

i
i

“book” — 2010/2/27 — 13:59 — page 497 — #525 i
i

i
i

i
i

The TDD Rhythm

The TDD Rhythm:

1. Quickly add a test

2. Run all tests and see the new one fail

3. Make a little change

4. Run all tests and see them all succeed

5. Refactor to remove duplication

Essential TDD Principles

TDD Principle: Test First
When should you write your tests? Before you write the code that is to be tested.

TDD Principle: Test List
What should you test? Before you begin, write a list of all the tests you know you
will have to write. Add to it as you find new potential tests.

TDD Principle: One Step Test
Which test should you pick next from the test list? Pick a test that will teach you
something and that you are confident you can implement.

TDD Principle: Isolated Test
How should the running of tests affect one another? Not at all.

TDD Principle: Evident Tests
How do we avoid writing defective tests? By keeping the testing code evident,
readable, and as simple as possible.

TDD Principle: Fake It (’Til You Make It)
What is your first implementation once you have a broken test? Return a constant.
Once you have your tests running, gradually transform it.

TDD Principle: Triangulation
How do you most conservatively drive abstraction with tests? Abstract only when
you have two or more examples.

TDD Principle: Assert First
When should you write the asserts? Try writing them first.

i
i

“book” — 2010/2/27 — 13:59 — page 498 — #526 i
i

i
i

i
i

TDD Principle: Break
What do you do when you feel tired or stuck? Take a break.

TDD Principle: Evident Data
How do you represent the intent of the data? Include expected and actual results
in the test itself, and make their relationship apparent. You are writing tests for the
reader, not just for the computer.

TDD Principle: Obvious Implementation
How do you implement simple operations? Just implement them.

TDD Principle: Representative Data
What data do you use for your tests? Select a small set of data where each element
represents a conceptual aspect or a special computational processing.

TDD Principle: Automated Test
How do you test your software? Write an automated test.

TDD Principle: Test Data
What data do you use for test-first tests? Use data that makes the tests easy to read
and follow. If there is a difference in the data, then it should be meaningful. If there
isn’t a conceptual difference between 1 and 2, use 1.

TDD Principle: Child Test
How do you get a test case running that turns out to be too big? Write a smaller test
case that represents the broken part of the bigger test case. Get the smaller test case
running. Reintroduce the larger test case.

TDD Principle: Do Over
What do you do when you are feeling lost? Throw away the code and start over.

TDD Principle: Regression Test
What’s the first thing you do when a defect is reported? Write the smallest possible
test that fails and that, once run, will be repaired.

FLEXIBLE,
RELIABLE

SOFTWARE
Using Patterns and
Agile Development

C3622_FM.indd 1 3/18/10 1:21:34 PM

CHAPMAN & HALL/CRC
TEXTBOOKS IN COMPUTING

Series Editors

Published Titles

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph,
Foundations of Semantic Web Technologies

Uvais Qidwai and C.H. Chen, Digital Image Processing: An Algorithmic
Approach with MATLAB®

Henrik Bærbak Christensen, Flexible, Reliable Software: Using Patterns
and Agile Development

John Impagliazzo
ICT Endowed Chair

Computer Science and Engineering
Qatar University

Professor Emeritus, Hofstra University

Andrew McGettrick
Department of Computer
and Information Sciences
University of Strathclyde

Aims and Scope

This series covers traditional areas of computing, as well as related technical areas, such as
software engineering, artificial intelligence, computer engineering, information systems, and
information technology. The series will accommodate textbooks for undergraduate and gradu-
ate students, generally adhering to worldwide curriculum standards from professional societ-
ies. The editors wish to encourage new and imaginative ideas and proposals, and are keen to
help and encourage new authors. The editors welcome proposals that: provide groundbreaking
and imaginative perspectives on aspects of computing; present topics in a new and exciting
context; open up opportunities for emerging areas, such as multi-media, security, and mobile
systems; capture new developments and applications in emerging fields of computing; and
address topics that provide support for computing, such as mathematics, statistics, life and
physical sciences, and business.

C3622_FM.indd 2 3/18/10 1:21:34 PM

Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

FLEXIBLE,
RELIABLE

SOFTWARE
Using Patterns and
Agile Development

Henrik Bærbak Christensen

C3622_FM.indd 3 3/18/10 1:21:34 PM

The cover picture shows the first pyramid ever built, Pharaoh Djoser’s step pyramid. It was built around 2600 BC by
Djoser’s chancellor, Imhotep. Imhotep was the first engineer and architect in history known by name, and he was dei-
fied almost 2000 years after his death. Imhotep’s ingenious idea was to reuse the existing tomb design of a flat-roofed,
rectangular structure, the mastaba, and create the royal tomb by building six such mastabas of decreasing size atop one
another. You can still admire the pyramid at Saqqara, Egypt, today, more than 4600 years after it was completed. It is a
design that has stood the test of time from an architect who was a deified-worthy role model for all who create designs
and realize them.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110715

International Standard Book Number-13: 978-1-4398-8272-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

i
i

“book” — 2010/3/11 — 9:50 — page v — #5 i
i

i
i

i
i

To my children,
Mikkel, Magnus, and Mathilde

for defining the ultimate purpose
a man can assume. . .

To my wife,
Susanne

for the greatest in life:
to love and be loved in return. . .

i
i

“book” — 2010/3/11 — 9:50 — page vi — #6 i
i

i
i

i
i

i
i

“book” — 2010/3/11 — 9:50 — page vii — #7 i
i

i
i

i
i

Contents

Foreword xix

Preface xxi

1 Basic Terminology 1

1 Agile Development Processes 5

1.1 Software Development Methods . 5

1.2 Agile Methods . 6

1.3 Extreme Programming . 8

1.4 Summary of Key Concepts . 11

1.5 Selected Solutions . 12

1.6 Review Questions . 12

2 Reliability and Testing 13

2.1 Reliable Software . 13

2.2 Testing Terminology . 15

2.3 Automated Testing . 18

2.4 JUnit: An Automated Test Tool . 19

2.5 Summary of Key Concepts . 24

2.6 Selected Solutions . 25

2.7 Review Questions . 25

2.8 Further Exercises . 26

vii

i
i

“book” — 2010/3/11 — 9:50 — page viii — #8 i
i

i
i

i
i

viii z

3 Flexibility and Maintainability 29

3.1 Maintainability . 29

3.2 Sub Qualities of Maintainability . 31

3.3 Flexibility . 35

3.4 Summary of Key Concepts . 36

3.5 Selected Solutions . 36

3.6 Review Questions . 37

3.7 Further Exercises . 37

2 The Programming Process 39

4 Pay Station Case 43

4.1 Pay Station Stories . 43

4.2 Initial Design . 45

5 Test-Driven Development 49

5.1 Values of Test-Driven Development . 50

5.2 Setting the Stage . 51

5.3 Iteration 1: Inserting Five Cents . 52

5.4 Iteration 2: Rate Calculation . 56

5.5 Iteration 3: Illegal Coins . 60

5.6 Iteration 4: Two Valid Coins . 62

5.7 Iteration 5: Buying (Faked) . 64

5.8 Iteration 6: Receipt . 67

5.9 Iteration 7: Buying (Real) . 69

5.10 Iteration 8: Clearing after Buy . 71

5.11 Iteration 9: Cancelling . 73

5.12 The Test-Driven Process . 74

5.13 Summary of Key Concepts . 76

5.14 Selected Solutions . 77

5.15 Review Questions . 77

5.16 Further Exercises . 77

i
i

“book” — 2010/3/11 — 9:50 — page ix — #9 i
i

i
i

i
i

z ix

6 Build Management 81

6.1 New Requirements . 81

6.2 Build Management Concepts . 82

6.3 Creating the Build Description . 83

6.4 Additional Ant Tasks . 98

6.5 Analysis . 99

6.6 Summary of Key Concepts . 100

6.7 Selected Solutions . 101

6.8 Review Questions . 102

6.9 Further Exercises . 102

3 The First Design Pattern 105

7 Deriving Strategy Pattern 109

7.1 New Requirements . 109

7.2 One Problem – Many Designs . 110

7.3 Source Tree Copy Proposal . 111

7.4 Parametric Proposal . 113

7.5 Polymorphic Proposal . 117

7.6 Compositional Proposal . 121

7.7 The Compositional Process . 126

7.8 The Strategy Pattern . 126

7.9 Summary of Key Concepts . 127

7.10 Selected Solutions . 128

7.11 Review Questions . 128

7.12 Further Exercises . 128

8 Refactoring and Integration Testing 131

8.1 Developing the Compositional Proposal 131

8.2 Summary of Key Concepts . 145

8.3 Selected Solutions . 146

8.4 Review Questions . 146

8.5 Further Exercises . 146

i
i

“book” — 2010/3/11 — 9:50 — page x — #10 i
i

i
i

i
i

x z

9 Design Patterns – Part I 149

9.1 The History of Design Patterns . 149

9.2 The Purpose of Patterns . 150

9.3 Patterns as a Communication Device 151

9.4 The Pattern Template . 152

9.5 Summary of Key Concepts . 153

9.6 Review Questions . 154

9.7 Further Exercises . 154

10 Coupling and Cohesion 155

10.1 Maintainable Code . 155

10.2 Coupling . 156

10.3 Cohesion . 157

10.4 Law of Demeter . 159

10.5 Summary of Key Concepts . 160

10.6 Selected Solutions . 160

10.7 Review Questions . 161

10.8 Further Exercises . 161

4 Variability Management and fi-‹-› 163

11 Deriving State Pattern 167

11.1 New Requirements . 167

11.2 One Problem – Many Designs . 168

11.3 TDD of Alternating Rates . 168

11.4 Polymorphic Proposal . 170

11.5 Compositional + Parametric Proposal 175

11.6 Compositional Proposal . 176

11.7 Development by TDD . 178

11.8 Analysis . 179

11.9 The State Pattern . 180

11.10 State Machines . 181

11.11 Summary of Key Concepts . 182

11.12 Selected Solutions . 182

11.13 Review Questions . 183

11.14 Further Exercises . 183

i
i

“book” — 2010/3/11 — 9:50 — page xi — #11 i
i

i
i

i
i

z xi

12 Test Stubs 187

12.1 New Requirement . 187

12.2 Direct and Indirect Input . 188

12.3 One Problem – Many Designs . 189

12.4 Test Stub: A Compositional Proposal 190

12.5 Developing the Compositional Proposal 191

12.6 Analysis . 195

12.7 Summary of Key Concepts . 196

12.8 Selected Solutions . 196

12.9 Review Questions . 197

12.10 Further Exercises . 197

13 Deriving Abstract Factory 201

13.1 Prelude . 201

13.2 New Requirements . 202

13.3 One Problem – Many Designs . 203

13.4 A Compositional Proposal . 203

13.5 The Compositional Process . 210

13.6 Abstract Factory . 211

13.7 Summary of Key Concepts . 213

13.8 Selected Solutions . 213

13.9 Review Questions . 215

13.10 Further Exercises . 215

14 Pattern Fragility 219

14.1 Patterns are Implemented by Code . 219

14.2 Declaration of Delegates . 220

14.3 Binding in the Right Place . 221

14.4 Concealed Parameterization . 222

14.5 Avoid Responsibility Erosion . 223

14.6 Discussion . 224

14.7 Summary of Key Concepts . 224

14.8 Review Questions . 225

i
i

“book” — 2010/3/11 — 9:50 — page xii — #12 i
i

i
i

i
i

xii z

5 Compositional Design 227

15 Roles and Responsibilities 231

15.1 What are Objects? . 231

15.2 The Language-Centric Perspective . 232

15.3 The Model-Centric Perspective . 233

15.4 The Responsibility-Centric Perspective 234

15.5 Roles, Responsibility, and Behavior . 235

15.6 The Influence of Perspective on Design 240

15.7 The Role–Object Relation . 242

15.8 Summary of Key Concepts . 244

15.9 Review Questions . 245

16 Compositional Design Principles 247

16.1 The Three Principles . 247

16.2 First Principle . 248

16.3 Second Principle . 250

16.4 Third Principle . 254

16.5 The Principles in Action . 254

16.6 Summary of Key Concepts . 255

16.7 Selected Solutions . 256

16.8 Review Questions . 256

16.9 Further Exercises . 257

17 Multi-Dimensional Variance 259

17.1 New Requirement . 259

17.2 Multi-Dimensional Variation . 259

17.3 The Polymorphic Proposal . 261

17.4 The Compositional Proposal . 262

17.5 Analysis . 263

17.6 Selected Solutions . 263

17.7 Review Questions . 264

17.8 Further Exercises . 264

i
i

“book” — 2010/3/11 — 9:50 — page xiii — #13 i
i

i
i

i
i

z xiii

18 Design Patterns – Part II 265

18.1 Patterns as Roles . 265

18.2 Maintaining Compositional Designs 267

18.3 Summary of Key Concepts . 271

18.4 Selected Solutions . 271

18.5 Review Questions . 272

18.6 Further Exercises . 272

6 A Design Pattern Catalogue 273

19 Facade 277

19.1 The Problem . 277

19.2 The Facade Pattern . 279

19.3 Selected Solutions . 280

19.4 Review Questions . 280

19.5 Further Exercises . 281

20 Decorator 283

20.1 The Problem . 283

20.2 Composing a Solution . 283

20.3 The Decorator Pattern . 285

20.4 Selected Solutions . 287

20.5 Review Questions . 287

20.6 Further Exercises . 287

21 Adapter 291

21.1 The Problem . 291

21.2 Composing a Solution . 291

21.3 The Adapter Pattern . 292

21.4 Selected Solutions . 293

21.5 Review Questions . 293

21.6 Further Exercises . 293

i
i

“book” — 2010/3/11 — 9:50 — page xiv — #14 i
i

i
i

i
i

xiv z

22 Builder 297

22.1 The Problem . 297

22.2 A Solution . 298

22.3 The Builder Pattern . 298

22.4 Selected Solutions . 299

22.5 Review Questions . 300

22.6 Further Exercises . 300

23 Command 303

23.1 The Problem . 303

23.2 A Solution . 304

23.3 The Command Pattern . 305

23.4 Selected Solutions . 306

23.5 Review Questions . 306

23.6 Further Exercises . 306

24 Iterator 309

24.1 The Problem . 309

24.2 A Solution . 309

24.3 The Iterator Pattern . 310

24.4 Review Questions . 311

24.5 Further Exercises . 311

25 Proxy 313

25.1 The Problem . 313

25.2 A Solution . 313

25.3 The Proxy Pattern . 314

25.4 Selected Solutions . 316

25.5 Review Questions . 316

25.6 Further Exercises . 316

26 Composite 319

26.1 The Problem . 319

26.2 A Solution . 320

26.3 The Composite Pattern . 320

26.4 Review Questions . 321

26.5 Further Exercises . 321

i
i

“book” — 2010/3/11 — 9:50 — page xv — #15 i
i

i
i

i
i

z xv

27 Null Object 323

27.1 The Problem . 323

27.2 A Solution . 324

27.3 The Null Object Pattern . 324

27.4 Review Questions . 324

28 Observer 327

28.1 The Problem . 327

28.2 A Solution . 328

28.3 Example . 329

28.4 The Observer Pattern . 330

28.5 Analysis . 332

28.6 Selected Solutions . 333

28.7 Review Questions . 334

28.8 Further Exercises . 334

29 Model-View-Controller 337

29.1 The Problem . 337

29.2 Model-View-Controller Pattern . 338

29.3 Analysis . 340

29.4 Review Questions . 341

29.5 Further Exercises . 341

7 Frameworks 343

30 Introducing MiniDraw 347

30.1 A Jigsaw Puzzle Application . 347

30.2 A Rectangle Drawing Application . 350

30.3 A Marker Application . 351

30.4 MiniDraw History . 352

30.5 MiniDraw Design . 352

30.6 MiniDraw Variability Points . 359

30.7 Summary of Key Concepts . 360

30.8 Selected Solutions . 361

30.9 Review Questions . 361

30.10 Further Exercises . 361

i
i

“book” — 2010/3/11 — 9:50 — page xvi — #16 i
i

i
i

i
i

xvi z

31 Template Method 363

31.1 The Problem . 363

31.2 The Template Method Pattern . 364

31.3 Review Questions . 365

32 Framework Theory 367

32.1 Framework Definitions . 367

32.2 Framework Characteristics . 368

32.3 Types of Users and Developers . 368

32.4 Frozen and Hot Spots . 370

32.5 Defining Variability Points . 371

32.6 Inversion of Control . 372

32.7 Framework Composition . 373

32.8 Software Reuse . 374

32.9 Software Product Lines . 375

32.10 Summary of Key Concepts . 376

32.11 Selected Solutions . 377

32.12 Review Questions . 378

8 Outlook 379

33 Configuration Management 383

33.1 Motivation . 383

33.2 Terminology . 384

33.3 Example Systems . 393

33.4 Branching . 395

33.5 Variant Management by SCM . 396

33.6 Summary of Key Concepts . 396

33.7 Selected Solutions . 396

33.8 Review Questions . 397

33.9 Further Exercises . 397

i
i

“book” — 2010/3/11 — 9:50 — page xvii — #17 i
i

i
i

i
i

z xvii

34 Systematic Testing 399

34.1 Terminology . 399

34.2 Equivalence Class Partitioning . 401

34.3 Boundary Analysis . 412

34.4 Discussion . 412

34.5 Summary of Key Concepts . 414

34.6 Selected Solutions . 414

34.7 Review Questions . 415

34.8 Further Exercises . 415

9 Projects 419

35 The HotGammon Project 423

35.1 HotGammon . 423

35.2 Test-Driven Development of AlphaMon 426

35.3 Strategy, Refactoring, and Integration 431

35.4 Test Stubs and Variability . 434

35.5 Compositional Design . 436

35.6 Design Patterns . 439

35.7 Frameworks . 443

35.8 Outlook . 448

36 The HotCiv Project 453

36.1 HotCiv . 453

36.2 Test-Driven Development of AlphaCiv 458

36.3 Strategy, Refactoring, and Integration 463

36.4 Test Stubs and Variability . 466

36.5 Compositional Design . 470

36.6 Design Patterns . 472

36.7 Frameworks . 475

36.8 Outlook . 483

Bibliography 487

Index 491

Index of Sidebars/Key Points 495

i
i

“book” — 2010/3/11 — 9:50 — page xviii — #18 i
i

i
i

i
i

i
i

“book” — 2010/3/11 — 9:50 — page xix — #19 i
i

i
i

i
i

Foreword

by Michael Kölling

Teaching to program well is a hard challenge. Writing a book about it is a difficult
undertaking.

The bulk of my own experience in programming teaching is at the introductory level.
I see my students leave the first programming course, many of them thinking they
are good programmers now. Most of them are not. Only the good ones realise how
much they have yet to learn. Learning how to build good quality software is much
more than mastering the syntax and semantics of a language. This book is about the
next phase of learning they are about to face.

Most academic discussion about the teaching of programming revolves around intro-
ductory teaching in the first semester of study, and by far the largest number of books
on programming cover the beginners’ aspects. Many fewer books are available that
cover more advanced aspects—as this one does—and even fewer do it well.

The reason is just that introductory programming is easier to handle, and still so dif-
ficult that for many years we—as a teaching community—could not agree how to
approach the teaching of modern, object-oriented programming in a technically and
pedagogically sound manner. It has taken well over 10 years and more than one hun-
dred published introductory textbooks on learning object orientation with Java alone
to get to where we are now: a state where introductory texts are available that are not
only a variation of a commented language specification, but that follow sound ped-
agogical approaches, that are written with learners in mind, that emphasise process
over product, and that deal with real problems from real contexts.

For more advanced programming books—usable in advanced programming
courses—the situation is less rosy. There is much less agreement about the topics that
such a course should cover, and fewer authors have taken the difficult step to write
such a book. Many programming books at this level are in character where introduc-
tory books were ten years ago: Descriptions of techniques and technologies, written
with great emphasis on technical aspects, but with little pedagogical consideration.

This book is a refreshing change in this pattern. This book brings together a care-
ful selection of topics that are relevant, indeed crucial, for developing good quality
software with a carefully designed pedagogy that leads the reader through an ex-
perience of active learning. The emphasis in the content is on practical goals—how
to construct reliable and flexible software systems—covering many topics that every

xix

i
i

“book” — 2010/3/23 — 8:20 — page xx — #20 i
i

i
i

i
i

xx z

software engineer should have studied. The emphasis in the method is on providing
a practical context, hands on projects, and guidance on process.

This last point—process—is crucial. The text discusses not only what the end product
should be like, but also how to get there.

I know that this book will be a great help for many of my students on the path from
a novice programmer to a mature, professional software developer.

—Michael Kölling
Originator of the BlueJ and Greenfoot Environments.

Author and coauthor of the best-selling books
Objects First with Java and

Introduction to Programming with Greenfoot.

i
i

“book” — 2010/3/11 — 9:50 — page xxi — #21 i
i

i
i

i
i

Preface

Mostly for the Students. . .

This is a book about designing and programming flexible and reliable software. The
big problem with a book about making software is that you do not learn to make
software—by reading a book. You learn it by reading about the techniques, concepts
and mind-sets that I present; apply them in practice, perhaps trying alternatives; and
reflect upon your experiences. This means you face a lot of challenging and fun
programming work at the computer! This is the best way to investigate a problem
and its potential solutions: programming is a software engineer’s laboratory where
great experiments are performed and new insights are gained.

I have tried to give the book both a practical as well as an theoretical and academic
flavor. Practical because all the techniques are presented based on concrete and plau-
sible (well, most of the time) requirements that you are likely to face if you are em-
ployed in the software industry. Practical because the solution that I choose works
well in practice even in large software projects and not just toy projects like the ones
I can squeeze down into this book. Practical because the techniques I present are
all ones that have been and are used in practical software development. Theoretical
and academic because I am not satisfied with the first solution that I can think of
and because I try hard to evaluate benefits and liabilities of all the possible solutions
that I can find so I can pick the best. In your design and programming try to do the
same: Practical because you will not make a living from making software that does
not work in practice; academic because you get a better pay-check if your software is
smarter than the competitors’.

Mostly for the Teachers. . .

This book has an ambitious goal: to provide the best learning context for a student to
become a good software engineer. Building flexible and reliable software is a major
challenge in itself even for seasoned developers. To a young student it is even more
challenging! First, many software engineering techniques are basically solutions to
problems that an inexperienced programmer has never had. For instance, why intro-
duce a design pattern to increase flexibility if the program will never be maintained
as is the case with most programming assignments in teaching? Second, real software

xxi

i
i

“book” — 2010/3/11 — 9:50 — page xxii — #22 i
i

i
i

i
i

xxii z

design and development require numerous techniques to be combined—picking the
right technique at the right time for the problem at hand. For instance, to do auto-
mated testing and test-driven development you need to decouple abstractions and
thus pick the right patterns—thus in practice, automated testing and design patterns
benefit from being combined.

This book sets out to lessen these problems facing our students. It does so by story
telling (Christensen 2009), by explaining the design and programming process, and by
using projects as a learning context. Many chapters in the book are telling the story
of a company developing software for parking lot pay stations and the students are
invited to join the development team. The software is continuously exposed to new
requirements as new customers buy variations of the system. This story thus sets
a natural context for students to understand why a given technique is required and
why techniques must be combined to overcome the challenges facing the developers.
An agile and test-driven approach is applied and space is devoted to explaining the
programming and design process in detail—because often the devil is in the detail.
Finally, the projects in the last part of the book define larger contexts, similar to real,
industrial, development, in which the students via a set of assignments apply and
learn the techniques of the book.

A Tour of the Book

The book is structured into nine parts—eight learning iterations, parts 1–8, and one
project part, part 9. The eight learning iterations each defines a “release” of knowl-
edge and skills that you can use right away in software development as well as use
as a stepping stone for the next learning iteration. An overview of the learning iter-
ations and their chapters is outlined in Figure 1. The diagram is organized having
introductory topics/chapters at the bottom and advanced topics/chapters at the top.
Chapters marked with thick borders cover core topics of the book and are generally
required to proceed. Chapters marked with a gray background cover material that
adds perspective, background, or reflections to the core topics. The black chapters
are the project chapters that define exercises.

For easy reference, an overview of the rhythm and principles of test-driven develop-
ment is printed as the first two pages, and an index of all design patterns at the last
page. In addition to a normal index, you will also find an index of sidebars and key
points at the end of the book.

Learning iteration 1 is primarily an overview and introduction of basic terminology
that are used in the book. Learning iterations 2 to 5 present the core practices, con-
cepts, tools and analytic skills for designing flexible and reliable software. These
iterations use a story telling approach as they unfold a story about a company that is
producing software for pay stations, a system that is facing new requirements as time
passes. Thus software development techniques are introduced as a response to real-
istic challenges. Learning iteration 6 is a collection of design patterns—that can now
be presented in a terse form due to the skills acquired in the previous iterations. The
learning focus of iteration 7 is frameworks which both introduce new terminology as
well as demonstrate all acquired skills on a much bigger example, MiniDraw. Learn-
ing iteration 8 covers two topics that are important for flexible and reliable software
development but nevertheless are relatively independent of the previous iterations.

i
i

“book” — 2010/3/11 — 9:50 — page xxiii — #23 i
i

i
i

i
i

z xxiii

30. MiniDraw7
31. Template

Method
32. Framework

Theory

6

5

4

3

2

1

15. Roles and
Responsibilities

16. Composition.
Design Princip.

17. Multi-Dim.
Variance

18. Design
Patterns II

11. State 12. Test Stubs
13. Abstract

Factory
14. Pattern

Fragility

7. Strategy
8. Refactor and

Integration
9. Design
Patterns I

10. Coupling
Cohesion

4. Case
5. Test-Driven
Development

6. Build
Management

1. Agile Dev.
Processes

2. Reliabilty and
Testing

3. Maintainability
and Flexibility

19 – 29. Design Pattern Catalogue: Facade, Decorator, Adapter, Builder,
Command, Iterator, Proxy, Composite, Null Object, Observer, Model-View-Contr.

33. Config.
Management

8
34. Systematic

Testing

P
a
y

s
t
a
t
i
o
n

Learning
Iteration

35. HotGammon Project9 36. HotCiv Project

Chapters

Figure 1: Overview of learning iterations and chapters.

Part 9, Projects, defines two large project assignments. These projects are large sys-
tems that are developed through a set of assignments covering the learning objectives
of the book. Each project is structured into seven releases or iterations that roughly
match learning iteration 2 to 8 of the book. Thus by completing the exercises in, say,
project HotCiv’s iteration on frameworks you will practice the skills and learning ob-
jectives defined in the framework learning iteration of the book. If you complete most
or all iterations in a project you will end up with a reliable and usable implementa-
tion of a large and complex software system, complete with a graphical user interface.
The HotGammon project will even include an opponent artificial intelligence player.

Each learning iteration starts with an overview of its chapters, and in turn each chap-
ter follows a common layout:

� Learning Objectives state the learning contents of the chapter.

� Next comes a presentation and discussion of the new material usually ending
in a section that discusses benefits and liabilities of the approach.

i
i

“book” — 2010/3/11 — 9:50 — page xxiv — #24 i
i

i
i

i
i

xxiv z

� Summary of Key Concepts tries to sum up the main concepts, definitions, and
results of the chapter in a few words.

� Selected Solutions discusses exercises in the chapter’s main text if any.

� Review Questions presents a number of questions about the main learning con-
tents of the chapter. You can use these to test your knowledge of the topics.
Remember though that many of the learning objectives require you to program
and experiment at the computer to ensure that you experience a deep learning
process.

� Further Exercises presents additional, small, exercises to sharpen your skills.
Note, however, that the main body of exercises is defined in the projects in
part 9.

Some of the chapters, notably the short design pattern presentations in learning iter-
ation 6, A Design Pattern Catalogue, will leave out some of these subsections.

How to Use the Book

This book can be used in a number of ways. The book is written for courses with a
strong emphasis on practical software development with a substantial project work
element leading all the way to students designing and implementing their own frame-
works with several concrete instantiations. The book has been used in semester
length, quarter length, and short courses. Below I will outline variations of this theme
as well as alternative uses of the book.

Semester lengths project courses. Learning iterations 1–8 of the book are organized
to follow a logical path that demonstrates how all the many different development
techniques fit nicely together to allow students to build flexible frameworks and dis-
cuss them from both the theoretical as well as practical level. Each iteration roughly
correlates to two weeks of the course. Topics from iteration 8 need not be introduced
last but can more or less be introduced at any time. For instance, it may make sense
to introduce a software configuration management tool early to support team collab-
oration on source code development. The projects in part 9 follow the rhythm of the
book and students can start working on these as soon as the test-driven development
chapter has been introduced. Alternative projects can be defined, however, consult
Christensen (2009) for some pitfalls to avoid.

Quarter lengths project courses. Here the basic organization of the book is still fol-
lowed but aspects must be left out or treated cursory. Chapters marked by a gray
background in Figure 1 are candidates. Depending on the entry level of the students,
parts of the Basic Terminology part can be cursory reading or introduced as part of a
topic in the later iterations—for instance introducing the notion of test cases as part
of demonstrating test-driven development, or just introduce maintainability with-
out going into its sub qualities. The build management topic can be skipped and
replaced by an introduction to integrated development environments or Ant scripts
can be supplied by the teacher, as it is possible to do the projects without doing the
build script exercises. The projects in the last part of the book work even in quarter
length courses, note however that this may require the teacher to supply additional

i
i

“book” — 2010/3/11 — 9:50 — page xxv — #25 i
i

i
i

i
i

z xxv

code to lower the implementation burden. This is especially true for the MiniDraw
integration aspect of the framework iteration.

Short courses. Two-three day courses for professional software developers can be or-
ganized as full day seminars alternating between presentations of test-driven devel-
opment, design patterns, variability management, compositional designs, and frame-
works, and hands-on sessions working on the pay station case. Depending on the
orientation of your course, topics are cursory or optional.

Design pattern courses. Here you may skip the test-driven development aspects all
together. Of course this means skipping the specific chapter in part 2, the test stub
chapter in part 4, as well as skipping the construction focused sections in the chapters
in parts 3 and 4. I advise to spend time on the theory of roles and compositional
design in part 5. Optionally part 7 may be skipped altogether and time spent on
covering all the patterns present in the catalogue in part 6. The patterns may be
supplemented by chapters from other pattern books.

Software engineering courses. Here less emphasis can be put on the pattern cata-
logue in part 6 and frameworks in part 7 and instead go into more details with tools
and techniques for systematic testing, build-management, and configuration man-
agement.

Framework oriented courses. Here emphasis is put on the initial patterns from
parts 3 and 4 and on the theory in part 5. Only a few of the patterns from part 6
are presented, primarily as examples of compositional design and for understanding
the framework case, MiniDraw, in part 7.

Prerequisites

I expect you to be a programmer that has a working experience with Java, C#, or sim-
ilar modern object-oriented programming languages. I expect that you understand
basic object oriented concepts and can design small object-oriented systems and make
them “work”. I also expect you to be able to read and draw UML class and sequence
diagrams.

Conventions

I have used a number of typographic conventions in this book to highlight various
aspects. Generally definitions and principles are typeset in their own gray box for easy
visual reference. I use side bars to present additional material such as war stories,
installation notes, etc. The design patterns I present are all summarized in a single
page side bar (a pattern box)—remember that a more thorough analysis of the pattern
can be found in the text.

I use type faces to distinguish class names, role names, and other special meaning
words from the main text.

� ClassName and methodName are used for programming language class and
method names.

i
i

“book” — 2010/3/11 — 9:50 — page xxvi — #26 i
i

i
i

i
i

xxvi z

� PATTERNNAME is used for names of design patterns.

� packagename is used for packages and paths.

� task is used for Ant task names.

� roleName is used for the names of roles in designs and design patterns. Bold is
also used when new terms are introduced in the text.

Web Resources

The book’s Web site, http://www.baerbak.com, contains source code for all examples
and projects in the book, installation guides for tools, as well as additional resources.
Source code for all chapters, examples, exercises, and projects in the book are avail-
able in a single zip file for download. To locate the proper file within this zip file,
most listings in chapters are headed by path and filename, like

Fragment: chapter/tdd/iteration-0/PayStation.java

public i n t e r f a c e PayStat ion {

That is, PayStation.java is located in folder chapter/tdd/iteration-0 in the zipfile.
Several exercises are also marked by a folder location, like

Exercise 0.1. Source code directory:
exercise/iterator/chess

Permissions and Copyrights

The short formulation of the TDD principles in the book and on the inner cover are
reproduced by permission of Pearson Education, Inc., from Beck, TEST DRIVEN DE-
VELOPMENT:BY EXAMPLE, c 2003 Pearson Education, Inc and Kent Beck. The his-
torical account of design patterns in Chapter 9 was first written by Morten Lindholm
and published in Computer Music Journal 29:3 and is reprinted by permission of MIT
Press. IEEE term definitions reprinted by permission of Dansk Standard. The intent
section of the short design pattern overviews in the pattern side bars as well as the
formulation of the program to an interface and favor object composition over class inheri-
tance are reprinted by permission of Pearson Education, Inc., from Gamma/Helm/John-
son/Vlissides, DESIGN PATTERNS: ELEMENTS OF REUSABLE OBJECT-ORIENTED
DESIGN. Other copyrighted material is reproduced as fair use by citing the authors.

Java technology and Java are registered trademarks of Sun Microsystems, Inc. Windows
is a registered trademark of Microsoft Corporation in the United States and other
countries. UNIX is a registered trademark in the United States and other countries,
exclusively licensed through X/Open Company, Ltd. All other product names men-
tioned throughout the book are trademarks of their respective owners.

i
i

“book” — 2010/3/11 — 9:50 — page xxvii — #27 i
i

i
i

i
i

z xxvii

The lnkscape image on page 337 was made by Konstantin Rotkevich and is copyleft
under the Free Art Licence. Michael Margold at SoftCollection kindly gave permis-
sion to use their Java source code for the LCD display code used in the pay station
graphical user interface first introduced in the Facade chapter. Karl Hörnell gave per-
mission to copy the IceBlox game from his web site www.javaonthebrain.com.
The graphical tile set used for drawing the map in HotCiv is a copy of the neotrident
tile set for FreeCiv 2.1.0, released under the GNU public license.

Acknowledgments

The following students have made valuable contributions by pointing out problems
in the text or in the exercises: Anders Breindahl, Carsten Moberg Hammer, Emil
Nauerby, Jens Peter S. Aggerholm, Jens Bennedsen, Hans Kolind Pedersen, Kristian
Ellebæk Kjær, Karsten Noe, Kenneth Sejdenfaden Bøgh, Mads Schaarup Andersen,
Mark Sjøner Rasmussen, Marianne Dammand Iversen, Mark Surrow, Martin Norre
Christensen, Michael Dahl, Michael Lind Mortensen, Mikael Kragbæk Damborg Jen-
sen, Mikkel Kjeldsen, Morten Wegelbye Nissen, Ole Rasmussen, Peter Urbak, Ras-
mus Osterlund Feldthaus Hansen, and Søren Kaa. Henrik Agerskov drew the initial
graphics for the Backgammon graphical user interface.

A special thanks to Finn Rosenbech Jensen for some good discussions, much en-
thusiasm, and valuable comments. I would like to thank Morten Lindholm Nielsen
that contributed to Chapter 9. Jens Bennedsen, Jürgen Börstler, Erik Ernst, Edward
F. Gehringer, Klaus Marius Hansen, John Impagliazzo, Michael Kölling, Andrew
McGettrick, and Cyndi Rader provided valuable reviews and comments throughout
the process. A special thanks to Michael E. Caspersen for getting CRC Press inter-
ested in my book. I would also like to thank Alan Apt at CRC Press for being an
enthusiastic editor, and to Amy Blalock and Michele Dimont for helping me through
the maze of tasks associated with writing a book. My collegues at Department of
Computer Science, Aarhus University, I thank for an inspiring work environment,
and the opportunity to spend part of my time writing this book.

Finally, I dedicate this book to my wife, Susanne, and my children, Mikkel, Magnus,
and Mathilde. Home is not a place but the love of your family. . .

i
i

“book” — 2010/3/11 — 9:50 — page xxviii — #28 i
i

i
i

i
i

i
i

“book” — 2010/3/11 — 9:50 — page 1 — #29 i
i

i
i

i
i

Iteration 1

Basic Terminology

1

i
i

“book” — 2010/3/11 — 9:50 — page 2 — #30 i
i

i
i

i
i

i
i

“book” — 2010/3/11 — 9:50 — page 3 — #31 i
i

i
i

i
i

z 3

Developing reliable and flexible software is a major challenge that requires a lot of
techniques, practices, tools, and analytical skills. In order to evaluate and under-
stand techniques, however, you have to know what the terms reliable and flexible re-
ally means. In the Basic Terminology part of the book I will present the terms that
are essential for the analyses and discussions in the rest of the book. I will provide
small examples in this introduction, but larger and more complex examples will be
presented later.

Chapter Learning Objective
Chapter 1 Agile Development Processes. I will focus quite a lot on the process

of programming in the beginning of the book—that is, the process
you go through as you move from the initial requirements and de-
sign ideas for a software system towards a high quality program.
As time has shown, requirements to software systems change fre-
quently, and I need processes that can cope with that. The ob-
jective of this chapter is to present the ideas and values that are
fundamental for agile development processes like Extreme Pro-
gramming, Scrum, and Test-Driven Development.

Chapter 2 Reliability and Testing. A major learning objective of this book is to
provide you with skills and techniques for writing high quality
programs—but what is quality after all? One main aspect is relia-
bility: that I can trust my programs not to fail. In this chapter, the
objective is learning the terms and definitions that allow us to dis-
cuss reliable programs. A central technique to increase reliability
is testing which has its own set of terms that are also introduced
in this chapter.

Chapter 3 Flexibility and Maintainability. Another important quality of soft-
ware today is its ability to adapt to changing requirements at low
cost. The objective of this chapter is to introduce the terms and
definitions concerning flexibility and maintainability that allow
us to discuss these aspects precisely.

i
i

“book” — 2010/3/11 — 9:50 — page 4 — #32 i
i

i
i

i
i

i
i

“book” — 2010/3/11 — 9:50 — page 5 — #33 i
i

i
i

i
i

Chapter

1
Agile Development Processes

Learning Objectives

In this chapter, the learning objective is an understanding of the main ideas of agile
development methods. One particular and influential agile method, namely Extreme
Programming, is treated is greater detail. Several of the techniques and practices of
Extreme Programming are discussed in great detail later in the book, and this chapter
thus primarily serves to create the context in which to understand them.

1.1 Software Development Methods

No matter how you develop software, you apply a certain software development process,
that is, a structure imposed on the tasks and activities you carry out to build software
that meets the expectations of your customer. A software development process must
define techniques to deal with activities or steps in development. Such steps will
usually include:

� Requirements. How do you collect and document the users’ and customers’ ex-
pectations to the software, i.e. what is it supposed to do?

� Design. How do you partition and structure the software and how do you com-
municate this structure?

� Implementation. How do developers program the software so that it fulfills the
requirements and adheres to the design?

� Testing. How do you verify that the executing system indeed conforms to the
requirements and users’ expectations?

� Deployment. How do you ensure that the produced software system executes in
the right environment at the user’s location?

5

i
i

“book” — 2010/3/11 — 9:50 — page 6 — #34 i
i

i
i

i
i

6 z CHAPTER 1 Agile Development Processes

� Maintenance. How do you ensure that the software is corrected and enhanced
as defects are discovered by users or new requests for functionality are made?

The amount of rigor in defining processes and tools for these steps vary according to
the size of a project: Building aircraft control software in a project with hundreds of
developers requires stricter control than a spare time game developed by two friends.

Exercise 1.1: Consider your last project or programming exercise. How
was the activities/steps defined, executed, and controlled?

Requir ements

Design

Implementat ion

Deployment

Figure 1.1: Waterfall model.

Over the years researchers and practitioners of software engineering have described
and tested a large number of software processes. For many years there was a ten-
dency for them to be heavy-weight, that is, they put much emphasis on strict commu-
nication and process rules, on producing large amounts of detailed documentation,
and on not beginning one activity before the previous activity had been analyzed
and understood in detail. One such model was the waterfall model, sketched in Fig-
ure 1.1, in which one proceeds from one activity to another in a purely sequential
manner: you get all the requirements documented in full detail before you start de-
signing; you do not start implementing before the design is complete, etc. While this
process may seem appealing, as it is much cheaper to correct a mistake early in the
process, it was quickly realized that perfecting one stage before starting the next was
impossible even for small projects. More often than not, requirements and designs
are not well understood until a partially working software system has been tested by
users. Thus in the waterfall model, such insights discovered late in the phase inval-
idates a large investment in the early phases. The agile development processes are
characterized as lightweight and can be seen as ways to ensure that these insights
invalidates as little invested effort as possible.

+ Find literature or internet resources on some common development
models such as waterfall, cleanroom, spiral model, V-model, XP, Scrum, RUP,
etc.

1.2 Agile Methods

The core of agile methods is expressed in the agile manifesto, reproduced here from
the agile manifesto web page agilemanifesto.org:

i
i

“book” — 2010/3/11 — 9:50 — page 7 — #35 i
i

i
i

i
i

Agile Methods z 7

Manifesto for Agile Software Development
We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.

+ Find the manifesto on the internet and note that it is “signed” by
quite a few people. Several of these people have invented or significantly
contributed to the techniques described in this book.

Several points are notable in this manifesto. First of all, it is written by practitioning
software developers: “by doing it and helping others do it.” Next, the agile methods
are just as much about values as it is about concrete techniques. At present there are
quite a few agile methods around: Extreme Programming (XP), Scrum, Crystal Clear,
and others; but they share the same core values as expressed in the manifesto. This
makes it relatively easy to understand e.g. Scrum once you have understood XP. I will
generally use the terminology of XP as the programming process used in this book,
Test-Driven Development, was invented as part of XP. A final, but central, point is the
word “agile.” Agile methods value to move towards the defined goal with speed
while maintaining the ability to change to a better route without great costs.

Individuals and interactions are emphasized. Agile methods put a lot of emphasis
on software development as a team effort where individual’s creativity and contri-
bution is central to overall success. Thus forming a good context for individuals and
their collaboration is central. Earlier development methods had a tendency to view
individuals as “production units” that mechanically produce software code, designs,
test plans, etc., and thus little attention was paid to making individuals feel comfort-
able and more attention paid to documents and processes to control collaboration.
Agile methods have suggested a number of practices to ensure that the right deci-
sions are made because people are responsible, want to do the right thing, and have
the proper information at hand to make qualified decisions. For instance, attention is
paid to how teams are located in buildings: if two teams that are supposed to collab-
orate are on different floors then they will communicate much less than if located in
offices next to each other. And with less communication the risk of misunderstand-
ings and thus defects in the product rise significantly.

Working software. Bertrand Meyer, the inventor of the Eiffel programming lan-
guage, once said that “once everything is said, software is defined by code. . . ”(Meyer
1988). The design may be just right, the UML diagrams beautifully drawn, but if
there is no code there is no product and thus no revenue to pay the bills. Agile meth-
ods focus on making code of high quality and less on writing documents about the
code. The reasoning is that it takes time to write documentation which is then not
used to make code. As individuals and interactions are emphasized it is much faster
and accurate to ask the relevant people than trying to find the information in the doc-
umentation. However, it is working software that is valued: the code should be of

i
i

“book” — 2010/3/11 — 9:50 — page 8 — #36 i
i

i
i

i
i

8 z CHAPTER 1 Agile Development Processes

high quality. To this end, testing is central: exercising the software to find defects in it.
Another central technique to keep the code of high quality is refactoring: improving
code structure without affecting its functionality. Both techniques are central for this
book and discussed in detail later.

Customer collaboration is faster than negotiating contracts. Bjarne Stoustrup, the
inventor of the C++ programming language, has said that “to program is to under-
stand. . . ” As you implement customer requirements, you get a much deeper under-
standing of them and spot both ambiguities to be resolved as well as opportunities
for improving the final product. If these matter have to go through a long chain of
command, developers ask managers that ask sales people that ask buyers that ask everyday
users. . . , the feedback loop is too slow. The result is defective or cumbersome software
and missed opportunities for a better product. In the vein of focusing on interaction
between people, agile methods require customers and users to be readily available
for questioning and discussions. A central technique is small releases where work-
ing but functionally incomplete systems are presented to customers for them to use.
These releases are a better starting point for discussing ambiguities and improvement
opportunities than long requirement specifications.

Responding to change means that the best route to a goal may be another than that
planned at the beginning of the journey. Working in the project means learning and
improving the understanding of what best fits the customer—especially as they are
integrated in the project as outlined above. Thus an initial plan is important but the
plan should be revised as experience accumulate. Maybe the customer thought they
wanted feature X but if working with a small release part way into the project shows
feature X to be less important but feature Y much more relevant, then why not work
on feature Y for the next small release?

1.3 Extreme Programming

One of the first agile methods was Extreme Programming, or short XP, that received
a lot of attention in the beginning of the millennium. XP pioneered many central
techniques that are presented in this book and it serves well as an example of an agile
method.

1.3.1 Quality and Scope

In the book Extreme Programming Explained, Kent Beck (2000) presents a model for
software development to explain some of the decisions made in XP. In this model, a
software product is controlled by four parameters: cost, time, scope, and quality. Cost
is basically the price of the product which again correlates strongly to the number of
people assigned to work on the project. Time is the amount of time to the delivery
deadline. Scope is the size of the project in terms of required functionality. Quality
is aspects like usability, fitness for purpose, and reliability. These four parameters
have a complex relationship, and changing one in a project affects the others. The
relationship is, however, not simple. For instance, you may deliver faster (decrease
time) by putting additional programmers on a project (increase cost) but doubling
the number of programmers will certainly not cut the delivery time in half.

i
i

“book” — 2010/3/11 — 9:50 — page 9 — #37 i
i

i
i

i
i

Extreme Programming z 9

Exercise 1.2: Explain why doubling the number of programmers will
likely not cut the time spent on the project in half.

The point made is that often organizations decide the first three parameters (cost,
time, scope) and leave the forth parameter (quality) as the only free parameter for
developers to control. Typically, the onset of a project is: We have three months (fix
time) to complete the requirements in this specification (fix scope) and this group of eight
developers are assigned (fix cost). As estimates are often optimistic, the developers have
no other option than sacrifice quality to meet the other criteria: delivery on time,
all features implemented, team size constant. Even still, our software development
profession is full of examples of projects, that did not deliver in time, did not deliver
all features, and went over budget.

Exercise 1.3: Consider a standard design or programming project in a
university or computer science school course. Which parameters are
typically fixed by the teacher in the project specification?

XP focuses on making scope the parameter for teams to control, not quality. That is,
the three parameters cost, time, and quality are fixed, but the scope is left open to
vary by the team. For example, consider that three features are wanted in the next
small release, but after work has started it is realized that there is not enough time
to implement them all in high quality. In XP, the customers are then involved to
select the one or two most important features to make it into the release. Two working
features are valued higher than three defective or incomplete ones.

Needless to say, this swapping of the roles of scope and quality in XP is underlying
many of its practices:

� to control and measure quality, automated testing is introduced, and made into
a paradigm for programming called test-driven development. Test-driven devel-
opment is the learning focus of Chapter 5. To ensure code quality, refactoring is
integrated in the development process. Refactoring is a learning focus of Chap-
ter 8.

� to control scope, an on-site customer is required so the interaction and decisions
can be made quickly and without distortion of information. Small releases are
produced frequently to ensure time is always invested in those features and
aspects that serves the user’s need best.

1.3.2 Values and Practices

XP rests upon four central values

� Communication. A primary cure for mistakes is to make people communicate
with each other. XP value interaction between people: between developers,
with customers, management, etc.

� Simplicity. “What is the simplest thing that could possibly work?” In XP you
focus on the features to put into the next small release, not on what may be
needed in six months.

i
i

“book” — 2010/3/11 — 9:50 — page 10 — #38 i
i

i
i

i
i

10 z CHAPTER 1 Agile Development Processes

� Feedback. You need feedback to know you are on the right path towards the
goal, and you need it in a timely manner. If the feature you are developing
today will not suit the need of the customer you need to know it today, not in
six months, to stay productive. XP focus on feedback in the minutes and hours
time scale from automated tests and from the on-site customer, and on the week
and month scale from small releases.

� Courage. It takes courage to throw away code or make major changes to a
design. However, keep developing based on a bad design or keep fixing defects
in low quality code is a waste of resources in the long run.

Based on these values, a lot of practices have evolved. Below, I will describe a few that
are central to the practices of programming and the context of this book. It should be
noted that XP contains many more practices but these are focused on other aspects of
development such as planning, management, and people issues, which are not core
topics of this book.

A central technique in XP is pair programming. Code is never produced by an indi-
vidual but by a pair of persons sitting together at a single computer. Each person has
a specific role. The person having the keyboard focuses on the best possible imple-
mentation at the detailed level. The other person is thinking more strategically and
evaluates the design, reviews the produced code, looks for opportunities for simplifi-
cations, defines new tests, and keeps track of progress. The pairs are dynamic in that
people pair with different people over the day and take turns having the two different
roles. To make this work, collective code ownership is important: any programmer
may change any code if it adds value for the team. Note that this is different from no
ownership where people may change any code to fit their own purpose irrespective if
this is a benefit or not for the team. Collective ownership also force programmers to
adhere to the same coding standards i.e. the same style of indentation, same rules for
naming classes and variables, etc. Pair programming is both a quality and communi-
cation technique. It focuses on quality because no code is ever written without being
read and reviewed by at least two people; and there are two people who understand
the code. And it focuses on communication: pairs teach and learn about the project’s
domain and about programming tricks. As pairs are dynamic, learning spreads out
in the whole team.

Automated testing is vital in XP, and treated in detail in Chapter 2 and 5. Auto-
mated testing is testing carried out by the computers, not by humans. Computers
do not make mistakes nor get tired of executing the same suite of 500 tests every ten
minutes, and they execute them fast. By executing automatic tests on the software
system often, the system itself gives feedback about its health and quality, and devel-
opers and customers can measure progress. These tests must all pass at all times. To
get feedback on the “fitness of purpose” you make small releases frequently: once
every month, every two weeks, or even daily. A small release is a working, but func-
tionally incomplete, system. At the beginning of a project it may serve primarily as
a vehicle to discuss fitness of purpose with the end users and customers; however
as quickly as possible it will be deployed into production and used with ever grow-
ing functionality. Continuous integration means that the development effort of each
pair programming team are continuously added to the project to ensure that the de-
veloped code is not in conflict with that of the other pair teams. Integration testing is
on of the learning foci of Chapter 8.

i
i

“book” — 2010/3/11 — 9:50 — page 11 — #39 i
i

i
i

i
i

Summary of Key Concepts z 11

Customers’ and users’ requirements are captured as stories which are short stories
about user-visible functionality. These stories are written on index cards and given
short headlines, like “Allow stop of video recording after a specified time interval”,
“Align numbers properly in columns”, “Add currency converter tool to the spread-
sheet”, “Compute account balance by adding all deposits and subtracting all deduc-
tions,” etc. Finally, they are put on a wall or some other fully visible place. Also each
story is estimated for cost in terms of hours to implement. This allows developers
and customers to choose those stories that provide the best value for the least cost.
Stories should be formulated so they are achievable within a 4–16 hour effort of a
pair. Once a pair has selected a story, it is further broken down as will be describe in
Chapter 5 on test-driven development.

Exercise 1.4: Compare the short outline of XP above with the list of de-
velopment activities in the start of the chapter. Classify XP practices in
that framework: requirements, design, implementation, etc.

XP is a highly iterative development process. Work is organized in small iterations,
each with a well defined focus. At the smallest level, an iteration may last a few
minutes, to implement a simple method in a class. At the next level, it may last from
a few hours to a day, to implement a feature or a prerequisite for a feature, and ends
in integrating the feature into the product. And at the next level again, the small
release defines an iteration, lasting from weeks to a month, to implement a coherent
set of features for users to use. It follows that it is also an incremental development
process: systems are grown piecemeal rather than designed in all detail at the start.

The strong focus in XP on people interactions means it is suited for small and medium
sized teams. Large projects with many people involved need more rigor to ensure
proper information is available for the right people at the right time. This said, any
large project uses a “divide and conquer” strategy and thus there are many small
teams working on subsystems or parts of a system and these teams can use XP or
another agile method within the team.

1.4 Summary of Key Concepts

A software development process is the organization and structuring of indiviual ac-
tivities (or steps) in development. Any project must consider and organize activities
like requirements, design, implementation, testing, deployment, and maintenance.

Agile methods adhere to the agile manifesto that emphasizes four values: interacting
individuals, working code, collaboration with customers, and responding to change. Extreme
Programming is an early and influential agile process. It is light-weight, iterative
and incremental. It manifests the agile values in a set of practices many of which
have been adopted or adapted in later methods. Key practices are automatic testing,
small releases, and continuous integration to ensure timely feedback to developers
of both the product’s reliability as well as its fitness to purpose. Pair programming is
adopted to ensure learning and interaction in the team. Pairs are dynamic and form
to implement stories: stories define a user-visible unit of functionality. Stories are
written on index cards and usually put on a wall visible to all developers. Each story
is estimated for work effort.

i
i

“book” — 2010/3/11 — 9:50 — page 12 — #40 i
i

i
i

i
i

12 z CHAPTER 1 Agile Development Processes

Fowler (2005)’s online article The New Methodology is a short and easy introduction to
agile methods. For further reading on XP, you should consult Extreme Programming
Explained–Embrace Change, available in a first and second edition, by Beck (2000) and
Beck (2005). Another good overview is given in Extreme Programming Installed by
Jeffries et al. (2001).

1.5 Selected Solutions

Discussion of Exercise 1.2:

Doubling the number of programmers on a project means there is a lot of learning
of the domain that has to be made by the new staff before they become productive.
The only source of information is usually the existing programmers thus productiv-
ity will actually fall for an extended period of time until the new people are “up to
speed.” More people also means more coordination and more management which
drain resources for the actual implementation effort.

This said, adding more people may in the long run be a wise investment. XP advises
to start projects in small teams and then add people as the core system becomes large
enough to define suitable subprojects for sub teams to work on.

Discussion of Exercise 1.3:

Well, typical university course design or programming exercises are no different from
the culture in industry. Projects specify time: “deliver by the end of next month”, cost:
“to be developed in groups of three students”, and scope: “design and implement
feature X, Y, and Z.” Thus students typically are left only with the quality parameter
to adjust workload.

1.6 Review Questions

Outline the activities or steps that any software development method must include.
What is the goal of each activity? Discuss the difference between a waterfall method
and an agile method.

What are the four aspects that are valued in the agile manifesto? Explain the argu-
mentation for each of the four aspects.

Describe the model for software development proposed by Kent Beck: what are the
four parameters and which are fixed and which are free in many traditional develop-
ment projects. What parameter does XP propose to fix instead?

Explain the four values in XP. Describe the aspects in key practices such as pair pro-
gramming, collective code ownership, stories, automated testing, small releases, and
continuous integration.

i
i

“book” — 2010/3/11 — 9:50 — page 13 — #41 i
i

i
i

i
i

Chapter

2
Reliability and Testing

Learning Objectives

Learning to make software reliable is important to become a competent and successful
developer. Much of this book is devoted to develop the mindset, skills, and practices
that contribute to build software that does not fail. The learning objective of this
chapter is to develop the foundation for these practices and skills by presenting the
basic definitions and terminology concerning reliable software in general, and testing
as a technique to achieve it, in particular.

Specifically, this chapter

� Introduces you to the concept of reliability.

� Introduces you to definitions in testing terminology: what is testing, a test case,
a failure, etc., that are used throughout the book.

� Introduces a concrete Java tool, JUnit, that is a great help in managing and exe-
cuting automated tests.

2.1 Reliable Software

In the early days of computing, programs were often used by the same persons that
wrote them. For instance, a physicist may write a program to help with numerical
analysis of the data coming from an experiment. If the program crashed or misbe-
haved then the damage was rather limited as the program just had to be updated to
fix the error. Modern mass adoption of computing has over the last couple of decades
changed the requirement for reliable programs dramatically: today the ordinary com-
puter user is not a computer programmer and will not accept software that does not
work. Today users expect software to behave properly and reliability is a quality to
strive for in producing software. Reliability can be defined in several ways but I will
generally use definitions from the ISO 9126 (ISO/IEC International Standard 2001)
standard.

13

i
i

“book” — 2010/3/11 — 9:50 — page 14 — #42 i
i

i
i

i
i

14 z CHAPTER 2 Reliability and Testing

Definition: Reliability (ISO 9126)
The capability of the software product to maintain a specified level of
performance when used under specified conditions.

The central aspect of this definition is . . . to maintain a specified level of performance. In
our setting “performance” is the ability to perform the required functions without
failing: letting the users do their work using the software product. Informally devel-
opers state that the “system works.”

Exercise 2.1: The aspects of the definition that deals with . . . under spec-
ified conditions also have implications. Give some examples of the same
software system being considered reliable by one user while being con-
sidered unreliable by another because the users have different “specified
conditions.”

Reliability is one of many qualities a software system must have to be useful. Another
quality may be that it must execute fast and efficiently so responses to the users do not
take too long, that it must be useable so the users can understand and use the software
efficiently, etc. The next chapter discusses “maintainability” as an important quality.
However, reliability is a central quality as many other qualities becomes irrelevant if
the software is unreliable e.g. it is of little use that a system responds quickly if the
answer is wrong.

Thus reliability is a highly desired quality of software and both the research and
industrial communities have produced numerous techniques focused on achieving
reliability. Some examples are:

� Programming language constructs. Modern programming languages contain a
lot of language constructs and techniques that prevent tricky defects that were
common in the early days of machine code and early programming languages.
As an example, the original BASIC language did not have local variables, and
therefore you could ruin a program’s behavior if you accidentally used the same
variable name in two otherwise unrelated parts of the program.

� Review. Reviews are more or less formalized sessions where reviewers read
source code with the intention of finding defects. Designs and documentation
can also be reviewed. Reviews have the advantage that you can find defects in
the code that are not visible when executing it. Examples are defects like poor
naming of variables, poor formatting of code, misleading or missing comments,
etc. The technique’s liability is that it is manual and time consuming.

� Testing. Testing is executing a software system in order to find situations where
it does not perform its required function. Testing has the advantage that is can
to a large extent be automated, but its liability is that it can only detect defects
that are related to run-time behavior.

I assume Java or a similar modern object-oriented programming language and there-
fore get the many reliability benefits these languages have over older languages like
C, Fortran, and BASIC. Review is an important technique that can catch many types
of defects, but I will not discuss it any further in this book. Testing is a well-known

i
i

“book” — 2010/3/11 — 9:50 — page 15 — #43 i
i

i
i

i
i

Testing Terminology z 15

technique but has been revitalized by the agile software development movement, in
particular by the test-driven development process. As I will emphasize testing and
test-driven development, the rest of this chapter is devoted to the basic terminology
and tools that form the foundation for understanding and using these techniques.

2.2 Testing Terminology

I will introduce basic concepts and terminology of testing through a small example.
Consider that I am part of a team that has to develop a calendar system. One of my
colleagues has developed a class, Date, to represent dates1, whose constructor header
is reproduced below:

Fragment: chapter/reliability/handcoded-test/Date.java

public c l a s s Date {
/� �
� C o n s t r u c t a d a t e o b j e c t .
� @param y e a r t h e y e a r as i n t e g e r , i . e . y e a r 2010 i s 2010 .
� @param month t h e month as i n t e g e r , i . e .
� j a n u a r i s 1 , de c ember i s 1 2 .
� @param dayOfMonth t h e day number in t h e month , range 1 . . 3 1 .
� PRECONDITION : The d a t e p a r a m e t e r s must r e p r e s e n t a v a l i d d a t e .

� /
public Date (i n t year , i n t month , i n t dayOfMonth) {

Now I have been asked to extend it with a method, dayOfWeek, to calculate the week
day it represents. The method header should be:

Fragment: chapter/reliability/handcoded-test/Date.java

public enum Weekday {
MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY ,
SATURDAY, SUNDAY } ;

/� �
� C a l c u l a t e t h e weekday t h a t t h i s Date o b j e c t r e p r e s e n t s .
� @return t h e weekday o f t h i s d a t e .
� /
public Weekday dayOfWeek () {

How do I ensure that my complex algorithm in this method is reliably implemented?
I choose to do so by testing:

Definition: Testing
Testing is the process of executing software in order to find failures.

1The java libraries already have such a class. The best path to reliable software is of course to reuse
software units that have already been thoroughly tested instead of developing new software from scratch.
For the sake of the example, however, I have chosen to forget this fact.

i
i

“book” — 2010/3/11 — 9:50 — page 16 — #44 i
i

i
i

i
i

16 z CHAPTER 2 Reliability and Testing

This definition requires we know what a failure is:

Definition: Failure
A failure is a situation in which the behavior of the executing software
deviates from what is expected.

Thus, if I call this method with a date object representing 19th May 2008, it should
return MONDAY, as this date was indeed a monday.

Date d = new Date (2 0 0 8 , 5 , 1 9) ; / / 19 th May 2008
/ / weekday s h o u l d be MONDAY
Date . Weekday weekday = d . dayOfWeek () ;

If, however, it returns, say, SUNDAY then this is clearly a failure. A failure is the result
of a defect:

Definition: Defect
A defect is the algorithmic cause of a failure: some code logic that is
incorrectly implemented.

Informally, defects are often called faults or “bugs”.

+ Find out why it is called a bug on wikipedia or other internet sources.

In other words, to test I have to define three “parameters”: the method I want to test,
the input parameters to the method, and the expected output of the method. This is
called a test case:

Definition: Test case
A test case is a definition of input values and expected output values for
a unit under test.

A single test case cannot test all aspects of a method so test cases are grouped in test
suites.

Definition: Test suite
A test suite is a set of test cases.

A short and precise way of representing suites of test cases is in a test case table, a
table that lists the sets of test cases defining the input values and expected output. In
my case, the dayOfWeek method test cases can be documented as in Table 2.1.

A test case may pass or fail. A test case passes when the computed output of the unit
under test is equal to the expected output for the given input values in the test case.
If not, the test case fails. The terms are also used for test suites: a test suite passes if
all its test cases pass but fails if just one of its test cases does. A failed test is often also
referred to as a broken test.

I have written the test cases above for testing a single method, but in general, testing
can be applied at any granularity of software: a complete software system, a subsys-
tem, a class, a single method. . . Therefore test cases are defined in terms of the unit
under test:

i
i

“book” — 2010/3/11 — 9:50 — page 17 — #45 i
i

i
i

i
i

Testing Terminology z 17

Table 2.1: Test case table for dayOfWeek method.

Unit under test: dayOfWeek
Input Expected output
year=2008, month=May, dayOfMonth=19 Monday
year=2008, month=Dec, dayOfMonth=25 Thursday
year=2010, month=Dec, dayOfMonth=25 Saturday

Definition: Unit under test
A unit under test is some part of a system that we consider to be a whole.

OK, I have made an implementation, I have written my test case table, but the real
interesting aspect is to conduct the test. In my case, the Date class is part of a calender
program, and I can do the testing by following a short manuscript like: “Start the
application, and scroll to May 2008. Verify that May 19th is marked as Monday”. To execute
this test and verify that the software does as expected, I have to spend time executing
this manuscript manually. This is called manual testing.

Definition: Manual testing
Manual testing is a process in which suites of test cases are executed and
verified manually by humans.

Usually developers do informal manual testing all the time when developing: add a
few lines of code, compile, and run it to see if it “works”.

Consider that I have tested the dayOfWeek method and as all tests pass I am confident
that the implementation is correct and reliable. Some time later, however, customers
complain that the calendar program is too slow when scrolling from one week to
another. Our analysis shows that it is caused by the slow algorithm used in the day-
OfWeek method—it has to be redesigned to compute weekdays much faster. The
question is how I validate that the improved, faster, algorithm is still functionally
correct? The answer is of course to repeat all the tests that I made the last time. This
process has also its own term:

Definition: Regression testing
Regression testing is the repeated execution of test suites to ensure they
still pass and the system does not fail after a modification.

One of the reasons that test case tables or other formal documents that outline test
cases are important is to serve in regression testing and of course also in the final
quality assessment before releasing a software product.

There is a large body of knowledge concerning how to pick a good set of test cases
for a given problem: few test cases that have a high probability of finding the defects.
Chapter 34 provides an introduction to some of the basic techniques. Until then we
will rely on intuition, common sense, and the experience we gain from actual testing.

i
i

“book” — 2010/3/11 — 9:50 — page 18 — #46 i
i

i
i

i
i

18 z CHAPTER 2 Reliability and Testing

2.3 Automated Testing

Instead of manual testing, I can utilize my computer to handle the tedious tasks of
executing test cases and comparing computed and expected values. I can write a
small test program (only the last test case from test case Table 2.1 is shown):

Listing: chapter/reliability/handcoded-test/TestDayOfWeek.java

/� � A t e s t i n g t o o l w r i t t e n from s c r a t c h .
� /
public c l a s s TestDayOfWeek {

public s t a t i c void main (S t r i n g [] args) {
/ / T e s t t h a t December 25 th 2010 i s Sa turday
Date d = new Date (2 0 1 0 , 12 , 2 5) ; / / year , month , day o f month
Date . Weekday weekday = d . dayOfWeek () ;
i f (weekday == Date . Weekday .SATURDAY) {

System . out . p r i n t l n (" Test case : Dec 25 th 2010 : Pass ") ;
} e lse {

System . out . p r i n t l n (" Test case : Dec 25 th 2010 : FAIL ") ;
}
/ / . . . f i l l in more t e s t s

}
}

This simple program shows the anatomy of any program to execute test cases: the
unit under test (here dayOfWeek) is invoked with the defined input values, the com-
puted and expected output values are compared and some form of pass/fail report-
ing takes place. This is automated testing:

Definition: Automated testing
Automated testing is a process in which test suites are executed and ver-
ified automatically by computer programs.

+ Download the source code from http://www.baerbak.com and try
to run the test. Why does it pass? Please observe that the production code
is strictly made to demonstrate testing!

Automated testing requires me to write code to verify the behavior of other pieces of
code and this effort results in a lot of source code being produced: code that will be
defining the users’ product and code that will define test cases that test it. Often we
need to distinguish these two bodies of code and I will call them:

Definition: Production code
The production code is the code that defines the behavior implementing
the software’s requirements.

In other words, production code is what the customer pays for. The code defining
test cases, I will call:

i
i

“book” — 2010/3/11 — 9:50 — page 19 — #47 i
i

i
i

i
i

JUnit: An Automated Test Tool z 19

Definition: Test code
The test code is the source code that defines test cases for the production
code.

Both manual and automated tests have their benefits and liabilities. Manual tests are
often quicker to develop (especially the informal ones) than automated tests because
the latter require writing code. However, once automated tests have been made it is
much easier to perform regression testing compared to manual tests. Second, man-
ual tests are also extremely boring to execute leading to human errors in executing
the manual test procedures—or simply not executing them at all. The sidebar 2.1 de-
scribes a war story of how it may go. In contrast automated tests can be executed fast
and without the problems of incorrect execution.

Exercise 2.2: In some sense automated testing is absurd because I write
code to test code—should I then also write code to test the code that tests
the code and so on? Or put differently: if a test case fails how do I know
that the defect is in the production code and not in the test code? Think
about properties that the test code must have for automated testing to
make sense.

2.4 JUnit: An Automated Test Tool

Writing the testing program by hand, as I did above, works fine for a very simple
example, but consider a system with several hundred classes each with perhaps hun-
dreds or thousands of test cases. In this case you need much better support for execut-
ing the large test suite, for reporting, and for pinpointing the test cases that fail. Unit
testing tools are programs that takes care of many of the house holding tasks and let
you concentrate on expressing the test cases. In the Java world there are several tools
but I will use JUnit 4 in this book. The fundamental concepts and techniques are the
same in all the tools so changing from one to another is mostly a matter of syntax.

The test case for the dayOfWeek method can be written using JUnit like this:

Listing: chapter/reliability/junit-test/iteration-0/TestDayOfWeek.java

import org . j u n i t . � ;
import s t a t i c org . j u n i t . Assert . � ;

/� � T e s t i n g dayOfWeek us ing t h e JUni t 4 . x f ramework .
� /
public c l a s s TestDayOfWeek {

/� �
� T e s t t h a t December 25 th 2010 i s Sa turday
� /

@Test
public void shouldGiveSaturdayFor25Dec2010 () {

Date date = new Date (2010 , 12 , 2 5) ;
a s s e r t E q u a l s (" Dec 25 th 2010 i s Saturday " ,

Date . Weekday .SATURDAY, date . dayOfWeek ()) ;
}

}

i
i

“book” — 2010/3/11 — 9:50 — page 20 — #48 i
i

i
i

i
i

20 z CHAPTER 2 Reliability and Testing

Sidebar 2.1: SAWOS RVR

I worked a few years in a small company that designed SAWOS systems: Semi-
Automatic Weather Observation Systems. These are used in airports by meteorolo-
gists to generate reports of the local weather systems to be used by pilots and flight
leaders.
One of the important factors when landing an aircraft is RVR: Runway Visual Range.
It is the maximal distance at which the bright lamps in the runway can be seen. For
instance, RVR = 25 m means you cannot see the lamps until you are only 25 meters
away indicating a very heavy fog.
Usually each runway has instruments that measure RVR at both ends of it. Our
SAWOS had a display showing the runway with each end colored according to its
status ranging from green (no fog) to dark red (heavy fog).
We did not have automated tests and were a bit lazy about the manual ones, so at
one time Aarhus airport reported a defect in their SAWOS: They saw a small patch
of heavy fog drifting along the runway and when it passed the eastern end of the
runway, the display marked the western end with a red color. I had implemented
that part and had simply mixed up the assignment of instrument reading to the
display and had missed this defect during my own manual testing.
I was on holiday when this defect was reported, but my colleagues fixed it “quick
and dirty” as they did not quite understand my design, and sent a new version to
Aarhus airport which cleared the problem.
When I returned home I was annoyed by their bug fix as it did not respect my
design, so I remade it the “right” way. This change was then sent to the airport some
weeks later as part of another software upgrade. Some months later, a technician
phoned me and asked why RVR readings once again were showing at the wrong
end of the display? I had once again forgotten to run the manual tests. . .

The first thing to note is the import statements. JUnit is a set of Java classes that you
need to import in order to use it. The two imports in the source code listing is all I
need for now.

Test cases are expressed as methods in JUnit which makes sense as methods contain
code to be executed, just as test cases must be executed. To tell JUnit that a particular
method defines a test case you have to mark it using the @Test annotation. JUnit will
collect all methods with the @Test annotation and execute them, one by one. Thus a
set of @Test methods in a class becomes a test suite.

A test case may pass or fail depending on equality between computed and expected
value. JUnit provides a set of comparison methods that you must use, all named
beginning with assert. In my example, I need to compare the computed weekday
from dayOfWeek with the expected value Weekday.SATURDAY. The statement

Date date = new Date (2010 , 12 , 2 5) ;
a s s e r t E q u a l s (" Dec 25 th 2010 i s Saturday " ,

Date . Weekday .SATURDAY, date . dayOfWeek ()) ;

tells JUnit to compare the expected value (second parameter) with the computed
value (third parameter). The first parameter is a string value that JUnit will display in
case the test case fails in order for you to better understand the problem. For instance,
if the above test fails, JUnit will print something similar to:

i
i

“book” — 2010/3/11 — 9:50 — page 21 — #49 i
i

i
i

i
i

JUnit: An Automated Test Tool z 21

Sidebar 2.2: Asserts in JUnit

JUnit contains several assert methods that come in handy. Below I have shown them
in their terse form; remember that you can always provide an extra, first, argument
of type String that JUnit will print in case a test case fails.

assert Pass if:
assertTrue(boolean b) expression b is true
assertFalse(boolean b) expression b is false
assertNull(Object o) object o is null
assertNotNull(Object o) object o is not null
assertEquals(double e, double c, dou-
ble delta)

e and c are equal to within a positive
delta

assertEquals(Object[] e, Object[]c) object arrays are equal

If a method should throw an exception for a given set of input values, you provide
the exception as argument to the @Test annotation. For instance, if method doDivide
should throw ArithmeticException in case the second argument is 0:

@Test (expected = ArithmeticExcept ion . c l a s s)
public void divideByZero () {

i n t value = c a l c u l a t o r . doDivide (4 , 0) ;
}

}

java.lang.AssertionError: Dec 25th 2010 is Saturday
expected:<SATURDAY> but was:<SUNDAY>

In all JUnit’s assert methods, you may omit the string parameter and only state the
comparison, like

Date date = new Date (2010 , 12 , 2 5) ;
a s s e r t E q u a l s (Date . Weekday .SATURDAY, date . dayOfWeek ()) ;

in which case JUnit prints a less descriptive failure report:

java.lang.AssertionError: expected:<SATURDAY> but was:<SUNDAY>

The assertEquals method takes two parameters, the expected and the computed
value. If the parameters are objects, they are compared using their equals method; if
they are primitive types, they are compared using ==. There are other assert methods
you can use in your test cases, sidebar 2.2 describes some of them. For a complete
list, consult the JUnit documentation on the web.

JUnit does not care about the name of the test case method but test cases are meant
to be read by developers and testers so I consider naming important. I like to name
my test cases starting with should. . . as test cases should verify that the unit under
test does its job properly. So—dayOfWeek should give Saturday for December 25th in
2010.

Now—I have a JUnit test case and the next issue is to execute it to see if it passes or
fails. JUnit 4 is a bare-bones tool that is primarily meant to be integrated into devel-
opment environments like BlueJ (2009) or Eclipse (2009) but it does provide textual

i
i

“book” — 2010/3/11 — 9:50 — page 22 — #50 i
i

i
i

i
i

22 z CHAPTER 2 Reliability and Testing

Sidebar 2.3: JUnit Setup
You can download the JUnit framework from the JUnit Web site: www.junit.org.
I have used JUnit version 4.4 in this book. To compile the JUnit test cases the com-
piler must know where the JUnit class files are located. You do this by including the
provided jar, named junit-4.4.jar, on the classpath. This will look like this on
Windows:

javac -classpath .;junit-4.4.jar *.java

Similar, you will need to tell the Java virtual machine to use this jar file when exe-
cuting:

java -classpath .;junit-4.4.jar
org.junit.runner.JUnitCore TestDayOfWeek

You will have to type the above on a single line in the command prompt/shell. If
you run on a Linux operating system the “;” must be replaced by “:”.
The source code for this chapter as well as compilation scripts for Windows and
Linux are provided at the book’s web site (http://www.baerbak.com). You need to
download the zip archive, unzip it and then you will be able to find the source code
in the folders listed above each source code listing. The JUnit jar is provided along
with the example code so you do not need to download JUnit unless you want to
browse the documentation and guides. The compile script is named “compile.bat”
(Windows) or “compile.sh” (Linux bash). The run script is named “run-test.bat” or
“run-test.sh”.

output. You can find information on running JUnit from a command prompt/shell
in sidebar 2.3.

The output of executing the test suite simply looks like this:

>java -classpath .;junit-4.4.jar
org.junit.runner.JUnitCore TestDayOfWeek

JUnit version 4.4
.
Time: 0,031

OK (1 test)

JUnit is terse when all test cases pass: it prints a dot for every test case executed and
finally outputs OK and some statistics.

OK—I will add another test case from my original test case table. I add a second test
method for 25th December 2008 to the TestDayOfWeek class:

Fragment: chapter/reliability/junit-test/iteration-1/TestDayOfWeek

@Test
public void shouldGiveThursdayFor25Dec2008 () {

Date date = new Date (2008 , 12 , 2 5) ;
a s s e r t E q u a l s (" Dec 25 th 2008 i s Thursday " ,

Date . Weekday .THURSDAY, date . dayOfWeek ()) ;
}

