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The rigorous treatment of combustion can be so complex that the kinetic variables, 

fluid turbulence factors, luminosity, and other factors cannot be defined well enough to 

find realistic solutions. Simplifying the processes, The Coen & Hamworthy Combustion 

Handbook provides practical guidance to help readers make informed choices about fuels, 

burners, and associated combustion equipment—and to clearly understand the impacts 

of the many variables. Editors Stephen B. Londerville and Charles E. Baukal, Jr., top 

combustion experts from John Zink Hamworthy Combustion and the Coen Company, supply 

a thorough, state-of-the-art overview of boiler burners that covers Coen, Hamworthy, and 

Todd brand boiler burners.

Roughly divided into two parts, the book first reviews combustion engineering fundamentals. It 

then uses a building-block approach to present specific computations and applications in 

industrial and utility combustion systems, including those for

•  Transport and introduction of fuel and air to a system

•  Safe monitoring of the combustion system

•  Control of flows and operational parameters

•    Design of a burner/combustion chamber to achieve performance levels for emissions 

and heat transfer

•    Avoidance of excessive noise and vibration and the extension of equipment life under 

adverse conditions

Coverage includes units, fluids, chemistry, and heat transfer, as well as atomization, 

computational fluid dynamics (CFD), noise, auxiliary support equipment, and the combustion 

of gaseous, liquid, and solid fuels. Significant attention is also given to the formation, 

reduction, and prediction of emissions from combustion systems. Each chapter builds from 

the simple to the more complex and contains a wealth of practical examples and full-color 

photographs and illustrations.

A ready reference and refresher, this unique handbook is designed for anyone involved in 

combustion equipment selection, sizing, and emissions control. It will help readers make 

calculations and decisions on design features, fuel choices, emissions, controls, burner 

selection, and burner/furnace combinations with more confidence.
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Combustion has routinely been defined as the rapid 
oxidation of a fuel producing an exothermic reaction.1,2 
A first order of complexity can be added to this definition 
as two solutions of the Rankine–Hugoniot equations, 
resulting in detonation and deflagration  combustions.3 
Detonation combustion results in a shock wave of super-
sonic velocities and can loosely be described as an explo-
sion. Deflagration combustion is a very fast process and 
results in subsonic flame  velocities. The  editors of this 
book restrict the discussion to subsonic deflagration.

A primary division of combustion categories relevant 
to our target reader is premixed and non-premixed 
flames, both of which are considered in this book. 
A further subcategory is turbulent and laminar flames. 
Industrial flames are generally designed for turbulent 
flows, but can be laminar at turndown or near the surface 
of small solid or liquid droplets4,5; these are dealt with in 
this text. Another variant to the treatment of combustion 
covered in this book is the generation of useful heat via 
combustion. Efficiencies and computing the amount of 
useful heat absorbed are discussed as they are critical to 
the usefulness of combustion in industrial applications.

The rigorous treatment of combustion can at times be 
so complex that the kinetic variables, fluid turbulence 
factors, luminosity, and other factors cannot be defined 
well enough to find a realistic solution. It is our inten-
tion in this text to simplify the processes and not to cre-
ate more complexities. This book is written for those 

involved in applications of full-size combustion sys-
tems. The applications are provided with state-of-the-art 
solutions. Several practical and solvable examples are 
also provided.

Several chapters contain significant discussions on 
emissions. The formation, reduction, and prediction 
of emissions from combustion systems are examined 
in detail. The impact of external variables is also dis-
cussed. The reader can thus make intelligent choices on 
fuels, burners, and combustion chambers and clearly 
understand the impacts of the many variables.

Stephen B. Londerville
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xxix

The last Coen & Hamworthy Combustion Handbook was 
written by Arthur H. Light in 1920.1 In the late 1980s, 
Coen authorized the publication of a new combustion 
handbook at the request of its customers, but day-to-day 
work never allowed time for the book.

The origins of this book started during a business trip. 
In early 2000, one of the editors (Steve) was on a trip to 
visit a major Coen customer with a young Coen appli-
cation engineer. During dinner, the engineer told Steve 
a story of a number of engineers debating the units of 
molecular weight for hours. It was at this moment that 
Steve decided a unique kind of book was needed that 
did not exist for combustion engineers. The book needed 
to be all inclusive and cover the very basics in building 
block form up to more complex combustion topics for 
everyone involved in combustion systems to use.

This book is designed for all engineers and profession-
als involved in the field of industrial and utility com-
bustion systems. It is roughly divided into two  parts, 
consisting of a total of 17 chapters, sequentially cover-
ing relevant and important combustion engineering 
basics and then specific computations and applications. 
Each chapter is roughly organized from simple to more 
complex, thus allowing the reader to absorb as much as 
they may need before moving on to the next chapter. 
Practical examples are also included.

The intent is to have a ready reference combined with 
a practical review needed for engineers in the field of 
combustion. The practical aspects of all combustion sys-
tems include by necessity a variety of subsystems that 
include, as a minimum, methods to

• Transport and introduce fuel and air to a system
• Safely monitor the combustion system

• Control all the flows and operational parameters
• Design a burner/combustion chamber to achieve 

performance levels such as emissions and heat 
transfer

• Avoid excessive noise and vibration and pro-
vide long, durable equipment life under adverse 
conditions

As a result, the topics in this book include units, chem-
istry, fluid flow, heat transfer, atomization, solid fuels 
including handling, liquid and gaseous fuels, pollution 
emissions, CFD, noise and practical discussions on con-
trols, auxiliary support, and burner selection criteria.

This book is designed to be a review of the critical, 
 relevant elements of combustion science required to 
apply simple calculations and more advanced computa-
tions. It is especially targeted at engineers and profes-
sionals in the field of combustion who need a review 
of fundamentals so they can make calculations and 
decisions on proper design features, computations, 
emissions, fuel choices, controls, burner selection, and 
burner/furnace combinations. In addition to the build-
ing block organization, users can go directly to individ-
ual chapters concerned with specific applications to get 
information on different applications without reading 
the preceding chapters.
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1.1 Introduction

While fire has been existent since the beginning of time, 
much remains to be learned about it. Because the sci-
ence of combustion combines heat transfer, thermody-
namics, chemical kinetics, and multiphase turbulent 
fluid flow to name a few areas of physics, the study of 
industrial combustion is interdisciplinary by necessity.

The field of industrial combustion is very broad and 
touches directly, or indirectly, nearly all aspects of life. 
Electronic devices are generally powered by fossil-
fuel-fired power plants. Automobiles use internal com-
bustion engines. Planes use jet-fuel-powered turbine 
engines. Most materials have been made through some 

type of heating process. While this book is concerned 
specifically with industrial/utility combustion, all of 
these combustion processes share many features in 
common.

The last Coen combustion handbook was written in 
1920 by Arthur H. Light.1 This current handbook was 
inspired from an internal Coen week-long engineering 
workshop that was developed as an in-depth review 
for engineers specializing in combustion applications. 
The course was required for all company engineers and 
included a comprehensive final exam. This workshop 
formed the basis for the topics and order of introduc-
tion in this handbook. This handbook is intended to be 
a review of basic engineering topics, followed by more 
detailed topics and practical examples.
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1.2 History of Coen Company

The origins of Coen Company can be traced back to 
1912, when Garnet Coen first fashioned an innovative 
device which would heavily impact the fuel burning 
industry. His invention—the adjustable tip mechanical 
oil burner, a unique device that could maintain atomi-
zation quality at low supply pressure via an adjustable 
tip—was what ultimately spurred the company to its 
present success.2

In 1914, Coen employed Joseph Voorheis, a mechani-
cal engineer who at the time was working for Shell Oil 
Company. Voorheis sought after Coen’s burner design 
for the retrofit of a mechanical burner onto a tugboat and 
soon after began working for the company. With his help, 
the first “Coen system” of mechanical oil burning was 
created consisting of an oil heater, a duplex strainer, and 
simple integrated pumping systems ahead of the burner.

From the beginning, it was obvious the company 
intended to offer more than just a product or system. 
It was offering engineering expertise to accommodate 
the combustion requirements and capabilities of any 
furnace, at sea or on land. This early emphasis on engi-
neering would serve the company well in the decades 
ahead as new technologies created expanding markets 
and opportunities.

It was not long before the efficiency engineers of large 
oil and industrial companies recognized the adaptabil-
ity of the Coen systems for operation of the boiler and 
refinery heater furnaces of their stationary installations. 
By 1921, hundreds of Coen burner systems were fueling 
boilers and furnaces in the oil companies’ pumping sta-
tions and refinery heaters, in breweries, power plants, 
foundries, smelters, and institutions throughout the 
United States.

By the early 1950s, a new trend was being established 
in the boiler industry—packaged boilers. Packaged 
water tube boilers were shop-assembled and could be 
transported and installed within days after unloading. 
Prior to this, multi-burner boilers were erected on site 
and took months to construct. Packaged boilers resolved 
these issues and could be shipped on a flat car to the site, 
thus saving time, labor, and money. However, these new 
long furnaces did not permit the application of multiple 
burners, common with field-erected boilers. To overcome 
this problem, Coen developed new forced draft large 
single burners custom engineered for these new fur-
naces. Further, Coen provided package burners for these 
boilers, complete with piping and controls, so the entire 
boiler/burner/controls became a package unit. Coen has 
provided thousands of these package burner units.

In the 1970s, Coen realized that oil and gas prices 
would drive large fuel users, such as cement plants and 
larger boilers, to the use of coal. The company developed 

a complete line of coal-fired burners and its fuel feed 
system for rotary kiln firing and industrial boilers. The 
system provided higher output, lower fuel consump-
tion, and better quality product than any other coal fir-
ing system available at the time. This was also a time 
of alternative fuels and efficiency innovations. Coen 
developed biomass burners and slurry burners together 
with complicated microprocessor control systems into 
packages. At the time, it was projected that natural gas 
would cease to be used as a boiler fuel.

In recent years, the trend toward the use of natural 
gas has increased dramatically, due to lower relative 
cost, higher availability, and lower pollution emissions. 
Coen responded to this need with the development of 
Low NOx gas burners and Ultra Low NOx gas burn-
ers and the associated controls required. Unknown in 
the 1970s, Coen was converting kilns, industrial boil-
ers, and utility boilers to natural gas firing. Although 
seemingly simple, conversion to fire natural gas in 
many cases required a detailed heat transfer analysis 
due to changes in heat losses and luminosity of the 
flames. These conversions were uniquely engineered 
solutions that by then had become a common Coen 
supplied offering.

Coen remained under the control of Garnet Coen until 
1934 when Joe Voorheis acquired principal ownership 
of the company. Coen continued as a privately owned 
company (Voorheis) when in April 2007 it was acquired 
by another privately owned company: Koch Chemical 
Technology Group, a division of Koch Industries. This 
acquisition merged Coen products and Todd combus-
tion products. In 2011, Coen acquired Hamworthy 
Peabody Combustion, further expanding its combus-
tion products and offerings. On August 2, 2012, Coen 
celebrated 100 years since its incorporation on August 2, 
1912. For all those years, Coen has remained innovative 
and privately owned.

Although Coen began as a company providing burn-
ers for industrial boiler and process heaters, it has 
expanded since the inception 100 years ago to include

• Utility/industrial/process burners and associ-
ated support products

• Advanced combustion controls and burner 
managements systems

• Applications and systems for a wide variety of 
solid, liquid, and gaseous fuels

• Pump sets, fuel trains, and custom systems 
such as solid conveying

• Cement, lime and ore kilns, air heaters, incin-
erators, and duct burners systems

• Unique custom solutions to one of a kind com-
bustion applications
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1.3 History of Hamworthy Combustion

While Coen, based in San Francisco, California, was 
retrofitting boilers with a novel mechanical atomizer 
around 1912, two brothers, Percy and Sidney Hall, 
incorporated the Hamworthy Engineering Company on 
April 16, 1914, located 5350 miles away in Poole England. 
Hamworthy designed and built oil engines initially for 
marine use plus pumps and compressors.3

After surviving two wars and the great depression, 
Hamworthy realized the trend in switching from coal 
fuels to oil and established the British Combustion 
Equipment (BCE) group in 1946. By 1956 the BCE had 
become the driving force in the Hamworthy group. 
From 1960 to 1980, Hamworthy had close links with the 
British Central Generating Board (CEGB) in the supply 
of utility-grade oil-fired burners to new oil-fired util-
ity furnaces. In the early 1990s, Hamworthy acquired 
Peabody Combustion, another burner-based company 
founded in the United States in 1920.

From the mid-1980s to the present time, Hamworthy 
either acquired or developed a complete line of  burners for 
gas and oil firing, ignition systems, and package burners 
systems. Together, Coen and Hamworthy will be celebrat-
ing nearly 200 years of combined combustion experience 
at the time of this publication.

1.4 Boiler Basics

Included later is a significant discussion on boilers in 
this section because this is the largest application of 
large burners and the burner design and placement is 
essential for the boiler performance. Simply stated, boil-
ers convert water to steam; however, the actual process is 
very complex. Water tube boilers can be simply described 
as an upper steam drum and a lower water drum (mud 
drum). These drums are connected by a multitude of 
tubes forming both a large open volume called a radi-
ant section and a multitude of closely spaced tubes form-
ing a convection section (see Figure 1.1). Some of these 
tubes can be “risers” and some “down comers” causing 
natural circulation in the boiler water/steam system. 
Larger boilers may have forced circulation using pumps. 
Flames are introduced in the radiant section, producing 
mostly radiant heat transfer. The post-flame gases enter 
the convection section where the dominant mode of heat 
transfer is convection (see Chapter 7).

Boilers receive treated feed water (liquid). This is added 
to the lower “mud” drum at 212°F–300°F (100°C–150°C). 
The heat from flame or post-flame gases heats the water 
which is converted into steam in the “rising tubes” up to 

the steam drum. At the steam drum, both water and steam 
exist. Separators are used (not shown) that separate steam 
from water. The result is saturated steam at the exit.

The boiled water (steam) is usually controlled at a 
much higher pressure than ambient, for example, maybe 
150–500 PSIG (10–35 barg). This means the temperature 
of the steam is higher than atmospheric boiling (212°F = 
100°C). The steam generated by boilers can be saturated 
or superheated. Saturated steam is in equilibrium with 
the hot water at any given pressure, meaning both liquid 
and steam exist in the same volume/space. Saturated 
steam temperature is a direct function of pressure, that 
is, 212°F (100°C) at atmospheric pressures. At 350 PSIG 
(24 barg), the saturated temperature for boiling is at 
435°F (223°C). Heating the resultant saturated steam to 
higher temperatures will result in superheated steam by 
returning saturated steam back to the boiler from the 
steam drum to super heater tubes for further heating.

Although the firing rate of the burner defines the 
boiler steam output, the burner design and placement 
must be engineered to achieve the boiler essential oper-
ation such as

• Prevention of flame impingement
• Emission compliance, NOx, CO, HCs. VOC, 

 particulate, opacity, etc.
• Efficiency, limiting excess air, turndown
• Noise from piping and combustion roar
• Control of superheat temperature

1.4.1 Industrial Boilers

Burners designed for use in industrial boilers are most 
commonly of the circular register design, range in size 
from heat inputs of 20 to 400 × 106 British Thermal Units 
(Btus)/h (6–115 MW), operate with forced draft (FD) fans 
supplying the combustion air, and burn gas or liquid 

Flame Radiant section

Convection
section

Refractory or steel baffle

FIGURE 1.1
Flow through a boiler, highlighting radiant and convection sections.
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hydrocarbon fuels. This section covers a variety of different 
sizes and types of industrial boilers. The most commonly 
encountered boilers would be single-burner industrial-
packaged boilers and wall fired field-erected boilers with 
up to six burners per boiler. Industrial-packaged boilers 
consist of a furnace and boiler, which is a self-contained 
system that can basically be shipped as a unit, which 
became prevalent in the 1950s as a method to save time 
and labor. While some larger field-erected boilers with 
more burners, and designs such as the tangentially fired, 
turbo-fired, or cyclonic-fired boilers, can occasionally be 
found in these applications, they make up a very small 
percentage of the total number of installed units.

1.4.2 Package Boilers

The simplest form of burner arrangement is to have 
only one burner that provides all of the necessary heat 
input to the boiler. The most simple package boiler 
consists of an FD fan, burner and wind box, breech-
ing, and stack. This is possible in industrial-package 
boilers generating up to 300,000 lb/h (136,000 kg/h) of 
steam, where single burners can reach heat inputs up 
to 400 × 106 Btu/h (115 MW). The burner is located on 
the end wall of the boiler, which can be fully refrac-
tory lined or a combination of refractory around the 
burner throat and tubes comprising the rest of the 
wall. Industrial-package boiler configurations are typ-
ically denoted by the drum configuration, with “D” 
style (see Figure 1.2), “O” style (see Figure 1.3), and “A” 
style (Figure 1.4) boilers being the most common.

A “D” style boiler has two drums located directly 
above each other on either the right or the left side of 
the boiler, with the tubes extending out to form the fur-
nace in a “D” configuration. This boiler type has only a 
single convection bank located on the same side as the 
drums (see Figure 1.5). An “O” style boiler is similar to 
a “D” style in that it utilizes two drums centered over 
each other; however, in the case of an “O” style boiler 

FIGURE 1.2
Front elevation of “D” type boiler—the furnace and drum locations 
form the letter “D,” hence the name.

FIGURE 1.3
Front elevation of “A” type boiler—the furnace and drum locations 
form the letter “A,” hence the name.

FIGURE 1.4
Front elevation of “O” type boiler—the furnace and drum locations 
form the letter “O,” hence the name.
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the drums are located over the center of the furnace. 
In this configuration, a convective bank is located on 
each side of the furnace so the flow out of the furnace 
is split evenly between these two convective banks 
(see Figure 1.6). An “A” style boiler has three drums, a 
single steam drum in the top center of the furnace, and 
two mud drums located in each corner of the furnace. 
Similar to the “O” style boiler, the “A” style also has two 
convection banks located on each side of the furnace.

As the capacity of the boilers gets larger, the most 
constrained dimension is typically the width of the 
boiler, which is restricted to allow shipment by road or 
rail. Space constraints at the site may also constrain the 
allowable length of the boiler. In these cases, the firebox 
dimensions may not be sufficient to accommodate the 
flame geometry required from a single burner. In some of 
these cases, given the right firebox geometry, two burners 
can be supplied in a common wind box and operated as 

FIGURE 1.5
“D” type package boiler. (Courtesy of Victory Energy Operations, LLC.)

FIGURE 1.6
“O” type package boiler. (Courtesy of Victory Energy Operations, LLC.)



6 The Coen & Hamworthy Combustion Handbook

a single unit, called unison firing. This also can be used to 
reach heat inputs higher than those available from one 
burner only. In the case of unison firing, both burners 
operate as a single unit with the loss of flame on either 
burner causing a shutdown of the entire system.

1.4.3 Field-Erected Boilers

As boiler capacities get larger than the physical size that 
can be shipped as an assembled unit, the boilers are 
shipped in pieces and erected at the site. These field-
erected boilers example (shown in Figure 1.7) are usually 
a large furnace and boiler system with multiple ancillary 
systems. The system is shipped to the field in pieces and 
erected on site. Sometimes, portions are fabricated on site. 
To minimize the footprint of these “field-erected” boil-
ers, the fireboxes get taller as the boiler capacity grows, 
while the width and depth of the boiler do not typically 
grow proportionally with capacity. Since the depth of 
the firebox that is available to accommodate the flame 
length is constrained, these boilers will utilize multiple 
burners, from 4 to as many as 16, arranged in rows on a 
single wall or on opposed firing walls. The number and 
arrangement of the burners is based on the required heat 
input and the available width and depth to accommodate 
the flame geometry.

Burner spacing is important to ensure that no flame-
to-flame interaction occurs which can increase emissions 
and flame lengths, leading to impingement. This can 
vary based on the different designs of burners employed 
and the design pressure drop across the burner.

For multiple burner applications, each burner can be 
brought in and out of service independently, allowing 
greater flexibility in operating turndown. Typically 
all burners in service are controlled by a single fuel-
control valve and therefore operate at the same heat 
input. For added flexibility on units with several rows 
or columns of burners, a flow-control valve can be sup-
plied for each row or column, allowing more flexibility 
in controlling heat input and distribution within the 
firebox. Burners should be brought into service sym-
metrically about the boiler drum centerline to provide 
balanced heating to the boiler and to minimize drum 
level fluctuations.

1.4.4 Power Generation Industry

Boilers are used for a variety of purposes in an assort-
ment of applications. Common uses include producing 
hot water or steam for heating, producing steam for use 
within a plant such as atomizing oil for oil-fired burn-
ers, and producing steam to generate power in large 
power plants. Applications range from small single-
burner uses in hospitals, schools, and small businesses 
up to large multi-burner boilers in power plants.

Both duct burners and boiler burners are used in the 
power generation industries. Duct burners (see Chapter 15) 
are burners that are inserted into large ducts to boost 
the temperature of the gases flowing through the ducts. 
These burners are frequently used in cogeneration 
projects, electrical utility peaking stations, repower-
ing programs, and in industrial mechanical driver sys-
tems employing gas turbines with site requirements for 
steam. They are also used in fluidized bed combustors 
and chemical process plants. The efficiency of a duct 
burner to supply additional heat approaches 100% (on a 
lower heating value basis), which is much higher than, 
for example, a backup boiler system in generating more 
steam. Duct burners are often easily retrofitted into 
existing ductwork. Several important factors in-duct 
burner applications include low pollutant emissions, 
safe operation, and uniform heat distribution from the 
duct burners to the gases flowing through the duct, get-
ting uniform gas distribution through the duct burn-
ers, and having adequate turndown to meet fluctuating 
demands. Duct burners typically use gaseous fuels, but 
occasionally fire on oil.

Boiler burners (see Chapter 14) are used to combust 
fuels, commonly natural gas or fuel oil, in the production 
of steam, which is often used to produce electrical energy 
for power generation. These burners produce radiation 
and convection used to heat water flowing through the 
boiler. The water is vaporized into steam. Sometimes the 
steam is used in the plant in the case of smaller indus-
trial boilers. Larger utility boilers produce steam to drive 
turbines for electrical energy production. While boiler 

Type PFT integral-furnace boiler

FIGURE 1.7
Typical field-erected boiler.
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burners have been around for many years, there have 
been many design changes in recent years due to the cur-
rent emphasis on minimizing pollutant emissions.

1.5 Utility Boilers

Burners designed for use in utility boilers are very 
similar to those found in industrial boilers, with a few 
minor differences. Utility boilers typically employ 
multiple burners, from 4 to as many as 48 or more. 
These burners can be brought in and out of service 
as needed, allowing the firing rate of the boiler to 
be varied greatly without needing to achieve a high 
turndown ratio on any single burner. Therefore, each 
burner on a utility boiler does not need to cover as 
wide a size range as the burner on industrial boiler, 
and typically range in size with heat inputs of 50–400 × 
106 Btu/h (15–115 MW). They operate with forced draft 
fans supplying the combustion air, which is typically 
preheated to between 400°F (200°C) and 650°F (340°C) 
as compared to ambient temperature air in most indus-
trial applications. They burn gaseous, liquid, or solid 
fuels, and may need to be fuel-flexible to take advan-
tage of changing fuel costs.

1.6 Utility Boiler/Burner Design

Utility boiler/burner designs, both conventional and 
low NOx, employ similar design techniques as those for 
industrial boilers/burners. The differences that sepa-
rate utility applications are generally based on their 
intended operational parameters, such as the fuels to be 
fired and level of air pre-heat they are designed to han-
dle. Due to the importance of maintaining high electri-
cal system reliability and minimizing generation costs, 
utility boiler burners must offer

• High reliability during long-term operation
• Simplicity and reliability of fuel ignition
• High flame stability across the operational 

turndown range
• Fuel flexibility, including the ability to co-fire 

multiple fuels
• High thermal efficiency by minimizing excess 

air levels
• Minimizing emissions through operation with 

flue gas recirculation (FGR) and over fire air (OFA)

• Minimum parasitic power requirements through 
low pressure drop of combustion air and flue gas 
systems, especially the burner register draft loss

• Simplicity of burner maintenance and adjust ment
• Flame dimensions to match the dimensions of 

the furnace, with no flame impingement on any 
furnace wall

The burners are typically located in common wind 
boxes which supply air to all of the burners located on 
each firing wall (or corner). Proper air flow distribu-
tion to each burner must be ensured during the system 
design and is typically accomplished through physical 
or computational fluid dynamic (CFD) modeling (see 
Chapter 9) of the air delivery system and wind box. The 
goal is to provide equal combustion air flow between 
burners, uniform peripheral velocity distributions at the 
burner inlets, and the elimination of tangential veloci-
ties within each burner. If the unit has been designed 
with FGR, the O2 content must be equal between the 
burners, and this is accomplished by balancing the FGR 
distribution to each burner.

As the burners are taken in and out of service, to 
maximize boiler efficiency, it is desirable to limit the 
air flow through the out-of-service burners. This is 
typically done by including an air damper or register 
on each burner which can be closed when the burner 
is out of service to allow only enough air flow through 
the burner as needed for cooling and purging. These 
dampers can be automated, along with the burner fuel 
shutoff valves, so that operators can take burners in and 
out of service from the control room or even automate 
this function as part of the boiler’s combustion controls.

In multiple burner installations, NOx reduction can 
be achieved by biasing the fuel to some burners. This 
causes some burners to operate fuel rich and others to 
operate fuel lean. This may include shutting off the fuel 
completely to one or more burners, which is called burn-
ers-out-of-service (BOOS). The optimum amount and 
pattern of biasing or BOOS is often very boiler-depen-
dent, with the best NOx reduction (see Chapter 10) results 
found through a series of tests during commissioning.

1.7 Utility Boiler Types

1.7.1 Wall Fired Burner Installation

The simplest form of burner arrangement is to have all 
of the burners located on only one wall of the furnace 
in a common wind box. The burners will be located in 
rows and columns, based on the number of burners 
required. The simplest configuration would be a four 
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burner arrangement with two rows and two columns of 
burners. Very large boilers may have up to 24 burners, 
or more, which could be arranged in a pattern of 4 rows 
each containing 6 burners.

Spacing of the burners is important to ensure that no 
flame-to-flame interaction occurs which can increase 
emissions and flame lengths, leading to impingement. 
This can vary based on the different designs of burners 
employed and the design pressure drop across the burner.

For multiple-burner applications, each burner can be 
brought in and out of service independently, allowing 
greater flexibility in operating turndown. Typically, all 
burners in service are controlled by a single fuel-control 
valve and therefore operate at the same heat input. For 
added flexibility on units with several rows or columns 
of burners, a flow-control valve can be supplied for each 
row or column, allowing more flexibility in controlling 
heat input and distribution within the firebox. Burners 
should be brought into service symmetrically about the 
boiler drum centerline to provide balanced heating to 
the boiler and to minimize drum level fluctuations.

1.7.2 Opposed Fired Installation

Larger utility boilers are designed to have burners 
on two of the four walls and firing toward the center 

of the furnace, and in some cases boilers have been 
designed with burners located on all four walls. The 
burners are located on opposite walls and are there-
fore called “opposed fired” boilers (see Figure 1.8). In 
opposed fired applications, not only is the spacing 
between burners important, but also, the interaction 
between the flames of the opposed burners meet-
ing in the center of the  furnace. Depending on the 
boiler design, the burners may be directly opposite 
each other or may be staggered to help avoid inter-
action with the burners from the opposite wall. In 
some instances, the boilers may include a “division 
wall” along the centerline of the furnace that extends 
from the bottom to some height in the furnace. This 
wall eliminates some concerns over opposed burner 
flames interacting, but does present concerns for 
flame impingement.

1.7.3 Tangentially Fired Installations

Combustion Engineering developed a boiler design that 
places all of the burners at the corners of the boiler, fir-
ing tangentially toward a pitch circle in the center of the 
firebox. This tangentially fired or T-fired boiler design 
utilizes a vertical column of burners in each corner of the 
firebox (see Figure 1.9). The burner flames all converge 
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FIGURE 1.8
Opposed wall fired boiler.
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into a swirling “fireball” in the center of the furnace. 
The number of burners in each column is the same and 
is dependent on the capacity of the boiler and number 
of fuels being fired.

The burners originally supplied by the boiler OEM 
for these boilers consisted of square burner “buckets” 
that were either fixed or tilting. The vertical column 
would contain some buckets dedicated to each particu-
lar fuel and some buckets that supplied only air. Some 
of the fixed (non-tilting) bucket applications have been 
retrofitted in the field to accommodate round burners, 
although in most cases burner retrofits and upgrades 
involve modifying or replacing the fuel components 
and buckets with components that fit into the existing 
burner geometry.

In some applications, the burners are designed to be 
tilted up and down by plus or minus 30° from level. 
The burners are all tilted at the same angle, which 
allows the fireball to be moved higher or lower in the 

firebox. By controlling the location of the fireball rela-
tive to the super heater tubes located at the top of the 
furnace, superheated steam temperature can be con-
trolled. This can also be used to control the residence 
time of the combustibles in the furnace to assure car-
bon monoxide (CO) burnout on harder-to-combust 
fuels.

1.8 Air Heaters

Air heaters (see Chapter 16) are used in a wide range of 
industries—for preheating of process heaters in the pet-
rochemical and refining industries, for detergent, coal or 
fertilizer drying, and for other heating and drying appli-
cations, for example, in the chemical, soap, paper, food, 
and cement industries. They are used mainly for high-
temperature drying, where the combustion products 
mix with air and are used to heat the product directly. 
Typical applications include drying of detergents, min-
erals, fertilizers, animal feeds, and coal. Air heaters are 
also used as an indirect source of heat for drying of food-
stuffs such as milk powder and dried potatoes, roasting 
of coffee beans, and production of food-grade chemical 
additives.

The most common type of air heater is the Peabody 
twin shell design. This type of air heater is used for 
conventional drying applications where the inlet air 
stream is at a low temperature, less than 100°C (212°F) 
and the required outlet temperature is no more than 
800°C (1500°F). The twin shell design gets its name-
sake from an annular passage through which diluted 
air passes between the boiler outer shell and the com-
bustion chamber, before mixing with hot combus-
tion products to achieve the final outlet temperature. 
Burners for air heaters are generally round, require 
high turndown, and sometimes must operate with very 
high excess air. The high excess air used in air heaters 
can make low NOx operation a challenge. On the other 
hand, lean premix burners can be easily employed to 
reduce NOx.

1.9 Duct Burners

Duct burner systems (see Chapter 15) can be loosely 
described as large cross-sectional ducts with high 
flows that require uniform heat addition for rela-
tively small temperature increases. The flows can be 
air, fumes, or oxygen-depleted streams. The burners 

FIGURE 1.9
TXU Electric Collin Station Power Plant, a tangential fired boiler.
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used are also called ribbon burners, linear burners, or 
duct burners designed so that the heat input can be 
distributed over a relatively large cross section. The 
typical location of this type of burner can be seen in 
Figure 1.10.

Linear and in-duct burners were used for many 
years to heat air in drying operations before their 
general use in cogeneration systems. Some of the 
earliest systems premixed fuel and air in an often 
complicated configuration, which fired into a recir-
culating process air stream. The first use for high-
temperature, depleted oxygen streams downstream 
of gas turbines in the early 1960s was to provide 
additional steam for process use in industrial appli-
cations and electrical peaking plants operating 
steam turbines. As gas turbines have become larger 
and more efficient, duct burner supplemental heat 
input has increased correspondingly. Duct burn-
ers are suitable for a wide variety of direct-fired air 
heating applications where the physical arrangement 
requires mounting inside a duct.

1.10 Burners 

The burner is the device that is used to combust the fuel 
with an oxidizer to convert the chemical energy in the 
fuel into thermal energy. A given combustion system 
may have a single burner or many burners, depending 
on the size and type of the application. A typical round 
low NOx burner is shown in Figure 1.11. Boilers and other 
combustion chambers come in various sizes and configu-
rations. It is the design and orientation of the burner that 
will define proper operation of the equipment. There are 
many factors that go into the design of a burner. This sec-
tion will briefly consider some of the important factors 
that are considered in designing burners. A detailed dis-
cussion on burners is given in Chapter 14.

1.10.1 Competing Priorities

There have been many changes in the traditional designs 
that have been used in burners, primarily because of 
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FIGURE 1.10
Typical duct burner location. (Courtesy of Hamon Deltak.)
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the recent interest in reducing pollutant emissions. In 
the past, the burner designer was primarily concerned 
with efficiently combusting the fuel and transferring the 
energy to a heat load. New and increasingly more strin-
gent environmental regulations have added the need to 
consider the pollutant emissions produced by the burner 
(see Chapter 10). In many cases, reducing pollutant 
emissions and maximizing combustion efficiency are at 
odds with each other. For example, a well-accepted tech-
nique for reducing NOx emissions is known as staging, 
where the primary flame zone is deficient of either fuel 
or oxidizer.4 The balance of the fuel or oxidizer may be 
injected into the burner in a secondary flame zone or, in 
a more extreme case, may be injected somewhere else in 
the combustion chamber. Staging reduces the peak tem-
peratures in the primary flame zone and also alters the 
chemistry in a way that reduces NOx emissions because 
fuel-rich or fuel-lean zones are less conducive to NOx 
formation than near stoichiometric zones.5 NOx emis-
sions increase rapidly with the exhaust product temper-
ature. Since thermal NOx is exponentially dependent on 
the gas temperature, even small reductions in the peak 
flame temperature can dramatically reduce NOx emis-
sions. However, lower flame temperatures often reduce 
the radiant heat transfer from the flame since radiation 
is dependent on the fourth power of the absolute tem-
perature of the gases. Another potential problem with 
staging is that it may increase CO emissions, which is 
an indication of incomplete combustion and reduced 
combustion efficiency. However, it is also possible that 
staged combustion may produce soot in the flame, 

which can increase flame radiation. The actual impact 
of staging on the heat transfer from the flame is highly 
dependent on the actual burner design.6

In the past, the challenge for the burner designer was 
to maximize the mixing between the fuel and the oxi-
dizer to ensure complete combustion. If the fuel was 
difficult to burn, as in the case of low heating value 
fuels such as waste liquid fuels or process gases from 
chemical production, the task could be very challeng-
ing. Now, the burner designer must balance the mixing 
of the fuel and the oxidizer to maximize combustion 
efficiency while simultaneously minimizing all types 
of pollutant emissions. This is no easy task as, for 
example, NOx and CO emissions often go in opposite 
directions. When CO is low, NOx may be high and 
vice versa. Modern burners must be environmentally 
friendly, while simultaneously efficiently transferring 
heat to the load.

1.10.2 Design Factors

There are many types of burner designs that exist due to 
the wide variety of fuels, oxidizers, combustion chamber 
geometries, environmental regulations, thermal input 
sizes, and heat transfer requirements. Additionally, 
heat transfer requirements include, for example, flame 
temperature, flame momentum, and heat distribution. 
Garg7 lists the following burner specifications that are 
needed to properly choose a burner for a given applica-
tion: burner type, heat release and turndown, air supply 
(natural draft, forced draft, or balanced draft), excess air 

FIGURE 1.11
Ecojet burner in an HRSG.
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level, fuel composition(s), firing position, flame dimen-
sions, ignition type, atomization media for liquid fuel 
firing, noise, NOx emission rate, and whether waste gas 
firing will be used.7 Some of these design factors are 
briefly considered next.

1.10.2.1 Fuel

Depending upon many factors, certain types of fuels are 
preferred for certain geographic locations due to cost 
and availability considerations. Gaseous fuels, particu-
larly natural gas, are commonly used in most industrial 
heating applications in the United States. In Europe, 
natural gas is also commonly used along with light fuel 
oil. In Asia and South America, heavy fuel oils are gen-
erally preferred although the use of gaseous fuels is on 
the rise.

Fuels also vary depending on the application. For 
example, in incineration processes, waste fuels are com-
monly used either by themselves or with other fuels like 
natural gas. In the petrochemical industry, fuel gases 
often consist of a blend of several fuels, including gases 
like hydrogen, methane, propane, butane, propylene, 
nitrogen, and carbon dioxide.8

The fuel choice has an important influence on the 
heat transfer from a flame. In general, solid fuels like 
coal and liquid fuels like oil produce very luminous 
flames, which contain soot particles that radiate like 
blackbodies to the heat load. Gaseous fuels like natu-
ral gas often produce nonluminous flames because 
they burn so cleanly and completely without produc-
ing soot particles. A fuel like hydrogen is completely 
nonluminous because there is no carbon available to 
produce soot.

In cases where highly radiant flames are required, 
a luminous flame is preferred. In cases where convec-
tion heat transfer is preferred, a nonluminous flame 
may be preferred in order to minimize the possibility of 
contaminating the heat load with soot particles from a 
luminous flame. Where natural gas is the preferred fuel 
and highly radiant flames are desired, new technologies 
are being developed to produce more luminous flames. 
These include processes like pyrolyzing the fuel in a 
partial oxidation process,9 using plasma to produce soot 
in the fuel,10 and generally controlling the mixing of the 
fuel and oxidizer to produce fuel-rich flame zones that 
generate soot particles.11

Therefore, the fuel itself has a significant impact on 
the heat transfer mechanisms between the flame and the 
load. In most cases, the fuel choice is dictated by the end 
user as part of the specifications for the system and is 
not chosen by the burner designer. The designer must 
make the best of whatever fuel has been selected. In 
most cases, the burner design is optimized based on the 
choice for the fuel.

In some cases, the burner may have more than one 
type of fuel. An example is shown in Ref. [12]. Dual-
fuel burners are designed to operate typically on either 
gaseous or liquid fuels. These burners are used, usually 
for economic reasons, where the customer may need 
to switch between a gaseous fuel like natural gas and 
a liquid fuel like oil. These burners normally operate 
on one fuel or the other, and sometimes on both fuels 
simultaneously. Another application where multiple 
fuels may be used is in waste incineration. One method 
of disposing of waste liquids contaminated with 
hydrocarbons is to combust them by direct injection 
through a burner. The waste liquids are fed through 
the burner, which is powered by a traditional fuel such 
as natural gas or oil. The waste liquids often have very 
low heating values and are difficult to combust with-
out auxiliary fuel. This further complicates the burner 
design where the waste liquid must be vaporized and 
combusted concurrently with the normal fuel used in 
the burner.

1.10.2.2 Oxidizer

The predominant oxidizer used in most industrial 
heating processes is atmospheric air. This can present 
challenges in some applications where highly accu-
rate control is required due to the daily variations 
in the barometric pressure and humidity of ambient 
air. The  combustion air is sometimes preheated to 
increase the overall thermal efficiency of a process. 
Combustion air is also sometimes blended with some 
of the products of combustion, a process usually 
referred to as flue gas recirculation (FGR). FGR is used 
to both control boiler superheat or reheat and reduce 
NOx emissions.

1.10.2.3 Custom-Engineered Solutions

From the early beginning of the company, Coen has been 
a leader in innovation. New products were regularly 
developed and introduced to the market place. These 
products were the beginning of “custom-engineered 
solutions.” This was an informal process until 1978 when 
Coen organized a standalone R&D department. Why?—
because everyone was too busy working on projects to 
spare time to develop new ones. One of the co-editors of 
this book (Steve) was hired that year into the new R&D 
department.

New products were released on the average of 3–4 per 
year, such as the dual zone burner kiln burner, biomass 
firing, electronic products, control systems, low NOx 
burners, larger burners, and much more. Many new prod-
ucts were, in fact, custom-engineered solutions to solve 
unique customer applications. The existing test facility 
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was slowly modernized and CFD was first utilized for a 
duct burner project in 1985.

R&D grew and was subdivided into R&D and staff 
engineering as the complexity of projects and applica-
tions grew. This set the stage for a significant increase in 
“custom-engineered solutions.”

At the time, the Clean Air Act was passed in the 
United States and new environmental rules were being 
proposed, requiring reduced emissions. Alternative 
fuels and more efficient unit operation were becom-
ing a customer priority. Coen was continuously being 
asked by its customers, “How can I solve this?,” thus 
the phrase was coined: “custom-engineered solu-
tions.” Since then, Coen has conducted hundreds of 
studies resulting in custom solutions to customer 
problems.

What is a custom-engineered solution? It is generally 
as follows:

 1. Coen is approached by a customer with a com-
bustion problem of some kind.

 2. Coen does not have an “off-the-shelf” solution.
 3. The company conducts a study of the prob-

lem and produces a proposal to solve the 
problem.

The study may involve a site visit, measurements, and 
possibly a CFD study. In some cases, a scale burner/
system may be constructed and tested. A report is 
issued with a quote for equipment to solve the problem. 
Historically, all of these custom-engineered solutions 
have been successful and arrived at an economical solu-
tion where none existed.
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2.1 Introduction

The NASA Mars Climate Orbiter case is a monumental 
example of the significance of units and conversions for 
practicing engineers. The Mars Climate Orbiter was set 
to land on the surface of Mars on September 23, 1999, to 
study the Martian climate, atmosphere, and surface. The 
orbiter trajectory was planned to be 226 km (140 miles) 
above the surface so that the gravitational acceleration 
of Mars could pull the Orbiter through the atmosphere 
at safe speeds. Instead, the trajectory was only 57 km 
(35 miles) and the orbiter was disintegrated by the atmo-
spheric stresses. The magnitude of error was off by a 
factor of 4.45, the exact conversion from Newtons to lb-
force. The trajectory was programmed for force inputs 
in metric Newtons; however, the crew at the controls 
was entering trajectory data in imperial units of lb-
force. Fortunately, the Orbiter was unmanned; however, 

the incident cost NASA well over $600 million.1 Despite 
the infinite complexity in the engineering of the Orbiter, 
it was a simple conversion error that was ultimately the 
source of failure. This holds true for all engineers as it is 
easy to overlook such basic fundamentals.

2.2 Time, Length, and Mass

Since the existence of early civilization, setting up a 
standard for weights and measures was vital for trade 
and construction. The earliest establishment of the mod-
ern universal measurement system was set forth by the 
Magna Carta of 1215, which proposed that “there shall 
be one unit of measure throughout the realm.” Later, 
the growing development of the sciences during the 
eighteenth century created a need for a more extensive 
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and universal measurement system and thus ushered 
the creation of the original metric system, which was 
drafted in France throughout the 1790s.2

A set of units describes and quantifies the physical 
properties of the universe. Properties such as time, 
distance, velocity, and power are examples of units. 
Many of these quantities can be related through physi-
cal laws as will be exemplified throughout this chapter. 
Fundamental units, however, are units that describe 
physical quantities from which all other units can be 
derived. There are seven fundamental units; however, 
strictly speaking, all units can be derived with three of 
these fundamental units:

 1. Mass
 2. Length
 3. Time

One early establishment of mass was the kilogram, which 
was defined as 1 kg to equal the mass of 1000 cm3 of water.

Length was originally defined in the metric system 
to be one ten-millionth of the distance from the Earth’s 
equator to the North Pole. This measurement was very 
challenging to reproduce when necessary, so in 1889 a 
precision bar that consisted of 90% platinum and 10% 
iridium was created and marked so that it would pre-
cisely represent 1 m at 0°C (32°F). Authorized metrolo-
gists were allowed to travel to the International Bureau 
of Weights and Measurements to measure and mark 
their own bars for regional prototypes. The meter was 
then redefined more precisely in 1960 as 1,650,763.73 
wavelengths emitted by krypton-86 in a vacuum.2

From classic antiquity, the day was divided into 12 h 
of daylight and 12 h of night. During the medieval 
period, the minute was introduced as the 60th part of an 
hour and the second was introduced as the 60th part of 
a minute. Today, a second is related to the radiation of a 
specific quantum transition in cesium-133.2

2.2.1 English Units

The English unit system is a product of the early devel-
opments of standardization in medieval England. It is 
also commonly called the system of imperial units. This 
system of units was officially declared in 1824 by the 
British Weights and Measures Act and was later refined 
and reduced until 1959. The unit system is still used 
by England and much of its former empire.3 Table 2.1 
shows the basic units of this system.

2.2.2 SI Units

The SI unit system is the modern form of the metric sys-
tem created in 1960. It is often called the International 

System of Units and is abbreviated from French: 
Systeme international d’unites. Originally, the system 
was developed around the meter and is used in most 
countries today.3 The common SI units are shown in 
Table 2.2.

2.2.3 Absolute English and SI Units

It is important to highlight the differences between 
weight and mass. While mass is the measure of the 
amount of matter in an object, weight is the force of an 
object due to gravity. An absolute unit is a unit that does 
not include the gravitational acceleration. In the English 
system the absolute unit of mass is the pound-mass as 
opposed to pound. Similarly, in the SI system the abso-
lute unit of mass is simply the kilogram or kilogram-
mass while weight is measured in units of Newtons 
or kilogram-force. By definition, weight and mass are 
related by the following:

 w m g
gc

=  (2.1)

where
w is weight
m is mass (absolute unit of mass)
g is gravitational acceleration
gc is proportionality constant

Applying the previous equation to Newton’s second 
law yields

 F m dv
dt

1
g

ma 1
gc c

= × × = ×  (2.2)

where
F is force
v is velocity
t is time
a is acceleration
gc is proportionality constant

TABLE 2.1 

Common English Units

Length Feet
Mass Pound-mass
Time Second
Temperature Rankine

TABLE 2.2 

Common SI Units

Length Meter
Mass Kilogram
Time Second
Temperature Kelvin


