can run without modification on uniprocessor as well as multiprocessor systems.
Okay, so portability is great, but what of performance? All of our Pthreads programs will be running with specific Pthreads libraries, operating systems, and hardware. To squeeze the best performance out of a multithreaded application, you must understand the specifics of the environment in which it will be running—especially those details that are beyond the letter of the standard. We’ll spend some time in the later sections of this book identifying and describing the implementation-specific issues of Pthreads.

Synchronization

Even in our simple program, in Example 1-1 through Example 1-4, some parts can be executed in any order and some cannot. The first two routines, do_one_thing and do_another_thing, can run concurrently because they update separate variables and therefore do not conflict. But the third routine, do_wrap_up, must read those variables, and therefore must ensure that the other routines have finished using them before it can read them. We must force an order upon the events in our program, or synchronize them, to guarantee that the last routine executes only after the first two have completed.
In threads programming, we use synchronization to make sure that one event in one thread happens before another event in another thread. A simple analogy would involve two people working together to jump start a car, one attaching the cables under the hood and one in the car getting ready to turn the key. The two must use some signal between them so that the person connecting the cables completes the task before the other turns the key. This is real life synchronization.
In general, cooperation between concurrent procedures leads to the sharing of data, files, and communication channels. This sharing, in turn, leads to a need for synchronization. For instance, consider a program that contains three routines. Two routines write to variables and the third reads them. For the final routine to read the right values, you must add some synchronization. It’s telling that, of all the function calls supplied in a Pthreads library, only one—pthread_create—is used to enable concurrency. Almost all of the other function calls are there to replace the synchronization that was inherent in the program when it executed serially — and slowly!
In the multiprocess version of our program, Example 1-2, we used the UNIX wait-pid system call to prevent the parent process from executing the do_wrap_up routine before the other two processes completed the do_one_thing and do_another_thing routines and exited. The waitpid call provides synchronization by suspending its caller until a child process exits. (Notice that we use the waitpid call only in the code path of the parent.) In the Pthreads version of our program (Example 1-4), we use the pthread_join call to synchronize the threads’ execution. The pthread_join call provides synchronization for threads similar to that which waitpid provides for processes, suspending its caller until another thread exits. Unlike waitpid, which is specifically intended for parent and child processes, you can use pthread_join between any two threads in a program.
Both the multiprocess and multithreaded versions of our program use coarse methods to synchronize. One process or thread just stalled until the others caught up and finished. In later sections of this book we’ll go into great detail on the finer methods of Pthreads synchronization, namely mutex variables and condition variables. The finer methods allow you to synchronize thread activity on a thread’s access to one or more variables, rather than blocking the execution of an entire routine and thread in which it executes. Using the finer synchronization techniques, threads can spend less time waiting on each other and more time accomplishing the tasks for which they were designed.
As a quick introduction to mutex variables, let’s make a slight modification to the Pthreads version of our simple program. In Example 1-5, we’ll add a new variable, r3. Because all routines will read from and write to this variable, we’ll need some synchronization to control access to it. For this, we’ll define a mutex variable (of type pthread_mutex_t) and initialize it. (Just as a thread can have a thread attribute object, a mutex can have a mutex attribute object that indicates its special characteristics. Here, too, we’ll pass a value of NULL for this argument, indicating that we accept the default characteristics for the new mutex.)
Example 1-5. A Simple C Program with Concurrent Threads and a Mutex (simple_mutex.c)
#include <stdio.h>
#include <pthread.h>

void do_one_thing(int *);
void do_another_thing(int *);
void do_wrap_up(int, int);

int r1 = 0, r2 = 0, r3 = 0;
pthread_mutex_t r3_mutex=PTHREAD_MUTEX_INITIALIZER;
extern int
main(int argc, char **argv)
{
 pthread_t thread1, thread2;

 r3 = atoi(argv[1]);

 pthread_create(&thread1,
 NULL,
 (void *) do_one_thing,
 (void *) &r1);

 pthread_create(&thread2,
 NULL,
 (void *) do_another_thing,
 (void *) &r2);

 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 do_wrap_up(r1, r2);
 return 0;
}

We’ll also make changes to the routines that will read from and write to r3. We’ll synchronize their access to r3 by using the mutex we created in the main thread. When we’re finished, the code for do_another_thing and do_wrap_up will resemble the code in do_one_thing in Example 1-6.
Example 1-6. Concurrent Threads and a Mutex: do_one_thing Routine
void do_one_thing(int *pnum_times)
{
 int i, j, x;

 pthread_mutex_lock(&r3_mutex);
 if (r3 > 0) {
 x = r3;
 r3--;
 }else {
 x = 1;
 }
 pthread_mutex_unlock(&r3_mutex);
 for (i = 0; i < 4; i++) {
 printf("doing one thing\n");
 for (j = 0; j < 10000; j++) x = x + i;
 (*pnum_times)++;
 }
}

The mutex variable acts like a lock protecting access to a shared resource—in this case the variable r3 in memory. Whichever thread obtains the lock on the mutex in a call to pthread_mutex_lock has the right to access the shared resource it protects. It relinquishes this right when it releases the lock with the pthread_mutex_unlock call. The mutex gets its name from the term mutual exclusion—all threads have a mutual relationship with regard to the mutex variable; whichever thread holds the lock excludes all others from access.
You’ll notice in Example 1-6 that you must make special Pthreads calls to manipulate mutexes. You can’t just invent mutexes in your C code by testing and setting some sort of synchronization flag. If your code tests the mutex and then sets it, you leave a tiny (but potentially fatal) length of time during which another thread could also test and set the same mutex. Pthreads implementors avoid this window of vulnerability by taking advantage of operating system services or special machine instructions.
Sharing Process Resources

From a programming standpoint, the major difference between the multiprocess and multithreaded concurrency models is that, by default, all threads share the resources of the process in which they exist. Independent processes share nothing. Threads share such process resources as global variables and file descriptors. If one thread changes the value of any such resource, the change will be evident to any other thread in the process, if anyone cares to look. The sharing of process resources among threads is one of the multithreaded programming model’s major performance advantages, as well as one of its most difficult programming aspects. Having all of this context available to all threads in the same memory facilitates communication between threads. However, at the same time, it makes it easy to introduce errors of the sort in which one thread affects the value of a variable used by another thread in ways the other thread did not expect.
In Example 1-6, because the do_one_thing and do_another_thing routines simply place their results into global variables, the main thread can also access them should it need to. Because shared data calls for synchronization, the program uses the pthread_join call to enforce the order in which different threads write to and read from these global variables. The way this works is pretty simple. The two spawned threads know that, as long as they are running, the main thread has not passed its pthread_join call and, so, won’t look at their output values. The main thread knows that, once it has passed the second pthread_join call, no other threads are active. The values of the output parameters are set to their final value and can be used.
The processes in the multiprocess version of our program also use shared memory, but the program must do something special so that they can use it. We used the System V shared memory interface. Before it creates any child processes, the parent initializes a region of shared memory from the system using the shmget and shmat calls. After the fork call, all the processes of the parent and its children have common access to this memory, using it in the same way as the multithreaded version uses global variables, and all the parent and children processes can see whatever changes any of them may make to it.

Communication

When two concurrent procedures communicate, one writing data and one reading data, they must adopt some type of synchronization so that the reader knows when the writer has completed and the writer knows that the reader is ready for more data. Some programming environments provide explicit communication mechanisms such as message passing. The Pthreads concurrent programming environment provides a more implicit (some would call it primitive) mechanism. Threads share all global variables. This affords threads programmers plenty of opportunities for synchronization.
Multiple processes can use any of the many other UNIX Interprocess Communication (IPC) mechanisms: sockets, shared memory, and messages, to name a few. The multiprocess version of our program uses shared memory, but the other methods are equally valid. Even the waitpid call in our program could be used to exchange information, if the program checked its return value. However, in the multiprocess world, all types of IPC involve a call into the operating system—to initialize shared memory or a message structure, for instance. This makes communication between processes more expensive than communication between threads.

Scheduling

We can also order the events in our program by imposing some type of scheduling policy on them. Unless our program is running on a system with an infinite number of CPUs, it’s a safe bet that, sooner or later, there will be more concurrent tasks ready to run in our program than there are CPUs available to run them. The operating system uses its scheduler to select from the pool of ready and runnable tasks those that it will run. In a sense, the scheduler synchronizes the tasks’ access to a shared resource: the system’s CPUs.
Neither the multithreaded version of our program nor the multiprocess version imposes any specific scheduling requirements on its tasks. POSIX defines some scheduling calls as an optional part of its Pthreads package, allowing you to select scheduling policies and priorities for threads.

Who Am I? Who Are You?

When you create a thread, pthread_create returns a thread handle of type pthread_t. You can save this handle and use it to determine a thread’s identity using the pthread_self and pthread_equal function calls. The pthread_self call returns the thread handle of the calling thread and pthread_equal compares two thread handles.[2] You might use the two calls to identify a thread when it enters a routine, as shown in Example 1-7.
Example 1-7. Code that Examines the Identity of the Calling Thread (ident.c)
.
.
.
pthread_t io_thread;
.
.
extern int
main(void)
{
 .
 .
 .
 pthread_create(&io_thread,
 );
 .
 .
 .
}

void routine_x(void)
{
pthread_t thread;
 .
 .
 .
 thread = pthread_self();
 if (pthread_equal(io_thread, thread)) {
 .
 .
 .
 }
 .
 .
 .
}

Terminating Thread Execution

A process terminates when it comes to the end of main. At that time the operating system reclaims the process’s resources and stores its exit status. Similarly, a thread exits when it comes to the end of the routine in which it was started. (By the way, all threads expire when the process in which they run exits.) When a thread terminates, the Pthreads library reclaims any process or system resources the thread was using and stores its exit status. A thread can also explicitly exit with a call to pthread_exit. You can terminate another thread by calling pthread_cancel. In any of these cases, the Pthreads library runs any routines in its cleanup stack and any destructors in keys in which it has store values. We’ll describe these features in Chapter 4.
Exit Status and Return Values

The Pthreads library may or may not save the exit status of a thread when the thread exits, depending upon whether the thread is joinable or detached. A joinable thread, the default state of a thread at its creation, does have its exit status saved; a detached thread does not. Detaching a thread gives the library a break and lets it immediately reclaim the resources associated with the thread. Because the library will not have an exit status for a detached thread, you cannot use a pthread_join to join it. We’ll show you how to dynamically set the state of a thread to detached in Chapter 2, when we introduce the pthread_detach call. In Chapter 4, we’ll show you how to create a thread in the detached state by specifying attribute objects.

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1510768.png.jpg
or

do_another_thing ()

& Time >

or

do_one_thing ()

do_another_thing()
or

do_another._thing ()

OEBPS/httpatomoreillycomsourceoreillyimages1510770.png.jpg
Registers.

Identity

rzwunl

Resources

-

Stack

Text

Data

Heap

~

Parent Process

Registers
H

Stack

Text
Identity
mmnul

Data
Resources

Heap

L

Child Process

Registers

Identity

1D=1153)

L

Resources

L

Stack

Text

Data

Heap

OEBPS/httpatomoreillycomsourceoreillyimages1510762.png.jpg
Virtual Address Space

Registers [gp
PC
PO

dentity

Resources

do_one_thing() 1

do_one_thing ()

do_another_thing ()

1
2

Lowest Address

Stack

Text (instructions)

Data

Heap

Highest Address

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages1510766.png.jpg
Registers.

Thread 2

Registers

Identity

Resources

Virtual Address Space
B

do_another_thing ()

: 3

do_one_thing ()

Stack

Lowest Address

Text (instructions)

Data

Heap

Highest Address.

OEBPS/bk01-toc.html
Pthreads Programming

Table of Contents
		A Note Regarding Supplemental Files

		Examples

		Preface		Organization

		Example Programs		FTP

		Typographical Conventions

		Acknowledgments

		1. Why Threads?		What Are Pthreads?

		Potential Parallelism

		Specifying Potential Parallelism in a Concurrent Programming Environment		UNIX Concurrent Programming: Multiple Processes		Creating a new process: fork

		Pthreads Concurrent Programming: Multiple Threads		Creating a new thread: pthread_create

		Threads are peers

		Parallel vs. Concurrent Programming

		Synchronization		Sharing Process Resources

		Communication

		Scheduling

		Who Am I? Who Are You?

		Terminating Thread Execution		Exit Status and Return Values

OEBPS/orm_front_cover.jpg
A POSIX Standard for Better Multiprocessing

Pthds

Programming

Bradford Nichols, Dick Buttlar &

O’REILLY* Jacqueline Proulx Farrell

OEBPS/httpatomoreillycomsourceoreillyimages1510764.png.jpg
Virlual Address Space
Lowest Address

Registers [gp
PC
GPO
Gl

Thread 1
Identity

Text (Instrustions)

Resources | open Files = Data

Heap

Highest Address

