
Metaharmonic Lattice Point Theory covers interrelated methods 
and tools of spherically oriented geomathematics and periodically 
reflected analytic number theory. The book establishes multi-
dimensional Euler and Poisson summation formulas corresponding 
to elliptic operators for the adaptive determination and calculation 
of formulas and identities of weighted lattice point numbers, in 
particular the non-uniform distribution of lattice points.

The author explains how to obtain multi-dimensional generalizations 
of the Euler summation formula by interpreting classical Bernoulli 
polynomials as Green’s functions and linking them to Zeta and 
Theta functions. To generate multi-dimensional Euler summation 
formulas on arbitrary lattices, the Helmholtz wave equation must 
be converted into an associated integral equation using Green’s 
functions as bridging tools. After doing this, the weighted sums of 
functional values for a prescribed system of lattice points can be 
compared with the corresponding integral over the function.

Features 
• Presents multi-dimensional techniques for periodization
• Focuses on geomathematically based/oriented tools and 

procedures
• Describes weighted lattice point and ball numbers in 

georelevant “potato-like” regions
• Discusses radial and angular non-uniform lattice point 

distribution

Exploring special function systems of Laplace and Helmholtz 
equations, this book focuses on the analytic theory of numbers 
in Euclidean spaces based on methods and procedures of 
mathematical physics. It shows how these fundamental techniques 
are used in geomathematical research areas, including gravitation, 
magnetics, and geothermal.
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Preface

These lecture notes are the result of an interrelated “transfer” of methods, set-
tings, and tools of (spherically oriented) geomathematics and of (periodically
reflected) analytic theory of numbers. The essential ingredients of mathemati-
cal (geo-)physics in this work are special function systems of the Laplace equa-
tion and the Helmholtz equation, i.e., harmonic and metaharmonic functions,
problem-adapted constructions of Green’s functions, and eigenvalue-based so-
lution theory in terms of “Green type” integral formulas. Surprisingly, these
fundamental techniques relevant for geomathematical research in gravitation,
magnetics, geothermal research, etc. enable us to recover significant topics
of lattice point theory in Euclidean spaces (such as Hardy–Landau identities
determining the total number of lattice points inside spheres, weighted (ra-
dial and angular) lattice point summation, non-uniform distribution of lattice
points, etc.). Even more, multi-dimensional alternating series become attack-
able by convergence criteria relating the specific oscillation properties of a
summand to an appropriate choice of a Helmholtz operator. In addition, new
classes of lattice point identities can be developed by adapted procedures of
periodization within “Green type” integral formulas, i.e., Euler and Poisson
summation.

More specifically, the main objectives of this work are multi-dimensional
generalizations of the Euler summation formula by suitably interpreting the
classical “Bernoulli polynomials” as Green’s functions and by appropriately
establishing the link to Zeta and Theta functions. The multi-dimensional Eu-
ler summation formulas are generated on arbitrary lattices by the conversion
of the Helmholtz wave equation into an associated integral equation based on
the concept of Green’s functions as a bridging tool. In doing so, we are able to
compare weighted sums of functional values for a prescribed system of lattice
points with the corresponding integral over the function, plus a remainder
term that is adaptable to the (oscillating) function under consideration. The
remainder term is particularly useful for two aspects of multi-variate lattice
point theory, viz. to guarantee the convergence of multi-dimensional alternat-
ing series and to formulate appropriate criteria for the validity of the Poisson
summation formula. Since the infinite lattice point sums occurring in our ap-
proach usually offer the pointwise, but refuse the absolute convergence, the
specification of the multi-dimensional summation process is a decisive feature.
Throughout this book, with respect to the rotational invariance of the Laplace
operator, (pointwise) convergence is understood in the spherical sense. In other

xi



xii Preface

words, multi-dimensional summation is consistently extended over balls, if the
series expansion under consideration turns out to refuse absolute convergence.

The title of our work can be reformulated in more detail as the Helmholtz
equation induced verification of the Hardy–Landau type lattice point identi-
ties with particular interest in characterizing radial and angular distributions
of (planar) lattice points. Altogether, the book can be characterized briefly
as a lecture note in the analytic theory of numbers in Euclidean spaces based
on methods and procedures of mathematical physics. Its essential purpose is
to establish multi-dimensional Euler and Poisson summation formulas corre-
sponding to (iterated) Helmholtz operators for the adaptive determination
and calculation of formulas and identities involving weighted lattice point
numbers.

The roots of the book are threefold: (i) the basic results due to L.J. Mordell
on one-dimensional Euler and Poisson summation formulas as well as the
one-dimensional Zeta and Theta function (ii) the work by C. Müller on two-
dimensional periodical Euler (Green) functions and their representation in the
framework of complex analysis, and (iii) my own work on multi-dimensional
generalizations of the Euler summation formula to elliptic operators and some
attempts to extend the multi-dimensional Poisson summation formula to reg-
ular (“potato”-like) regions. In consequence, the number theoretical under-
standing of the book requires that the reader has mastered some material
usually covered in courses on elliptic partial differential equations and special
functions of mathematical physics, especially related to the theory of iterated
Laplace as well as Helmholtz equations. The book can be used as a graduate
text or as a reference for researchers.

The idea of writing this book first occurred to me while teaching graduate
courses given during the last years at the University of Kaiserslautern, when
I presented various topics on Green’s functions in different fields of geomath-
ematical application. Indeed, the lecture notes represent the link between my
former PhD activities at the RWTH Aachen in analytic theory of numbers
and my present work in geomathematics at the University of Kaiserslautern.

The preparation of the final version of this work was supported by impor-
tant remarks and suggestions of many colleagues. I am deeply obliged to Z.
Nashed, Orlando, USA, and T. Sonar, Braunschweig, Germany, for friendly
collaboration and continuous support over the last years. It is a great pleasure
to express my particular appreciation to my colleague G. Malle, University of
Kaiserslautern, Germany, who helped me to clarify some concepts. I am in-
debted to M. Schreiner, NTB Buchs, Switzerland and M. A. Slawinski, Memo-
rial University of Newfoundland, St. John’s NL, Canada, for helpful comments
and remarks.

Thanks also go to my co-workers, especially to M. Augustin, C. Gerhards,
M. Gutting, S. Möhringer, and I. Ostermann, for eliminating inconsistencies
in an earlier version. I am obliged to L. Hämmerling, Aachen, for providing me
with the phase-dependent numerical computation and graphical illustration
(Figure 14.5) of the radial distribution of lattice points in the plane.
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The cover illustration shows the geoid of the Earth (i.e., the equipotential
surface at sea level as it will be seen by the satellite GOCE) imbedded in
a three-dimensional lattice. The “geoidal potato” constitutes a typical (geo-
physically relevant) regular region as discussed in this work. I am obliged to
R. Haagmans, Head, Earth Surfaces and Interior Section, Mission Science Di-
vision, ESA–European Space Agency, ESTEC, Noordwijk, the Netherlands,
for providing me with the image (ESA ID number SEMLXEOA90E).

I wish to express my particular gratitude to Claudia Korb, Geomathemat-
ics Group, TU Kaiserslautern, for her support in handling the typing job.

Finally, it is a pleasure to acknowledge the courtesy and the ready coop-
eration of Taylor & Francis and all staff members there who were involved
in the publication of the manuscript. My particular thanks go to Bob Stern,
Amber Donley, and Karen Simon.

Willi Freeden

Kaiserslautern
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Introduction

CONTENTS

1.1 Historical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preparatory Ideas and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Tasks and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Historical Aspects

Leonhard Euler (1707–1783) discovered his powerful “summation formula” in
the early 1730s. He used it in 1736 to compute the first 20 decimal places for
the alternating sum

∞∑

g=0

(−1)g

2g + 1
= 1 − 1

3
+

1

5
− 1

7
+ − . . . =

π

4
. (1.1)

Since, aside from the geometric series, very few infinite series then had a known
sum, Euler’s remarkable sum enticed mathematicians like G. Leibniz (1646–
1716) and the Bernoulli brothers Jakob (1654–1705) and Johann (1667–1748)
to seek sums of other series, particularly the sum of the reciprocal squares. But
it was L. Euler, within the next two decades up to 1750, who did a “broadening
of the context” to formulate his “summation formula” for the general sum

n∑

g=0

F (g) =
∑

g∈[0,n]
g∈Z

F (g) =
∑

0≤g≤n
g∈Z

F (g) (1.2)

(with n possibly infinite). More concretely, under the assumption of second
order continuous derivatives of F on the interval [0, n], n ∈ N, Euler succeeded
in finding the summation formula

∑

0≤g≤n
g∈Z

F (g) − 1

2
(F (0) + F (n)) (1.3)

=

∫ n

0

F (x) dx+
1

12
(F ′(n) − F ′(0)) +

∫ n

0

(
−1

2
B2(x)

)

︸ ︷︷ ︸
=G(∆;x)

F ′′(x) dx,

1
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where B2 given by

B2(x) = (x− ⌊x⌋)2 − (x− ⌊x⌋) +
1

6
(1.4)

is the “Bernoulli function” of degree 2. In particular, Euler’s new setting also
encompassed the quest for closed formulas for sums of powers

n∑

k=0

kl ≃
∫ n

0

xl dx, (1.5)

which had been sought since antiquity for area and volume investigations. In
addition, this setting provided a canonical basis for the introduction of the
Zeta function.

From the mathematical point of view, Euler’s summation formula is a
fine illustration of how a generalization can lead to the solution of seemingly
independent problems. The particular structure of his summation formula
also captures the delicate details of the connection between integration, i.e.,
“continuous summation”, and its various discretizations, viz. summation. Ob-
viously, it subsumes and resolves the appropriate bridge between continuous
and discrete summation within a single exposition. But it should be pointed
out that Leonhard Euler himself used this interrelation between continuous
and discrete sums only for estimating sums and series by virtue of integrals.
It was actually Colin Maclaurin (1698–1746), who discovered the summation
formula (1.3) independently in 1742, to use it for the evaluation of integrals
in terms of sums.

Altogether, the classical Euler summation formula provides a powerful tool
of connecting integrals and sums. It can be used in diverse areas to approxi-
mate integrals by finite sums, or conversely to evaluate finite sums and infinite
series based on the integral calculus.

More specifically, the Euler summation formula offers two important per-
spectives:

• to compute (slowly) converging infinite series as well as to specify con-
vergence criteria for (alternating) infinite series and to verify limits and
asymptotic relations of infinite lattice point sums,

• to evaluate integrals (numerically) as well as to estimate and to optimize
the error and to provide multi-dimensional settings of constructive approx-
imation.
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1.2 Preparatory Ideas and Concepts

In this book we follow Euler’s interest, i.e., the first of the aforementioned
perspectives including its applications to relevant lattice point sums of ana-
lytic theory of numbers. The essential idea is based on the interpretation of
the Bernoulli function (1.4) occurring in the classical (one-dimensional) Eu-
ler summation formula (1.3) by means of mathematical physics as the Green
function G(∆; ·) for the (one-dimensional) Laplace operator ∆ corresponding
to the “boundary condition” of Z-periodicity (note that ∆ = ( d

dx)2 is the op-
erator of the second order derivative). More concretely, the periodical Green
function G(∆; ·) for the Laplace operator ∆ is constructed so as to have the
bilinear expansion

G(∆;x− y) =
∑

∆∧(h)6=0
h∈Z

e2πihxe−2πihy

−∆∧(h)
, x, y ∈ R, (1.6)

where the sequence {∆∧(h)}h∈Z forms the spectrum Spect∆(Z) of the Laplace
operator ∆, i.e.,

(∆ + ∆∧(h)) e2πihx = 0, x ∈ R, (1.7)

where
∆∧(h) = 4π2h2, h ∈ Z. (1.8)

In doing so, the Bernoulli function - in the jargon of mathematical physics, the
Green function - acts as a connecting tool to convert a differential equation
involving the Laplace operator corresponding to periodical boundary condi-
tions into an associated integral equation, i.e., the Euler summation formula
(1.3). Observing the special values

G(∆; 0) = G(∆;n) =
∑

∆∧(h)6=0
h∈Z

1

−∆∧(h)
= − 1

12
(1.9)

and the explicit representation of the Fourier series expansion (1.6) we are
able to reformulate the Euler summation formula (1.3). Partial integration
yields (by letting F ′(x) = ∇F (x), F ′′(x) = ∆F (x))

∑

0≤g≤n
g∈Z

F (g) − 1

2
(F (0) + F (n)) (1.10)

=

∫ n

0

F (x) dx+
∑

h6=0
h∈Z

(∇F (n) −∇F (0)

4π2h2
−
∫ n

0

e2πihx

4π2h2
∆F (x) dx

)

=

∫ n

0

F (x) dx− lim
N→∞

∑

|h|≤N
h6=0

1

2πih

∫ n

0

∇F (x) e2πihx dx,



4 Metaharmonic Lattice Point Theory

such that the Poisson summation formula comes into play

∑

0≤g≤n
g∈Z

F (g) − 1

2
(F (0) + F (n)) = lim

N→∞

∑

|h|≤N
h∈Z

∫ n

0

F (x) e2πihx dx. (1.11)

Surprisingly, in spite of their apparent dissimilarity, the Euler summation
formula (1.3) and the Poisson summation formula (1.11) are equivalent for
twice continuously differentiable functions on the interval [0, n]. Moreover,
the Green function for the Laplace operator and the “boundary condition” of
Z-periodicity acts as the canonical bridge between both identities.

The “building blocks” of the bridge between the two equivalent formulas
(1.3) and (1.11) are the defining constituents of the Green function G(∆; ·),
which can be uniquely characterized in the following way:

(Periodicity) G(∆; ·) is continuous in R and Z-periodical

G(∆;x) = G(∆;x + g), x ∈ R, g ∈ Z, (1.12)

(Differential equation) ∆G(∆; ·) “coincides” apart from an additive constant
with the Dirac function(al)

∆xG(∆;x) = −1, x ∈ R\Z, (1.13)

(Characteristic singularity) G(∆; ·) possesses the singularity of the fundamen-
tal solution of the (one-dimensional) Laplace operator

G(∆;x) − 1

2
|x| = O(1), x→ 0, (1.14)

(Normalization) G(∆; ·) integrated over a whole period interval of length 1 is
assumed to be zero ∫ 1

2

− 1
2

G(∆;x) dx = 0. (1.15)

Even more generally, for arbitrary intervals [a, b] ⊂ R, a < b, and arbi-
trary twice continuously differentiable (weight) functions F on [a, b], the con-
stituents (1.12)–(1.15) of the Green function G(∆; ·) enable us to guarantee
the equivalence of the Euler summation formula

∑

a≤g≤b
g∈Z

′ F (g) =

∫ a

b

F (x) dx+ {F (x) (∇G(∆;x)) −G(∆;x) (∇F (x))} |ba

+

∫ b

a

G(∆;x) ∆F (x) dx (1.16)

and the Poisson summation formula

∑

a≤g≤b
g∈Z

′ F (g) = lim
N→∞

∑

|h|≤N
h∈Z

∫ b

a

F (x) e2πihx dx, (1.17)
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where we have used the abbreviation

∑

a≤g≤b
g∈Z

′ F (g) =
∑

a<g<b
g∈Z

F (g) +
1

2

∑

g=a,b
g∈Z

F (g), (1.18)

and the second sum on the right side of (1.18) occurs only if a and/or b is an
integer.

Of particular interest in lattice point theory is the special case of a con-
stant weight function (i.e., F = 1), i.e., the one-dimensional “Hardy–Landau
identity”

∑

a≤g≤b
g∈Z

′ 1 = b− a +
∑

|h|6=0
h∈Z

∫ b

a

e2πihx dx. (1.19)

The formula (1.19) compares the number of Z-lattice points inside an interval
[a, b] with the length b − a of the interval [a, b] under the explicit knowledge
of the remainder term (usually called, the Z-lattice point discrepancy) as a
one-dimensional alternating series.

In addition, the close relation between the Hardy–Landau summation
and the metaharmonicity of the summands becomes obvious in the identity
(1.19) since the function e(h·) = e2πih·, h ∈ Z, satisfies the one-dimensional
Helmholtz equation

(
∆ + 4π2h2

)
e(hx) = 0, x ∈ R, corresponding to the

“wave number” ∆∧(h) = 4π2h2, h ∈ Z; i.e., the Z-periodical polynomial
e(h·), h ∈ Z, is metaharmonic in R.

1.3 Tasks and Perspectives

This book is devoted to the generalization of the univariate features, settings,
and methods involving Euler and Poisson summation to higher dimensions.
The key points are the defining properties (1.12)–(1.15) of the Z-periodical
Green function, which can be easily transferred to the multi-dimensional case
(in contrast to the bilinear expansion (1.6)). Our tasks actually show plenty
of essential aspects, namely the supply of multi-variate tools for the Laplace
operator and Helmholtz operators, the feasible construction of the multi-
dimensional Green function with respect to (iterated) Laplace and Helmholtz
operators and the “boundary condition” of periodicity, the realization of asso-
ciated Euler summation formulas, the introduction and explanation of special
function systems of harmonic as well as metaharmonic nature such as spherical
harmonics as well as Bessel and Kelvin functions, the formulation of adequate
convergence criteria for multi-dimensional alternating sums, some pointwise
inversion procedures of Fourier and other integral transforms such as Gauß–
Weierstraß and Abel–Poisson transforms, suitable concepts to establish the
validity of the multi-dimensional Poisson summation formula, and finally their
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applications to problems of the analytic and geometric theory of numbers, for
example, in the field of radial and angular lattice point distribution.

Altogether, keeping in mind the physically motivated character of the key in-
gredient, i.e., the Green function with respect to the “boundary condition” of
Z-periodicity for Euler summation, we are able to guarantee various directions
of extension to

• replace the one-dimensional lattice Z (consisting of the integers) by multi-
dimensional “lattices” Λ (such as Zq, τZq, etc).

• consider instead of the finite one-dimensional interval [a, b] other “geome-
tries” for summation/integration such as the fundamental cell F of a multi-
dimensional lattice Λ, a (regular) region (“potato”) G in Rq, or the whole
Euclidean space Rq (of course, under additional asymptotic relations at
infinity).

• substitute the operator of the second order derivative, i.e., the one-
dimensional Laplace operator by special elliptic differential operators such
as iterated Laplace or Helmholtz operators.

• transfer the classical “boundary conditions” of periodicity into other
boundary conditions (e.g., of Dirichlet’s/Neumann’s type).

• “blow up” the multi-dimensional lattice points to “lattice balls” for estab-
lishing lattice ball analogues of Euler and Poisson summation formulas.

The critical ingredients of our approach to Euler summation are twofold:

On the one hand, the multi-dimensional generalization of the Bernoulli
function, i.e., the Green function for a Helmholtz operator and “periodical
boundary conditions”, is not (yet) available as an elementary function. In ad-
dition, the multi-dimensional counterparts of the Fourier series expansion (1.6)
are divergent. This is the reason why we first condense the original Bernoulli
functions to their constituting properties (see (1.12) – (1.15) for more details)
in order to find a setup of a uniquely determined definition in terms of specific
features. In turn, the constituting properties of a Green function G(∆ + λ; ·)
(namely, boundary condition, differential equation, characteristic singularity,
normalization) can be used as the keystones to characterize the role of Green’s
function in generalized variants of the Euler summation formula.

On the other hand, from a structural point of view (every generalization of)
the Euler summation formula rests on the basic idea to relate a sum of values
of a function at finitely or infinitely many successive nodes to certain sums
involving (Helmholtz) derivatives of this function. Clearly, this makes things
complicated. But it opens the perspective to stop sums with an expectation
that the particular value in which one is interested lies between any partial
sum and another one, all of them being explicitly calculable. In doing so, the
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summation formula provides appropriate approximation, and the (infinite)
series or integrals can also be attacked asymptotically even if they diverge.
Moreover, the “wave number” λ ∈ R of an Helmholtz operator ∆ + λ may be
used to adapt the operator to the specific properties of a summand showing an
alternating character, e.g., in order to force the convergence of the associated
infinite series.

Following our approach of establishing extensions of the Euler summa-
tion formula by specifying particular classes of Green’s function within a cer-
tain framework (once more, boundary condition, Helmholtz differential oper-
ator, singularity and normalization (if necessary)), we are able to make es-
sential scientific progress in both formulating convergence criteria for a multi-
dimensional series in adaptation to the (oscillating) properties of the summand
and representing the series in terms of certain volume and surface integrals
to come up with relevant lattice point identities of number theoretical signif-
icance.

Indeed, the list of significant topics and innovative results based on the
Euler summation with respect to Helmholtz operators is long. It enables us
to

• interrelate Green functions to Zeta and Theta functions,

• develop convergence criteria for (alternating) multi-dimensional series (al-
ways understood here in spherical summation),

• formulate adapted conditions for the validity of the multi-dimensional
Poisson summation formula in Euclidean spaces,

• outline Euler summation formulas for regular (“potato”-like) regions,

• deduce Poisson summation formulas for regular (“potato”-like) regions in
the sense of Gauß–Weierstraß or Abel–Poisson summability,

• verify extended Hardy–Landau identities for “lattice point” sums as well
as “lattice ball” sums in spheres,

• derive asymptotic relations for weighted lattice point sums,

• explain non-uniform radial and angular distributions of lattice points.

• develop comparisons of asymptotic laws between lattice ball and lattice
point sums.

As essential ingredients to establish our results we need a number of aux-
iliary means and tools such as

• fundamental solutions for the iterated Laplace equation, asymptotic laws
for spherical integrals involving Green functions with respect to (iterated)
Helmholtz operators, the appropriate ball averaging of the Green func-
tions,
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• an (alternative) approach to the theory of spherical harmonics,

• fundamental solutions for the iterated (spherical) Laplace–Beltrami equa-
tion, spherical integral formulas for the Beltrami operator, discrepancy
representations by means of the Green function on the sphere for the Bel-
trami operator,

• the (metaharmonic) theory of cylinder functions (Bessel, Hankel, Kelvin,
Neumann functions, etc.), asymptotic rules for entire solutions of the
Helmholtz equation (i.e., the reduced wave equation),

• integral transforms, e.g., Abel–Poisson transform, Gauß–Weierstraß trans-
form,

• the Fourier inversion formula for discontinuous functions, however, in the
pointwise sense,

• Hankel transform involving discontinuous integrals in terms of Bessel func-
tions,

• functional equations of Zeta and Theta functions,

• lattice point and lattice ball discrepancies as specific expressions in terms
of periodical Green functions,

• the theory of almost periodicity in the (B2)-Besicovitch sense,

• asymptotic expansions for weighted “lattice point” and “lattice ball” dis-
crepancies,

• “width” and “phase” dependent quantification of planar radial lattice
point distributions.
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2.1 Cartesian Nomenclature

Throughout this book we base our considerations on the following notational
background.

The letters N,N0,Z,R, and C denote the set of positive, non-negative
integers, integers, real numbers, and complex numbers, respectively.

As usual, we write x, y, . . . to represent the elements of the q-dimensional
(real) Euclidean space Rq (q ≥ 1). In Cartesian coordinates we have the
component representation (q-tuples of real numbers)

x =




x1

...
xq


 , y =




y1
...
yq


 . (2.1)

If necessary we write x(q) instead of x to point out that x is an element of
Rq. The canonical orthonormal system in Rq is denoted by ǫ1, . . . , ǫq. More
explicitly,

ǫ1 =




1
0
...
0


 , . . . , ǫq =




0
...
0
1


 . (2.2)

Any x ∈ Rq may be represented in Cartesian coordinates xi, i = 1, . . . , q, by

x =

q∑

i=1

xiǫ
i. (2.3)

9
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In Cartesian coordinates the inner (scalar) product of two elements x, y ∈ Rq

is given by

x · y = xT y =

q∑

i=1

xiyi. (2.4)

Clearly,

x2 = |x|2 = x · x = xTx, x ∈ Rq, (2.5)

i.e., the norm in Rq is given

|x| =
√
x · x =

√
xTx, x ∈ Rq. (2.6)

Given a vector a ∈ Rq and a set M ⊂ Rq. Let M + {a} denote the set
of all points y = x + a, as x runs through the points of M. M + {a} is the
translate of the set M by a. More generally, if N denotes some set of vectors
from Rq then by M+N we understand the set of all points y = x+ a for an
arbitrary x from M and an arbitrary a from N .

If G is a set of points in Rq, ∂G will denote its boundary. The set G = G∪∂G
is called the closure of G. A set G ⊂ Rq is called a region if and only if it is
open and connected.

By a scalar or vector function (field) on a region G ⊂ Rq, we mean a
function that assigns to each point of G, a scalar or vectorial function value,
respectively. Unless otherwise specified, all functions are assumed to be com-
plex valued. It will be of advantage to use the following general scheme of
notation:

capital letters F ,G : scalar functions,
lower-case letters f , g : vector fields.

The restriction of a scalar-valued function F or a vector-valued function
f to a subset M of its domain is denoted by F |M or f |M , respectively. For a
set S of functions, we set S|M = {F |M

∣∣F ∈ S}.

Differential Operators

Let G ⊂ Rq be a region. Suppose that F : G → C is differentiable. ∇F : x 7→
(∇F )(x), x ∈ G, denotes the gradient of F on G. The partial derivatives of F
at x ∈ G, sometimes briefly written as F|i, i ∈ {1, . . . , q}, are given by

F|i(x) =
∂F

∂xi
(x) = (gradx F )(x) · ǫi = (∇xF ) (x) · ǫi = ((∇xF ) (x))i . (2.7)

Let u : G → Cq be a vector field, and suppose, in addition, that u is
differentiable at a point x ∈ G. The partial derivatives of u at x ∈ G are given
by

ui|j(x) =
∂ui

∂xj
(x) = ǫi · (∇u)(x)ǫj . (2.8)
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The divergence of u at x ∈ G is the scalar value

∇x · u(x) = divxu(x) = tr (∇u)(x) . (2.9)

Thus, we have the identity

∇x · u(x) = divxu(x) =

q∑

i=1

ui|i(x) . (2.10)

Let F be a differentiable scalar field on G, and suppose, in addition, that
∇F is differentiable at x ∈ G. Then we introduce the Laplace operator (Lapla-
cian) of F at x ∈ G by

∆xF (x) = divx ((gradx F )(x)) = ∇x · ((∇xF ) (x)) . (2.11)

Analogously, we define the Laplacian of a vector field f : G → Cq (with ∇f
being differentiable at x ∈ G) by

∆xf(x) = divx ((gradx f)(x)) = ∇x · ((∇xf) (x)) . (2.12)

Clearly, for sufficiently often differentiable fields F, f , we have

∆xF (x) =

q∑

i=1

F|i|i(x), (2.13)

∆xf(x) · ǫi =

q∑

j=1

fi|j|j(x) . (2.14)

Multi-Indices

Let α = (α1, . . . , αq)
T be a q-tuple of non-negative integers α1, . . . , αq, i.e.,

α ∈ N0
q. We set

α! = α1! · . . . · αq!, (2.15)

[α] = α1 + . . .+ αq, (2.16)

|α| =
√
α2

1 + . . .+ α2
q. (2.17)

We say α = (α1, . . . , αq)
T is a q-dimensional multi-index of degree n if [α] = n.

As usual, we set

xα = xα1
1 · . . . · xαq

q , x ∈ Rq, α ∈ Nq
0, (2.18)

(∇x)
α

=

(
∂

∂x1

)α1

. . .

(
∂

∂xq

)αq

=
∂[α]

(∂x1)α1 . . . (∂xq)αq
. (2.19)
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Clearly, for [α] = [β], we have

(∇x)
α
xβ =

{
0 , α 6= β,
α! , α = β.

(2.20)

In this notation of multi-indices we have
(

q∑

i=1

xi

)n

=
∑

[α]=n

n!

α!
xα. (2.21)

As is well known, for x, y ∈ Rq, the binomial theorem reads

(x · y)n =

(
q∑

i=1

xiyi

)n

=
∑

[α]=n

n!

α!
xαyα. (2.22)

2.2 Regular Regions

A bounded region G ⊂ Rq is called regular, if its boundary ∂G is an orientable
piecewise smooth Lipschitzian manifold of dimension q − 1 (for more details
about regular regions the reader is referred to textbooks of vector analysis).
Examples are ball, cube, other polyhedra, geoid(al potato), (real) Earth’s
body, etc.

F ∈ C(k)(G), 0 ≤ k ≤ ∞, means that the function F : G → C is k-times
continuously differentiable in G = G ∪ ∂G. By convention, F ∈ C(k−1)(G) ∩
C(k)(G) means that the function F : G → C is (k − 1)-times continuously
differentiable in G such that F |G is k-times continuously differentiable.

The volume of a regular region G ⊂ Rq is given by

||G|| =

∫

G
dV(q)(x), (2.23)

where
dV(q)(x) = dx1 . . . dxq (2.24)

is the volume element.
The area of the boundary ∂G of a regular region G ⊂ Rq is given by

||∂G|| =

∫

∂G
dS(q−1)(x), (2.25)

where dS(q−1)(x) is the surface element

dS(q−1)(x) = x1 dx2 . . . dxq (2.26)

−x2 dx1dx3 . . . dxq

+ − . . .

+(−1)q−1xq dx1 . . . dxq−1.



Basic Notation 13

Remark 2.1. Throughout this work, for integration in the q-dimensional Eu-
clidean space and on the boundary surface ∂G in Rq, we use the traditional
(non-oriented) notations dV and dS, respectively. If the dimension and the
variable of integration must be specified, the notations dV(q)(x) and dS(q−1)(x)
are used, respectively.

FIGURE 2.1
Typical (geomathematically relevant) regular region (“geoidal potato”).

2.3 Spherical Nomenclature

As usual, the unit sphere in Rq is denoted by Sq−1:

Sq−1 =
{
x ∈ Rq

∣∣ |x| = 1
}
. (2.27)

Each x ∈ Rq, x = (x1, . . . , xq)
T, |x| 6= 0, admits a representation in polar

coordinates of the form

x = rξ, r = |x|, ξ = (ξ1, . . . , ξq)
T, (2.28)

where ξ ∈ Sq−1 is the uniquely determined (unit) vector of x.
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Using the canonical orthonormal basis ǫ1, . . . , ǫq in Rq (more accurately,
ǫ1(q), . . . , ǫ

q
(q) in Rq) we are able to write ξ(q) ∈ Sq−1, q ≥ 3, in the form

ξ(q) = tǫq(q) +
√

1 − t2 ξ(q−1), t ∈ [−1, 1], ξ(q−1) ∈ Sq−2, (2.29)

ξ(2) = (cosϕ, sinϕ)T , ξ(2) ∈ S1, ϕ ∈ [0, 2π). (2.30)

Differential Operators

By means of polar coordinates x(q) = rξ(q), r = |x(q)|, ξ(q) ∈ Sq−1, the
gradient ∇ in Rq can be represented in the form

∇x(q)
= ξ(q)

∂

∂r
+

1

r
∇∗

ξ(q)
, (2.31)

where ∇∗ is the surface gradient on Sq−1. Moreover, in terms of spherical
coordinates the Laplace operator (Laplacian) ∆ = ∇ · ∇ in Rq

∆x(q)
=

(
∂

∂x1

)2

+ . . .+

(
∂

∂xq

)2

(2.32)

has the representation

∆x(q)
= r1−q ∂

∂r
rq−1 ∂

∂r
+

1

r2
∆∗

ξ(q)
, (2.33)

where ∆∗ describes the Laplace–Beltrami operator of the unit sphere Sq−1

recursively given by

∆∗
ξ(q)

= (1 − t2)

(
∂

∂t

)2

− (q − 1)t
∂

∂t
+

1

1 − t2
∆∗

ξ(q−1)
, q ≥ 3, (2.34)

∆∗
ξ(2)

=

(
∂

∂ϕ

)2

(2.35)

(if no confusion is likely to arise the Laplace–Beltrami operator is simply called
the Beltrami operator).

Clearly,
∆∗ = ∇∗ · ∇∗, (2.36)

where ∇∗· is the surface divergence on Sq−1 (for more details concerning the
differential operators in the three-dimensional case see, e.g., W. Freeden, M.
Schreiner [2009]).

Spheres and Balls

The sphere in Rq with radius R around y ∈ Rq is denoted by Sq−1
R (y)

Sq−1
R (y) =

{
x ∈ Rq

∣∣ |x− y| = R
}
, (2.37)
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and Sq−1
R is the sphere with radius R around 0 (i.e., Sq−1

R = Sq−1
R (0)).

Bq
R(y) denotes the (open) ball in the Euclidean space Rq with center y ∈ Rq

and radius R:
Bq

R(y) = {x ∈ Rq
∣∣ |x− y| < R}. (2.38)

The closure of the ball Bq
R(y) ⊂ Rq is given by

Bq
R(y) = {x ∈ Rq

∣∣ |x− y| ≤ R}. (2.39)

We simply write Bq
R and Bq

R, respectively, for the open and closed ball with
radius R around the origin 0.

By Bq
ρ,R(y), 0 ≤ ρ < R, we denote the ball ring in the Euclidean space Rq

with center y ∈ Rq and radii ρ and R given by

Bq
ρ,R(y) = {x ∈ Rq

∣∣ ρ < |x− y| < R}, (2.40)

i.e.,
Bq

ρ,R(y) = Bq
R(y)\Bq

ρ(y). (2.41)

2.4 Radial and Angular Functions

A function G : Bq
ρ,N → C is called radial in Bq

ρ,N , 0 ≤ ρ ≤ N , if for all

x ∈ Bq
ρ,N

G(x) = G(rξ) = G(r), x = rξ, r = |x|. (2.42)

A function H : Bq
ρ,N → C is called angular in Bq

ρ,N , 0 < ρ ≤ N , if for all

x ∈ Bq
ρ,N

H(x) = H(rξ) = H(ξ), x = rξ, r = |x|. (2.43)

The Laplace derivative of a radial and angular function, respectively, is of
particular significance for our later work

∆xG(x) = r1−q ∂

∂r
rq−1 ∂

∂r
G(r), r ∈ [ρ,N ], (2.44)

∆xH(x) =
1

r2
∆∗

ξH(ξ), ξ ∈ Sq−1. (2.45)



This page intentionally left blankThis page intentionally left blank



3
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In this chapter we provide well known one-dimensional tools and methods
of basic importance for this work. The point of departure is the Gamma
function. A central topic is the Stirling formula. Particular attention is paid
to generalizations of the Riemann–Lebesgue theorem known from the Fourier
theory. We continue with some procedures of the stationary phase that turn
out to be extremely helpful to secure the convergence of weighted lattice point
sums including Fourier integrals (as discussed, for example, in Subsection
13.2). Finally, our considerations are dedicated to Abel–Poisson and Gauß–
Weierstraß limit relations as canonical preparations for the Abel–Poisson and
Gauß–Weierstraß transforms in multi-dimensional Euclidean spaces Rq (as
studied in Section 7.4 and applied to the lattice point theory in Section 12.1).

3.1 Gamma Function and Its Properties

First our purpose is to introduce the classical Gamma function. Its essential
properties are explained (for a more detailed discussion the reader is referred,
e.g., to N. Nielsen [1906], E.T. Whittaker, G.N. Watson [1948], N.N. Lebedev
[1973], C. Müller [1998], and the references therein). In particular, the Stirling
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formula is verified. The extension of the Gamma function to complex values
is studied.

Definition and Functional Equation

For real values x > 0 we consider the integrals

(α)

∫ 1

0

e−ttx−1dt (3.1)

and

(β)

∫ ∞

1

e−ttx−1dt. (3.2)

In order to show the convergence of (α), we observe that 0 < e−ttx−1 ≤ tx−1

holds true for all t ∈ (0, 1]. Therefore, for ε > 0 sufficiently small, we have

∫ 1

ε

e−ttx−1dt ≤
∫ 1

ε

tx−1dt =
tx

x

∣∣∣∣
1

ε

=
1

x
− εx

x
. (3.3)

Consequently, for all x > 0, the integral (α) is convergent. To guarantee the
convergence of (β) we observe that

e−ttx−1 ≤ n!

tn−x+1
(3.4)

for all n ∈ N and t ≥ 1. This shows us that

∫ A

1

e−ttx−1dt ≤ n!

∫ A

1

1

tn−x+1
dt = n!

t−n+x

x− n

∣∣∣∣
A

1

=
n!

x− n

(
1

An−x
− 1

)

(3.5)
provided that A is sufficiently large and n is chosen such that n ≥ x+1. Thus,
the integral (β) is convergent.

The point of departure is the following integral representation.

Lemma 3.1. For all x > 0, the integral

∫ ∞

0

e−ttx−1dt (3.6)

is convergent.

By definition we let

Γ(x) =

∫ ∞

0

e−ttx−1dt. (3.7)

Definition 3.1. The function x 7→ Γ(x), x > 0, as defined by (3.7), is called
the Gamma function.
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Obviously, we have the following properties:

(i) Γ is positive for all x > 0,

(ii) Γ(1) =
∫∞
0 e−tdt = 1.

Integration by parts yields

Γ(x + 1) =

∫ ∞

0

e−t txdt = −e−ttx
∣∣∞
0

−
∫ ∞

0

(−e−t) xtx−1dt

= x

∫ ∞

0

e−ttx−1dt = x Γ(x). (3.8)

Lemma 3.2. The Gamma function Γ satisfies the functional equation

Γ(x+ 1) = xΓ(x), x > 0. (3.9)

As an immediate consequence we obtain

Γ(x+ n) = (x+ n− 1) · · · (x + 1)x Γ(x) (3.10)

for x > 0 and n ∈ N. This gives us

Lemma 3.3. For n ∈ N0,

Γ(n+ 1) = n! . (3.11)

Proof. The assertion is clear for n = 0, 1. For n ≥ 2 we have

Γ(n+ 1) = nΓ(n) (3.12)

= n(n− 1)Γ(n− 1)

= n · . . . · 1 Γ(1)︸︷︷︸
=1

= n! ,

as required.

Remark 3.1. The Gamma function restricted to positive integers is the well
known factorial function.

Next we deal with the derivatives of the Gamma function.

Lemma 3.4. The Gamma function Γ is differentiable for all x > 0, and we
have

Γ′(x) =

∫ ∞

0

e−t(ln(t))tx−1dt. (3.13)
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Γ is infinitely often differentiable for all x > 0, and we have

Γ(k)(x) =

∫ ∞

0

e−t(ln(t))ktx−1dt, k ∈ N. (3.14)

An elementary calculation shows us that

(Γ′(x))
2

=

(∫ ∞

0

e−t(ln(t))tx−1dt

)2

(3.15)

=

(∫ ∞

0

e−
t
2 t

x−1
2 (ln(t))e−

t
2 t

x−1
2 dt

)2

.

The Cauchy-Schwarz inequality yields

(Γ′(x))
2 ≤

∫ ∞

0

(
e−

t
2 t

x−1
2

)2

dt

∫ ∞

0

(
e−

t
2 t

x−1
2 (ln(t))

)2

dt (3.16)

=

∫ ∞

0

e−ttx−1dt

∫ ∞

0

e−ttx−1(ln(t))2 dt

= Γ(x) Γ′′(x).

Lemma 3.5. (Gauß’ Expression of the Second Order Logarithmic Derivative)
For x > 0,

(Γ′(x))
2 ≤ Γ(x) Γ′′(x). (3.17)

Equivalently, we have

(
d

dx

)2

ln(Γ(x)) =
Γ′′(x)

Γ(x)
−
(

Γ′(x)

Γ(x)

)2

> 0. (3.18)

In other words, x 7→ ln(Γ(x)), x > 0, is a convex function.

Euler’s Beta Function

Next we notice that for γ > 0, δ > 0, the integral

∫ 1

0

tγ−1(1 − t)δ−1dt (3.19)

is convergent.

Definition 3.2. The function (γ, δ) 7→ B(γ, δ), γ, δ > 0, defined by

B(γ, δ) =

∫ 1

0

tγ−1(1 − t)δ−1 dt (3.20)

is called the Euler Beta function.
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For γ, δ > 0 we see that

Γ(γ)Γ(δ) =

∫ ∞

0

e−ttγ−1dt

∫ ∞

0

e−ssδ−1 ds (3.21)

=

∫ ∫

0≤t<∞
0≤s<∞

e−(t+s)tγ−1sδ−1dt ds.

Note that the transition from one-dimensional to two-dimensional integrals
is permitted by Fubini’s theorem.

s

t

v

u

FIGURE 3.1
The illustration of the coordinate transformation relating the Beta and the
Gamma functions.

We make a coordinate transformation (cf. Figure 3.1) as follows:

t = u(1 − v) , 0 ≤ u <∞,
s = uv , 0 ≤ v ≤ 1.

(3.22)

It is not difficult to verify that the functional determinant of the coordinate
transformation is given by

∂(t, s)

∂(u, v)
=

∣∣∣∣
1 − v −u
v u

∣∣∣∣ = u(1 − v) + uv = u ≥ 0 (3.23)
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Thus we find
∫ ∫

0≤t<∞
0≤s<∞

e−(t+s)tγ−1sδ−1dt ds =

∫ ∫

0≤v≤1

0≤u<∞

e−u(u(1 − v))γ−1(uv)δ−1u du dv

=

∫ ∫

0≤v≤1

0≤u<∞

e−uuγ+δ−2(1 − v)γ−1vδ−1u du dv

=

∫ ∞

0

e−uuγ+δ−1du

∫ 1

0

vδ−1(1 − v)γ−1dv.

(3.24)

This leads to

Theorem 3.1. For γ, δ > 0

B(γ, δ) =
Γ(γ)Γ(δ)

Γ(γ + δ)
. (3.25)

In particular,

B

(
1

2
,
1

2

)
=

∫ 1

0

t−
1
2 (1 − t)−

1
2 dt (3.26)

= 2

∫ 1

0

(1 − u2)−
1
2 du

= 2 arcsin(1) = 2
π

2
= π.

Therefore we have
Γ2
(

1
2

)

Γ(1)
= π. (3.27)

This shows that

Γ

(
1

2

)
=

√
π =

∫ ∞

0

e−tt−
1
2 dt. (3.28)

Other types of integrals can be derived from

∫ ∞

0

e−tα

dt
u=tα

=
1

α

∫ ∞

0

e−uu
1
α−1 du (3.29)

=
1

α
Γ

(
1

α

)
, α > 0.

Lemma 3.6. For α > 0,

∫ ∞

0

e−tα

dt = Γ

(
α+ 1

α

)
. (3.30)
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In particular,

∫ ∞

0

e−t2dt = Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

√
π

2
. (3.31)

Moreover, we have

∫ ∞

0

tγ−1e−tα

dt =
1

α
Γ
(γ
α

)
, γ, α > 0 (3.32)

and

∫ ∞

0

tγ−1e−αt2dt =
1

2
α− γ

2 Γ
(γ

2

)
, γ, α > 0. (3.33)

q=1 ||S0|| = 2

q=2 ||S1|| = 2π

q=3 ||S2|| = 4π

TABLE 3.1
The area of the unit sphere Sq−1 for q = 1, 2, 3.

Within the notational framework of polar coordinates (2.29), (2.30) we
give the well known calculation of the area ||Sq−1|| of the unit sphere Sq−1 in
Rq: By definition (see Table 3.1), we set

||S0|| = 2, (3.34)

S1 is the unit circle in R2; hence, its area is equal to

||S1|| = 2π. (3.35)

Furthermore, S2 is the unit sphere in R3; hence, its area is known to be equal
to

||S2|| = 4π. (3.36)

We are interested in deriving the area of the sphere Sq−1 in Rq (q > 3):

||Sq−1|| =

∫

Sq−1

dS(q−1)(ξ(q)). (3.37)


