METHODS OF
STATISTICAL MODEL
ESTIMATION

Joseph M. Hilbe

Andrew P. Robinson

CRC Press
Taylor & Francis Group

A CHAPMAN & HALL BOOK

METHODS OF
STATISTICAL MODEL
ESTIMATION

METHODS OF
STATISTICAL MODEL
ESTIMATION

Joseph M. Hilbe

Jet Propulsion Laboratory
California Institute of Technology, USA
and

Arizona State Univeristy, USA

Andrew P. Robinson

ACERA & Department of Mathematics and Statistics
The University of Melbourne, Australia

CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130426

International Standard Book Number-13: 978-1-4398-5803-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface ix
1 Programming and R 1
1.1 Imtroduction o 1
1.2 R Specifics 1
1.2.1 Objects 3
1.2.1.1 Vectors 3

1.2.1.2 Subsetting, 7

1.2.2 Container Objects 7
1.22.1 Lists. o 8

1.2.2.2 Dataframes 9

1.2.3 Functions 10
1.2.3.1 Arguments 11

1232 Body 13

1.2.3.3 Environments and Scope 14

1.24 Matriceso 16
1.2.5 Probability Families 19
1.2.6 Flow Control 22
1.2.6.1 Conditional Execution 23

1.2.6.2 Loops 23

1.2.7 Numerical Optimization 25

1.3 Programming 27
1.3.1 Programming Style, 27
1.3.2 Debugging. Lo . 28
1.3.2.1 Debugging in Batch 29

1.3.3 Object-Oriented Programming 30
1.34 S3Classes 30

1.4 Making R Packages 34
1.4.1 Building a Package 35
1.42 Testing o 36
1.4.3 Installation 36

1.5 Further Reading 37
1.6 Exercises 37

vi

2 Statistics and Likelihood-Based Estimation
2.1 Introduction

2.2 Statistical Models L.
2.3 Maximum Likelihood Estimation
2.3.1 Process
2.3.2 Estimation
2.3.2.1 Exponential Family

2.3.3 Properties Lo

2.4 Interval Estimates
2.4.1 Wald Intervals
2.4.2 Inverting the LRT: Profile Likelihood
2.4.3 Nuisance Parameters

2.5 Simulation for Fun and Profit
2.5.1 Pseudo-Random Number Generators

2.6 Exercises

3 Ordinary Regression
3.1 Introduction

3.2 Least-Squares Regression
3.2.1 Properties Lo o
3.2.2 Matrix Representation
3.2.3 QR Decomposition 0L
324 Example. o o

3.3 Maximum-Likelihood Regression

3.4 Infrastructure
3.4.1 Easing Model Specification
3.4.2 Missing Data
3.4.3 Link Function.
3.4.4 Initializing the Search
3.4.5 Making Failure Informative
3.4.6 Reporting Asymptotic SEand CI.
3.4.7 The Regression Function.
348 S3Classes v oo

3481 Print ... oo

3.4.8.2 Fitted Values

3483 Residuals oL

3.4.8.4 Diagnosticso

3.4.85 Metricsof Fit

3.4.8.6 Presenting a Summary

3.49 Example Redux.
3.4.10 Follow-up

3.5 Conclusion
3.6 Exercises s

39
39
39
41
41
45
46
47
49
49
50
52
56
o6
99

61
61
62
64
66
69
71
74
76
76
7
78
78
79
79
80
82
82
83
84
85
87
89
91
94
94
94

4 Generalized Linear Models

4.1 Introduction
4.2 GLM: Families and Terms
4.3 The Exponential Family
4.4 The IRLS Fitting Algorithm
4.5 Bernoulli or Binary Logistic Regression

451 IRLS. e
4.6 Grouped Binomial Models
4.7 Constructing a GLM Function

4.71 A Summary Function

4.7.2 Other Link Functions
4.8 GLM Negative Binomial Model
4.9 Offsets
4.10 Dispersion, Over- and Under-
4.11 Goodness-of-Fit and Residual Analysis

4.11.1 Goodness-of-Fit

4.11.2 Residual Analysis.
4.12 Weights e

4.13 Conclusion
4.14 Exercises

5 Maximum Likelihood Estimation

5.1 Introduction
52 MLE for GLM
5.2.1 The Log-Likelihood
5.2.2 Parameter Estimation
5.2.3 Residuals
5.2.4 Deviance e
5.2.5 Initial Values
5.2.6 Printing the Object
5.2.7 GLM Function
5.2.8 Fitting for a New Family
5.3 Two-Parameter MLE
5.3.1 The Log-Likelihood
5.3.2 Parameter Estimation
5.3.3 Deviance and Deviance Residuals
5.3.4 Initial Values
5.3.5 Printing and Summarizing the Object
5.3.6 GLM Function
5.3.7 Building on the Model
5.3.8 Fitting for a New Family

5.4 Exercises

vii

97

97

99
102
104
105
111
114
120
125
128
129
133
136
139
139
141
143
143
144

viii

6 Panel Data 177
6.1 What Is a Panel Model? 177
6.1.1 Fixed- or Random-Effects Models 181

6.2 Fixed-Effects Model 181
6.2.1 Unconditional Fixed-Effects Models 181
6.2.2 Conditional Fixed-Effects Models 183
6.2.3 Coding a Conditional Fixed-Effects Negative Binomial 185

6.3 Random-Intercept Model 188
6.3.1 Random-Effects Models 188
6.3.2 Coding a Random-Intercept Gaussian Model 191

6.4 Handling More Advanced Models 194
6.5 The EM Algorithm 194
6.5.1 A Simple Example 196
6.5.2 The Random-Intercept Model 197

6.6 Further Reading 201
6.7 Exercises 202
7 Model Estimation Using Simulation 203
7.1 Simulation: Why and When? 203
7.2 Synthetic Statistical Models 205
7.2.1 Developing Synthetic Models 205
7.2.2 Monte Carlo Estimation 209
7.2.3 Reference Distributions 216

7.3 DBayesian Parameter Estimation 219
7.3.1 Gibbs Sampling 0oL 229

7.4 Discussion e e 230
7.5 Exercises e 231

Bibliography 233

Preface

Methods of Statistical Model Estimation has been written to develop a partic-
ular pragmatic viewpoint of statistical modelling. Our goal has been to try to
demonstrate the unity that underpins statistical parameter estimation for a
wide range of models. We have sought to represent the techniques and tenets
of statistical modelling using executable computer code. Our choice does not
preclude the use of explanatory text, equations, or occasional pseudo-code.
However, we have written computer code that is motivated by pedagogic con-
siderations first and foremost.

An example is in the development of a single function to compute deviance
residuals in Chapter 4. We defer the details to Section 4.7, but mention here
that deviance residuals are an important model diagnostic tool for generalized
linear models (GLMs). Each distribution in the exponential family has its own
deviance residual, defined by the likelihood. Many statistical books will present
tables of equations for computing each of these residuals. Rather than develop
a unique function for each distribution, we prefer to present a single function
that calls the likelihood appropriately itself. This single function replaces five
or six, and in so doing, demonstrates the unity that underpins GLM. Of course,
the code is less efficient and less stable than a direct representation of the
equations would be, but our goal is clarity rather than speed or stability.

This book also provides guidelines to enable statisticians and researchers
from across disciplines to more easily program their own statistical models
using R. R, more than any other statistical application, is driven by the con-
tributions of researchers who have developed scripts, functions, and complete
packages for the use of others in the general research community. At the time
of this writing, more than 4,000 packages have been published on the Com-
prehensive R Archive Network (CRAN) website.

Our approach in this volume is to discuss how to construct several of the
foremost types of estimation methods, which can then enable readers to more
easily apply such methods to specific models. After first discussing issues re-
lated to programming in R, developing random number generators, numerical
optimization, and briefly developing packages for publication on CRAN, we
discuss in considerable detail the logic of major estimation methods, including
ordinary least squares regression, iteratively re-weighted least squares, max-
imum likelihood estimation, the EM algorithm, and the estimation of model
parameters using simulation. In the process we provide a number of guidelines
that can be used by programmers, as well as by statisticians and researchers
in general regarding statistical modelling.

ix

Datasets and code related to this volume may be found in the msme
package on CRAN. We also will have R functions and scripts, as well as
data, available for download on Prof. Hilbe’s BePress Selected Works website,
http://works.bepress.com/joseph_hilbe/. The code and data, together
with errata and a PDF document named MSME_Extensions.pdf, will be in
the msme folder on the site. The extensions document will have additional code
or guidelines that we develop after the book’s publication that are relevant
to the book. These resources will also be available at the publisher’s website,
http://www.crcpress.com/product/ISBN/9781439858028.

Readers will find that some of the functions in the package have not been
exported, that is, made explicitly available when the package is loaded in
memory. They can still be called, using the protocol shown in the following
example for Sj11:

msme:::Sj11(... insert arguments here as usual! ...)

That is, prepend the library name and three colons to the function call.

We very much encourage feedback from readers, and would like to have
your comments regarding added functions, operations and discussions that
you would like to see us write about in a future edition. Our goal is to have
this book be of use to you for writing your own code for the estimation of
various types of models. Moreover, if readers have written code that they
wish to share with us and with other readers, we welcome it and can put it in
the Extensions ebook for download. We will always acknowledge the author of
any code we use or publish. Annotated, self-contained code is always preferred!

Readers are assumed to have a background in R programming, although
the level of programming experience necessary to understand the book is
rather minimal. We attempt to explain every R construct and operation;
therefore, the text should be successfully used by anyone with an interest
in programming. Of course the more background one has in using R, and
in programming in general, the easier it will be to implement the code we
developed for this volume.

Overview

Chapter 1 is the introductory chapter providing readers with the basics of R
programming, including the specifics of R objects, functions, matrices, object-
oriented programming, and creating R packages.

Chapter 2 deals with the nature of statistical models and of maximum like-
lihood estimation. We then introduce random number generators and provide
code for constructing them, as well as for writing code for simple simula-
tion activities. We also outline the rationale for using profile likelihood-based
standard errors in place of traditional model-based standard errors.

Xi

Chapter 3 addresses basic ordinary least squares (OLS) regression. Code
structures are developed that will be used throughout the book. Least-squares
regression is compared to full maximum likelihood methodology. Also dis-
cussed are problems related to missing data, reporting standard errors and
confidence intervals, and to understanding S3 class modelling.

Chapter 4 relates to the theory and logic of programming generalized lin-
ear models (GLM). We spend considerable time analyzing the iteratively re-
weighted least squares (IRLS) algorithm, which has traditionally been used for
the estimation of GLMs. We first demonstrate how to code specific GLM mod-
els as stand-alone functions, then show how all of them can be incorporated
within a GLM covering algorithm. The object is to demonstrate the develop-
ment of modular programming. A near complete GLM function, called irls,
is coded and explained, with code for the three major Bernoulli and binomial
models, Poisson, negative binomial, gamma, and inverse Gaussian models in-
cluded. We also provide the function with a wide variety of post estimation
statistics and a separate summary function for displaying regression results.
Topics such as over-dispersion, offsets, goodness-of-fit, and residual analysis
are also examined.

Chapter 5 develops traditional maximum likelihood methodology showing
how to write modular code for one- and two-parameter GLMs as full maximum
likelihood models. One parameter GLMs (function m1_glm) include binomial,
Poisson, gamma, and inverse Gaussian families. Our m1_glm2 function allows
modelling of two-parameter Gaussian, gamma, and negative binomial regres-
sion models. We also develop a model that was not previously available in R,
the heterogeneous negative binomial model, or NB-H. The NB-H model al-
lows parameterization of the scale parameter as well as for standard predictor
parameters.

Chapter 6 provides the logic and code for using maximum likelihood for
the estimation of basic fixed effects and random effects models. We provide
code for a conditional fixed effects negative binomial as well as a Gaussian
random intercept model. We also provide an examination of the logic and
annotated code for a working EM algorithm.

In the final chapter, Chapter 7, we address simulation as a method for
estimating the parameters of regression procedures. We demonstrate how to
construct synthetic models, then Monte Carlo simulation and finally how to
employ Markov Chain Monte Carlo simulation for the estimation of Poisson
regression coefficients, standard errors and associated statistics. In doing so
we provide the basis of Bayesian modelling. We do not, however, wish to
discuss Bayesian methodology in detail, but only insofar as the basic method
can be used in estimating model parameters. Fully working annotated code is
provided for the estimation of a Bayesian model with non-informative priors.
The code can easily be adapted for the use of other data and models, as well
as for the incorporation of priors.

Exercise questions are provided at the end of each chapter. We encourage

Xii

the readers to try answering them. We have designed them so that they are
answerable given the information provided in the chapter.

Our goal throughout has been to produce a clear and fully understandable
volume on writing code for the estimation of statistical models using the
foremost estimation techniques that have been developed by statisticians over
the last half century. We attempt to use examples that will be of interest to
researchers across disciplines.

As a general rule, we will include R code that the reader should be able
to run, conditional on the successful execution of earlier code, and signal that
code with the usual R prompts ‘<’ and ‘+’. We will also include pseudo-code
that provides some greater generality but should not be run as is. We omit
the prompts for the pseudo-code to distinguish it from the executable code.

Acknowledgments

We wish to thank Rob Calver, statistics editor at Chapman & Hall/CRC
(Taylor and Francis), for believing in this project, and for allowing us to
write the book as we saw fit. Others whom we wish to thank include, [Hilbe]
Alain Zuur, Highland Statistics, James Hardin (University of South Carolina),
Robert Muenchen (University of Tennessee), and [Robinson] Mark Burgman
(University of Melbourne), Jeff Gove (USDA FS), John Maindonald (ANU),
Gordon Smyth (WEHI), and Murray Aitkin (University of Melbourne). We
thank the R and ETEX communities, and the authors and maintainers of
Sweave, for these phenomenal resources.

Authoring books such as this one takes a great deal of writing and re-
search time. However, most of our time was taken up in coding, testing, error
checking, running models, re-coding, and so forth. This effort takes consider-
able time and patience, time that would otherwise be spent with our families.
We therefore thank our families for not complaining about the times we were
physically, as well as mentally, absent while working on this volume. Specif-
ically, JMH wishes to acknowledge the support of his wife Cheryl, daughter
Heather, sons Michael and Mitchell, grandsons Austin and Shawn, and Sirr,
a white Maltese who keeps him company throughout the day when working
on the computer. APR is grateful for the support of Grace, his son Felix, and
Henry, a black-and-tan mutt who got walked to the beach far less often than
he would like.

Joseph M. Hilbe
Florence, AZ, USA (hilbe@asu.edu)

Andrew P. Robinson
Melbourne, Australia (apro@unimelb.edu.au)

1

Programming and R

1.1 Introduction

The goal of this chapter is to introduce the reader to the programming tools
that will be used in subsequent chapters. It therefore provides a highly selective
review of R programming.

Users who have some exposure to data analysis and statistical packages
that provide graphical user interfaces may be wary about such a seemingly
bare-bones introduction to R. Many other data analysis products provide
apparently straightforward importation of data, accompanied by attractive
graphics and automated model fitting. Why is it useful to dig about in the
tissue of the language? The reason is that, in our experience as statisticians,
the provision to the analyst of data that are clean and ready to analyze is
the exception rather than the rule. Invariably some pre-analysis processing is
required. R provides a very flexible and powerful set of tools for the manipula-
tion of data. Careful use of these tools will both ease the process and improve
the transparency of preparing the data for suitable analysis. Therefore, close
examination of the data manipulation facilities of R will benefit the analyst.

The definitive reference to R is the R Language Definition, which is freely
available in PDF and HTML format on the R website, as well as being pro-
vided by default with each R installation. This work is continually updated
by the volunteers that support R. It can be accessed via the The R Language
Definition link on the front page of the html help file that is opened by the
help.start function.

1.2 R Specifics

Making a definitive description of R is a tricky proposal, because R is multi-
faceted and evolving. Therefore, we will tackle a simpler problem and describe
R just as we will be treating it in this book. R, for the purposes of this
book, is an interpreted, impure object-oriented programming language that
provides many structures and functions that ease the importation, handling,
and analysis of data, as well as reporting the outcome. Also for the purposes

1

2 Methods of Statistical Model Estimation

of this book, R is software that the user interacts with via a command-line
interface. The label R is commonly used to describe both the language and the
software application that interprets it. R is more fully documented in readily
available resources (e.g., R Development Core Team, 2012).

According to the R FAQ, the design of R has been heavily influenced by
two other languages: it is very similar in appearance to Becker, Chambers &
Wilks’ S, and its underlying implementation and semantics are derived from
Sussman’s Scheme (Hornik, 2010). R is not uncommonly described as being
“not unalike S.”

R is an interpreted, as opposed to a compiled, language. An interpreted lan-
guage is one for which the most common implementation involves translating
the code to machine-executable commands and executing those commands one
at a time. Re-running the program requires re-translation. A compiled imple-
mentation is one in which programs are written as collections of instructions,
then converted to binary objects. Such binary objects then can be run many
times without re-translation. We note in passing that R can run programs that
have been compiled from other languages, such as C and FORTRAN. Further-
more, as of R version 2.13.0, a byte compiler is available, which provides useful
although occasionally modest decreases in execution time.

As far as the user is concerned, the disadvantage of R being an interpreted
language rather than a compiled language is that it is slower in execution than
it would be if it were compiled. However, in the experience of the authors, the
execution time of R is very rarely a bottleneck in analytical exercises.

The R software provides an interpreter, or listener. The listener accepts
user input in the form of R code, then the software interprets the input,
executes the instructions, and returns the output. In practice, the user types
commands at the prompt, and R executes those commands, like this:

>1+2
(11 3

R, being somewhat like S, is somewhat object oriented (OO). Describing
R’s OO nature is complicated because of several factors: first, by the fact
that there are different kinds of object orientation, and second, that R itself
provides several implementations of OO programming. Indeed it is possible,
although may be inefficient, for the user to ignore R’s OO nature entirely.
Hence R is an impure object-oriented language (according to the definition
supplied by Craig, 2007, for example).

In this book we constrain ourselves to describing the implementation of S3
classes, which were introduced to S in version 3 (Chambers, 1992a). At the
time of writing, R also provides S4 classes (Chambers, 1998), and the user-
contributed packages R.oo (Bengtsson, 2003) and proto (Kates and Petzoldt,
2007). S3’s object orientation is class-based, as opposed to prototype based.
We will cover object-oriented programming (OOP) using R in more detail in
Section 1.3.3. In the meantime, we need to understand that R allows the user

Programming and R 3

to create and manipulate objects, and that this creation and manipulation is
central to interacting efficiently with R.

1.2.1 Objects

Everything in R is an object. Objects are created by the evaluation of R
statements. If we want to save an object for later manipulation, which we
most commonly do, then we choose an appropriate name for the object and
assign the name using the left arrow symbol <-. It is also possible to use
the equals sign =; however, in this book we prefer <-. So object creation is,
broadly, as follows.

name <- R statements

Valid object names may contain letters, digits and the two characters .
and _, and must start with a letter or . (Chambers, 2008).

1.2.1.1 Vectors

We start with a vector object, of which there are six types: real, string, logical,
integer, complex, and raw. Here we will focus on the first three types. We create
a vector of three real numeric objects, which we shall call wavelengths, as
follows:

> wavelengths <- ¢(325.3, 375.6, 411.1)

This code used the ¢ function to concatenate the three numbers into a vector
object, and then assigned the vector object a name: wavelengths. This vector
object is a container for the three real numbers. We can print the object by
just entering its name at the prompt.

> wavelengths
[1] 325.3 375.6 411.1

Every object in R has a class, which controls how the object can be manip-
ulated. The class of the object can be determined (and set) using the class
function.

> class(wavelengths)
[1] "numeric"

Classes are baked into base R, so knowing what they do and what they are
for helps the user understand what R is doing. We will cover classes in greater
detail later in this chapter. For the moment, we comment that knowing the
class is very helpful.

We can create a vector of character strings in the same way:

4 Methods of Statistical Model Estimation

> sentence <- c("This", "is", "a'", "character", "vector")
> class(sentence)

[1] "character"

We remark that R has some wonderful character-handling functions such
as paste, nchar, substr, grep, and gsub, but their coverage is beyond the
scope of this book.

Many operations are programmed so that if the operation is called on the
vector, then it is efficiently carried out on each of its elements. For example,

> wavelengths / 1000
[1] 0.3253 0.3756 0.4111

This is not true for all operations; some necessarily operate on the entire
vector, for example, mean,

> mean(wavelengths)
[1] 370.6667

and length.

> length(wavelengths)
[11 3

R also provides a special class of integer-like objects called a factor. A
factor is used to represent a categorical (actually nominal, more precisely)
variable, and that is the reason that it is important for this book. The object
is displayed using a set of character strings, but is stored as an integer, with
a set of character strings that are attached to the integers. Factors differ from
character strings in that they are constrained in terms of the values that they
can take.

> a_factor <- factor(c(”A”, IIAH’ "B”, "B”, ”B”, HCII))
> a_factor

[1] AABBBC
Levels: A B C

Note that when we printed the object, we were told what the levels of the
factor were. These are the only values that the object can take. Here, we try
to turn the 6th element into a Z.

> a_factor[6] <- "Z"
> a_factor

Programming and R 5

[1] A A B B B <NA>
Levels: ABC

We failed: R has made the 6th element missing (NA) instead. Note that we
accessed the individual element using square brackets. We will expand on this
topic in Section 1.2.1.2.

The levels, that is the permissible values, of a factor object can be displayed
and manipulated using the levels function. For example,

> levels(a_factor)
[1] HAll IlBlI llCll
Now we will turn the second element of the levels into Bee.

> levels(a_factor) [2] <- "Bee"

The consequence of this operation is that when we now print the factor, the
levels have been changed.

> a_factor

[1] A A Bee Bee Bee <NA>
Levels: A Bee C

One challenge that new R users often have with factors is that the functions
that are used to read data into R will make assumptions about whether the in-
tended class of input is factor, character string, or integer. These assumptions
are documented in the appropriate help files, but are not necessarily obvious
otherwise. This is especially tricky for some data where numbers are mixed
with text, sometimes accidentally. Manipulating factors as though they really
were numeric is often perilous. For example, they cannot be added.

> factor(1) + factor(2)
[1] NA

The final object class that we will describe is the logical class, which can
be thought of as a special kind of factor with only two levels: TRUE and FALSE.
Logical objects differ from factors in that mathematical operators can be used,

e.g.,
> TRUE + TRUE
[11 2

It is standard that TRUE evaluates to 1 when numerical operations are applied,
and FALSE evaluates to 0. Logical objects are created, among other ways, by
evaluating logical statements, for example

6 Methods of Statistical Model Estimation

> 1:4 < 3
[1] TRUE TRUE FALSE FALSE

Logical objects can be manipulated by the usual logical operators, and &,
or |, and not !. Here we evaluate TRUE (or) TRUE.

> TRUE | TRUE
[1] TRUE

In evaluating this statement, R will evaluate each logical object and then
the logical operator. An alternative is to use && or | |, for which R will evaluate
the first expression and then only evaluate the second if it is needed. This
approach can be faster and more stable under some circumstances. However,
the latter versions are not vectorized.

The last kind, but not class, of object that we want to touch upon is
the missing value, NA. This is a placeholder that R uses to represent known
unknown data. Such data cannot be lightly ignored, and in fact R will often
retain missing values throughout operations to emphasize that the outcome
of the operation depends on the missing value(s). For example,

> missing.bits <- c(1, NA, 2)
> mean(missing.bits)

[1] NA

If we wish to compute the mean of just the non-missing elements, then we
need to provide an argument to that effect, as follows (see Section 1.2.3.1,
below).

> mean(missing.bits, na.rm = TRUE)
[1] 1.5

Note that the missing element is counted in the length, even though it is
missing.

> length(missing.bits)
(11 3

We can assess and set the missing status using the is.NA function.

Programming and R 7

1.2.1.2 Subsetting

In the previous section we extracted elements from vectors. Subsets can easily
be extracted from many types of objects, using the square brackets operator
or the subset function. Here we demonstrate only the former. The square
brackets take, as an argument, an expression that can be evaluated to either
an integer object or a logical object. For example, using an integer, the second
item in our sentence is

> sentence[2]

[1] "is"

and the first three are

> sentence[1:3]

[1] "This" "is" "a"

Note that R has interpreted 1:3 as the sequence of integers starting at 1 and
concluding at 3. We can also exclude elements using the negative sign:

> sentence[-4]

[1] "This" "ig" "a" "vector"

> sentence[-(2:4)]

[1] "This" "vector"

An example of the use of a logical expression for subsetting is
> wavelengths > 400

[1] FALSE FALSE TRUE

> wavelengths[wavelengths > 400]

[1] 411.1

These subsetting operations can be nested. Alternatively, the intermedi-
ate results can be stored as named objects for subsequent manipulation. The
choice between the two approaches comes down to readability against effi-
ciency; creating interim variables slows the execution of the code but allows
commands to be split into more easily readable code chunks.

1.2.2 Container Objects

Other object classes are containers for objects. We cover two particularly useful
container classes in the section: lists and dataframes.

8 Methods of Statistical Model Estimation

1.2.2.1 Lists

A list is an object that can contain other objects of arbitrary and varying
classes. A list is created as follows.

> my.list <- list(number = 1, text = "alphanumeric")

Elements can be manipulated or extracted from the list using the double
square bracket symbol, or the $ symbol, as follows.

> my.list[[1]]

(11 1

> my.list$text

[1] "alphanumeric"

> my.list[[1]] <- 2
> my.list

$number
[1] 2

$text
[1] "alphanumeric"

Empty lists can be conveniently created using the vector function, as follows.

> capacious.empty.list <- vector(1000, mode = "list")

This list can then be used as a container for the outcome of a loop. Func-
tions like lapply and sapply allow for elegant, element-wise evaluation of
functions upon lists. For example, to determine the class of each element in a
list, we can use the following code:

> sapply(my.list, class)

number text
"numeric" "character"

Lists are very useful devices when programming functions, because func-
tions in R are only allowed to return one object. Hence, if we want a function
to return more than one object, then we have it return a list that contains all
the needed objects.

Programming and R 9

1.2.2.2 Dataframes

Dataframes are special kinds of lists that are designed for storing and manipu-
lating datasets as they are commonly found in statistical analysis. Dataframes
typically comprise a number of vector objects that have the same length; these
objects correspond conceptually to columns in a spreadsheet. Importantly, the
objects need not be of the same class. Under this setup, the i-th unit in each
column can be thought of as belonging to the i-th observation in the dataset.

There are numerous ways to construct dataframes within an R session.
We find the most convenient way to be the data.frame function, which takes
objects of equal length as arguments and constructs a dataframe from them.
If the arguments are named, then the names are used for the corresponding
variables. For example,

> example <- data.frame(var.a 1:3,
+ var.b = c("a" npn ”C”))

> str(example)

’data.frame’: 3 obs. of 2 variables:
$ var.a: int 1 2 3
$ var.b: Factor w/ 3 levels "a","b","c": 1 2 3

If the arguments are of different lengths, then R will repeat the shorter ones to
match the dimension of the longest ones, and report a warning if the shorter
are not a factor (in the mathematical sense) of the longest.

> data.frame(var.a = 1,
+ var.b = c(”a”, ”b”, "C"))

var.a var.b

1 1 a
1 b
3 1 c

Furthermore, as is more commonly used in our experience, when data are
read into the R session using one of the read.xxx family of functions, the
created object is a dataframe.

There are also numerous ways to extract information from a dataframe, of
which we will present only two: the square bracket [operator and subset.

The square bracket operator works similarly as presented in Section 1.2.1.2,
except instead of one index it now requires two: the first for the rows, and the
second for the columns.

> example[2, 1:2]

var.a var.b
2 2 b

10 Methods of Statistical Model Estimation
A blank is taken to mean that all should be included.
> examplel[2,]

var.a var.b
2 2 b

Note that this operation is calling a function that takes an object and indices
as its arguments. As before, the arguments can be positive or negative integers,
or a logical object that identifies the rows to be included by TRUE.

Extracting data using the subset function proceeds similarly, with one
exception: the index must be logical; it cannot be integer.

> subset (example, subset = var.a > 1, select = "var.b")

var.b
2 b
3 c

It is worth noting that storing data in a dataframe is less efficient than
using a matrix, and manipulating dataframes is, in general, slower than ma-
nipulating matrices. However, matrices may only contain data that are all the
same class. In cases where data requirements are extreme, it may be worth
trying to use matrices instead of dataframes.

1.2.3 Functions

We write functions to enable the convenient evaluation of sets of expressions.
Functions serve many purposes, including, but not limited to, improving the
readability of code, permitted the convenient re-use of code, and simplifying
the process of handling intermediate objects.

In R, functions are objects, and can be manipulated as objects. A func-
tion comprises three elements, namely: a list of arguments, a body, and a
reference to an environment. We now briefly describe each of these using an
example. This trivial function sums its arguments, and if the second argument
is omitted, it is set to 1.

> example.ok <- function (a, b = 1) {
+ return(a + b)
+ }

> example.ok(2,2)

[1] 4
> example.ok(2)

(11 3

Programming and R 11

We can now examine the pieces of the function by calling the following func-
tions. The formals are the arguments,

> formals (example.ok)

$a

$b
(11 1

the body is the R code to be executed,

> body (example.ok)

{
return(a + b)

}

and the environment is the parent environment.

> environment (example.ok)
<environment: R_GlobalEnv>

We describe each of these elements in greater detail below.

1.2.3.1 Arguments

The arguments of a function are a list (actually a special kind of list, called
a pairlist, which we do not describe further) of names and, optionally, ex-
pressions that can be used as default values. So, the arguments might be
for example x, or x = 1, providing the default value 1, or indeed x = some
expression, which will be evaluated if needed as the default expression.

The function’s arguments must be valid object names, that is, they may
contain letters, digits and the two characters . and _, and must start with
either a letter or the period . (Chambers, 2008). If an expression is provided
as part of the function definition, then that expression is evaluated and used
as the default value, which is used if the argument is not named in the function
call.

> example <- function(a = 1) a
> example()

[1] 1

Note that the argument expressions are not evaluated until they are needed
— this is lazy evaluation. We can demonstrate this by passing an expression
that will result in a warning when evaluated.

12 Methods of Statistical Model Estimation

> example <- function(a, b) a
> example(a = 1)

[1] 1
> example(a = 1, b = log(-1))
[1] 1

The absence of warning shows that the expression has not been evaluated.

It is important to differentiate between writing and calling the function
when thinking about arguments. When we write a function, any arguments
that we need to use in that function must be named in the argument list. If we
omit them, then R will look outside the function to find them. More details
are provided in Section 1.2.3.3.

> example <- function(a) a + b
> example(a = 1)
Error in example(a = 1) : object ’b’ not found

Now if we define b in the environment in which the function was created, the
parent environment, then the code runs.

> b <-1
> example(a = 1)

(1] 2

Note that R searched the parent environment for b.

An exception is that if we want to pass optional arbitrary arguments to
a function that is called within our function, then we use the ... argument.
Below, note how example requires arguments a and b, but when we call it
within our contains function we need to provide only a and the dots.

> example <- function(a, b) a + b
> contains <- function(a, ...) example(a, ...)
> contains(a =1, b = 2)

(11 3

Our contains function was able to handle the argument by passing it to
example, even without advance warning.

In calling a function, R will match the arguments by name, position, or
both name and position. For example,

> example(1, 2)

