THE COEN & HAMWORTHY COMBUSTION HANDBOOK

Fundamentals for Power, Marine & Industrial Applications

STEPHEN B. LONDERVILLE CHARLES E. BAUKAL, JR. Editors

THE COEN & HAMWORTHY COMBUSTION HANDBOOK

Fundamentals for Power, Marine & Industrial Applications

INDUSTRIAL COMBUSTION SERIES Series Editors: Charles E. Baukal, Jr.

The Coen & Hamworthy Combustion Handbook: Fundamentals for Power, Marine & Industrial Applications Stephen Londerville and Charles E. Baukal, Jr.

The John Zink Hamworthy Combustion Handbook, Second Edition Volume 1—Fundamentals Volume II—Design and Operations Volume II1—Applications *Charles E. Baukal, Jr.*

> Industrial Burners Handbook Charles E. Baukal, Jr.

The John Zink Combustion Handbook Charles E. Baukal, Jr.

Computational Fluid Dynamics in Industrial Combustion Charles E. Baukal, Jr., Vladimir Gershtein, and Xianming Jimmy Li

> Heat Transfer in Industrial Combustion Charles E. Baukal, Jr.

Oxygen-Enhanced Combustion Charles E. Baukal, Jr.

THE COEN & HAMWORTHY COMBUSTION HANDBOOK

Fundamentals for Power, Marine & Industrial Applications

Edited by

STEPHEN B. LONDERVILLE CHARLES E. BAUKAL, JR.

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20121220

International Standard Book Number-13: 978-1-4398-7334-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

This book would not have been possible without the feedback from the thousands of Coen and Hamworthy customers, who have been requesting this handbook for many years. In many cases, our innovative products were initiated by our customers' special needs and requirements. Therefore, we humbly dedicate this book to all our customers worldwide who we have been proud to serve for over 100 years.

Contents

List	t of Figures	ix
List	t of Tables	xxiii
For	eword	xxvii
Pre	face	XX1X
Ack	knowledgments	xxxi
Edi	tors	xxxiii
Cor	ntributors	xxxv
1.	Introduction	1
	Stephen B. Londerville, Timothy Webster, and Charles E. Baukal, Jr.	
2.	Engineering Fundamentals	
	Stephen B. Londerville	
3.	Combustion Fundamentals	25
	Stephen B. Londerville, Joseph Colannino, and Charles E. Baukal, Jr.	
4.	Fuels	
	John Ackland, Jeff White, Richard T. Waibel, and Stephen B. Londerville	
5.	Oil Atomization	
	I-Ping Chung and Stephen B. Londerville	
6	Solid Fuel Combustion in Suspension	115
0.	Stenhen B. Londerzille and Timothy Webcter	
	Stephen D. Londer oute and Atmothy Webster	
-	Heat Transfor	107
7.	Heat Iransier	12/
	Stephen B. Londervule, Charles E. Baukal, Jr., and Jay Karan	
0	Fundamentals of Fluid Demonster	150
б.	Fundamentals of Fluid Dynamics	153
	Stephen B. Londerville and Wes Bussman	
~		100
9.	CFD-Based Combustion Modeling	183
	Michael A. Lorra and Shirley X. Chen	
10.	Pollutant Emissions	211
	Charles E. Baukal, Jr., IPing Chung, Stephen B. Londerville, James G. Seebold, and Richard T. Waibel	
11.	Noise	
	Wes Bussman, Jay Karan, Carl-Christian Hantschk, and Edwin Schorer	
12.	Combustion Controls, Burner Management, and Safety Systems	
	Vladimir Lifshits	
13.	Blowers for Combustion Systems	
	John Bellovich and Jim Warren	
14.	Burners and Combustion Systems for Industrial and Utility Boilers	
	Vladimir Lifshits	

15. Duct Burners	397
Peter F. Barry, Stephen L. Somers, Stephen B. Londerville, Kenneth Ahn, and Kevin Anderson	
16. Air Heaters	421
Nigel Webley	
17 Marine and Offshore Applications	431
Richard Price	101
Appendix A: Units and Conversions	443
Appendix B: Physical Properties of Materials	449
Annandix C. Proparties of Cases and Liquids	165
Appendix C. Hoperites of Gases and Erquites	105
Appendix D: Properties of Solids	509

List of Figures

Figure 1.1	Flow through a boiler highlighting radiant and convection sections	3
Figure 1.2	Front elevation of "D" type boiler—the furnace and drum locations form the letter "D" hence the name	4
Figure 1.3	Front elevation of "A" type boiler—the furnace and drum locations form the letter "A," hence the name.	4
Figure 1.4	Front elevation of "O" type boiler—the furnace and drum locations form the letter "O," hence the name.	4
Figure 1.5	"D" type package boiler	5
Figure 1.6	"O" type package boiler	5
Figure 1.7	Typical field-erected boiler.	6
Figure 1.8	Opposed wall fired boiler	8
Figure 1.9	TXU Electric Collin Station Power Plant, a tangential fired boiler.	9
Figure 1.10	Typical duct burner location	10
Figure 1.11	Ecojet burner in an HRSG	11
Figure 2.1	Celsius and Fahrenheit relation	20
Figure 2.2	Velocity distribution next to a boundary	21
Figure 3.1	"O" type package boiler	27
Figure 3.2	Carbon atom with six protons, neutrons, and electrons.	28
Figure 3.3	Periodic table	29
Figure 3.4	Composition of air by volume	32
Figure 3.5	Species concentration versus excess air for the following fuels: (a) CH_4 , (b) natural gas (c) simulated refinery gas (25% H_2 , 50% CH_4 , 25% C_3H_8), (d) C_3H_8 , (e) No. 2 oil, and (f) No. 6 oil	36
Figure 3.6	Adiabatic flame temperature versus equivalence ratio for air/H_2 , air/CH_4 , and air/C_3H_8 flames, where the air and fuel are at ambient temperature and pressure	50
Figure 3.7	Adiabatic flame temperature versus air preheat temperature for stoichiometric air/ H_2 , air/ CH ₄ , and air/ C_3H_8 flames, where the fuel is at ambient temperature and pressure	50
Figure 3.8	Adiabatic flame temperature versus fuel preheat temperature for stoichiometric air/ H_2 , air/ CH_4 , and air/ C_3H_8 flames, where the air is at ambient temperature and pressure	51
Figure 3.9	Adiabatic flame temperature versus fuel blend (CH_4/H_2 and CH_4/N_2) composition for stoichiometric air/fuel flames, where the air and fuel are at ambient temperature and pressure.	51
Figure 3.10	Adiabatic flame temperature versus fuel blend (CH_4/H_2) composition and air preheat temperature for stoichiometric air/fuel flames, where the fuel is at ambient temperature and pressure.	52
Figure 3.11	Sample Sankey diagram showing distribution of energy in a combustion system	52
Figure 3.12	Available heat versus gas temperature for stoichiometric air/ H_2 , air/ CH_4 , and air/ C_3H_8 flames, where the air and fuel are at ambient temperature and pressure	53

	C_3H_8 flames at an exhaust gas temperature of 2000°F (1100°C), where the fuel is at ambient temperature and pressure.	.54
Figure 3.14	Available heat versus fuel preheat temperature for stoichiometric air/ H_2 , air/ CH_4 , and air/ C_3H_8 flames at an exhaust gas temperature of 2000°F (1100°C), where the air is at ambient temperature and pressure.	.54
Figure 3.15	Graphical representation of ignition and heat release	. 55
Figure 3.16	Species concentration versus stoichiometric ratio for the following fuels: (a) CH_4 , (b) natural gas (c) simulated refinery gas (25% H_2 , 50% CH_4 , 25% C_3H_8), (d) C_3H_8 , (e) No. 2 oil, and (f) No. 6 oil	59
Figure 3.17	Adiabatic equilibrium reaction process	. 62
Figure 3.18	Adiabatic equilibrium calculations for the predicted gas composition as a function of the O_2 :CH ₄ stoichiometry for air/CH ₄ flames, where the air and CH ₄ are at ambient temperature and pressure.	. 62
Figure 3.19	Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the major species as a function of the air preheat temperature for air/CH_4 flames, where the CH_4 is at ambient temperature and pressure.	. 63
Figure 3.20	Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the minor species as a function of the air preheat temperature for air/CH_4 flames, where the CH_4 is at ambient temperature and pressure.	. 63
Figure 3.21	Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the major species as a function of the fuel preheat temperature for air/CH_4 flames, where the air is at ambient temperature and pressure.	. 64
Figure 3.22	Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the minor species as a function of the fuel preheat temperature for air/CH ₄ flames, where the air is at ambient temperature and pressure.	.64
Figure 3.23	Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the major species as a function of the fuel blend ($H_2 + CH_4$) composition for air/fuel flames, where the air and fuel are at ambient temperature and pressure	. 65
Figure 3.24	Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the minor species as a function of the fuel blend ($H_2 + CH_4$) composition for air/fuel flames, where the air and fuel are at ambient temperature and pressure	. 65
Figure 3.25	Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the major species as a function of the fuel blend ($N_2 + CH_4$) composition for air/fuel flames, where the air and fuel are at ambient temperature and pressure	. 66
Figure 3.26	Adiabatic equilibrium stoichiometric calculations for the predicted gas composition of the minor species as a function of the fuel blend ($N_2 + CH_4$) composition for air/fuel flames, where the air and fuel are at ambient temperature and pressure	. 66
Figure 3.27	Equilibrium calculations for the predicted gas composition of the major species as a function of the combustion product temperature for air/CH ₄ flames, where the air and fuel are at ambient temperature and pressure.	. 67
Figure 3.28	Equilibrium calculations for the predicted gas composition of the minor species as a function of the combustion product temperature for air/CH ₄ flames, where the air and fuel are at ambient temperature and pressure.	. 67
Figure 4.1	Simplified process flow diagram for hydrogen reforming/PSA	75
Figure 4.2	Simplified process flow diagram for flexicoking	.77

Figure 4.3	Burning velocity for various gaseous fuels	84
Figure 4.4	Refinery flow diagram	86
Figure 4.5	Flow diagram of UOP fluid catalytic cracking complex	88
Figure 4.6	Burner firing heavy oil no. 1	89
Figure 4.7	Burner firing heavy oil no. 2	90
Figure 4.8	Naphtha distillation curve.	90
Figure 4.9	Crude oil distillation curve.	91
Figure 4.10	Viscosity of fuel oils	92
Figure 5.1	Viscosity of mid-continent oils	96
Figure 5.2	Liquid disintegration of a cylindrical jet caused by wave formations on liquid surface either by sinuous wave (a) or dilational wave (b).	98
Figure 5.3	A hollow-cone swirl spray with high viscosity liquid ($\nu = 6 \text{ mm}^2/\text{s}$)	100
Figure 5.4	John Zink Spray Laboratory equipped with a PDPA	101
Figure 5.5	Spray angle relative to a stable oil flame	101
Figure 5.6	A gun with a 90° machine angle. Its spray angle actually is about 30° .	102
Figure 5.7	Patternator to collect water sprayed out of an oil gun	102
Figure 5.8	Patternation measurements for a gun shown in Figure 5.6	102
Figure 5.9	Simplex swirl atomizer.	103
Figure 5.10	Simplex swirl atomizer with return flow	103
Figure 5.11	John Zink EA oil gun	104
Figure 5.12	John Zink MEA gun.	104
Figure 5.13	John Zink HERO gun	105
Figure 5.14	Y-jet atomization principle.	105
Figure 5.15	WDH waste aqueous gun design with one liquid exit port surrounded with eight atomizing ports.	105
Figure 5.16	Patternation comparisons for HERO and WDH guns	106
Figure 5.17	Coen elliptical cap slots for low-NO _x .	106
Figure 5.18	Droplet size measurements of the MEA oil gun at different air pressures	106
Figure 5.19	Droplet size measurements of the MEA oil gun at similar air-water differential pressures	107
Figure 5.20	Droplet size measurements of MEA oil gun at the same air-water differential pressure but different mass ratios	107
Figure 5.21	Droplet size comparison measured by PDPA for different oil gun designs	107
Figure 5.22	Steam consumption for different oil gun designs.	108
Figure 5.23	Steam consumption curve for a constant steam-oil differential pressure oil gun	108
Figure 5.24	A typical oil gun capacity curve. It shows oil gun turndown ratio.	108
Figure 5.25	Comparison of NO _x emissions for the HERO and MEA oil guns	109
Figure 5.26	Diagram of Y-jet.	110

Figure 5.27	CFI versus CCR, RCR and asphaltenes	112
Figure 6.1	Subbituminous char burnout Coen code $A = 60$ and $E = 17,150$	119
Figure 6.2	Pet coke char burnout Coen code $A = 15$ and $E = 19,000$	120
Figure 6.3	Coal dust flame velocity versus equivalence ratio	120
Figure 6.4	Fuel introduction for conveying options	122
Figure 6.5	Front of Coen biomass burner	123
Figure 7.1	Specific heat of air and flue gas in Btu/lb _{mole} °F versus temperature	129
Figure 7.2	Specific heat of air and flue gas in Btu/lb_m °F versus temperature	129
Figure 7.3	Nitrogen gas mix chamber	130
Figure 7.4	Boiler example	131
Figure 7.5	Plane wall conduction	138
Figure 7.6	Temperature drop due to thermal contact resistance.	138
Figure 7.7	Equivalent thermal circuit for a series composite wall	139
Figure 7.8	Calculated casing heat flux losses using 0.8 emissivity for various exterior velocities	144
Figure 7.9	Total emissivity of water vapor at reference state.	145
Figure 7.10	Total emissivity of carbon dioxide at reference state.	146
Figure 7.11	Correction for water vapor and carbon dioxide	147
Figure 7.12	Maximum emissivity versus C/H mass ratio	149
Figure 8.1	Velocity profile of fluid along a solid surface.	155
Figure 8.2	U-tube manometer	157
Figure 8.3	Inclined manometer	158
Figure 8.4	Bourdon-tube gage	158
Figure 8.5	Osborn Reynold's experimental apparatus used to study the transition from laminar to turbulent flow	159
Figure 8.6	Force components on fluid particle in direction of streamline	160
Figure 8.7	Water flowing in pipe from point 1 to 2	161
Figure 8.8	Static, velocity, and total pressure measurements inside a pipe	162
Figure 8.9	Moody diagram	166
Figure 8.10	Coefficient loss for various fittings	168
Figure 8.11	Series flow in a conduit	171
Figure 8.12	Common arrangement for parallel flow problems.	173
Figure 8.13	Complex parallel nozzle	173
Figure 8.14	Parallel flow with spinner	173
Figure 8.15	Combined series parallel flow in a burner	174
Figure 8.16	Series and parallel flow circuit diagram	175
Figure 8.17	Discharge coefficients for different internal nozzle designs	176
Figure 8.18	Factors affecting discharge coefficient	176

Figure 8.19	Photograph of a gas exiting a nozzle	. 181
Figure 8.20	Mixing downstream of a free jet	. 181
Figure 8.21	General structure of a turbulent free jet	. 181
Figure 9.1	Investigation of an isothermal flow field	. 184
Figure 9.2	Original topographic data	. 184
Figure 9.3	Representation of topographical data in a CFD model (blue showing lower elevation, red showing higher elevation)	. 185
Figure 9.4	Close-up view of a burner in a test furnace.	. 185
Figure 9.5	Representation of a burner, colored by temperature (blue showing low temperatures, red high temperatures).	. 185
Figure 9.6	Point measurement of a scalar in a turbulent flow.	. 187
Figure 9.7	Plot of the β -function for several values of <i>Z</i> and <i>Z</i> ["]	. 197
Figure 9.8	Representation of a luminous flame utilizing a soot model	. 201
Figure 9.9	Discretized geometry of a typical burner.	. 202
Figure 9.10	Discretized geometry of a typical boiler burner.	. 203
Figure 9.11	Close-up view of primary and secondary tips.	. 203
Figure 9.12	Rendered view inside an ethylene cracker showing flow patterns near the premixed radiant wall burners.	. 205
Figure 9.13	Illustration of a flame envelope defined as an iso-contour of 2500 ppm CO.	. 205
Figure 9.14	Illustration of combustion products indicating poor mixing between fuel and oxidizer	. 206
Figure 9.15	Smaller combustion product envelopes indicate improved mixing between oxidizer and fuel	. 206
Figure 9.16	Velocity contours of multiburner boiler	. 207
Figure 9.17	Predicted temperature distribution for stabilizer wing on a duct burner element	.207
Figure 9.18	Temperature distribution in flame for a tangential fired boiler	. 207
Figure 9.19	(a) Path lines colored with velocity before improved turning vanes added. (b) Path lines colored with velocity showing improved flow distribution with turning vanes	. 208
Figure 9.20	(a) Windbox velocity distribution to burners before improved baffle system. (b) Improved velocity to burners with improved baffle location	. 208
Figure 10.1	Number of people (in millions) living in counties with air quality concentrations above the level of the primary (health-based) National Ambient Air Quality Standards (NAAQS) in 2008	. 213
Figure 10.2	Comparison of growth measures (gross domestic product, vehicle miles traveled, population, and energy consumption) and emissions (CO_2 and aggregate emissions) from 1970 to 2010 in the United States	. 213
Figure 10.3	Distribution of air pollution emissions by pollutant type and source category	214
Figure 10.4	Schematic of NO exiting a stack and combining with O ₂ to form NO ₂	. 218
Figure 10.5	Schematic of acid rain.	. 218
Figure 10.6	Acid rain deterioration examples.	. 219
Figure 10.7	Schematic of smog formation	. 219
Figure 10.8	NO _x emissions in the United States between 1970 and 1999 based on the process	. 220

Figure 10.9	Schematic of fuel NO _x formation pathways	221
Figure 10.10	Adiabatic equilibrium NO as a function of equivalence ratio for air/fuel flames	222
Figure 10.11	Adiabatic equilibrium NO as a function of gas temperature for stoichiometric air/fuel flames.	223
Figure 10.12	Adiabatic equilibrium NO as a function of air preheat temperature for stoichiometric air/fuel flames.	223
Figure 10.13	Adiabatic equilibrium NO as a function of fuel preheat temperature for a stoichiometric air/CH $_4$ flame	224
Figure 10.14	Adiabatic equilibrium NO as a function of fuel composition (CH_4/H_2) for a stoichiometric air/fuel flame.	224
Figure 10.15	Adiabatic equilibrium NO as a function of fuel composition (CH_4/N_2) for a stoichiometric air/fuel flame.	225
Figure 10.16	Conversion ratio of fuel-bound nitrogen to NO_2 of various nitrogen-containing fuels as a function of fuel-nitrogen content	225
Figure 10.17	Conversion rate of fuel-bound nitrogen to NO _x for two different oil-fired burners	226
Figure 10.18	Relative NO _x versus air/fuel ratio for premix and diffusion flames	226
Figure 10.19	Schematic of HiTAC furnace	227
Figure 10.20	Example of a staged fuel burner	229
Figure 10.21	Example of a staged air burner	229
Figure 10.22	Schematic of furnace gas recirculation	230
Figure 10.23	Example of a burner incorporating furnace gas recirculation	230
Figure 10.24	Remote stage fuel tip	230
Figure 10.25	Illustration showing how the remote stage method provides lower NO_x emissions	231
Figure 10.26	Radiant wall burners firing (a) with and (b) without remote staging	231
Figure 10.27	History of low NO burner development for (a) round flame burners and (b) radiant wall burners, firing on gaseous fuels.	234
Figure 10.28	COOLstar burner	235
Figure 10.29	Computational fluid dynamic modeling of the COOLstar burner	235
Figure 10.30	Adiabatic equilibrium CO as a function of equivalence ratio for air/fuel flames	236
Figure 10.31	Adiabatic equilibrium CO as a function of gas temperature for stoichiometric air/fuel flames	236
Figure 10.32	Adiabatic equilibrium CO as a function of air preheat temperature for stoichiometric air/fuel flames.	237
Figure 10.33	Adiabatic equilibrium CO as a function of fuel preheat temperature for a stoichiometric air/ CH_4 flame.	237
Figure 10.34	Adiabatic equilibrium CO as a function of fuel composition (CH_4/H_2) for a stoichiometric air/fuel flame	238
Figure 10.35	Adiabatic equilibrium CO as a function of fuel composition (CH_4/N_2) for a stoichiometric air/fuel flame.	238
Figure 10.36	Bacharach smoke tester included a hand pump, filter papers, and spot scale sheet.	240

Figure 10.37	Particulate sampling train	. 241
Figure 10.38	Sampling at different isokinetic variations	. 242
Figure 10.39	Minimum number of traverse points for particulate traverses.	. 243
Figure 10.40	Type S pitot tube and manometer assembly.	. 244
Figure 10.41	BERL experimental facility	. 247
Figure 10.42	Convection section simulator (CSS)	. 248
Figure 10.43	Conventional diffusion flame burner (CDFB)	. 249
Figure 10.44	Low-NO _x diffusion flame burner (LDFB)	. 249
Figure 10.45	Conventional diffusion flame burner total hydrocarbon emissions versus heating value of HC fuel mixture	249
Figure 10.46	Conventional diffusion flame burner total hydrocarbon emissions versus combustion zone stoichiometry	250
Figure 10.47	Conventional diffusion flame burner total hydrocarbon emissions versus propylene and ethylene spikes	250
Figure 10.48	Conventional diffusion flame burner total hydrocarbon emissions versus hydrogen content of HC fuel mixture	. 250
Figure 10.49	Conventional diffusion flame burner total PAH at stack outlet	251
Figure 10.50	Conventional diffusion flame burner total PAH and benzo(a)pyrene at furnace outlet compared to stack outlet	. 251
Figure 10.51	Lagrangian jet model predictions	. 252
Figure 10.52	Conventional diffusion flame burner photoionization current (pA) versus theoretical air (%)	. 253
Figure 10.53	Range and average of emissions at the stack outlet for the conventional diffusion flame burner	. 254
Figure 10.54	Range of measurements of HAPs at the stack outlet for the conventional diffusion flame burner	255
Figure 10.55	Emissions for refinery fuel gas (16% H ₂ , propane, natural gas) for the conventional diffusion flame burner	256
Figure 10.56	Range of emissions for natural gas and refinery fuel gas for the conventional diffusion flame burner and the ultralow-NO $_x$ diffusion burner	. 256
Figure 10.57	Emission factor comparison for low-NO _x burner and conventional burner	. 257
Figure 10.58	Total PAH emissions 4 rings and greater versus stoichiometric ratio	. 258
Figure 10.59	Benzene (blue) and PAH (red) emissions versus stoichiometric ratio for the conventional diffusion flame burner.	. 258
Figure 10.60	CO (green) and PAH (red) emissions versus stoichiometric ratio for the conventional diffusion flame burner.	259
Figure 10.61	HC (yellow) and PAH (red) emissions versus stoichiometric ratio for the conventional diffusion flame burner.	. 259
Figure 10.62	HC, aldehyde, VOC, and PAH emissions versus stoichiometric ratio for the conventional diffusion flame burner	260
Figure 10.63	Total heavy VOC emissions versus stoichiometric ratio for the conventional diffusion flame burner.	260

Figure 10.64	Typical process heater, petroleum refinery emissions factors	261
Figure 11.1	Community located close to an industrial plant.	268
Figure 11.2	Tree falling in the forest	269
Figure 11.3	Pressure peaks and troughs	270
Figure 11.4	Cross section of the human ear	270
Figure 11.5	Relationship of decibels to watts	271
Figure 11.6	Calculating SPL at a distance <i>r</i>	272
Figure 11.7	Threshold of hearing in humans	273
Figure 11.8	Threshold of hearing and threshold of pain in humans	273
Figure 11.9	A-weighted scale for human hearing threshold	273
Figure 11.10	A-weighted burner noise curve	273
Figure 11.11	Weighting curves A, B, C, and D.	274
Figure 11.12	Block diagram of a sound level meter	274
Figure 11.13	Same sound spectrum on three different intervals	275
Figure 11.14	Typical burner noise curve	276
Figure 11.15	Nomogram for noise level addition	277
Figure 11.16	Atmospheric attenuation for octave bands with center (geometric-mean) frequencies	278
Figure 11.17	Typical earplugs and muffs.	280
Figure 11.18	Test flare at John Zink test site in Tulsa, OK	282
Figure 11.19	Typical noise signature emitted from a flare	282
Figure 11.20	Photograph of a high-pressure and low-pressure flare burning the same fuel.	283
Figure 11.21	Shadow photograph of a burning butane lighter	283
Figure 11.22	Engineer measuring flare noise	284
Figure 11.23	PWL $L_{\rm W}$ calculated from measured noise data, plotted versus heat release rate, $\dot{Q}_{\rm combust}$, for different types of industrial flares under various operating conditions	284
Figure 11.24	Predicted sound pressure field contour plots for a multipoint LRGO flare system	285
Figure 11.25	SPL emitted from a steam-assisted flare operating at normal conditions and at over-steamed conditions.	286
Figure 11.26	Burner SPL normal and with instability	287
Figure 11.27	Development of orderly wave patterns within a high-speed gas jet	288
Figure 11.28	Illustration showing the region of maximum jet mixing noise.	288
Figure 11.29	Photograph showing shock waves downstream of an air jet	288
Figure 11.30	Screech tone emissions.	289
Figure 11.31	Noise radiating from a valve	289
Figure 11.32	Photograph of two enclosed flares	290
Figure 11.33	A steam-assisted flare with a muffler.	291
Figure 11.34	Steam jet noise emitted with and without muffler.	291

List of Figures

Figure 11.35	Example for noise abatement in steam-assisted flares by reducing the amount of steam required to ensure smokeless combustion	292
Figure 11.36	Water injected into a high-pressure flare.	292
Figure 11.37	Noise spectrum from a high-pressure flare with and without water injection	293
Figure 11.38	Sound pressure versus frequency for a burner operating with and without a muffler	293
Figure 11.39	Illustration showing two different muffler designs	294
Figure 11.40	Illustration showing a common plenum chamber for floor burners in a furnace.	294
Figure 11.41	Noise emissions from a steam control valve	294
Figure 11.42	Illustration used for burner noise example	295
Figure 11.43	SPL spectrum for high-pressure flaring	296
Figure 11.44	Noise contributions separately based on the mathematical model	296
Figure 11.45	Effect of distance on flare noise.	297
Figure 12.1	Symbols of SAMA logic diagrams.	304
Figure 12.2	Steam pressure control logic	305
Figure 12.3	Schematic of SPP	307
Figure 12.4	COEN AC (adjustable characteristic) fuel valve designed for SPP controls	307
Figure 12.5	Parallel positioning of fuel and air	308
Figure 12.6	Fully metered controls with cross limiting between fuel and air.	309
Figure 12.7	Fully metered controls with parallel prepositioning and cross limiting between fuel and air	312
Figure 12.8	Operating ranges and NO _x performance of a single zone lean premixed burner	313
Figure 12.9	Operating ranges and NO _x performance of a lean premixed burner with auxiliary fuel zones	313
Figure 12.10	Typical characteristic of a butterfly type valve	317
Figure 12.11	COEN <i>i-scan</i> TM flame scanner	319
Figure 12.12	Example of the setup panel of COEN <i>i-scan</i> TM flame scanner.	320
Figure 12.13	An example of furnace pressure after the moment of flame detachment with and without subsequent detonation for high fire operation of a typical 150,000 lb/h package boiler	321
Figure 12.14	Single-element feedwater control.	325
Figure 12.15	Three-element feedwater control.	326
Figure 12.16	Pressure transmitter (left) and pressure gauge (right).	327
Figure 12.17	Thermocouple	327
Figure 12.18	Thermowell	327
Figure 12.19	High-velocity thermocouple	328
Figure 12.20	Flow coefficient <i>C</i> for square edge orifices with flange taps for larger pipes per ASME MFC #M1989	329
Figure 12.21	View of a portable TESTO analyzer.	331
Figure 12.22	Error in CARI approximation based on wet $\rm O_2$ measurements optimized for $\rm CH_4$ and $\rm CH_4$ blend with $\rm N_2$.	332

Figure 12.23	Correlation of WI and approximated $CARI$ for hydrocarbon fuels, CO, H ₂ , and blends of CH ₄ with N ₂ , CO ₂ , and CO in 50/50 (vol.) ratio	332
Figure 13.1	Centrifugal fan	. 336
Figure 13.2	Fan wheel designs	. 337
Figure 13.3	Vane axial fan	. 337
Figure 13.4	Purge air blower on the side of a combustion chamber	338
Figure 13.5	Multistage high speed centrifugal blower for a landfill application	. 338
Figure 13.6	Fan drive arrangements for centrifugal fans AMCA standard 99-2404-03	. 339
Figure 13.7	Arrangement 4 fan	340
Figure 13.8	Basic centrifugal fan curve	. 341
Figure 13.9	Basic vane axial fan curve	. 341
Figure 13.10	Basic centrifugal fan curve with horsepower.	
Figure 13.11	Forward tip blade operating curve for 1780 RPM, 70°F, and 0.075 lb/ft ³ density	342
Figure 13.12	Backward curved blade operating curve for 1780 RPM 70°F and 0.075 lb/ft ³ density	. 343
Figure 13.13	One primary and one backup fan in the field with ducting	343
Figure 13.14	Six-blade vane axial fan in the field	344
Figure 13.15	Outlet damper effects on fan performance	346
Figure 13.16	Inlet damper effects on fan performance	346
Figure 13.17	Centrifugal fan with inlet and outlet dampers.	
Figure 13.18	Speed change effects on fan performance	347
Figure 13.19	Variable and controlled pitch change effects on fan performance.	. 347
Figure 13.20	Close-up of variable pitch blades on a vane axial fan.	. 347
Figure 13.21	Close-up of a flexible coupling	. 349
Figure 13.22	Belt-driven centrifugal blower.	. 349
Figure 13.23	Oil lubricated bearings with reservoir.	. 349
Figure 13.24	Maintenance of arrangement 8 bearings	. 350
Figure 13.25	Fan foundation	. 351
Figure 13.26	Inlet and outlet expansion joints for vibration isolation of ducting	. 351
Figure 13.27	Outlet damper fan curve with horsepower.	. 354
Figure 13.28	Inlet damper fan curve with horsepower.	. 354
Figure 13.29	Speed control fan curve with horsepower.	. 355
Figure 14.1	Approximate rate of thermal (Zeldovich) NO formation	. 362
Figure 14.2	Approximate relation of NO _x reduction with FGR for fuels without FBN	. 364
Figure 14.3	NO _x performance of a typical Coen premix burner firing natural gas in a package boiler	. 367
Figure 14.4	Coen QLA burner performance at high fire	. 367
Figure 14.5	Coen DAZ TM burner	. 370
Figure 14.6	Coen Variflame TM burner	. 371

Figure 14.7	Hamworthy DFL [®] burner.	371
Figure 14.8	Coen DAF TM burner.	372
Figure 14.9	Coen Delta NO_x^{TM} burner.	372
Figure 14.10	Hamworthy ECOjet [®] gas-only burners	373
Figure 14.11	Hamworthy ECOjet [®] flame	373
Figure 14.12	Schematic of a Coen QLN^{TM} burner.	374
Figure 14.13	Coen <i>QLN</i> burner flame with 20 ppm NO _x -firing natural gas without FGR	374
Figure 14.14	Coen RMB TM burner equipped with an air isolation sliding barrel damper.	375
Figure 14.15	Fuel risers of a Coen RMB burner	375
Figure 14.16	Enhanced images of gas-fired RMB flame	376
Figure 14.17	Coen D-RMB [®] burner mounted inside the windbox	377
Figure 14.18	Coen D-RMB [™] burner performance in a large package boiler	377
Figure 14.19	Coen QLA burner schematic	378
Figure 14.20	Assembled Coen QLA burner (side).	378
Figure 14.21	Assembled Coen QLA burner (front)	379
Figure 14.22	Coen QLA burner flame with 7 ppm NO _x (natural gas firing).	379
Figure 14.23	Peabody LVC TM burner for firing BFG.	379
Figure 14.24	Modified Coen LCF burner for simultaneous low NO _x firing of multiple fuels of variable composition	380
Figure 14.25	NO _x reduction with FGR mixed with combustion air or fuel	380
Figure 14.26	Large Coen QLN burners mounted inside windboxes.	381
Figure 14.27	Coen <i>QLN-II</i> burner	382
Figure 14.28	Row of boilers equipped with Coen QLN - II^{TM} burners rated to 63×10^6 and 90×10^6 Btu/h (18.5–26 MWt)	382
Figure 14.29	Typical NO _x performance of QLN - II^{TM} burner with FGR	383
Figure 14.30	Large 350×10^{6} Btu/h (100 MW) Coen DAF^{TM} burner for firing syngas and natural gas	383
Figure 14.31	Flames of Coen DAF TM burner firing natural gas (a) and syngas (b)	383
Figure 14.32	Schematic of Coen Delta Power TM burner.	384
Figure 14.33	Examples of NO_x reduction with air staging and FGR in utility boilers when firing natural gas	387
Figure 14.34	Effect of fuel biasing on the NO _x	387
Figure 14.35	Effect of FGR on thermal portion of NO _x in different utility boilers	388
Figure 14.36	NO_x emissions firing #6 oil with 0.54% FBN	388
Figure 14.37	Low NO _x natural gas flame	390
Figure 14.38	Main components of a fixed geometry burner for a gas and oil T-fired boiler	390
Figure 14.39	Spinners for tilting burners	390
Figure 14.40	Flame stabilizers and adjacent buckets of a tilting (a) gas- and (b) oil-fired burner	391

Figure 14.41	Corner of a T-fired boiler with tilting burners with some heat damage	391
Figure 14.42	Coen warm-up gas burners	392
Figure 14.43	Conceptual design of low CO flue gas reheat system for refinery gas firing	393
Figure 14.44	Coen <i>ProLine</i> TM burner flames at low and high fire operation	393
Figure 15.1	Typical plant schematic	399
Figure 15.2	Cogeneration at Teesside, England	400
Figure 15.3	Combination (oil and gas) fired duct burners at Dahbol, India	401
Figure 15.4	Typical location of duct burners in an HRSG	401
Figure 15.5	Schematic of HRSG at Teesside, England	402
Figure 15.6	Fluidized bed startup duct burner	402
Figure 15.7	Inline burner	403
Figure 15.8	Linear burner elements	403
Figure 15.9	Gas flame from a grid burner	403
Figure 15.10	Oil flame from a side-fired oil gun	403
Figure 15.11	Approximate requirement for augmenting air	405
Figure 15.12	Drawing of a duct burner arrangement	405
Figure 15.13	Comparison of flow variation with and without straightening device.	407
Figure 15.14	Physical model of duct burner system	407
Figure 15.15	Sample result of CFD modeling performed on an HRSG inlet duct	408
Figure 15.16	Drilled pipe duct burner	408
Figure 15.17	Low-emission duct burner	409
Figure 15.18	Flow patterns around flame stabilizer	410
Figure 15.19	Effect of conditions on CO formation.	411
Figure 15.20	Typical main gas fuel train: single element or multiple elements firing simultaneously	414
Figure 15.21	Typical main gas fuel train: multiple elements with individual firing capability	414
Figure 15.22	Typical pilot gas train: single element or multiple elements firing simultaneously	415
Figure 15.23	Typical pilot gas train: multiple elements with individual firing capability	415
Figure 15.24	Typical main oil fuel train: single element	416
Figure 15.25	Typical main oil fuel train: multiple elements	417
Figure 15.26	Typical pilot oil train: single element	417
Figure 15.27	Typical pilot oil train: multiple elements.	418
Figure 16.1	Peabody twin shell air heater	422
Figure 16.2	Twin shell, twin-inlet reverse flow combustion air	424
Figure 16.3	Twin shell single-inlet high-temperature air heater	425
Figure 16.4	Twin shell twin-inlet all-metal air heater	425
Figure 16.5	Peabody scroll burner	426
Figure 16.6	Pressurized air heater	426

Figure 16.7	Pressurized air heater with an internally mounted burner	. 427
Figure 16.8	Low NO _x QL burner for air heaters.	. 429
Figure 17.1	Hamworthy Combustion ElectroTec® rotary-cup burner.	. 433
Figure 17.2	Hamworthy Combustion DF register burner	. 434
Figure 17.3	Heavy-fuel oil sprayer and twin-fluid Y-jet atomizer.	. 434
Figure 17.4	Hamworthy Combustion HXG dual-fuel register burner	. 435
Figure 17.5	Chentronics® high-energy igniter	. 435
Figure 17.6	Hamworthy Combustion AMOxsafe® GCU	. 436
Figure 17.7	AMOxsafe® GCU flow schematic.	. 437
Figure 17.8	AMOxsafe® GCU temperature profile	. 438
Figure 17.9	Hamworthy Combustion dual-fuel DF register burner	. 438
Figure 17.10	Fuel gas valve enclosure for FPSO engine room boiler.	. 439
Figure 17.11	Hamworthy Combustion's triple 120 m-ton/h (132 U.S. ton/h) steam boiler module for FPSO	. 440
Figure 17.12	Hamworthy Combustion's high-pressure steam boiler module for power generation	. 440
Figure 17.13	Hamworthy Combustion fuel gas knock-out pot on an FSO	. 441
Figure 17.14	Hamworthy Combustion DFL low NO _x register burner.	. 441

List of Tables

Table 2.1	Common English Units	
Table 2.2	Common SI Units	
Table 2.3	Prefixes and Abbreviations	
Table 2.4	Dynamic Viscosity of Common Fluids Referenced at Normal Conditions	
Table 2.5	Samples of the Two Decimal Notations	
Table 2.6	Conversion Factors	
Table 3.1	Density Comparison of Average Air and 79% N_2 21% O_2 Assumption	
Table 3.2	Common Gaseous Fuels	
Table 3.3	Combustion Data for Hydrocarbons	
Table 3.4	Specific Gravity and Properties of Common Liquid Fuels	
Table 3.5	Liquid Fuel Properties by API Gravity as well as Common Coals	
Table 3.6	Adiabatic Flame Temperatures	
Table 4.1	Example Pipeline-Quality Natural Gas	72
Table 4.2	Commercial Natural Gas Components and Typical Ranges of Composition	73
Table 4.3	Composition of a Typical Refinery Gas	
Table 4.4	Typical Composition of Steam Reforming/PSA Tail Gas	75
Table 4.5	Typical Composition of Flexicoking Waste Gas	
Table 4.6	Volumetric Analysis of Typical Gaseous Fuel Mixtures	
Table 4.7	Physical Constants of Typical Gaseous Fuel Mixtures	
Table 4.8	Physical Constants of Typical Gaseous Fuel Mixture Components	
Table 4.9	Quantitative Listing of Products Made by the U.S. Petroleum Industry	
Table 4.10	General Fraction Boiling Points	
Table 4.11	Requirements for Fuel Oils (per ASTM D 396)	
Table 4.12	Typical Analysis of Different Fuel Oils	
Table 4.13	Naphtha Elemental Analysis	90
Table 5.1	Liquid Fuel Properties	
Table 5.2	Effect of Dimensionless Parameters on Liquid Breakup Length	
Table 5.3	Combustion Performance of the HERO Gun	
Table 5.4	Combustion Test Results for the MEA Oil Gun	
Table 5.5	Effect of Operational Parameters on Pollutant Emissions	
Table 6.1	Coal Analyses on As-Received Basis	
Table 6.2	Class of Coals	
Table 6.3	Fuel Properties of Biomass and Solid Fuels	117

Table 7.1	Specific Heat Curve Fit Equation	128
Table 7.2	Enthalpy of N_2 Gas as Function of Temperature	130
Table 7.3	Enthalpy Values for Saturated Steam and Water Based on Temperature	131
Table 7.4	Enthalpy Values for Saturated Steam and Water Based on Pressure	131
Table 7.5	Thermal Conductivity of Common Materials	137
Table 7.6	Properties of Various Substances at above 32°F (0°C)	137
Table 7.7	Typical Convective Heat Transfer Coefficients	139
Table 7.8	Normal Emissivities, ε, for Various Surfaces	147
Table 7.9	Mean Beam Lengths L_e for Various Gas Geometries	147
Table 8.1	Fluid Properties of Various Gases	154
Table 8.2	Specific Weight and Viscosity of Various Fluids at Atmospheric Pressure	156
Table 8.3	Equivalent Roughness for New Pipes	166
Table 9.1	Universal "Empirical" Constants Used in the Standard k - ε Turbulence Model	188
Table 9.2	Cartesian Differential Equation Set	189
Table 9.3	Cylindrical Differential Equation Set	190
Table 9.4	Discrete Ordinates for the S_N -Approximation ($N = 2, 4, \text{ and } 6$)	200
Table 10.1	U.S. National Ambient Air Quality Standards (NAAQS) as of October 2011	212
Table 10.2	Combustion Emission Factors (lb/10 ⁶ Btu) by Fuel Type	214
Table 10.3	NO _x Emission Factors by Fuel Type	221
Table 10.4	Uncontrolled NO _x Emission Factors for Typical Process Heaters	221
Table 10.5	NO _x Reductions for Different Low-NO _x Burner Types	233
Table 10.6	Location of Traverse Points in Circular Stacks	243
Table 11.1	Speed of Sound in Different Media and at Different Temperatures	270
Table 11.2	The 10 Octave Bands	271
Table 11.3	Octave and One-Third Octave Bands	275
Table 11.4	A-Weighting of the Burner Sound Curve from Figure 11.14	276
Table 11.5	Addition Rules	277
Table 11.6	Sound Levels of Various Sources	280
Table 11.7	OSHA Permissible Noise Exposure	280
Table 11.8	Calculation of the Typical Combustion Noise Spectrum of a Stable Burning Flare from the Overall Sound Pressure Level (OASPL)	283
Table 11.9	OASPL Determined Experimentally and Using the Mathematical Model	297
Table 12.1	Difference in <i>C</i> with Flange Taps between a 20 in. (50 cm) Diameter Pipe and 2 in. (5 cm) Diameter Pipe (Independent of Re)	329
Table 13.1	Relative Characteristics of Centrifugal Blowers	338
Table 13.2	Effects of Temperature and Pressure on Volume and Horsepower	340
Table 13.3	Effects of Density on Horsepower	341

Table 13.4	Fan Bearing Vibration Limits	350
Table 13.5	Fan Vibration Diagnostic Clues	352
Table 13.6	Control Options Relative to Design Rate	353
Table 13.7	Potential Controls Cost Savings	353
Table 13.8	Blower Trouble Shooting Guide	356
Table 15.1	Typical NO _x and CO Emissions from Duct Burners	413

Foreword

Combustion has routinely been defined as the rapid oxidation of a fuel producing an exothermic reaction.^{1,2} A first order of complexity can be added to this definition as two solutions of the Rankine–Hugoniot equations, resulting in detonation and deflagration combustions.³ Detonation combustion results in a shock wave of supersonic velocities and can loosely be described as an explosion. Deflagration combustion is a very fast process and results in subsonic flame velocities. The editors of this book restrict the discussion to subsonic deflagration.

A primary division of combustion categories relevant to our target reader is premixed and non-premixed flames, both of which are considered in this book. A further subcategory is turbulent and laminar flames. Industrial flames are generally designed for turbulent flows, but can be laminar at turndown or near the surface of small solid or liquid droplets^{4,5}; these are dealt with in this text. Another variant to the treatment of combustion covered in this book is the generation of useful heat via combustion. Efficiencies and computing the amount of useful heat absorbed are discussed as they are critical to the usefulness of combustion in industrial applications.

The rigorous treatment of combustion can at times be so complex that the kinetic variables, fluid turbulence factors, luminosity, and other factors cannot be defined well enough to find a realistic solution. It is our intention in this text to simplify the processes and not to create more complexities. This book is written for those involved in applications of full-size combustion systems. The applications are provided with state-of-the-art solutions. Several practical and solvable examples are also provided.

Several chapters contain significant discussions on emissions. The formation, reduction, and prediction of emissions from combustion systems are examined in detail. The impact of external variables is also discussed. The reader can thus make intelligent choices on fuels, burners, and combustion chambers and clearly understand the impacts of the many variables.

Stephen B. Londerville

References

- 1. C.E. Baukal (ed.), *The John Zink Combustion Handbook*, CRC Press, Boca Raton, FL, 2001.
- 2. A.H. Lefebvre, *Gas Turbine Combustion*, 2nd edn., Taylor & Francis, New York, 1999, p. 33.
- 3. F.A. Willams, *Combustion Theory*, 2nd edn., Perseus Books, Reading, MA, 1985.
- 4. A. Linan and F.A. Williams, *Fundamental Aspects of Combustion*, Oxford University Press, New York, 1993.
- 5. L.D. Smoot and P.J. Smith, *Coal Combustion and Gasification*, Plenum Press, New York, 1985.

Preface

The last *Coen & Hamworthy Combustion Handbook* was written by Arthur H. Light in 1920.¹ In the late 1980s, Coen authorized the publication of a new combustion handbook at the request of its customers, but day-to-day work never allowed time for the book.

The origins of this book started during a business trip. In early 2000, one of the editors (Steve) was on a trip to visit a major Coen customer with a young Coen application engineer. During dinner, the engineer told Steve a story of a number of engineers debating the units of molecular weight for hours. It was at this moment that Steve decided a unique kind of book was needed that did not exist for combustion engineers. The book needed to be all inclusive and cover the very basics in building block form up to more complex combustion topics for everyone involved in combustion systems to use.

This book is designed for all engineers and professionals involved in the field of industrial and utility combustion systems. It is roughly divided into two parts, consisting of a total of 17 chapters, sequentially covering relevant and important combustion engineering basics and then specific computations and applications. Each chapter is roughly organized from simple to more complex, thus allowing the reader to absorb as much as they may need before moving on to the next chapter. Practical examples are also included.

The intent is to have a ready reference combined with a practical review needed for engineers in the field of combustion. The practical aspects of all combustion systems include by necessity a variety of subsystems that include, as a minimum, methods to

- Transport and introduce fuel and air to a system
- Safely monitor the combustion system

- Control all the flows and operational parameters
- Design a burner/combustion chamber to achieve performance levels such as emissions and heat transfer
- Avoid excessive noise and vibration and provide long, durable equipment life under adverse conditions

As a result, the topics in this book include units, chemistry, fluid flow, heat transfer, atomization, solid fuels including handling, liquid and gaseous fuels, pollution emissions, CFD, noise and practical discussions on controls, auxiliary support, and burner selection criteria.

This book is designed to be a review of the critical, relevant elements of combustion science required to apply simple calculations and more advanced computations. It is especially targeted at engineers and professionals in the field of combustion who need a review of fundamentals so they can make calculations and decisions on proper design features, computations, emissions, fuel choices, controls, burner selection, and burner/furnace combinations. In addition to the building block organization, users can go directly to individual chapters concerned with specific applications to get information on different applications without reading the preceding chapters.

Reference

1. A.H. Light, *Efficient Oil Burner*, Coen Company, San Francisco, CA, 1920.

Acknowledgments

The authors collectively thank the Coen, John Zink, and Hamworthy companies for their help and support during the preparation of this book. Many colleagues helped with ideas, content, and the preparation of figures and tables. We especially thank Rick Ketchum, Andrew Walter, Vincent Wong, and Jeffrey Ma for their help in preparing the materials for this book.

Chuck Baukal thanks his wife, Beth, and his daughters, Christine, Caitlyn, and Courtney, for their continued support. He also thanks the good Lord above, without whom this would not have been possible. Wes Bussman thanks his family, Brenda, Sean, and Zach, for their support. He also thanks all of his colleagues at the John Zink Company for their encouragement and for the knowledge they have shared with him throughout his career. Vladimir Lifshits acknowledges Coen Company, Inc. and his long-term boss, Steve Londerville, for a stimulating work environment and opportunity to expand combustion technology during his 23-year career with Coen and for the invitation to write chapters of this book on burners and controls. Steve Londerville acknowledges Chet Binasik for hiring him at Coen in 1977 and providing a long, fulfilling career in R&D; Temple Voorhees for his continuous guidance in the drive for new products with a passion that was unparalleled in this industry; Sherman Eaton, his mentor for many years, who paved the way for his career and accomplishments; Jim Church for driving into his mind that engineers need to understand financials and for their many discussions; his wife Pure who never complained about, "Sorry I have work this weekend"; and finally John Baxter, his lifelong friend since childhood, who always said, "Just get it done, and then we can have some fun."

Editors

Charles E. Baukal, Jr., PhD, is the director of the John Zink Institute for the John Zink Company, LLC (Tulsa, Oklahoma), where he has been since 1998. He has also been the director of R&D and the director of the R&D Test Center at Zink. He previously worked for 13 years at Air Products and Chemicals, Inc. (Allentown, Pennsylvania) in the areas of oxygenenhanced combustion and rapid gas quenching in the ferrous and nonferrous metals, minerals, and waste incineration industries. He worked for Marsden, Inc. (a burner supplier in Pennsauken, New Jersey), for five years in the paper, printing, and textile industries and for Selas Corp. (a burner supplier in Dresher, Pennsylvania) in the metals industry, both in the area of industrial combustion equipment. He has over 30 years of experience in the fields of industrial combustion, pollution control, and heat transfer and has authored more than 100 publications in those areas. Dr. Baukal is an adjunct instructor at Oral Roberts University, the University of Oklahoma, the University of Tulsa, and the University of Utah. He is the author/ editor of eight books in the field of industrial combustion, including Oxygen-Enhanced Combustion (1998), Heat Transfer in Industrial Combustion (2000), Computational Fluid Dynamics in Industrial Combustion (2001), The John Zink Combustion Handbook (2001), Industrial Combustion Pollution and Control (2004), Handbook of Industrial Burners (2004), Heat Transfer from Flame Impingement Normal to a Plane Surface (2009), and Industrial Combustion Testing (2011).

Dr. Baukal earned his PhD in mechanical engineering from the University of Pennsylvania (Philadelphia, Pennsylvania) and is a licensed professional engineer in the state of Pennsylvania, a board-certified environmental engineer (BCEE), and a qualified environmental professional (QEP). He has served as an expert witness in the field of combustion, has 11 U.S. patents, and is a member of numerous honorary societies and *Who's Who* compilations. He is also a member of the American Society of Mechanical Engineers, the American Society for Engineering Education (ASEE), and the Combustion Institute. He serves on several advisory boards, holds offices in the Combustion Institute and ASEE, and is a reviewer for combustion, heat transfer, environmental, and energy journals.

Stephen B. Londerville is currently chief engineer at Coen Company, San Mateo City, California. He previously served as chief technical officer since 1978 at Coen, vice president R&D, director R&D, and chief engineer. During the past 35 years, he has been involved with all aspects of product development at Coen Company. He earned his mechanical engineering degree from San Jose State University in 1977. He holds 7 patents and has authored 16 publications. He is a member of ASME, AIChE, the Combustion Institute, Tau Beta PI, and the Institute for Liquid Atomization and Spray Systems (ILASS) and was past officer in the board of directors at ILASS. He was recognized as Engineer of the Year by ASME, Santa Clara Valley Section.

Contributors

John Ackland worked at the John Zink Company, LLC (Tulsa, Oklahoma), and John Zink International Luxembourg Sarl for more than 13 years in various technical and business roles within the process burner and process flare departments. He earned his BSc in chemical engineering from the University of Tulsa.

Kenneth Ahn has worked in various technical roles at the Coen Company for 23 years. He worked in research & development for 18 years and holds two patents in duct burner design. He currently serves as a senior design engineer at the Coen Company. He received his BS in mechanical engineering from the University of California at Berkeley in 1988.

Kevin Anderson, PE, is the design engineering manager for Coen Company, Inc. In this capacity, Kevin is responsible for the proper design and operation of Coen-supplied combustion equipment. He leads Coen's CFD modeling efforts and has substantial experience using CFD modeling in the development of new combustion products. Kevin has worked in the field of industrial combustion for 16 years and received his MS in mechanical engineering from Sacramento State University. He is a licensed professional engineer in the state of California.

Peter F. Barry is the former director of duct burners for the John Zink Company, LLC (Tulsa, Oklahoma). He earned his BS in mechanical engineering from Lehigh University.

John Bellovich is the manager of the Combustion Rental Group at the John Zink Company, LLC (Tulsa, Oklahoma). He earned his BSME from the University of Tulsa and has more than 20 years of experience in the industrial combustion industry. He has written or cowritten three published articles.

Wes Bussman, PhD, is a senior research and development engineer for the John Zink Company, LLC (Tulsa, Oklahoma). He earned his PhD in mechanical engineering from the University of Tulsa. He has 20 years of experience in basic scientific research work, industrial technology research and development, and combustion design engineering. He holds ten patents and has authored several published articles and conference papers. He has also been a contributing author to several combustion-related books and has taught engineering courses at several universities. He is a member of the Kappa Mu Epsilon Mathematical Society and Sigma Xi Research Society. **Shirley X. Chen** is a senior CFD engineer at the John Zink Company's Simulation Technology Solutions Group. She has over ten years of experience in the power generation and eight years of experience in the petrochemical industries. Her areas of expertise include radiative heat transfer, flow and heat transfer in porous media, and combustion simulations. She has published over 15 papers in peer-reviewed journals and conference proceedings. Shirley earned her PhD in aerospace and mechanical engineering from the University of Oklahoma.

I.-Ping Chung, PhD, is a senior development engineer in the Technology and Commercial Development Group at the John Zink Company, LLC (Tulsa, Oklahoma). She has worked in the field of industrial combustion and equipment, fluid dynamics, atomization and sprays, spray combustion, and laser diagnosis in combustion and earned her PhD in mechanical and aerospace engineering from the University of California, Irvine. She has 24 publications and 9 patents and is a registered professional engineer of mechanical engineering in California and Iowa states.

Joseph Colannino is chief technology officer of Clear Sign Combustion Corporation—a company that applies low power electric fields to flames to improve their shape and emissions. Prior to joining ClearSign, he was director of research and development at the John Zink Company, LLC (Tulsa, Oklahoma), where he led global R&D efforts. His responsibilities included management of intellectual property, oversight of John Zink's testing facility, and leading knowledge management efforts. Colannino has more than 25 years of experience in the combustion industry and has authored or contributed to several books, including Industrial Combustion Testing, The Air Pollution Control Guide, The John Zink Combustion Handbook, and Modeling of Combustion Systems—A Practical Approach. He is a registered professional engineer and has written and reviewed problems appearing on the NCEES professional engineering exam given in all 50 states for professional engineering licensure. Colannino's areas of expertise include R&D management, combustion, pollutant formation and control, and statistical experimental design. Past and present memberships include the American Institute of Chemical Engineers, the American Chemical Society, the Air and Waste Management Association, the American Statistical Association, and the National Association of Professional Engineers. He earned his BSc from the California Polytechnic University in Pomona and his master's degree in knowledge management from the University of Oklahoma.

Carl-Christian Hantschk, PhD, has been working as a consulting engineer in industrial acoustics for Müller-BBM GmbH (Munich, Germany) since 2001. He was promoted to managing director in 2009. He works on industrial acoustics in general, including theoretical and applied acoustics, environmental acoustics, aero-acoustics, and numerical acoustics, with special focus on the interdisciplinary field between combustion and acoustics. He holds a diploma in mechanical engineering and received his doctorate in thermodynamics from the Technical University Munich, Germany. His research has focused on combustion-driven acoustic oscillations in burners and combustion-acoustic interactions. He has also given lectures on chemical thermodynamics, thermal radiation, and heat transfer and acoustics at his university, at international conferences, and for industrial clients. His work has resulted in 30 publications and 4 invention disclosures. As one of his main research projects, he codeveloped an active acoustic feedback control for industrial combustion systems.

Jay Karan (Jaiwant Jayakaran) is director of thermal oxidizer systems at the John Zink Company, LLC (Tulsa, Oklahoma). He has over 25 years of experience in the fields of combustion, petrochemicals, and power, with responsibilities in R&D, plant operations, and engineering. Jay earned his MS in mechanical engineering. He has authored many technical articles and papers over the years and has several patents.

Vladimir Lifshits is a principal development engineer of the Design Engineering Group at Coen Company, Inc. He joined the company in 1989. For eight years up to 2008, he was a director of research and development at Coen Company. Lifshits pioneered the development of low NO_x burners with lean premix combustion. His many other developments include advanced combustion products and systems for boilers and steam generators for enhanced oil recovery and air heaters. He has authored many technical papers and patents. He earned his MS in mechanical engineering and physics from St. Petersburg Polytechnic Institute of Russia.

Michael A. Lorra, PhD, has been a CFD engineer for the John Zink Company, LLC (Tulsa, Oklahoma), since 1999. Previous to that, he worked at Gaswaerme Institut, Essen, Germany, e.V, for eight years, where he also completed his PhD. He gained experience in NO_x reduction techniques, especially in reburning technology, and developed his own software code for the computation of turbulent reacting flow problems using laminar flamelet libraries. During his time at John Zink, he specialized in CFD models for thermal oxidizers and flare systems. He currently works as a senior process engineer/CFD specialist at John Zink KEU GmbH in Krefeld, Germany.

Richard Price is the sales director of Hamworthy Combustion (United Kingdom) for the marine and offshore industry and has over 18 years of experience in marine-related combustion applications. He earned his master's degree in mechanical engineering from Southampton University in the United Kingdom. He is a chartered engineer and member of the Institute of Marine Engineering, Science & Technology.

Edwin Schorer, PhD, has been working as a consulting engineer in industrial acoustics for Müller-BBM GmbH (Munich, Germany) since 1989. He earned his degree in electrical engineering and his doctorate in psychoacoustics from the Technical University Munich, Germany. He was promoted to managing director in 2006. His research interests are in industrial acoustics in general, including theoretical and applied acoustics, with special focus on noise predictions for flare noise and fan noise, fluid mechanics, ship acoustics, and acoustic optimization of postal automation systems. His work has resulted in 15 publications on psychoacoustics as well as industrial and technical acoustics. Dr. Schorer is a member of the German Institute for Standardization, the Noise Control and Vibration Engineering Standards Committee, and the German Acoustical Society. His research focuses on a functional schematic of just noticeable frequency and amplitude variations. He has worked as a temporary academic counsel at his university, lecturing electroacoustics and technical acoustics. He has also acted as a supervising tutor for the student's diploma theses and practical trainings.

James G. Seebold, Chevron (retired), has more than 40 years of experience in the design, operation, and maintenance of burners, fired heaters, furnaces, incinerators, boilers, and flares, including low-NO_x burners, selective catalytic and noncatalytic NO_x reduction systems, and hazardous air pollutant emissions. He conceived and led the 4-year, \$7 million, 20-participant, industry–government–university collaboration that provided the basis for this volume's chapter on pollutant emissions. He earned his PhD in mechanical engineering from Stanford.

Stephen L. Somers was a senior process engineer at the John Zink Company, LLC (Tulsa, Oklahoma). He has over 30 years of experience in combustion and process design, with 15 of those years in the application and design of duct burners for HRSG supplementary firing. He earned his MS in chemical engineering from the University of Oklahoma and his BS in chemical engineering from the University of Tulsa.

Richard T. Waibel, PhD, was a senior principal engineer in the Burner Process Engineering Group at the John Zink Company, LLC (Tulsa, Oklahoma). He worked in the field of burner design and development and received his doctorate in fuel science from The Pennsylvania State University. He has published over 70 technical papers, publications, and presentations. Dr. Waibel was the chairman of the American Flame Research Committee for many years, starting in 1995.

Jim Warren is the manager, Mechanical Engineering Group, for the Thermal Oxidizer/Flare Division at the John Zink Company, LLC (Tulsa, Oklahoma). Warren earned his BSME from the University of Tulsa and has over 23 years of experience at Zink. His area of expertise is refractory and rotating equipment. He holds API-936 certification in Refractory Installation Quality Control and is responsible for equipment selection for centrifugal and vaneaxial blowers. He presently serves on the Mechanical Engineering Advisory Board at the University of Tulsa.

Nigel Webley has been group technical director at Hamworthy Combustion since 2006. He has over 30 years of experience in combustion, including design and project management of thermal oxidizer systems and burners for large industrial and utility boilers. He earned his BSc in environmental chemical engineering from the University of Salford in the United Kingdom and a postgraduate diploma in management studies. He is a chartered engineer and a member of the Energy Institute.

Timothy Webster is the president of Coen Company, Inc. He has worked in the field of industrial combustion for 18 years and earned his master's degree in engineering from the University of Wisconsin. He has over 40 publications and is a licensed professional mechanical engineer in California.

Jeff White is a senior flare design engineer at the John Zink Company, LLC (Tulsa, Oklahoma). He has worked in the field of flare system design at the John Zink Company for 30 years. He earned his master's degree in mechanical engineering from the University of Texas at Austin. He has published two articles, one on flare radiation methods and the other on flow measurement by ASME nozzles.

L Introduction

Stephen B. Londerville, Timothy Webster, and Charles E. Baukal, Jr.

CONTENTS

1.1	Introduction	1
1.2	History of Coen Company	2
1.3	History of Hamworthy Combustion	3
1.4	Boiler Basics	3
	1.4.1 Industrial Boilers	3
	1.4.2 Package Boilers	4
	1.4.3 Field-Erected Boilers	6
	1.4.4 Power Generation Industry	6
1.5	Utility Boilers	7
1.6	Utility Boiler/Burner Design	7
1.7	Utility Boiler Types	7
	1.7.1 Wall Fired Burner Installation	7
	1.7.2 Opposed Fired Installation	8
	1.7.3 Tangentially Fired Installations	8
1.8	Air Heaters	9
1.9	Duct Burners	9
1.10	Burners	10
	1.10.1 Competing Priorities	10
	1.10.2 Design Factors	11
	1.10.2.1 Fuel	12
	1.10.2.2 Oxidizer	12
	1.10.2.3 Custom-Engineered Solutions	12
Refe	rences	13

1.1 Introduction

While fire has been existent since the beginning of time, much remains to be learned about it. Because the science of combustion combines heat transfer, thermodynamics, chemical kinetics, and multiphase turbulent fluid flow to name a few areas of physics, the study of industrial combustion is interdisciplinary by necessity.

The field of industrial combustion is very broad and touches directly, or indirectly, nearly all aspects of life. Electronic devices are generally powered by fossilfuel-fired power plants. Automobiles use internal combustion engines. Planes use jet-fuel-powered turbine engines. Most materials have been made through some type of heating process. While this book is concerned specifically with industrial/utility combustion, all of these combustion processes share many features in common.

The last Coen combustion handbook was written in 1920 by Arthur H. Light.¹ This current handbook was inspired from an internal Coen week-long engineering workshop that was developed as an in-depth review for engineers specializing in combustion applications. The course was required for all company engineers and included a comprehensive final exam. This workshop formed the basis for the topics and order of introduction in this handbook. This handbook is intended to be a review of basic engineering topics, followed by more detailed topics and practical examples.

1.2 History of Coen Company

The origins of Coen Company can be traced back to 1912, when Garnet Coen first fashioned an innovative device which would heavily impact the fuel burning industry. His invention—the adjustable tip mechanical oil burner, a unique device that could maintain atomization quality at low supply pressure via an adjustable tip—was what ultimately spurred the company to its present success.²

In 1914, Coen employed Joseph Voorheis, a mechanical engineer who at the time was working for Shell Oil Company. Voorheis sought after Coen's burner design for the retrofit of a mechanical burner onto a tugboat and soon after began working for the company. With his help, the first "Coen system" of mechanical oil burning was created consisting of an oil heater, a duplex strainer, and simple integrated pumping systems ahead of the burner.

From the beginning, it was obvious the company intended to offer more than just a product or system. It was offering engineering expertise to accommodate the combustion requirements and capabilities of any furnace, at sea or on land. This early emphasis on engineering would serve the company well in the decades ahead as new technologies created expanding markets and opportunities.

It was not long before the efficiency engineers of large oil and industrial companies recognized the adaptability of the Coen systems for operation of the boiler and refinery heater furnaces of their stationary installations. By 1921, hundreds of Coen burner systems were fueling boilers and furnaces in the oil companies' pumping stations and refinery heaters, in breweries, power plants, foundries, smelters, and institutions throughout the United States.

By the early 1950s, a new trend was being established in the boiler industry-packaged boilers. Packaged water tube boilers were shop-assembled and could be transported and installed within days after unloading. Prior to this, multi-burner boilers were erected on site and took months to construct. Packaged boilers resolved these issues and could be shipped on a flat car to the site, thus saving time, labor, and money. However, these new long furnaces did not permit the application of multiple burners, common with field-erected boilers. To overcome this problem, Coen developed new forced draft large single burners custom engineered for these new furnaces. Further, Coen provided package burners for these boilers, complete with piping and controls, so the entire boiler/burner/controls became a package unit. Coen has provided thousands of these package burner units.

In the 1970s, Coen realized that oil and gas prices would drive large fuel users, such as cement plants and larger boilers, to the use of coal. The company developed a complete line of coal-fired burners and its fuel feed system for rotary kiln firing and industrial boilers. The system provided higher output, lower fuel consumption, and better quality product than any other coal firing system available at the time. This was also a time of alternative fuels and efficiency innovations. Coen developed biomass burners and slurry burners together with complicated microprocessor control systems into packages. At the time, it was projected that natural gas would cease to be used as a boiler fuel.

In recent years, the trend toward the use of natural gas has increased dramatically, due to lower relative cost, higher availability, and lower pollution emissions. Coen responded to this need with the development of Low NO_x gas burners and Ultra Low NO_x gas burners and the associated controls required. Unknown in the 1970s, Coen was converting kilns, industrial boilers, and utility boilers to natural gas firing. Although seemingly simple, conversion to fire natural gas in many cases required a detailed heat transfer analysis due to changes in heat losses and luminosity of the flames. These conversions were uniquely engineered solutions that by then had become a common Coen supplied offering.

Coen remained under the control of Garnet Coen until 1934 when Joe Voorheis acquired principal ownership of the company. Coen continued as a privately owned company (Voorheis) when in April 2007 it was acquired by another privately owned company: Koch Chemical Technology Group, a division of Koch Industries. This acquisition merged Coen products and Todd combustion products. In 2011, Coen acquired Hamworthy Peabody Combustion, further expanding its combustion products and offerings. On August 2, 2012, Coen celebrated 100 years since its incorporation on August 2, 1912. For all those years, Coen has remained innovative and privately owned.

Although Coen began as a company providing burners for industrial boiler and process heaters, it has expanded since the inception 100 years ago to include

- Utility/industrial/process burners and associated support products
- Advanced combustion controls and burner managements systems
- Applications and systems for a wide variety of solid, liquid, and gaseous fuels
- Pump sets, fuel trains, and custom systems such as solid conveying
- Cement, lime and ore kilns, air heaters, incinerators, and duct burners systems
- Unique custom solutions to one of a kind combustion applications

1.3 History of Hamworthy Combustion

While Coen, based in San Francisco, California, was retrofitting boilers with a novel mechanical atomizer around 1912, two brothers, Percy and Sidney Hall, incorporated the Hamworthy Engineering Company on April 16, 1914, located 5350 miles away in Poole England. Hamworthy designed and built oil engines initially for marine use plus pumps and compressors.³

After surviving two wars and the great depression, Hamworthy realized the trend in switching from coal fuels to oil and established the British Combustion Equipment (BCE) group in 1946. By 1956 the BCE had become the driving force in the Hamworthy group. From 1960 to 1980, Hamworthy had close links with the British Central Generating Board (CEGB) in the supply of utility-grade oil-fired burners to new oil-fired utility furnaces. In the early 1990s, Hamworthy acquired Peabody Combustion, another burner-based company founded in the United States in 1920.

From the mid-1980s to the present time, Hamworthy either acquired or developed a complete line of burners for gas and oil firing, ignition systems, and package burners systems. Together, Coen and Hamworthy will be celebrating nearly 200 years of combined combustion experience at the time of this publication.

1.4 Boiler Basics

Included later is a significant discussion on boilers in this section because this is the largest application of large burners and the burner design and placement is essential for the boiler performance. Simply stated, boilers convert water to steam; however, the actual process is very complex. Water tube boilers can be simply described as an upper steam drum and a lower water drum (mud drum). These drums are connected by a multitude of tubes forming both a large open volume called a radiant section and a multitude of closely spaced tubes forming a convection section (see Figure 1.1). Some of these tubes can be "risers" and some "down comers" causing natural circulation in the boiler water/steam system. Larger boilers may have forced circulation using pumps. Flames are introduced in the radiant section, producing mostly radiant heat transfer. The post-flame gases enter the convection section where the dominant mode of heat transfer is convection (see Chapter 7).

Boilers receive treated feed water (liquid). This is added to the lower "mud" drum at 212°F–300°F (100°C–150°C). The heat from flame or post-flame gases heats the water which is converted into steam in the "rising tubes" up to

FIGURE 1.1 Flow through a boiler, highlighting radiant and convection sections.

the steam drum. At the steam drum, both water and steam exist. Separators are used (not shown) that separate steam from water. The result is saturated steam at the exit.

The boiled water (steam) is usually controlled at a much higher pressure than ambient, for example, maybe 150–500 PSIG (10–35 barg). This means the temperature of the steam is higher than atmospheric boiling ($212^{\circ}F = 100^{\circ}C$). The steam generated by boilers can be saturated or superheated. Saturated steam is in equilibrium with the hot water at any given pressure, meaning both liquid and steam exist in the same volume/space. Saturated steam temperature is a direct function of pressure, that is, 212°F (100°C) at atmospheric pressures. At 350 PSIG (24 barg), the saturated temperature for boiling is at 435°F (223°C). Heating the resultant saturated steam to higher temperatures will result in superheated steam by returning saturated steam back to the boiler from the steam drum to super heater tubes for further heating.

Although the firing rate of the burner defines the boiler steam output, the burner design and placement must be engineered to achieve the boiler essential operation such as

- Prevention of flame impingement
- Emission compliance, NO_x, CO, HCs. VOC, particulate, opacity, etc.
- Efficiency, limiting excess air, turndown
- Noise from piping and combustion roar
- Control of superheat temperature

1.4.1 Industrial Boilers

Burners designed for use in industrial boilers are most commonly of the circular register design, range in size from heat inputs of 20 to 400×10^6 British Thermal Units (Btus)/h (6–115 MW), operate with forced draft (FD) fans supplying the combustion air, and burn gas or liquid hydrocarbon fuels. This section covers a variety of different sizes and types of industrial boilers. The most commonly encountered boilers would be single-burner industrialpackaged boilers and wall fired field-erected boilers with up to six burners per boiler. Industrial-packaged boilers consist of a furnace and boiler, which is a self-contained system that can basically be shipped as a unit, which became prevalent in the 1950s as a method to save time and labor. While some larger field-erected boilers with more burners, and designs such as the tangentially fired, turbo-fired, or cyclonic-fired boilers, can occasionally be found in these applications, they make up a very small percentage of the total number of installed units.

1.4.2 Package Boilers

The simplest form of burner arrangement is to have only one burner that provides all of the necessary heat input to the boiler. The most simple package boiler consists of an FD fan, burner and wind box, breeching, and stack. This is possible in industrial-package boilers generating up to 300,000 lb/h (136,000 kg/h) of steam, where single burners can reach heat inputs up to 400×10^6 Btu/h (115 MW). The burner is located on the end wall of the boiler, which can be fully refractory lined or a combination of refractory around the burner throat and tubes comprising the rest of the wall. Industrial-package boiler configurations are typically denoted by the drum configuration, with "D" style (see Figure 1.2), "O" style (see Figure 1.3), and "A" style (Figure 1.4) boilers being the most common.

FIGURE 1.2

Front elevation of "D" type boiler—the furnace and drum locations form the letter "D," hence the name.

FIGURE 1.3

Front elevation of "A" type boiler—the furnace and drum locations form the letter "A," hence the name.

Front elevation of "O" type boiler—the furnace and drum locations form the letter "O," hence the name.

A "D" style boiler has two drums located directly above each other on either the right or the left side of the boiler, with the tubes extending out to form the furnace in a "D" configuration. This boiler type has only a single convection bank located on the same side as the drums (see Figure 1.5). An "O" style boiler is similar to a "D" style in that it utilizes two drums centered over each other; however, in the case of an "O" style boiler

FIGURE 1.5 "D" type package boiler. (Courtesy of Victory Energy Operations, LLC.)

the drums are located over the center of the furnace. In this configuration, a convective bank is located on each side of the furnace so the flow out of the furnace is split evenly between these two convective banks (see Figure 1.6). An "A" style boiler has three drums, a single steam drum in the top center of the furnace, and two mud drums located in each corner of the furnace. Similar to the "O" style boiler, the "A" style also has two convection banks located on each side of the furnace.

As the capacity of the boilers gets larger, the most constrained dimension is typically the width of the boiler, which is restricted to allow shipment by road or rail. Space constraints at the site may also constrain the allowable length of the boiler. In these cases, the firebox dimensions may not be sufficient to accommodate the flame geometry required from a single burner. In some of these cases, given the right firebox geometry, two burners can be supplied in a common wind box and operated as

For multiple burner applications, each burner can be

a single unit, called *unison firing*. This also can be used to reach heat inputs higher than those available from one burner only. In the case of unison firing, both burners operate as a single unit with the loss of flame on either burner causing a shutdown of the entire system.

1.4.3 Field-Erected Boilers

As boiler capacities get larger than the physical size that can be shipped as an assembled unit, the boilers are shipped in pieces and erected at the site. These fielderected boilers example (shown in Figure 1.7) are usually a large furnace and boiler system with multiple ancillary systems. The system is shipped to the field in pieces and erected on site. Sometimes, portions are fabricated on site. To minimize the footprint of these "field-erected" boilers, the fireboxes get taller as the boiler capacity grows, while the width and depth of the boiler do not typically grow proportionally with capacity. Since the depth of the firebox that is available to accommodate the flame length is constrained, these boilers will utilize multiple burners, from 4 to as many as 16, arranged in rows on a single wall or on opposed firing walls. The number and arrangement of the burners is based on the required heat input and the available width and depth to accommodate the flame geometry.

Burner spacing is important to ensure that no flameto-flame interaction occurs which can increase emissions and flame lengths, leading to impingement. This can vary based on the different designs of burners employed and the design pressure drop across the burner.

Type PFT integral-furnace boiler

1.4.4 Power Generation Industry

Boilers are used for a variety of purposes in an assortment of applications. Common uses include producing hot water or steam for heating, producing steam for use within a plant such as atomizing oil for oil-fired burners, and producing steam to generate power in large power plants. Applications range from small singleburner uses in hospitals, schools, and small businesses up to large multi-burner boilers in power plants.

Both duct burners and boiler burners are used in the power generation industries. Duct burners (see Chapter 15) are burners that are inserted into large ducts to boost the temperature of the gases flowing through the ducts. These burners are frequently used in cogeneration projects, electrical utility peaking stations, repowering programs, and in industrial mechanical driver systems employing gas turbines with site requirements for steam. They are also used in fluidized bed combustors and chemical process plants. The efficiency of a duct burner to supply additional heat approaches 100% (on a lower heating value basis), which is much higher than, for example, a backup boiler system in generating more steam. Duct burners are often easily retrofitted into existing ductwork. Several important factors in-duct burner applications include low pollutant emissions, safe operation, and uniform heat distribution from the duct burners to the gases flowing through the duct, getting uniform gas distribution through the duct burners, and having adequate turndown to meet fluctuating demands. Duct burners typically use gaseous fuels, but occasionally fire on oil.

Boiler burners (see Chapter 14) are used to combust fuels, commonly natural gas or fuel oil, in the production of steam, which is often used to produce electrical energy for power generation. These burners produce radiation and convection used to heat water flowing through the boiler. The water is vaporized into steam. Sometimes the steam is used in the plant in the case of smaller industrial boilers. Larger utility boilers produce steam to drive turbines for electrical energy production. While boiler

FIGURE 1.7 Typical field-erected boiler.

burners have been around for many years, there have been many design changes in recent years due to the current emphasis on minimizing pollutant emissions.

1.5 Utility Boilers

Burners designed for use in utility boilers are very similar to those found in industrial boilers, with a few minor differences. Utility boilers typically employ multiple burners, from 4 to as many as 48 or more. These burners can be brought in and out of service as needed, allowing the firing rate of the boiler to be varied greatly without needing to achieve a high turndown ratio on any single burner. Therefore, each burner on a utility boiler does not need to cover as wide a size range as the burner on industrial boiler, and typically range in size with heat inputs of $50-400 \times$ 10⁶ Btu/h (15–115 MW). They operate with forced draft fans supplying the combustion air, which is typically preheated to between 400°F (200°C) and 650°F (340°C) as compared to ambient temperature air in most industrial applications. They burn gaseous, liquid, or solid fuels, and may need to be fuel-flexible to take advantage of changing fuel costs.

1.6 Utility Boiler/Burner Design

Utility boiler/burner designs, both conventional and low $NO_{x'}$ employ similar design techniques as those for industrial boilers/burners. The differences that separate utility applications are generally based on their intended operational parameters, such as the fuels to be fired and level of air pre-heat they are designed to handle. Due to the importance of maintaining high electrical system reliability and minimizing generation costs, utility boiler burners must offer

- High reliability during long-term operation
- Simplicity and reliability of fuel ignition
- High flame stability across the operational turndown range
- Fuel flexibility, including the ability to co-fire multiple fuels
- High thermal efficiency by minimizing excess air levels
- Minimizing emissions through operation with flue gas recirculation (FGR) and over fire air (OFA)

- Minimum parasitic power requirements through low pressure drop of combustion air and flue gas systems, especially the burner register draft loss
- Simplicity of burner maintenance and adjustment
- Flame dimensions to match the dimensions of the furnace, with no flame impingement on any furnace wall

The burners are typically located in common wind boxes which supply air to all of the burners located on each firing wall (or corner). Proper air flow distribution to each burner must be ensured during the system design and is typically accomplished through physical or computational fluid dynamic (CFD) modeling (see Chapter 9) of the air delivery system and wind box. The goal is to provide equal combustion air flow between burners, uniform peripheral velocity distributions at the burner inlets, and the elimination of tangential velocities within each burner. If the unit has been designed with FGR, the O₂ content must be equal between the burners, and this is accomplished by balancing the FGR distribution to each burner.

As the burners are taken in and out of service, to maximize boiler efficiency, it is desirable to limit the air flow through the out-of-service burners. This is typically done by including an air damper or register on each burner which can be closed when the burner is out of service to allow only enough air flow through the burner as needed for cooling and purging. These dampers can be automated, along with the burner fuel shutoff valves, so that operators can take burners in and out of service from the control room or even automate this function as part of the boiler's combustion controls.

In multiple burner installations, NO_x reduction can be achieved by biasing the fuel to some burners. This causes some burners to operate fuel rich and others to operate fuel lean. This may include shutting off the fuel completely to one or more burners, which is called burners-out-of-service (BOOS). The optimum amount and pattern of biasing or BOOS is often very boiler-dependent, with the best NO_x reduction (see Chapter 10) results found through a series of tests during commissioning.

1.7 Utility Boiler Types

1.7.1 Wall Fired Burner Installation

The simplest form of burner arrangement is to have all of the burners located on only one wall of the furnace in a common wind box. The burners will be located in rows and columns, based on the number of burners required. The simplest configuration would be a four burner arrangement with two rows and two columns of burners. Very large boilers may have up to 24 burners, or more, which could be arranged in a pattern of 4 rows each containing 6 burners.

Spacing of the burners is important to ensure that no flame-to-flame interaction occurs which can increase emissions and flame lengths, leading to impingement. This can vary based on the different designs of burners employed and the design pressure drop across the burner.

For multiple-burner applications, each burner can be brought in and out of service independently, allowing greater flexibility in operating turndown. Typically, all burners in service are controlled by a single fuel-control valve and therefore operate at the same heat input. For added flexibility on units with several rows or columns of burners, a flow-control valve can be supplied for each row or column, allowing more flexibility in controlling heat input and distribution within the firebox. Burners should be brought into service symmetrically about the boiler drum centerline to provide balanced heating to the boiler and to minimize drum level fluctuations.

1.7.2 Opposed Fired Installation

Larger utility boilers are designed to have burners on two of the four walls and firing toward the center of the furnace, and in some cases boilers have been designed with burners located on all four walls. The burners are located on opposite walls and are therefore called "opposed fired" boilers (see Figure 1.8). In opposed fired applications, not only is the spacing between burners important, but also, the interaction between the flames of the opposed burners meeting in the center of the furnace. Depending on the boiler design, the burners may be directly opposite each other or may be staggered to help avoid interaction with the burners from the opposite wall. In some instances, the boilers may include a "division wall" along the centerline of the furnace that extends from the bottom to some height in the furnace. This wall eliminates some concerns over opposed burner flames interacting, but does present concerns for flame impingement.

1.7.3 Tangentially Fired Installations

Combustion Engineering developed a boiler design that places all of the burners at the corners of the boiler, firing tangentially toward a pitch circle in the center of the firebox. This tangentially fired or *T-fired* boiler design utilizes a vertical column of burners in each corner of the firebox (see Figure 1.9). The burner flames all converge

FIGURE 1.8 Opposed wall fired boiler.

FIGURE 1.9 TXU Electric Collin Station Power Plant, a tangential fired boiler.

into a swirling "fireball" in the center of the furnace. The number of burners in each column is the same and is dependent on the capacity of the boiler and number of fuels being fired.

The burners originally supplied by the boiler OEM for these boilers consisted of square burner "buckets" that were either fixed or tilting. The vertical column would contain some buckets dedicated to each particular fuel and some buckets that supplied only air. Some of the fixed (non-tilting) bucket applications have been retrofitted in the field to accommodate round burners, although in most cases burner retrofits and upgrades involve modifying or replacing the fuel components and buckets with components that fit into the existing burner geometry.

In some applications, the burners are designed to be tilted up and down by plus or minus 30° from level. The burners are all tilted at the same angle, which allows the fireball to be moved higher or lower in the firebox. By controlling the location of the fireball relative to the super heater tubes located at the top of the furnace, superheated steam temperature can be controlled. This can also be used to control the residence time of the combustibles in the furnace to assure carbon monoxide (CO) burnout on harder-to-combust fuels.

1.8 Air Heaters

Air heaters (see Chapter 16) are used in a wide range of industries—for preheating of process heaters in the petrochemical and refining industries, for detergent, coal or fertilizer drying, and for other heating and drying applications, for example, in the chemical, soap, paper, food, and cement industries. They are used mainly for hightemperature drying, where the combustion products mix with air and are used to heat the product directly. Typical applications include drying of detergents, minerals, fertilizers, animal feeds, and coal. Air heaters are also used as an indirect source of heat for drying of foodstuffs such as milk powder and dried potatoes, roasting of coffee beans, and production of food-grade chemical additives.

The most common type of air heater is the Peabody twin shell design. This type of air heater is used for conventional drying applications where the inlet air stream is at a low temperature, less than 100°C (212°F) and the required outlet temperature is no more than 800°C (1500°F). The twin shell design gets its namesake from an annular passage through which diluted air passes between the boiler outer shell and the combustion chamber, before mixing with hot combustion products to achieve the final outlet temperature. Burners for air heaters are generally round, require high turndown, and sometimes must operate with very high excess air. The high excess air used in air heaters can make low NO_x operation a challenge. On the other hand, lean premix burners can be easily employed to reduce NO_{x} .

1.9 Duct Burners

Duct burner systems (see Chapter 15) can be loosely described as large cross-sectional ducts with high flows that require uniform heat addition for relatively small temperature increases. The flows can be air, fumes, or oxygen-depleted streams. The burners used are also called ribbon burners, linear burners, or duct burners designed so that the heat input can be distributed over a relatively large cross section. The typical location of this type of burner can be seen in Figure 1.10.

Linear and in-duct burners were used for many years to heat air in drying operations before their general use in cogeneration systems. Some of the earliest systems premixed fuel and air in an often complicated configuration, which fired into a recirculating process air stream. The first use for hightemperature, depleted oxygen streams downstream of gas turbines in the early 1960s was to provide additional steam for process use in industrial applications and electrical peaking plants operating steam turbines. As gas turbines have become larger and more efficient, duct burner supplemental heat input has increased correspondingly. Duct burners are suitable for a wide variety of direct-fired air heating applications where the physical arrangement requires mounting inside a duct.

1.10 Burners

The burner is the device that is used to combust the fuel with an oxidizer to convert the chemical energy in the fuel into thermal energy. A given combustion system may have a single burner or many burners, depending on the size and type of the application. A typical round low NO_x burner is shown in Figure 1.11. Boilers and other combustion chambers come in various sizes and configurations. It is the design and orientation of the burner that will define proper operation of the equipment. There are many factors that go into the design of a burner. This section will briefly consider some of the important factors that are considered in designing burners. A detailed discussion on burners is given in Chapter 14.

1.10.1 Competing Priorities

There have been many changes in the traditional designs that have been used in burners, primarily because of

FIGURE 1.10 Typical duct burner location. (Courtesy of Hamon Deltak.)

the recent interest in reducing pollutant emissions. In the past, the burner designer was primarily concerned with efficiently combusting the fuel and transferring the energy to a heat load. New and increasingly more stringent environmental regulations have added the need to consider the pollutant emissions produced by the burner (see Chapter 10). In many cases, reducing pollutant emissions and maximizing combustion efficiency are at odds with each other. For example, a well-accepted technique for reducing NO_x emissions is known as staging, where the primary flame zone is deficient of either fuel or oxidizer.⁴ The balance of the fuel or oxidizer may be injected into the burner in a secondary flame zone or, in a more extreme case, may be injected somewhere else in the combustion chamber. Staging reduces the peak temperatures in the primary flame zone and also alters the chemistry in a way that reduces NO_x emissions because fuel-rich or fuel-lean zones are less conducive to NO_x formation than near stoichiometric zones.⁵ NO_x emissions increase rapidly with the exhaust product temperature. Since thermal NO_x is exponentially dependent on the gas temperature, even small reductions in the peak flame temperature can dramatically reduce NO_x emissions. However, lower flame temperatures often reduce the radiant heat transfer from the flame since radiation is dependent on the fourth power of the absolute temperature of the gases. Another potential problem with staging is that it may increase CO emissions, which is an indication of incomplete combustion and reduced combustion efficiency. However, it is also possible that staged combustion may produce soot in the flame, which can increase flame radiation. The actual impact of staging on the heat transfer from the flame is highly dependent on the actual burner design.⁶

In the past, the challenge for the burner designer was to maximize the mixing between the fuel and the oxidizer to ensure complete combustion. If the fuel was difficult to burn, as in the case of low heating value fuels such as waste liquid fuels or process gases from chemical production, the task could be very challenging. Now, the burner designer must balance the mixing of the fuel and the oxidizer to maximize combustion efficiency while simultaneously minimizing all types of pollutant emissions. This is no easy task as, for example, NO_x and CO emissions often go in opposite directions. When CO is low, NO_x may be high and vice versa. Modern burners must be environmentally friendly, while simultaneously efficiently transferring heat to the load.

1.10.2 Design Factors

There are many types of burner designs that exist due to the wide variety of fuels, oxidizers, combustion chamber geometries, environmental regulations, thermal input sizes, and heat transfer requirements. Additionally, heat transfer requirements include, for example, flame temperature, flame momentum, and heat distribution. Garg⁷ lists the following burner specifications that are needed to properly choose a burner for a given application: burner type, heat release and turndown, air supply (natural draft, forced draft, or balanced draft), excess air level, fuel composition(s), firing position, flame dimensions, ignition type, atomization media for liquid fuel firing, noise, NO_x emission rate, and whether waste gas firing will be used.⁷ Some of these design factors are briefly considered next.

1.10.2.1 Fuel

Depending upon many factors, certain types of fuels are preferred for certain geographic locations due to cost and availability considerations. Gaseous fuels, particularly natural gas, are commonly used in most industrial heating applications in the United States. In Europe, natural gas is also commonly used along with light fuel oil. In Asia and South America, heavy fuel oils are generally preferred although the use of gaseous fuels is on the rise.

Fuels also vary depending on the application. For example, in incineration processes, waste fuels are commonly used either by themselves or with other fuels like natural gas. In the petrochemical industry, fuel gases often consist of a blend of several fuels, including gases like hydrogen, methane, propane, butane, propylene, nitrogen, and carbon dioxide.⁸

The fuel choice has an important influence on the heat transfer from a flame. In general, solid fuels like coal and liquid fuels like oil produce very luminous flames, which contain soot particles that radiate like blackbodies to the heat load. Gaseous fuels like natural gas often produce nonluminous flames because they burn so cleanly and completely without producing soot particles. A fuel like hydrogen is completely nonluminous because there is no carbon available to produce soot.

In cases where highly radiant flames are required, a luminous flame is preferred. In cases where convection heat transfer is preferred, a nonluminous flame may be preferred in order to minimize the possibility of contaminating the heat load with soot particles from a luminous flame. Where natural gas is the preferred fuel and highly radiant flames are desired, new technologies are being developed to produce more luminous flames. These include processes like pyrolyzing the fuel in a partial oxidation process,⁹ using plasma to produce soot in the fuel,¹⁰ and generally controlling the mixing of the fuel and oxidizer to produce fuel-rich flame zones that generate soot particles.¹¹

Therefore, the fuel itself has a significant impact on the heat transfer mechanisms between the flame and the load. In most cases, the fuel choice is dictated by the end user as part of the specifications for the system and is not chosen by the burner designer. The designer must make the best of whatever fuel has been selected. In most cases, the burner design is optimized based on the choice for the fuel.

In some cases, the burner may have more than one type of fuel. An example is shown in Ref. [12]. Dualfuel burners are designed to operate typically on either gaseous or liquid fuels. These burners are used, usually for economic reasons, where the customer may need to switch between a gaseous fuel like natural gas and a liquid fuel like oil. These burners normally operate on one fuel or the other, and sometimes on both fuels simultaneously. Another application where multiple fuels may be used is in waste incineration. One method of disposing of waste liquids contaminated with hydrocarbons is to combust them by direct injection through a burner. The waste liquids are fed through the burner, which is powered by a traditional fuel such as natural gas or oil. The waste liquids often have very low heating values and are difficult to combust without auxiliary fuel. This further complicates the burner design where the waste liquid must be vaporized and combusted concurrently with the normal fuel used in the burner.

1.10.2.2 Oxidizer

The predominant oxidizer used in most industrial heating processes is atmospheric air. This can present challenges in some applications where highly accurate control is required due to the daily variations in the barometric pressure and humidity of ambient air. The combustion air is sometimes preheated to increase the overall thermal efficiency of a process. Combustion air is also sometimes blended with some of the products of combustion, a process usually referred to as *flue gas recirculation* (FGR). FGR is used to both control boiler superheat or reheat and reduce NO_x emissions.

1.10.2.3 Custom-Engineered Solutions

From the early beginning of the company, Coen has been a leader in innovation. New products were regularly developed and introduced to the market place. These products were the beginning of "custom-engineered solutions." This was an informal process until 1978 when Coen organized a standalone R&D department. Why? because everyone was too busy working on projects to spare time to develop new ones. One of the co-editors of this book (Steve) was hired that year into the new R&D department.

New products were released on the average of 3-4 per year, such as the dual zone burner kiln burner, biomass firing, electronic products, control systems, low NO_x burners, larger burners, and much more. Many new products were, in fact, custom-engineered solutions to solve unique customer applications. The existing test facility

Introduction

was slowly modernized and CFD was first utilized for a duct burner project in 1985.

R&D grew and was subdivided into R&D and staff engineering as the complexity of projects and applications grew. This set the stage for a significant increase in "custom-engineered solutions."

At the time, the Clean Air Act was passed in the United States and new environmental rules were being proposed, requiring reduced emissions. Alternative fuels and more efficient unit operation were becoming a customer priority. Coen was continuously being asked by its customers, "How can I solve this?," thus the phrase was coined: "custom-engineered solutions." Since then, Coen has conducted hundreds of studies resulting in custom solutions to customer problems.

What is a custom-engineered solution? It is generally as follows:

- 1. Coen is approached by a customer with a combustion problem of some kind.
- 2. Coen does not have an "off-the-shelf" solution.
- 3. The company conducts a study of the problem and produces a proposal to solve the problem.

The study may involve a site visit, measurements, and possibly a CFD study. In some cases, a scale burner/ system may be constructed and tested. A report is issued with a quote for equipment to solve the problem. Historically, all of these custom-engineered solutions have been successful and arrived at an economical solution where none existed.

References

- A.H. Light, Efficient Oil Burning: A Graphic Description of Combustion, Coen Co., New York, 1920.
- 2. The Coen Story, Coen Co. Inc., 1980s.
- 3. Manos, T., Hamworthy Combustion Engineering Limited, Biddles Limited, Dorset, U.K., 2004.
- J.L. Reese, G.L. Moilanen, R. Borkowicz, C. Baukal, D. Czerniak, and R. Batten, State-of-the-art of NO_x emission control technology, in *Proceedings of International Joint Power Generation Conference.*, Phoenix, AZ, October 3–5, 1994, ASME Paper 94-JPGC-EC-15.
- C. Baukal, Industrial Combustion Pollution and Control, Marcel Dekker, New York, 2004.
- 6. C. Baukal (ed.), *Industrial Burners Handbook*, CRC Press, Boca Raton, FL, 2004.
- 7. A. Garg, Better burner specifications, *Hydrocarbon Processing*, 68, (8), 71–72, 1989.
- T. Dark, J. Ackland, and J. White, Fuels, in *The John Zink Combustion Handbook*, C. Baukal (ed.), CRC Press, Boca Raton, FL, 2001, Chapter 5.
- M.L. Joshi, M.E. Tester, G.C. Neff, and S.K. Panahi, Flame particle seeding with oxygen enrichment for NO_x reduction and increased efficiency, *Glass*, 68, (6), 212–213, 1990.
- R. Ruiz, and J.C. Hilliard, Luminosity enhancement of natural gas flames, in *Proceedings of 1989 International Gas Research Conference*, T.L. Cramer (ed.), Govt. Institutes, Rockville, MD, pp. 1345–1353, 1990.
- A.G. Slavejkov, T.M. Gosling, and R.E. Knorr, Low-NO_x staged combustion device for controlled radiative heating in high temperature furnaces, U.S. patent 5,611,682, March 18, 1997.
- 12. API Publication 535, *Burner for Fired Heaters in General Refinery Services*, 1st edn., American Petroleum Institute, Washington, DC, July 1995.

2 Engineering Fundamentals

Stephen B. Londerville

CONTENTS

2.1	Introd	luction	. 15
2.2	Time,	Length, and Mass	. 15
	2.2.1	English Units	. 16
	2.2.2	SI Units	. 16
	2.2.3	Absolute English and SI Units	. 16
	2.2.4	Dimensional Analysis	. 17
	2.2.5	Some Simple Derived Units	. 17
		2.2.5.1 Velocity	. 18
		2.2.5.2 Volume	. 18
		2.2.5.3 Density	. 18
		2.2.5.4 Specific Weight	. 18
		2.2.5.5 Pressure	. 18
2.3	Work	and Energy	. 19
	2.3.1	Power	. 19
2.4	Tempe	erature	. 19
2.5	Entha	lpy and Specific Heat	. 20
2.6	Viscos	ity of Gas and Liquid	. 21
2.7	Bulk N	Modulus	. 22
2.8	Slang	Units and Notations	. 23
2.9	Concl	usion	. 23
Refe	rences.		. 23

2.1 Introduction

The NASA Mars Climate Orbiter case is a monumental example of the significance of units and conversions for practicing engineers. The Mars Climate Orbiter was set to land on the surface of Mars on September 23, 1999, to study the Martian climate, atmosphere, and surface. The orbiter trajectory was planned to be 226 km (140 miles) above the surface so that the gravitational acceleration of Mars could pull the Orbiter through the atmosphere at safe speeds. Instead, the trajectory was only 57 km (35 miles) and the orbiter was disintegrated by the atmospheric stresses. The magnitude of error was off by a factor of 4.45, the exact conversion from Newtons to lbforce. The trajectory was programmed for force inputs in metric Newtons; however, the crew at the controls was entering trajectory data in imperial units of lbforce. Fortunately, the Orbiter was unmanned; however, the incident cost NASA well over \$600 million.¹ Despite the infinite complexity in the engineering of the Orbiter, it was a simple conversion error that was ultimately the source of failure. This holds true for all engineers as it is easy to overlook such basic fundamentals.

2.2 Time, Length, and Mass

Since the existence of early civilization, setting up a standard for weights and measures was vital for trade and construction. The earliest establishment of the modern universal measurement system was set forth by the Magna Carta of 1215, which proposed that "there shall be one unit of measure throughout the realm." Later, the growing development of the sciences during the eighteenth century created a need for a more extensive

and universal measurement system and thus ushered the creation of the original metric system, which was drafted in France throughout the 1790s.²

A set of units describes and quantifies the physical properties of the universe. Properties such as time, distance, velocity, and power are examples of units. Many of these quantities can be related through physical laws as will be exemplified throughout this chapter. Fundamental units, however, are units that describe physical quantities from which all other units can be derived. There are seven fundamental units; however, strictly speaking, all units can be derived with three of these fundamental units:

- 1. Mass
- 2. Length
- 3. Time

One early establishment of mass was the kilogram, which was defined as 1 kg to equal the mass of 1000 cm³ of water.

Length was originally defined in the metric system to be one ten-millionth of the distance from the Earth's equator to the North Pole. This measurement was very challenging to reproduce when necessary, so in 1889 a precision bar that consisted of 90% platinum and 10% iridium was created and marked so that it would precisely represent 1 m at 0°C (32°F). Authorized metrologists were allowed to travel to the International Bureau of Weights and Measurements to measure and mark their own bars for regional prototypes. The meter was then redefined more precisely in 1960 as 1,650,763.73 wavelengths emitted by krypton-86 in a vacuum.²

From classic antiquity, the day was divided into 12 h of daylight and 12 h of night. During the medieval period, the minute was introduced as the 60th part of an hour and the second was introduced as the 60th part of a minute. Today, a second is related to the radiation of a specific quantum transition in cesium-133.²

2.2.1 English Units

The English unit system is a product of the early developments of standardization in medieval England. It is also commonly called the system of imperial units. This system of units was officially declared in 1824 by the British Weights and Measures Act and was later refined and reduced until 1959. The unit system is still used by England and much of its former empire.³ Table 2.1 shows the basic units of this system.

2.2.2 SI Units

The SI unit system is the modern form of the metric system created in 1960. It is often called the International

TABLE	2.1			
~	-	1. 1	* *	

Common English Units		
Length	Feet	
Mass	Pound-mass	
Time	Second	
Temperature	Rankine	

TABLE 2.2

Common SI Units

Length Meter Mass Kilogram Time Second Temperature Kelvin

System of Units and is abbreviated from French: Systeme international d'unites. Originally, the system was developed around the meter and is used in most countries today.³ The common SI units are shown in Table 2.2.

2.2.3 Absolute English and SI Units

It is important to highlight the differences between weight and mass. While mass is the measure of the amount of matter in an object, weight is the force of an object due to gravity. An absolute unit is a unit that does not include the gravitational acceleration. In the English system the absolute unit of mass is the pound-mass as opposed to pound. Similarly, in the SI system the absolute unit of mass is simply the kilogram or kilogrammass while weight is measured in units of Newtons or kilogram-force. By definition, weight and mass are related by the following:

$$w = m \frac{g}{g_c}$$
(2.1)

where

w is weight m is mass (absolute unit of mass) g is gravitational acceleration g_c is proportionality constant

Applying the previous equation to Newton's second law yields

$$F = m \times \frac{dv}{dt} \times \frac{1}{g_c} = ma \times \frac{1}{g_c}$$
(2.2)

where

F is force v is velocity t is time a is acceleration

g_c is proportionality constant