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Preface

During the time since finalization of the manuscript of the first edition of this
book, research in the field of equivalence testing methods expanded at an un-
expectedly fast rate so that there seems to be a considerable need for updating
its coverage. Furthermore, in clinical research, there developed an increasing
preference for replacing trials following the classical placebo-controlled design
with active-control trials requiring methods of testing for noninferiority rather
than equivalence in the strict, i.e., two-sided sense. On the one hand, nonin-
feriority problems are nothing else but generalized one-sided testing problems
in the usual sense arising from a shift of the upper bound set under the null
hypothesis to the parameter of interest away from zero or unity. Furthermore,
from a technical point of view, the modifications required for transforming a
test for two-sided equivalence into a test for noninferiority for the same setting
are largely straightforward. On the other hand, it cannot be ignored that a
book on the topic is likely to better serve the needs of readers mainly inter-
ested in applications when for each specific scenario the noninferiority version
of the testing procedure is also described in full detail. Another extension
of considerable interest for research workers in a multitude of empirical areas
refers to testing for “relevant differences” between treatments or experimental
conditions. Testing problems of this latter kind are dual to two-sided equiva-
lence problems in that the assumption of nonexistence of differences of clinical
or otherwise practical relevance plays the role of the null hypothesis to be as-

xi
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sessed. The new edition discusses solutions to such problems in an additional
chapter.

Roughly speaking, tests for equivalence in the strict sense provide the ade-
quate answer to the most natural question of how to proceed in a traditional
two-sided testing problem if it turns out that primary interest is in verify-
ing rather than rejecting the null hypothesis. Put in more technical terms,
equivalence assessment deals with a particular category of testing problems
characterized by the fact that the alternative hypothesis specifies a sufficiently
small neighborhood of the point in the space of the target parameter which
indicates perfect coincidence of the distributions to be compared.

The relevance of inferential procedures which, in the sense of this notion,
enable one to “prove the null hypothesis” for many areas of applied statistical
data analysis, is obvious enough. A particularly striking phenomenon which
demonstrates the real need for such methods, is the adherence of generations
of authors to using the term “goodness-of-fit tests” for methods which are ac-
tually tailored for solving the reverse problem of establishing absence or lack of
fit. From a “historical” perspective (the first journal article on an equivalence
test appeared as late as in the sixties of the twentieth century), the interest of
statistical researchers in equivalence assessment was almost exclusively trig-
gered by the introduction of special approval regulations for so-called generic
drugs by the Food and Drug Administration (FDA) of the U.S. as well as the
drug regulation authorities of many other industrial countries. Essentially,
these regulations provide that the positive result of a test, which enables one
to demonstrate with the data obtained from a so-called comparative bioavail-
ability trial the equivalence of the new generic version of a drug to the primary
manufacturer’s formulation, shall be accepted as a sufficient condition for ap-
proval of the generic formulation to the market. The overwhelming practi-
cal importance of the entailed problems of bioequivalence assessment (drugs
whose equivalence with respect to the measured bioavailabilities can be taken
for granted, are termed “bioequivalent” in clinical pharmacology literature),
arises mainly out of quantity: Nowadays, at least half of the prescription drug
units sold in the leading industrial countries are generic drugs that have been
approved to be marketed on the basis of some bioequivalence trial.

Considerations of one-sided equivalence (noninferiority) play an increasingly
important role in the design and analysis of genuine clinical trials of thera-
peutic methods. The subjects recruited for such trials are patients suffering
from some disease rather than healthy volunteers. Whenever well-established
therapeutic strategies of proven efficacy and tolerability are already available
for the disease under consideration, it would be unethical to launch a new
trial involving a negative control (in particular, placebo). From the statistical
perspective, using a positive or active control instead frequently implies that
a classical procedure tailored for establishing superiority of the experimental
treatment over the control condition has to be replaced with the corresponding
test for noninferiority.

Although noninferiority testing is given much more attention in the new
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book as compared to the first edition, the core of this monograph still deals
with methods of testing for equivalence in the strict, i.e., two-sided sense. The
spectrum of specific equivalence testing problems of both types it covers range
from the one-sample problem with normally distributed observations of fixed
known variance (which will serve as the basis for the derivation of asymptotic
equivalence tests for rather complex multiparameter and even semi- and non-
parametric models), to problems involving several dependent or independent
samples and multivariate data. A substantial part of the testing procedures
presented here satisfy rather strong optimality criteria, which is to say that
they maximize the power of detecting equivalence uniformly over a large class
of valid tests for the same (or an asymptotically equivalent) problem. In
equivalence testing, the availability of such optimal procedures seems still
more important than in testing conventional one- or two-sided hypotheses.
The reason is that even those equivalence tests which can be shown to be uni-
formly most powerful among all valid tests of the same hypotheses, turn out to
require much higher sample sizes in order to maintain some given bounds on
both types of error risks than do ordinary one- or two-sided tests for the same
statistical models, unless one starts from an extremely liberal specification of
the equivalence limits.

The theoretical basis of the construction of optimal tests for interval hy-
potheses was laid within the mathematical statistics literature of the nine-
teen fifties. However, up to now the pertinent results have only rarely been
exploited in the applied, in particular the biostatistical, literature on equiv-
alence testing. In a mathematical appendix to this book, they will be pre-
sented in a coherent way and supplemented with a corollary which allows
great simplification of the computation of the critical constants of optimal
equivalence tests under suitable symmetry restrictions. An additional ap-
pendix contains a listing of all computer programs supplied at the URL
http://www.crcpress.com/product/isbn/9781439808184 for facilitating as
much as possible the routine application of all testing procedures discussed
in the book. The collection of all program files contained in that directory
is referenced as the WKTSHEQ2 Source Code Package throughout the text. In
contrast to the Web material which accompanied the first edition, the ma-
jority of the programs have now been made available also as R scripts or
shared objects which can be called within the R system. Most of the concrete
numerical examples given in the text for purposes of illustrating the individ-
ual methods, are taken from the author’s own field of application, i.e., from
medical research.

The book can be used in several ways depending on the reader’s interests
and level of statistical background. Chapter 1 gives a general introduction to
the topic and should at least be skimmed by readers of any category. Chapters
2 and 3 deal with general approaches to problems of testing for noninferiority
and two-sided equivalence and are mainly intended for readers with interests
in a systematic account of equivalence testing procedures and their mathemat-
ical basis. Readers seeking information about specific procedures and their
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practical implementation are advised to skip these chapters except for the sec-
tions on noninferiority testing in location-shift models (§ 2.1) and confidence
interval inclusion rules (§ 3.1).

Apart from occasional cross-references, all remaining chapters (and even
individual sections of them) can be read independently of each other. The
material they contain is to provide the working statistician of any background
and level of sophistication with a sufficiently rich repertoire of efficient solu-
tions to specific equivalence and noninferiority testing problems frequently
encountered in the analysis of real data sets. Except for Section 4.4 which in-
troduces no additional testing procedure, Chapters 4–10 should even be suited
for serving as a procedure reference book in the field of equivalence and non-
inferiority testing. The last chapter summarizes both some basic theoretical
results about tests for relevant differences (arising from switching the roles of
both hypotheses in a two-sided equivalence problem) and describes solutions
for some specific settings frequently arising in practice. In order to keep the
page count within reasonable limits, the coverage in this book is confined to
methods for samples of fixed size. Fully and group sequential methods for
equivalence testing problems are left out of account.

All in all, one of the following alternative guides to the book should be
followed:

A) [for readers primarily interested in practical applications]

§§ 2.1, 3.1

Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 9 Ch. 10 Ch. 11Ch. 8

App. B

App. C

Ch. 1
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B) [for the reader particularly interested in theory and mathematical back-
ground]

Ch.1

Ch. 3,  App. A,  § 11.2

Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 9 Ch. 10 § 11.3Ch. 8

App. B/C

Ch.2

I have many people to thank for helping me in the endeavor of prepar-
ing this book, without being able to mention here more than a few of them.
Niels Keiding played an initiating role, not only by encouraging me to make
the material contained in a book on the same topic I had published in 1994
in German accessible to an international readership, but also by bringing
me in contact with Chapman & Hall/CRC. Cooperation with the staff of this
publisher proved remarkably smooth and constructive, and I would like to ac-
knowledge in particular the role of Rob Calver as the present statistics editor
at Taylor & Francis during the whole phase until finalizing the manuscript of
the new edition. The former vice-president of Gustav Fischer Verlag Stuttgart,
Dr. Wolf D. von Lucius, is gratefully acknowledged for having given his per-
mission to utilize in part the content of my book of 1994. As was already
the case with the first edition, there are two people from the staff in my de-
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partment at the Central Institute of Mental Health at Mannheim to whom
I owe a debt of gratitude: Mireille Lukas spent her expert skills in handling
the LATEX system on typesetting the new parts of the book and reorganizing
the whole document. The editorial component of my job as the author was
greatly facilitated by the fact that I could delegate to her a considerable part
of the work entailed in compiling the bibliography and both indices by means
of special TEX-based tools. Peter Ziegler took over the task of making avail-
able within R more than 30 computer programs originally written in Fortran
or SAS. Moreover, he generated the better part of the figures contained in the
book writing suitable source scripts in SAS/GRAPH. Last but not least, spe-
cial thanks are due to the following two colleagues from external departments
in statistics and related fields: Arnold Janssen (University of Düsseldorf) for
agreeing to present results from an unpublished joint paper by him and my-
self, and Andreas Ziegler (University at Lübeck) for the fruitful cooperation
on the topic of Chapter 9.4

Mannheim
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1

Introduction

1.1 Statistical meaning of the concepts of equivalence
and noninferiority

Although the notions of equivalence and noninferiority have nowadays become
part of standard terminology of applied statistics, the precise meaning of these
terms is not self-explanatory. The first of them is used in statistics to denote a
weak or, more adequately speaking, fuzzy form of an identity relation referring
to the distribution(s) which underly the data under analysis. The fuzziness
of equivalence hypotheses as considered in this book is induced by enlarging
the null hypothesis of the traditional two-sided testing problem referring to
the same statistical setting, through adding an “indifference zone” around
the corresponding region (or point) in the parameter space. In other words,
equivalence means here equality except for practically irrelevant deviations.
Such an indifference zone is a basic and necessary ingredient of any kind of
testing problem to be addressed in the planning and confirmatory analysis of
a study, trial or experiment run with the objective of demonstrating equiv-
alence. Admittedly, finding a consensus on how to specify that indifference
zone concretely is far from easy in the majority of applications. However, it
is an indispensable step without which the testing problem the experimenter
proposes would make no statistical sense at all. The reason behind this fact
whose proper understanding is an elementary prerequisite for a sensible use
of the methods discussed in this book, will be made precise in § 1.5.

Recalling the way the word noninferiority is used in everyday language
provides little if any insight into the real meaning of the second of the concepts
to be introduced here. The term has been originally coined in the clinical trials
literature in order to denote a study which aims at demonstrating that some
new, experimental therapy falls short in efficacy by a clinically acceptable
amount at most as compared to a well-established reference treatment for the
same disease. Thus, noninferiority means absence of a relevant difference in
favor of the comparator against which the experimental treatment has to be
assessed. Formalizing a noninferiority problem by translating it into a pair of
statistical hypotheses leads to a generalized one-sided testing problem. The
only difference to a standard testing problem of the one-sided type is that the
common boundary of the two hypotheses is now shifted to the left, away from

1



2 INTRODUCTION

the null which often, yet not always, coincides with the origin of the real line.
At the same time, noninferiority problems exhibit a clear-cut relationship to

equivalence problems: Obviously, every equivalence hypothesis can be modi-
fied into a hypothesis of noninferiority simply by letting the right-hand limit
(which in some cases will be a curve rather than a single point) increase to
infinity. This justifies considering noninferiority as a one-sided form of equiva-
lence. In the earlier literature in the field, some authors (for notable examples,
see Dunnett and Gent, 1977; Mehta et al., 1984) did little care to distinguish
between equivalence and noninferiority. In order to avoid potential confusion
resulting from such usage, we will adhere to the following terminological rule:
When referring to specific problems and procedures, equivalence per se will
always used in the strict, two-sided sense of the term. Noninferiority prob-
lems will be either called that way or, alternatively, addressed as one-sided
equivalence problems.

1.2 Demonstration of equivalence as a basic problem of
applied statistics

It is a basic fact well known to every statistician that in any hypotheses testing
problem there is an inherent logical asymmetry concerning the roles played
by the two statements (traditionally termed null and alternative hypotheses)
between which a decision shall be taken on the basis of the data collected in
a suitable trial or experiment: Any valid testing procedure guarantees that
the risk of deciding erroneously in favor of the alternative does not exceed
some prespecified bound whereas the risk of taking a wrong decision in favor
of the null hypothesis can typically be as high as 1 minus the significance
level (i.e., 95% in the majority of practical applications). On the other hand,
from an experimental or clinical researcher’s perspective, there seems little
reason why he should not be allowed to switch his views towards the problem
under consideration and define what he had treated as the null hypothesis in
a previous study, as the hypothesis of primary interest in a subsequent trial.

If, as is so often the case in practice, the “traditional” formulation of the
testing problem has been a two-sided one specifying equality of the effects
of, say, two treatments under the null hypothesis, then such a switch of re-
search interest leads to designing a study which aims at proving absence of
a (relevant) difference between both treatment effects, i.e., equivalence. The
term treatment is used here in the generic sense covering also experimental
conditions etc. being compared in a fully non-medical context. Typically, the
rigorous construction of a testing procedure for the confirmatory analysis of
an equivalence trial requires rather heavy mathematical machinery. Neverthe-
less, the basic idea leading to a logically sound formulation of an equivalence
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testing problem and the major steps making up an appropriate statistical de-
cision procedure can be illustrated by an example as simple as the following.

Example 1.1

Of an antihypertensive drug which has been in successful use for many years,
a new generic version has recently been approved to the market and started
to be sold in the pharmacies at a price undercutting that of the reference for-
mulation (R) by about 40%. A group of experts in hypertensiology doubt the
clinical relevance of existing data showing the bioequivalence of the generic to
the reference formulation, notwithstanding the fact that these data had been
accepted by the drug regulation authorities as sufficient for approving the new
formulation. Accordingly, the hypertensiologists agree to launch into a clinical
trial aiming at establishing the therapeutic equivalence of the new formulation
of the drug. Instead of recruiting a control group of patients to be treated
with R, one decides to base the assessment of the therapeutic equivalence of
the new formulation on comparison to a fixed responder rate of 60% obtained
from long-term experience with formulation R. Out of n = 125 patients even-
tually recruited for the current trial, 56% showed a positive response in the
sense of reaching a target diastolic blood pressure below 90 mmHg. Statistical
assessment of this result was done by means of a conventional binomial test of
the null hypothesis that the probability p, say, of obtaining a positive response
in a patient given the generic formulation, equals the reference value p◦ = .60,
versus the two-sided alternative p �= p◦. Since the significance probability (p-
value) computed in this way turned out to be as high as .41, the researchers
came to the conclusion that the therapeutic equivalence of the generic to the
reference formulation could be taken for granted, implying that the basic re-
quirement for switching to the new formulation whenever confining the costs
of treatment is an issue, was satisfied.

Unfortunately, it follows from the logical asymmetry between null and al-
ternative hypothesis mentioned at the beginning that such kind of reasoning
misses the following point of fundamental importance: “Converting” a tradi-
tional two-sided test of significance by inferring equivalence of the treatments
under comparison from a nonsignificant result of the former, generally fails
to yield a valid testing procedure. In a word: A nonsignificant difference
must not be confused with significant homogeneity, or, as Altman and Bland
(1995) did put it, “absence of evidence is not evidence of absence.” Even in
the extremely simple setting of the present example, i.e., of a one-arm trial
conducted for the purpose of establishing (therapeutic) equivalence of a single
treatment with regard to a binary success criterion, correct inference requires
the application of a testing procedure exhibiting genuinely new features.

(i) First of all, it is essential to notice that the problem of establishing the
alternative hypothesis of exact equality of the responder rate p associated
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with the generic formulation of the drug, to its reference value p◦ = .60
by means of a statistical test admits no sensible solution (the reader in-
terested in the logical basis of this statement is referred to § 1.5). The
natural way around this difficulty consists of introducing a region of val-
ues of p close enough to the target value p◦ for considering the deviations
practically irrelevant. For the moment, let us specify this region as the
interval (p◦ − .10 , p◦ + .10) = (.50 , .70) . Hence, by equivalence of p to
p◦ we eventually mean a weakened form of identity specifying equality
except for ignorable differences.

(ii) The closer the observed responder rate X/n comes up to the target rate
p◦ = .60, the stronger the evidence in favor of equivalence provided by
the available data. Thus, a reasonable test for equivalence of p to p◦
will use a decision rule of the following form: The null hypothesis of
inequivalence is rejected if and only if the difference X/n − p◦ between
the observed and the target responder rate falls between suitable critical
bounds, say c1 and c2, such that c1 is some negative and c2 some positive
real number, respectively.

(iii) Optimally, the rejection region of the desired test, i.e., the set of possible
outcomes of the trial allowing a decision in favor of equivalence, should
be defined in such a way that the associated requirement on the degree of
closeness of the observed responder rate X/n to the reference rate p◦ is as
weak as possible without increasing the risk of an erroneous equivalence
decision over α, the prespecified level of significance (chosen to be .05 in
the majority of practical applications).

(iv) As follows from applying the results to be presented in § 4.3 with p◦∓ .10
as the theoretical range of equivalence and at level α = 5%, the optimal
critical bounds toX/n−p◦ to be used in a test for equivalence of p to p◦ =
.60 based on a random sample of size n = 125 are given by c1 = −2.4%
and c2 = 3.2%, respectively. Despite the considerable size of the sample
recruited to the trial, the rejection interval for X/n − p◦ corresponding
to these values of c1 and c2 is pretty narrow, and the observed rate
56% of responders falls relatively far outside giving X/n− p◦ = −4.0%.
Consequently, at significance level 5%, the data collected during the trial
do not contain sufficient evidence in favor of equivalence of the generic
to the reference formulation in the sense of |p− p◦| < .10.

The confirmatory analysis of experimental studies, clinical trials etc. which
are performed in order to establish equivalence of treatments is only one out of
many inferential tasks of principal importance which can adequately be dealt
with only by means of methods allowing to establish the (suitably enlarged)
null hypothesis of a conventional two-sided testing problem. Another category
of problems for which exactly the same holds true, refers to the verification
of statistical model assumptions of any kind. Notwithstanding the traditional
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usage of the term “goodness-of-fit test” obscuring the fact that the testing
procedures subsumed in the associated category are tailored for solving the
reverse problem of establishing lack of fit, in the majority of cases it is much
more important to positively demonstrate the compatibility of the model with
observed data. Thus, if a goodness-of-fit test is actually to achieve what is
implied by its name, then it has to be constructed as an equivalence test in the
sense that a positive result supports the conclusion that the true distribution
from which the data have been taken, except for minor discrepancies, coincides
with the distribution specified by the model.

The primary objective of this book is a systematic and fairly comprehensive
account of testing procedures for problems such that the alternative hypoth-
esis specifies a sufficiently small neighborhood of the point in the space of
the target parameter (or functional) which indicates perfect coincidence of
the probability distributions under comparison. As will become evident from
the numerical material presented in the subsequent chapters, the sample sizes
required in an equivalence test in order to achieve a reasonable power typ-
ically tend to be considerably larger than in an ordinary one- or two-sided
testing procedure for the same setting unless the range of tolerable deviations
of the distributions from each other is chosen so wide that even distributions
exhibiting pronounced dissimilarities would be declared “equivalent”. This
is the reason why in equivalence testing optimization of the procedures with
respect to power is by no means an issue of purely academic interest but a
necessary condition for keeping sample size requirements within the limits of
practicality. The theory of hypotheses testing as developed in the fundamen-
tal work of E.L. Lehmann having appeared a few years ago in a third edition
(Lehmann and Romano, 2005) provides in full mathematical generality meth-
ods for the construction of optimal procedures for four basic types of testing
problems covering equivalence problems in the sense of the present monograph
as well. Converting these general results into explicit decision rules suitable
for routine applications will be a major objective in the chapters to follow.

1.3 Major fields of application of equivalence tests

1.3.1 Comparative bioequivalence trials

It was not until the late nineteen sixties that statistical researchers started to
direct some attention to methods of testing for equivalence of distributions in
the sense made precise in the previous section. In this initial phase, work on
equivalence assessment was almost exclusively triggered by the introduction of
special approval regulations for so-called generic drugs by the Food and Drug
Administration (FDA) of the U.S. as well as the drug regulation authorities
of many other industrialized countries. Loosely speaking, a generic drug is an
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imitation of a specific drug product of some primary manufacturer that has
already been approved to the market and prescribed for therapeutic purposes
for many years but is no longer protected by patent. As a matter of course,
with regard to the biologically active ingredients, every such generic drug is
chemically identical to the original product. However, the actual biological
effect of a drug depends on a multitude of additional factors referring to the
whole process of the pharmaceutical preparation of the drug. Examples of
these are

– chemical properties and concentrations of excipients

– kind of milling procedure

– choice of tablet coatings

– time and strength of compression applied during manufacture.

For the approval of a generic drug, the regulatory authorities do not require
evidence of therapeutic efficacy and tolerability based on comparative clinical
trials. Instead, it is considered sufficient that in a trial on healthy volunteers
comparing the generic to the original formulation of the drug, the hypothesis of
absence of relevant differences in basic pharmacokinetic characteristics (called
“measures of bioavailability”) can be established. If this is the case, then the
generic drug is declared equivalent with respect to biovailability or, for short,
bioequivalent to the original formulation.

Assessment of bioequivalence between a new and a reference formulation of
some drug is still by far the largest field of application for statistical tests of
the type this book focusses upon, and can be expected to keep holding this
position for many years to come. The overwhelming importance of the prob-
lem of bioequivalence assessment has to do much more with economic facts
and public health policies than with truly scientific interest: During the last
two decades, the market share of generic drugs has been rising in the major
industrial countries to levels ranging between 43% (U.S., 1996) and 67.5%
(Germany, 1993) ! From the statistical perspective, the field of bioequiva-
lence assessment is comparatively narrow. In fact, under standard model
assumptions [to be made explicit in Ch. 10], the confirmatory analysis of a
prototypical bioequivalence study reduces to a comparison of two Gaussian
distributions. In view of this, it is quite misleading that equivalence testing is
still more or less identified with bioequivalence assessment by many (maybe
even the majority) of statisticians. As will hopefully become clear enough
from further reading of the present monograph, problems of equivalence as-
sessment are encountered in virtually every context where the application of
the methodology of testing statistical hypotheses makes any sense at all. Ac-
cordingly, it is almost harder to identify a field of application of statistics
where equivalence problems play no or at most a minor role, than to give
reasons why they merit particular attention in some specific field.
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1.3.2 Clinical trials involving an active control

In medical research, clinical trials which involve an active (also called positive)
control make up the second largest category of studies commonly analyzed by
means of equivalence testing methods. An active rather than negative control
(typically placebo) is used in an increasing number of clinical trials referring
to the treatment of diseases for which well-established therapeutic strategies
of proven efficacy and tolerability already exist. Under such circumstances it
would be clearly unethical to leave dozens or hundreds of patients suffering
from the respective disease without any real treatment until the end of the
study. What has to be and is frequently done instead, is replacing the tra-
ditional negative control by a group to which the best therapy having been
in use up to now, is administered. Usually, it is not realistic to expect then
that the group which is given the new treatment will do still better than the
control group with respect to efficacy endpoints. In return, the experimen-
tal therapy is typically known in advance to have much better tolerability so
that its use can and should be recommended as soon as there is convincing
evidence of equivalent efficacy. A particularly important example are trials
of modifying adjuvant chemotherapy regimes well established in oncology, by
reducing dosages and/or omitting the most toxic of the substances used. For
such a reduced regime, superiority with respect to tolerability can be taken for
granted without conducting any additional trial at all, and it is likewise ob-
vious that demonstrating merely noninferiority with regard to efficacy would
entail a valuable success.

In the clinical trials methodology literature, it has sometimes been argued
(cf. Windeler and Trampisch, 1996) that tests for equivalence in the strict,
i.e., two-sided sense are generally inappropriate for an active-control study
and should always be replaced by one-sided equivalence tests or tests for
noninferiority. In contrast, we believe that there are several convincing points
(not to be discussed in detail here) for the view that the question whether a
one- or a two-sided formulation of the equivalence hypothesis eventually to be
tested is the appropriate one, should be carefully discussed with the clinicians
planning a specific active-control trial rather than decided by biostatistical
decree once and for all.

An undisputed major difference between clinical trials involving an active
control, and comparative bioavailability studies (the consensus about the ade-
quacy of two-sided equivalence tests for the confirmatory analysis of the latter
has never been seriously challenged) refers to the structure of the distribu-
tions which the variables of primary interest typically follow: Quite often, the
analysis of an active-control trial has to deal with binomial proportions [→
§ 6.6] or even empirical survivor functions computed from partially censored
observations [→ § 6.7] rather than with means and variances determined from
samples of normally distributed observations.
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1.3.3 Preliminary tests for checking assumptions underlying
other methods of statistical inference

Looking through statistical textbooks of virtually all kinds and levels of so-
phistication, it is hard to find any which does not give at least some brief
account of methods for checking the assumptions that the most frequently
used inferential procedures have to rely upon. All of them approach this ba-
sic problem from the same side: The testing procedures provided are tests
of the null hypothesis that the assumptions to be checked hold true, versus
the alternative hypothesis that they are violated in one way or the other.
Since the aim a user of such a preliminary test commonly has in mind is to
give evidence of the correctness of the required assumptions, one cannot but
state that the usual approach is based on an inadequate formulation of the
hypotheses. It is clear that equivalence tests in the sense of § 1.2 are exactly
the methods needed for finding a way around this logical difficulty so that
another potentially huge field of applications of equivalence testing methods
comes within view.

One group of methods needed in this context are of course, tests for good-
ness rather than lack of fit since they allow in particular the verification of
parametric distributional assumptions of any kind. Other important special
cases covered by the methods presented in subsequent chapters refer to re-
strictions on nuisance parameters in standard linear models such as

– homoskedasticity [→ §§ 6.5, 7.4]

– additivity of main effects [→ § 9.3.1]

– identity of carryover effects in crossover trials [→ § 9.3.2].

Establishing goodness of fit by means of equivalence testing procedures is
even an important issue in genetic epidemiology. This will will explained in
detail in § 9.4 which is devoted to methods for assessing the validity of the
Hardy-Weinberg assumption upon which some of the most basic and widely
used techniques for the analysis of genetic association studies have to rely.

1.4 Role of equivalence/noninferiority studies in current
medical research

The increasing relevance of both types of an equivalence study for current
medical research is reflected in a number of facts comparatively easy to grasp
from widely accessible sources and databases.

A well-accepted way of getting an objective basis for statements about the
development of some specific area of scientific research is through a system-
atic search over the pertinent part of published literature. A rough summary
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of results to be obtained following that line is presented in Figure 1.1 where
the count of entries in the PubMed database containing a keyword indicating
the use of equivalence/nonferiority testing methods in the respective paper, is
plotted by calendar year ranging from 1990 through 2008. The keywords which
were selected for that purpose were (i) bioequivalence, (ii) non(-)inferiority
study , and (iii) equivalence study , with the parentheses around the hyphen-
ation sign indicating that both spellings in use were covered.

Figure 1.1 Count of hits obtained by entering the keywords (i) bioequivalence,
(ii) non(-)inferiority study, and (iii) equivalence study in PubMed, by year of
publication.

Admittedly, these figures must be interpreted with considerable caution, due
to the unknown extent of the overlap between the scopes of the keywords of
interest. Nevertheless, the following conclusions seem to be justified:

• The majority of published studies aiming to establish equivalence are
comparative bioavailability trials as described in § 1.3.1. Since 1990, the
number of bioequivalence-related publications has increased by about
200%.

• The time-lag in the quantitative development of published literature on
studies devoted to establishing noninferiority as compared to equiva-
lence, is likely to reflect mainly a change in terminological usage: Adop-
tion of the term noninferiority by the medical community is a process
which started only quite recently; before the beginning of the new mil-
lenium, systematic distinction between one- and two-sided equivalence
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was lacking, and even nowadays, outside the area of bioequivalence,
noninferiority and equivalence are often used more or less as synonyms.

• Since 2002, the number of publications dealing with methodological is-
sues and results of equivalence/noninferiority studies involving patients
rather than healthy volunteers has reached the same order of magnitude
as the number of bioequivalence-related publications per year.

Although the proportion of clinical trials leading to publications in the
medical sciences literature is hard to estimate, it is likely that the vast majority
remain unpublished. Thus, even a better basis for assessing the relevance of
the equivalence paradigm for the medical progress than searching for pertinent
literature might be provided by looking at the proportion of prescription drugs
which have been approved to the market due to positive results of equivalence
trials. Unfortunately, the question of how large this proportion is, admits
of a well-grounded answer only for generic drugs, namely 100%, simply by
definition. However, even if the corresponding proportion of innovator drugs
were as low as 10%, calculation of the overall rate for the U.S. would yield
the following result: In the Orange Book, Version 12/2008 of the FDA (2008)
12,751 prescription drug products were listed of which only 3,154 are innovator
products; assuming that for 10% of the latter, the positive approval decision
was based on equivalence trials, the rate among all authorized prescription
drugs is obtained to be 100 × (9, 597 + 315)/12, 751 ≈ 78 % . This figure,
which is likely to apply also to a number of other industrialized countries,
gives sufficient evidence of the extent to which in our era, the medical sciences
have to rely on a well-developed statistical methodology for the planning and
analysis of studies conducted with the objective of establishing equivalence or
noninferiority.

1.5 Formulation of hypotheses

As explained in nontechnical terms in Section 1.1, equivalence problems are
distinguished from conventional testing problems by the form of the hypothe-
ses to be established by means of the data obtained from the experiment or
study under analysis. Typically [for an exception see § 10.3], the hypothesis
formulation refers to some real-valued parameter θ which provides a sensible
measure of the degree of dissimilarity of the probability distributions involved.
For example, in the specific case of a standard parallel group design used for
the purpose of testing for equivalence of two treatments A and B, an obvi-
ous choice is θ = μ1 − μ2 with μ1 and μ2 denoting a measure of location
for the distribution of the endpoint variable under A and B, respectively.
The equivalence hypothesis whose compatibility with the data one wants to
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assess, specifies that θ is contained in a suitable neighborhood around some
reference value θ◦ taken on by θ if and only if the distributions under compar-
ison are exactly equal. This neighborhood comprises those values of θ whose
distance from θ◦ is considered compatible with the notion of equivalence for
the respective setting. It will be specified as an open interval throughout with
endpoints denoted by θ◦−ε1 and θ◦ +ε2, respectively. Of course, both ε1 and
ε2 are positive constants whose numerical values must be assigned a priori,
i.e., without knowledge of the data under analysis. Specifically, in the case of
the simple parallel group design with θ = μ1 − μ2, the usual choice of θ◦ is
θ◦ = 0, and the equivalence interval is frequently chosen symmetrical about
θ◦, i.e., in the form (−ε, ε).

Accordingly, in this book, our main objects of study are statistical decision
procedures which define a valid statistical test at some prespecified level α ∈
(0, 1) of the null hypothesis

H : θ ≤ θ◦ − ε1 or θ ≥ θ◦ + ε2 (1.1a)

of nonequivalence, versus the equivalence assumption

K : θ◦ − ε1 < θ < θ◦ + ε2 (1.1b)

as the alternative hypothesis. Such a decision rule has not necessarily to ex-
hibit the form of a significance test in the usual sense. For example, it can
and will [see § 3.2] also be given by a Bayes rule for which there is additional
evidence that the “objective probability” of a false decision in favor of equiva-
lence will never exceed the desired significance level α. Bayesian methods for
which we cannot be sure enough about this property taken for crucial from
the frequentist point of view, are of limited use in the present context as long
as the regulatory authorities to which drug approval applications based on
equivalence studies have to be submitted, keep insisting on the maintenance
of a prespecified significance level in the classical sense.

It is worth noticing that an equivalence hypothesis of the general form (1.1b)
will never be the same as the null hypothesis H0 : θ = θ◦ of the corresponding
two-sided testing problem, irrespective of what particular positive values are
assigned to the constants ε1 and ε2. In other words, switching attention from
an ordinary two-sided to an equivalence testing problem entails not simply
an exchange of both hypotheses involved but in addition a more or less far-
reaching modification of them. Replacing the nondegenerate interval K of
(1.1b) by the singleton {θ◦} would give rise to a testing problem admitting of
no worthwhile solution at all. In fact, in all families of distributions being of
interest for concrete applications, the rejection probability of any statistical
test is a continuous function of the target parameter θ. But continuity of the
power function θ 	→ β(θ), say, clearly implies, that the test can maintain level
α on {θ �= θ◦} only if its power against θ = θ◦ exceeds α neither. Consequently,
if we tried to test the null hypothesis θ �= θ◦ against the alternative θ = θ◦,
we would not be able to replace the trivial “test” rejecting the null hypothesis
independently of the data with probability α, by a useful decision rule.
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The inferential problems to be treated in the subsequent chapters under the
heading of noninferiority assessment share two basic properties with equiva-
lence testing problems in the strict sense. In the first place, they likewise
arise from modifying the hypotheses making up some customary type of test-
ing problem arising very frequently in routine data analysis. In the second
place, modification of hypotheses again entails the introduction of a region in
the space of the target distributional parameter θ within which the difference
between the actual value of θ and its reference value θ◦ is considered practi-
cally irrelevant. However, there remains one crucial difference of considerable
importance for the correct interpretation of the results eventually established
by means of the corresponding testing procedures, as well as the mathemat-
ical treatment of the testing problems: The region of tolerable discrepancies
between θ and θ◦ is now bounded to below only whereas excesses in value of
θ over θ◦ of arbitrary magnitude are considered acceptable or even desirable.
In other words, the testing procedures required in this other context have
to enable the experimenter to make it sufficiently sure that the experimental
treatment A, say, is not substantially inferior to some standard treatment B,
without ruling out the possibility that Amay even do considerably better than
B. In contrast, for an equivalence trial in the strict sense made precise before,
the idea is constitutive that one may encounter hypo- as well as hyperefficacy
of the new as compared to the standard treatment and that protecting oneself
against both forms of a substantial dissimilarity between A and B is a definite
requirement.

Formally speaking, the crucial difference between equivalence testing and
testing for absence of substantial inferiority is that in the latter type of prob-
lem the right-hand boundary θ◦ + ε2 of the equivalence interval is replaced
with +∞ or, in cases where the parameter space Θ of θ is bounded to the
right itself, by θ∗ = sup Θ. The corresponding hypothesis testing problem
reads

H1 : θ ≤ θ◦ − ε versus K1 : θ > θ◦ − ε (1.2)

with sufficiently small ε > 0.
From a mathematical point of view, the direction of the shift of the common

boundary of an ordinary one-sided testing problem does not matter. In fact,
approaches well suited for the construction of tests for one-sided equivalence
in the sense of (1.2) can also be used for the derivation of tests for one-sided
problems with a boundary of hypotheses shifted to the right, and vice versa.
If θ keeps denoting a meaningful measure for the extent of superiority of a new
treatment A over some standard treatment B and θ = θ◦ indicates identity
in effectiveness of both treatments, testing θ ≤ θ◦ + ε versus θ > θ◦ + ε rather
than θ ≤ θ◦ − ε versus θ > θ◦ − ε makes sense whenever one wants to ensure
that a significant result of the corresponding test indicates that replacing A by
B entails a relevant improvement. As pointed out by Victor (1987) this holds
true for the majority of clinical trials aiming at giving evidence of treatment
differences rather than equivalence.
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1.6 Choosing the main distributional parameter

Except for single-parameter problems, the scientific relevance of the result
of an equivalence testing procedure highly depends on a careful and sensible
choice of the target parameter θ [recall (1.1a), (1.1b) and (1.2)] in terms of
which the hypotheses have been formulated. The reason is that, in contrast to
the corresponding conventional testing problems with the common boundary
of null and alternative hypothesis being given by zero, equivalence problems
remain generally not invariant under redefinitions of the main distributional
parameter. A simple, yet practically quite important example which illus-
trates this fact, is the two-sample setting with binomial data. If we denote
the two unknown parameters in the usual way, i.e., by p1 and p2, and define
δ and ρ as the difference p1 − p2 and the odds ratio p1(1− p2)/

(
(1− p1)p2

)
,

respectively, then the null hypotheses δ = 0 and ρ = 1 correspond of course
to exactly the same subset in the space [0, 1]× [0, 1] of the primary parameter
(p1, p2). On the other hand, the set {(p1, p2)| − δ1 < δ < δ2} will be different
from {(p1, p2)|1 − ε1 < ρ < 1 + ε2} for any choice of the constants 0 < δ1,
δ2 < 1 and 0 < ε1 < 1, ε2 > 0 determining the equivalence limits under both
specifications of the target parameter.

On the one hand, there are no mathematical or otherwise formal criteria
leading to a unique answer to the question about the appropriate choice of
the parameter of main interest for purposes of formulating equivalence hy-
potheses for a given model or setting. On the other, this is by no means a
matter of purely subjective taste but in numerous cases there are convincing
arguments for preferring a specific parametrization to an alternative one, with
the discrimination between the difference of the responder rates and the odds
ratio in the binomial two-sample setting giving an interesting case in point.
Although simplicity and ease of interpretability even for the mathematically
less educated user clearly speak in favor of the difference δ, plotting the re-
gions corresponding to the two equivalence hypotheses −δ1 < δ < δ2 and
1− ε1 < ρ < 1 + ε2 as done in Figure 1.2, shows to the contrary that defining
equivalent binomial distributions in terms of p1 − p2 entails a serious logical
flaw: Whereas the hypothesis of equivalence with respect to the odds ratio
corresponds to a proper subset of the parameter space for (p2, δ), the range
of δ-coordinates of points equivalent to 0 in the sense of the first hypothesis
formulation, is distinctly beyond the limits imposed by the side conditions
−p2 ≤ δ ≤ 1 − p2, for all sufficiently small and large values of the baseline
responder rate p2. This fact suggests that the choice θ = δ, notwithstanding
its popularity in the existing literature on equivalence testing with binomially
distributed data [for a selection of pertinent references see § 6.6.3] leads to an
ill-considered testing problem.
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Figure 1.2 Equivalence hypotheses in terms of the difference between both re-
sponder rates [left] and the odds ratio [right] as regions in the p2 × δ-plane
with δ = p1 − p2. [Rhomboid =̂ set of possible values of ( p2, δ).]

Another special case whose importance for practical work can hardly be
overestimated since, under standard parametric modeling, bioequivalence as-
sessment with data from two-period crossover studies reduces to it, concerns
the comparison of two Gaussian distributions with common but unknown
variance on the basis of independent samples. Denoting, as usual, the two
expected values and the common standard deviation by μ1, μ2 and σ, respec-
tively, the predominant approach starts from the choice θ = μ1−μ2 although
there are clear reasons why setting θ = (μ1−μ2)/σ yields a much more sensi-
ble measure of distance between the distributions to compare in the setting of
the two-sample t-test: It is an elementary fact (whose implications are given
due attention in Lehmann and Romano, 2005, § 5.3) that, given any whatever
large value of |μ1 − μ2|, both distributions become practically indistinguish-
able if σ is large enough, whereas the areas under the corresponding densities
are next to disjoint if σ approaches zero. At the same time, focusing on the
standardized rather than the raw difference between the means, facilitates
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the step to be discussed in some more detail in the subsequent section: Even
in discussions with clinical researchers caring little for statistical subtleties,
presentation of a handful of graphs usually suffices to reach a consensus that
|μ1−μ2|/σ ≥ 1 is incompatible with the notion of equivalence of two Gaussian
distributions, and so on.

Interestingly enough, under some circumstances, a thoughtful discussion
of the question how the target parameter for defining the equivalence region
should most appropriately be chosen, will even lead to the conclusion that
the equivalence testing problem originally in mind should better be replaced
by an ordinary one-sided testing problem. An example of this kind arises in
bioequivalence studies of which one knows (or feels justified to assume) that
no period effects have to be taken into account (Anderson and Hauck, 1990;
Wellek, 1990, 1993a) [see also Ch. 10.3 of the present book].

1.7 Numerical specification of the limits of equivalence

The first question which arises when we want to reach a decision on what
numerical values shall be assigned to the equivalence limits θ◦ − ε1, θ◦ + ε2
defining the hypotheses in a testing problem of the form (1.1), is whether or
not the equivalence interval has to be symmetric about the reference value
θ◦. More often than not it seems reasonable to answer this in the affirmative,
although virtually all procedures presented in the chapters following the next
allow full flexibility in that respect. Perhaps the still best known example of a
whole area of application for methods of establishing equivalence in a nonsym-
metric sense is bioequivalence assessment along the former FDA guidelines.
Before the 1992 revision of its guidance for bioequivalence studies, the FDA
strongly recommended to use the specifications θ◦ − ε1 = 2 log(.80) ≈ −.446,
θ◦ + ε2 = 2 log(1.20) ≈ .365 for the maximally tolerable shift between the
Gaussian distributions eventually to compare. Essentially, the corresponding
interval is the log-transform of what is customarily called the 80 to 120%
range for the ratio of the true drug formulation effects. In the revised version
of the guidelines, the latter has been replaced with the range 80–125%.

With regard to the question whether it is advisable for the statistician to
give general recommendations concerning the form of the equivalence interval,
we take the same position as on the one- versus two-sidedness controversy in
the context of active-control trials [recall § 1.3.2]: This is a point for careful
discussion with the researcher planning an individual study and should not
made subject to fixed general rules. Instead, full generality should be aimed
at in developing the pertinent statistical methods so that we can provide the
experimental or clinical researcher with a range of options sufficiently large
for allowing him to cover the question he really wants to answer by means of



16 INTRODUCTION

his data.
Even if the problem is one of testing for noninferiority or has been sym-

metricized by introducing the restriction ε1 = ε2 = ε in (1.1a) and (1.1b),
coming to an agreement with the experimenter about a specific numerical
value to be assigned to the only remaining constant determining the equiva-
lence interval, is not always easy. The following table is intended to give some
guidance for some of the most frequently encountered settings:

Table 1.1 Proposals for choosing the limits of a symmetrical equivalence
interval or the noninferiority margin in some standard settings.

Target Para- Refer- Tolerance ε :
(Serial Setting meter or ence Strict Liberal
No.) Functional Value Choice
(i) Sign test p+ = P [D > 0]†) 1/2 .10 .20
(ii) Mann-

Whitney π+ = P [X > Y ]‡) 1/2 .10 .20
(iii) Two bino- log ρ =

mial samples log
[ p1(1−p2)

(1−p1)p2
]

0 .41 .85
(iv) Paired

t-Test δ/σ 0 .25 .50
(v) Two-Sample

t-Test (μ1 − μ2)/σ 0 .36 .74
(vi) Two Gaussian

distr., com-
parison of var. log(σ1/σ2) 0 .41 .69

(vii) Two exponen-
tial distr. log(σ1/σ2) 0 .405 .847

†) D ≡ intraindividual difference for a randomly chosen observational unit
‡) X, Y ≡ independent observations from different distributions

Here are some reasons motivating the above suggestions:

→ (i),(ii): Everyday experience shows that most people will rate probabilities
of medium size differing by no more than 10%, as rather similar;
20% or more is usually considered indicating a different order of
magnitude in the same context.

→ (iii): Assuming that the reference responder rate is given by p2 = 1/2,
straightforward steps of converting inequalities show the condition
−ε < p1 − p2 < ε to be equivalent to | log ρ| < log( 1+2ε

1−2ε) ≡ ερ̃.
According to this relationship, the choices ε = .10 and ε = .20
[recall (i)] correspond to ερ̃ = log(12/8) = .4055 ≈ .41 and ερ̃ =
log(14/6) = .8473 ≈ .85, respectively.
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→ (iv): Under the Gaussian model D ∼ N (δ, σ2), we can write:

1/2− ε < p+ ≡ P [D > 0] < 1/2 + ε

⇔ Φ−1(1/2− ε) < δ/σ < Φ−1(1/2 + ε)
⇔ −Φ−1(1− (1/2− ε)) < δ/σ < Φ−1(1/2 + ε)
⇔ −Φ−1(1/2 + ε) < δ/σ < Φ−1(1/2 + ε)

where Φ−1 denotes the quantile function for the standard normal
distribution. Hence, the choice ε = .10 and ε = .20 in case (i)
corresponds here to ε = Φ−1(.60) = .2529 and ε = Φ−1(.70) =
.5240, respectively.

→ (v): Analogously, relating (ii) to the special case X ∼ N (μ1, σ
2), Y ∼

N (μ2, σ
2), yields the first in the following chain of inequalities:

1/2− ε < Φ((μ1 − μ2)/
√

2σ) < 1/2 + ε

⇔ Φ−1(1/2− ε) < (μ1 − μ2)/
√

2σ < Φ−1(1/2 + ε)

⇔ −
√

2 Φ−1(1/2 + ε) < (μ1 − μ2)/σ <
√

2 Φ−1(1/2 + ε) .

Thus, the choices suggested for (ii) are this time equivalent to set-
ting ε =

√
2Φ−1(.60) = .3577 and ε =

√
2 Φ−1(.70) = .7411, re-

spectively.

→ (vi): Unlike (ii) – (v), this setting cannot be related in a natural way to
case (i). The suggested values of ε, except for rounding to two sig-
nificant decimals, are equivalent to the requirements 2/3 < σ1/σ2 <
3/2 and 1/2 < σ1/σ2 < 2, respectively. The latter seem again plau-
sible for common statistical sense.

→ (vii): The exponential scale model is a particularly important special
case of a proportional hazards model so that the general consider-
ations of § 6.3 about the latter apply.





2

General techniques for dealing with
noninferiority problems

2.1 Standard solution in the case of location parameter
families

Whenever the target parameter θ is a measure of the shift in location of the
distributions of interest, shifting the common boundary of a pair of one-sided
hypotheses produces a testing problem which is new only when we look at
the concrete meaning of a positive decision in favor of the alternative. From
a purely statistical point of view, no more than a trivial modification of the
usual test for the corresponding conventional problem θ ≤ θ◦ versus θ > θ◦ is
required. Subsequently we describe the rationale behind this modification in
some detail for the case of comparing two treatments A and B on the basis
of paired and of independent samples of univariate observations, respectively.

2.1.1 Paired observations

The data to be analyzed in any trial following the basic scheme of paired
comparisons consists of random pairs (X,Y ), say, such that X and Y gives
the result of applying treatment A and B to the same arbitrarily selected ob-
servational unit. Except for the treatment, the conditions under which X and
Y are taken are supposed to be strictly balanced allowing the experimenter
to interpret the intra-subject difference D = X − Y as quantifying in that
individual case the superiority in effectiveness of treatment A as compared to
B. In this setting, speaking of a location problem means to make the addi-
tional assumption that in the underlying population of subjects, any potential
difference between both treatments is reflected by a shift θ in the location of
the distribution of D away from θ◦ = 0 leaving the distributional shape per se
totally unchanged. In absence of any treatment difference at all, let this dis-
tribution be given by some continuous cumulative distribution function (cdf)
F◦ : IR → [0, 1] symmetric about zero. For the time being, we do not spec-
ify whether the baseline cdf has some known form (e.g., F◦ = Φ(·/σ) with
Φ denoting the standard normal cdf), or is allowed to vary over the whole
class of all continuous cdf’s on the real line being symmetric about zero [→

19
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nonparametric one-sample location problem, cf. Randles and Wolfe (1979),
Ch. 10)].

Regarding the full data set, i.e., the sample (X1, Y1), . . . , (Xn, Yn) of all n
pairs of measurements obtained under both treatments, statistical inference is
based on the following assumptions about the corresponding intraindividual
differences Di = Xi − Yi :

(a) The vector (D1, . . . , Dn) is independent and identically distributed (iid) ;

(b) P [Di ≤ d] = F◦(d − θ) for arbitrary z ∈ IR and all i = 1, . . . , n, with
F◦(−d) = 1 − F◦(d) ∀d and θ denoting the parameter of interest. (By
convention, positive values of θ are assumed to indicate a tendency to-
wards “better” results under treatment A as compared to B).

Now, the general form of the rejection region of a test at level α for the
traditional one-sided testing problem H◦

1 : θ ≤ 0 versus K◦
1 : θ > 0 [→ (1.2),

specialized to the case that θ◦ = 0, ε = 0] is well known to be given by{
T (D1, . . . , Dn) > cα

}
where T (·) denotes a suitable real-valued function of n arguments (usually
called the test statistic), and cα the upper 100α percentage point of the dis-
tribution of the random variable (D1, . . . , Dn) under θ = 0. If we change the
directly observed intra-subject differences Di to D̃i = Di + ε, then the mod-
ified sample (D̃1, . . . , D̃n) obviously satisfies again (a) and (b), provided the
parameter θ is likewise shifted introducing the transform θ̃ = θ + ε. Further-
more, the testing problem H1 : θ ≤ −ε versus K1 : θ > −ε we are primarily
interested in, is clearly the same as the ordinary one-sided problem θ̃ ≤ 0
versus θ̃ > 0 relating to the transformed intra-subject differences D̃i. Hence,
in the present setting we obtain the desired test for the one-sided equivalence
problemH1 vs. K1 simply by using the rejection region of the test for the asso-
ciated nonshifted null hypothesis in terms of the observations shifted the same
distance as the common boundary of the hypotheses but in the opposite di-
rection. The test obtained in this way rejects the null hypothesis H1 : θ ≤ −ε
[→ relevant inferiority] if and only if we find that T (D1 + ε, . . . , Dn+ ε) > cα
where T (·) and cα are computed in exactly the same way as before.

Example 2.1

We illustrate the approach described above by reanalyzing the data from a
study (Miller et al., 1990) of possible effects of the fat substitute olestra on the
absorption of highly lipophilic oral contraceptives. The sample recruited for
this trial consisted of 28 healthy premenopausal women. During the verum
phase, each subject consumed 18 gm/day olestra for 28 days while taking a
combination of norgestrel (300μg) and ethinyl estradiol (30μg) as an oral con-
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Table 2.1 Maximal concentrations of norgestrel (ng/ml) in the sera
of 28 women while consuming olestra (Xi) and meals containing or-
dinary triglycerides (Yi), respectively [ D̃i = Di + ε ; R̃+

i = rank of
the ith subject with respect to |D̃i|; ε = 1.5 ].

i Xi Yi D̃i R̃+
i i Xi Yi D̃i R̃+

i

1 6.03 6.62 0.91 12 15 11.81 11.19 2.12 21
2 5.62 6.78 0.34 5 16 8.72 9.55 0.67 9
3 6.93 6.85 1.58 18 17 7.01 5.53 2.98 26
4 5.86 8.09 –0.73 11 18 7.13 6.71 1.92 20
5 8.91 9.18 1.23 15 19 6.56 6.53 1.53 17
6 5.86 7.47 –0.11 1 20 4.22 5.39 0.33 4
7 9.43 9.90 1.03 13 21 4.13 4.92 0.71 10
8 5.30 4.29 2.51 22 22 6.57 9.92 –1.85 19
9 4.99 3.80 2.69 24 23 8.83 10.51 –0.18 2
10 6.12 7.01 0.61 8 24 9.05 10.15 0.40 6
11 12.45 9.53 4.42 28 25 9.31 9.55 1.26 16
12 5.48 6.39 0.59 7 26 7.67 8.95 0.22 3
13 6.04 4.63 2.91 25 27 7.66 6.63 2.53 23
14 8.32 5.54 4.28 27 28 5.45 8.01 –1.06 14

traceptive. Blood samples were taken on days 12 to 14 of the cycle and
analyzed for ethinyl and estradiol concentrations. For the placebo phase, the
experimental and measurement procedure was exactly the same as for verum
except for replacing olestra with conventional triglycerides at each meal. Table
2.1 gives the individual results for norgestrel and the maximum concentration
Cmax as the pharmacokinetic parameter of interest.

According to the general objective of the trial, let us aim at establishing that
the consumption of olestra does not reduce the bioavailability of norgestrel
(as measured by Cmax) to a relevant extent. Further, let us define θ as denot-
ing the population median of the distribution of the intra-subject differences
Di = Xi−Yi with ε = 1.5 as the limit of relevance, and base the confirmatory
analysis of the data on the Wilcoxon signed rank statistic. Then, the com-
putational steps which have to be carried out in order to test for one-sided
equivalence are as follows.

(i) For each i = 1, . . . , 28, the shifted intra-subject difference D̃i [→ Table
2.1, 4th column] and the rank R̃+

i with respect to |D̃i| [→ Table 2.1,
5th column] have to be determined.

(ii) Denoting the sum of ranks of subjects with a positive sign of D̃i by
Ṽ +
s , the value of this modified signed rank statistic is computed to be
Ṽ +
s = 359.
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(iii) Under θ = −ε = −1.5, Ṽ +
s has an asymptotic normal distribution with

expected value E0(Ṽ +
s ) = n(n + 1)/4 = 28 · 29/4 = 203 and variance

V ar0(Ṽ +
s ) = n(n+1)(2n+1)/24 = 1928.5. Hence, the usual approxima-

tion with continuity correction gives the p-value (observed significance
probability) pobs = Φ[(203− 359 + .5)/

√
1928.5 = Φ[−3.5410] = .0002.

In view of the order of magnitude of the significance probability obtained in
this way, the decision of the modified signed rank test for one-sided equivalence
is positive even at the 1% level in the present case. In other words, the results
of the study performed by Miller et al. (1990) contain sufficient evidence in
favor of the hypothesis that the consumption of olestra does not lead to a
relevant decrease of the bioavailability of norgestrel.

2.1.2 Two independent samples

If a comparative study of two treatments A and B follows the parallel group
design, the data set to be analyzed consists of values of m + n mutually
independent random variables X1, . . . , Xm, Y1, . . . , Yn. By convention, it is
assumed that the Xi are observed in subjects who are given treatment A
whereas the Yj relate to the other treatment, i.e., to B. In this setting, the
shift model implies that any possible treatment difference can be represented
by means of the relationship Xi

d= Yj + θ where, as usual (cf. Randles and

Wolfe, 1979, §1.3), the symbol “ d=” indicates identity of the distributions of the
two random variables appearing on its left- and right-hand side, respectively.
In other words, in the case of the parallel group design the shift model assumes
that the distributions associated with the two treatments have exactly the
same shape, implying that distribution A can be generated by shifting all
individual values making up distribution B the same distance |θ| to the right
(for θ > 0) or left (for θ < 0). Making this idea mathematically precise leads
to specifying the following assumptions about the two distributions under
comparison:

(a∗) The complete data vector X1, . . . , Xm, Y1, . . . , Yn is independent, and
all Xi and Yj have the same continuous distribution function F and G,
respectively.

(b∗) There exists a real constant θ such that F (x) = G(x− θ) for all x ∈ IR.

Reduction of the one-sided equivalence problem H1 : θ ≤ −ε vs. K1 :
θ > −ε to the corresponding ordinary one-sided testing problem θ̃ ≤ 0 vs.
θ̃ > 0 proceeds here along analogous lines as in the case of paired observa-
tions discussed in the previous subsection. To start with, one has to select a
suitable test for the nonshifted hypothesis which rejects if and only if one has
T (X1, . . . , Xm, Y1, . . . , Yn) > cα, where the test statistic T (·) is a real-valued
function of m + n arguments and cα stands for the upper 100α percentage
point of the distribution of T (X1, . . . , Xm, Y1, . . . , Yn) under θ = 0. As before,
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this test has to be carried out with suitable transforms X̃i and Ỹj , say, of the
primary observations Xi and Yj , given by X̃i = Xi + ε (for i = 1, . . . ,m) and
Ỹj = Yj (for j = 1, . . . , n), respectively. In view of the close analogy to the
paired observations case, illustration of the approach by another numerical
example is dispensable. Its implementation gets particularly simple in the
parametric case with F (x) = Φ((x − θ)/σ), G(y) = Φ(y/σ) and T chosen
to be the ordinary two-sample t-statistic: One has just to replace x̄ − ȳ by
x̄ − ȳ + ε in the numerator of T then and proceed exactly as usual in all
remaining steps.

2.1.3 Power and sample size calculation based on tests for
noninferiority under location-shift models

The changes required for adapting the usual formula for power and sample
size calculation for tests for one-sided location-shift hypotheses to the nonin-
feriority case are likewise straightforward. Suppose the specific alternative to
be detected in a test for noninferiority of the form discussed in this section
is given by some fixed value θa of the shift parameter to which the proposed
hypothesis is referring. Then, the power of the test for noninferiority with
margin ε is the same as that of the ordinary one-sided test for the respective
setting against the alternative θ̃a = ε + θa, and the sample size required for
ensuring that the test for noninferiority rejects with given probability β under
this alternative, is likewise obtained by replacing θa with θ̃a in the formula or
algorithm for the one-sided case.

In the majority of practical applications, the alternative of primary interest
is given by θa = 0 specifying that the effects of both treatments are identical.
The power of the noninferiority test against this “null alternative” is obtained
by calculating the rejection probability of the corresponding test forH◦

1 : θ ≤ 0
versus K◦

1 : θ > 0 under θ = ε . Specifically, for the shifted t-tests for
noninferiority, the power against θ = 0 is given by

POW0 = 1−G√
nε/σD

(tn−1;1−α) (2.1a)

and
POW0 = 1−G∗√

mn/Nε/σ
(tN−2;1−α) (2.1b)

in the paired-sample and independent-sample case, respectively. In the first
of these formula, Gλnc

(·) stands for the cdf of the noncentral t-distribution
with noncentrality parameter λnc ∈ IR and n−1 degrees of freedom. Further-
more, σD denotes the population standard deviation of the intraindividual
differences, tn−1;1−α the (1 − α)-quantile of the central t-distribution with
df = n − 1 . G∗

λnc
(·) differs from Gλnc

(·) by changing the number of degrees
of freedom from n − 1 to N − 2 ≡ m + n − 2, and the analogous change has
to be made concerning the central t-quantile when proceeding from the one-
to the two-sample case. Evaluation of the above expression for the power is
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particularly easy in a programming environment like R and SAS providing a
predefined function for computing the noncentral t-distribution function.

2.2 Methods of constructing exact optimal tests for
settings beyond the location-shift model

Clearly, the simple trick behind the approach of § 2.1 works only with prob-
lems relating to location-shift models, and the repertoire of noninferiority tests
which can be constructed in that way is much too narrow for covering even
the standard settings occurring in real applications. However, from a theoret-
ical point of view, noninferiority problems are nothing but one-sided testing
problems with a nonzero cutoff specified as the boundary point of the hy-
potheses between which one wants to decide. Fortunately, the mathematical
principles leading to exact optimum solutions of one-sided hypothesis testing
problems apply for arbitrary specifications of that boundary point, and the
only modification required when proceeding from the classical to the non-
inferiority formulation concerns the way of determining the critical bounds
and constants. In the noninferiority case, a suitable noncentral version of the
sampling distribution of the test statistic involved has to be used.

In order to make these general statements more concrete, let us denote by
X the collection of all observations obtained in terms of the experiment or
study under current analysis, i.e., a random vector of dimension at least as
large as the sum of all sample sizes involved [ e.g., in an ordinary parallel group
design for a trial of two treatments one has X = (X1, . . . , Xm, Y1, . . . , Yn) ].
Let us further assume that this primary data vector can be reduced to some
real valued statistic T (X) such that the possible distributions of T (X) consti-
tute a family with monotone likelihood ratios in the parameter θ of interest
(also called a strictly totally positive family of order 2 or STP2 family —
see Definition A.1.1 in the Appendix). Then, it is a well-known fact of the
mathematical theory of hypotheses testing (see, e.g., Lehmann and Romano,
2005, § 3.4) that for any choice of the noninferiority margin ε, there is a test
for H1 : θ ≤ θ◦ − ε versus K1 : θ > θ◦ − ε which is uniformly most powerful
among all tests at the same significance level α depending on the data only
through T . The rejection region of this test is given by{

x |T (x) > k
}
. (2.2)

The way in which the critical constant k has to be determined depends on
the type of the distribution which the test statistic follows under θ = θ◦ − ε.
In the continuous case, the optimal k is obtained by solving the equation

Pθ◦−ε[T (X) > k] = α , ∞ < k <∞ . (2.3)
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For noncontinuous T (X), a solution to (2.3) will typically not exist. However,
it will always be possible to uniquely determine a pair (k, γ) of real numbers
the second of which belongs to the half-open unit interval [0 , 1) such that
there holds

Pθ◦−ε[T (X) > k] + γPθ◦−ε[T (X) = k] = α , ∞ < k <∞ . (2.4)

For γ > 0, the exact level-α test has to be carried out entailing a randomized
decision between H1 and K1 when T (X) falls on the critical point k. In this
case which can almost surely ruled out for continuously distributed T (X), the
null hypothesis H1 of (relevant) inferiority has to be rejected [accepted] with
probability γ [1− γ]. Since randomized decision rules are rarely applicable in
the confirmatory statistical analysis of real research data, the point k is usually
incorporated in the acceptance region even if the event {T (X) = k} has
positive probability, giving a test which is more or less conservative. Promising
techniques for reducing this conservatism will be discussed in § 2.5 .

Even if the STP2−property of the family of distributions of T (X) can be
taken for granted, the precise meaning of the adjective “optimal” we used
above with regard of a test of the form (2.2) (or, in the noncontinuous case,
its randomized counterpart) depends on the relationship between T (X) and
the distributions from which the primary data X have been taken. The most
important cases to be distinguished from this point of view are the following:

(i) T (X) is sufficient for the family of the possible distributions of X; then,
optimal means uniformly most powerful (UMP).

(ii) The model underlying the data corresponds to a multiparameter expo-
nential family of distributions (see Definition A.2.1 in the Appendix);
then, in (2.3) and (2.4), the symbol Pθ◦−ε[ · ] must be interpreted as
denoting the conditional distribution of T (X) given some fixed value of
another (maybe multidimensional statistic) being sufficient for the re-
maining parameters of the model, and the test rejecting for sufficiently
large values of T (X) is uniformly most powerful among all unbiased
tests (UMPU).

(iii) The proposed testing problem remains invariant under some group of
transformations, and the statistic T (X) is maximal invariant with re-
spect to that group; then, the test with rejection region (2.2) is uni-
formly most powerful among all invariant level-α tests (UMPI) for the
same problem.

[For proofs of these statements see Sections 1.9, 4.4 and 6.3 of the book by
Lehmann and Romano (2005).]

Settings admitting the construction of UMP tests for (one-sided) equiv-
alence are dealt with in Chapter 4. Important special cases of equivalence
testing problems which can be solved through reduction by sufficiency are
the comparison of two binomial distributions from which paired [→ § 5.2] or


