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Preface

In this book, we consider the application of computational intelligence tech-
niques to the problem of adaptive image processing. In adaptive image pro-
cessing, it is usually required to identify each image pixel with a particular
feature type (e.g., smooth regions, edges, textures, etc.) for separate process-
ing, which constitutes a segmentation problem. We will then establish image
models to describe the desired appearance of the respective feature types or,
in other words, to characterize each feature type. Finally, we modify the pixel
values in such a way that the appearance of the processed features conforms
more closely with that specified by the feature models, where the degree of
discrepancy is usually measured in terms of cost function. In other words, we
are searching for a set of parameters that minimize this function, that is, an
optimization problem.

To satisfy the above requirements, we consider the application of compu-
tational intelligence (CI) techniques to this class of problems. Here we will
adopt a specific definition of CI, which includes neural network techniques
(NN), fuzzy set theory (FS), and evolutionary computation (EC). A distin-
guishing characteristic of these algorithms is that they are either biologically
inspired, as in the cases of NN and EC, or are attempts to mimic how human
beings perceive everyday concepts, as in FS.

The choice of these algorithms is due to the direct correspondence between
some of the above requirements with the particular capabilities of specific CI
approaches. For example, segmentation can be performed by using NN. In
addition, for the purpose of optimization, we can embed the image model
parameters as adjustable network weights to be optimized through the net-
work’s dynamic action. In contrast, the main role of fuzzy set theory is to
address the requirement of characterization, that is, the specification of hu-
man visual preferences, which are usually expressed in fuzzy languages, in
the form of multiple fuzzy sets over the domain of pixel value configurations,
and the role of EC is mainly in addressing difficult optimization problems.

In this book, the essential aspects of the adaptive image processing prob-
lems are illustrated through a number of applications organized in two parts.
The first part of the book focuses on adaptive image restoration. The problem
is representative of the general adaptive image processing paradigm in that
the three requirements of segmentation, characterization, and optimization
are present. The second part of the book centers on image analysis and re-
trieval. It examines the problems of edge detection and characterization, self-
organization for pattern discovery, and content-based image categorization

xiii
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and retrieval. This section will demonstrate how CI techniques can be used to
address various challenges in adaptive image processing including low-level
image processing, visual content analysis, and feature representation.

This book consists of 11 chapters. The first chapter provides material of an
introductory nature to describe the basic concepts and current state of the art
in the field of computational intelligence for image restoration, edge detection,
image analysis, and retrieval. Chapter 2 gives a mathematical description of
the restoration problem from the Hopfield neural network perspective and
describes current algorithms based on this method. Chapter 3 extends the
algorithm presented in Chapter 2 to implement adaptive constraint restora-
tion methods for both spatially invariant and spatially variant degradations.
Chapter 4 utilizes a perceptually motivated image error measure to intro-
duce novel restoration algorithms. Chapter 5 examines how model-based
neural networks can be used to solve image-restoration problems. Chapter 6
examines image-restoration algorithms making use of the principles of evo-
lutionary computation. Chapter 7 examines the difficult concept of image
restoration when insufficient knowledge of the degrading function is avail-
able. Chapter 8 examines the subject of edge detection and characterization
using model-based neural networks. Chapter 9 provides an in-depth cover-
age of the self-organizing tree map, and demonstrates its application in image
analysis and retrieval. Chapter 10 examines content representation in com-
pressed domain image classification using evolutionary algorithm. Finally,
Chapter 11 explores the fuzzy user perception and small sample problem in
content-based image retrieval and develops CI techniques to address these
challenges.

Acknowledgments

We are grateful to our colleagues, especially Dr. Kui Wu in the Media Tech-
nology Lab of Nanyang Technological University, Singapore for their con-
tributions and helpful comments during the preparation of this book. Our
special thanks to Professor Terry Caelli for the many stimulating exchanges
that eventually led to the work in Chapter 8. We would also like to thank
Nora Konopka and Amber Donley of CRC Press for their advice and assis-
tance. Finally, we are grateful to our families for their patience and support
while we worked on the book.



P1: BINAYA KUMAR DASH

November 19, 2009 11:13 84356 84356˙Book

1
Introduction

1.1 Importance of Vision

All life-forms require methods for sensing the environment. Being able to
sense one’s surroundings is of such vital importance for survival that there
has been a constant race for life-forms to develop more sophisticated sensory
methods through the process of evolution. As a consequence of this process,
advanced life-forms have at their disposal an array of highly accurate senses.
Some unusual sensory abilities are present in the natural world, such as the
ability to detect magnetic and electric fields, or the use of ultrasound waves
to determine the structure of surrounding obstacles. Despite this, one of the
most prized and universal senses utilized in the natural world is vision.

Advanced animals living aboveground rely heavily on vision. Birds and
lizards maximize their fields of view with eyes on each side of their skulls,
while other animals direct their eyes forward to observe the world in three di-
mensions. Nocturnal animals often have large eyes to maximize light intake,
while predators such as eagles have very high resolution eyesight to identify
prey while flying. The natural world is full of animals of almost every color
imaginable. Some animals blend in with surroundings to escape visual de-
tection, while others are brightly colored to attract mates or warn aggressors.
Everywhere in the natural world, animals make use of vision for their daily
survival. The reason for the heavy reliance on eyesight in the animal world is
due to the rich amount of information provided by the visual sense. To survive
in the wild, animals must be able to move rapidly. Hearing and smell provide
warning regarding the presence of other animals, yet only a small number of
animals such as bats have developed these senses sufficiently to effectively
utilize the limited amount of information provided by these senses to perform
useful actions, such as to escape from predators or chase down prey. For the
majority of animals, only vision provides sufficient information in order for
them to infer the correct responses under a variety of circumstances.

Humans rely on vision to a much greater extent than most other animals.
Unlike the majority of creatures we see in three dimensions with high resolu-
tion and color. In humans the senses of smell and hearing have taken second
place to vision. Humans have more facial muscles than any other animal,

1
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because in our society facial expression is used by each of us as the primary
indicator of the emotional states of other humans, rather than the scent signals
used by many mammals. In other words, the human world revolves around
visual stimuli and the importance of effective visual information processing
is paramount for the human visual system.

To interact effectively with the world, the human vision system must be
able to extract, process, and recognize a large variety of visual structures
from the captured images. Specifically, before the transformation of a set of
visual stimuli into a meaningful scene, the vision system is required to iden-
tify different visual structures such as edges and regions from the captured
visual stimuli. Rather than adopting a uniform approach of processing these
extracted structures, the vision system should be able to adaptively tune to
the specificities of these different structures in order to extract the maximum
amount of information for the subsequent recognition stage. For example,
the system should selectively enhance the associated attributes of different
regions such as color and textures in an adaptive manner such that for some
regions, more importance is placed on the extraction and processing of the
color attribute, while for other regions the emphasis is placed on the asso-
ciated textural patterns. Similarly, the vision system should also process the
edges in an adaptive manner such that those associated with an object of in-
terest should be distinguished from those associated with the less important
ones.

To mimic this adaptive aspect of biological vision and to incorporate this
capability into machine vision systems have been the main motivations of
image processing and computer vision research for many years. Analogous
to the eyes, modern machine vision systems are equipped with one or more
cameras to capture light signals, which are then usually stored in the form of
digital images or video sequences for subsequent processing. In other words,
to fully incorporate the adaptive capabilities of biological vision systems into
machines necessitates the design of an effective adaptive image processing sys-
tem. The difficulties of this task can already be foreseen since we are attempt-
ing to model a system that is the product of billions of years of evolution and
is naturally highly complex. To give machines some of the remarkable capa-
bilities that we take for granted is the subject of intensive ongoing research
and the theme of this book.

1.2 Adaptive Image Processing

The need for adaptive image processing arises due to the need to incorporate
the above adaptive aspects of biological vision into machine vision systems.
For such systems the visual stimuli are usually captured through cameras and
presented in the form of digital images that are essentially arrays of pixels,
each of which is associated with a gray level value indicating the magni-
tude of the light signal captured at the corresponding position. To effectively
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characterize a large variety of image types in image processing, this array of
numbers is usually modeled as a 2D discrete nonstationary random process.
As opposed to stationary random processes where the statistical properties
of the signal remain unchanged with respect to the 2D spatial index, the non-
stationary process models the inhomogeneities of visual structures that are
inherent in a meaningful visual scene. It is this inhomogeneity that conveys
useful information of a scene, usually composed of a number of different ob-
jects, to the viewer. On the other hand, a stationary 2D random signal, when
viewed as a gray level image, does not usually correspond to the appearances
of real-world objects.

For a particular image-processing application (we interpret the term “image
processing” in a wide sense such that applications in image analysis are also
included), we usually assume the existence of an underlying image model [1–3],
which is a mathematical description of a hypothetical process through which
the current image is generated. If we suppose that an image is adequately
described by a stationary random process, which, though not accurate in
general, is often invoked as a simplifying assumption, it is apparent that
only a single image model corresponding to this random process is required
for further image processing. On the other hand, more sophisticated image-
processing algorithms will account for the nonstationarity of real images by
adopting multiple image models for more accurate representation. Individual
regions in the image can usually be associated with a different image model,
and the complete image can be fully characterized by a finite number of these
local image models.

1.3 Three Main Image Feature Classes

The inhomogeneity in images implies the existence of more than one image
feature type that convey independent forms of information to the viewer.
Although variations among different images can be great, a large number of
images can be characterized by a small number of feature types. These are
usually summarized under the labels of smooth regions, textures, and edges
(Figure 1.1). In the following, we will describe the essential characteristics of
these three kinds of features, and the image models usually employed for
their characterization.

1.3.1 Smooth Regions

Smooth regions usually comprise the largest proportion of areas in images,
because surfaces of artificial or natural objects, when imaged from a distance,
can usually be regarded as smooth. A simple model for a smooth region is the
assignment of a constant gray-level value to a restricted domain of the image
lattice, together with the addition of Gaussian noise of appropriate variance
to model the sensor noise [2,4].
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Smooth

regions
Edges Textures

Image feature types

FIGURE 1.1
Three important classes of feature in images.

1.3.2 Edges

As opposed to smooth regions, edges comprise only a very small proportion
of areas in images. Nevertheless, most of the information in an image is con-
veyed through these edges. This is easily seen when we look at the edge map
of an image after edge detection: we can readily infer the original contents of
the image through the edges alone. Since edges represent locations of abrupt
transitions of gray-level values between adjacent regions, the simplest edge
model is therefore a random variable of high variance, as opposed to the
smooth region model that uses random variables with low variances. How-
ever, this simple model does not take into account the structural constraints
in edges, which may then lead to their confusion with textured regions with
equally high variances. More sophisticated edge models include the facet
model [5], which approximates the different regions of constant gray level
values around edges with separate piecewise continuous functions. There
is also the edge-profile model, which describes the one-dimensional cross
section of an edge in the direction of maximum gray level variation [6,7].
Attempts have been made to model this profile using a step function and
various monotonically increasing functions. Whereas these models mainly
characterize the magnitude of gray-level-value transition at the edge location,
the edge diagram in terms of zero crossings of the second-order gray level
derivatives, obtained through the process of Laplacian of Gaussian (LoG) fil-
tering [8,9], characterizes the edge positions in an image. These three edge
models are illustrated in Figure 1.2.

1.3.3 Textures

The appearance of textures is usually due to the presence of natural objects
in an image. The textures usually have a noise-like appearance, although
they are distinctly different from noise in that there usually exists certain dis-
cernible patterns within them. This is due to the correlations among the pixel
values in specific directions. Due to this noise-like appearance, it is natural to
model textures using a two-dimensional random field. The simplest approach
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Zero-crossing

model
Facet model Edge profile model

FIGURE 1.2
Examples of edge models.

is to use i.i.d. (independent and identically distributed) random variables
with appropriate variances, but this does not take into account the correla-
tions among the pixels. A generalization of this approach is the adoption of
Gauss–Markov random field (GMRF) [10–14] and Gibbs random field [15,16]
which model these local correlational properties. Another characteristic of
textures is their self-similarities: the patterns usually look similar when ob-
served under different magnifications. This leads to their representation as
fractal processes [17,18] that possess this very self-similar property.

1.4 Difficulties in Adaptive Image-Processing System Design

Given the very different properties of these three feature types, it is usually
necessary to incorporate spatial adaptivity into image-processing systems for
optimal results. For an image-processing system, a set of system parameters
is usually defined to control the quality of the processed image. Assuming the
adoption of spatial domain-processing algorithms, the gray-level value xi1,i2

at spatial index (i1, i2) is determined according to the following relationship.

xi1,i2 = f (y; pSA(i1, i2)) (1.1)

In this equation, the mapping f summarizes the operations performed by
the image-processing system. The vector y denotes the gray-level values of the
original image before processing, and pSA denotes a vector of spatially adaptive
parameters as a function of the spatial index (i1, i2). It is reasonable to expect
that different parameter vectors are to be adopted at different positions (i1, i2),
which usually correspond to different feature types. As a result, an important
consideration in the design of this adaptive image-processing system is the
proper determination of the parameter vector pSA(i1, i2) as a function of the
spatial index (i1, i2).

On the other hand, for nonadaptive image-processing systems, we can sim-
ply adopt a constant assignment for pSA(i1, i2)

pSA(i1, i2) ≡ pNA (1.2)

where pNA is a constant parameter vector.
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We consider examples of pSA(i1, i2) in a number of specific image-processing
applications below:

• In image filtering, we can define pSA(i1, i2) to be the set of filter coeffi-
cients in the convolution mask [2]. Adaptive filtering [19,20] thus cor-
responds to using a different mask at different spatial locations, while
nonadaptive filtering adopts the same mask for the whole image.

• In image restoration [21–23], a regularization parameter [24–26] is de-
fined that controls the degree of ill-conditioning of the restoration
process, or equivalently, the overall smoothness of the restored im-
age. The vector pSA(i1, i2) in this case corresponds to the scalar reg-
ularization parameter. Adaptive regularization [27–29] involves se-
lecting different parameters at different locations, and nonadaptive
regularization adopts a single parameter for the whole image.

• In edge detection, the usual practice is to select a single threshold pa-
rameter on the gradient magnitude to distinguish between the edge
and nonedge points of the image [2,4], which corresponds to the case
of nonadaptive thresholding. This can be considered as a special case
of adaptive thresholding, where a threshold value is defined at each
spatial location.

Given the above description of adaptive image processing, we can see that
the corresponding problem of adaptive parameterization, that of determin-
ing the parameter vector pSA(i1, i2) as a function of (i1, i2), is particularly
acute compared with the nonadaptive case. In the nonadaptive case, and in
particular for the case of a parameter vector of low dimensionality, it is usu-
ally possible to determine the optimal parameters by interactively choosing
different parameter vectors and evaluating the final processed results.

On the other hand, for adaptive image processing, it is almost always the
case that a parameter vector of high dimensionality, which consists of the
concatenation of all the local parameter vectors, will be involved. If we relax
the previous requirement to allow the subdivision of an image into regions
and the assignment of the same local parameter vector to each region, the
dimension of the resulting concatenated parameter vector can still be large.
In addition, the requirement to identify each image pixel with a particular
feature type itself constitutes a nontrivial segmentation problem. As a result,
it is usually not possible to estimate the parameter vector by trial and error.
Instead, we should look for a parameter assignment algorithm that would
automate the whole process.

To achieve this purpose, we will first have to establish image models that
describe the desired local gray-level value configurations for the respective
image feature types or, in other words, to characterize each feature type. Since
the local gray-level configurations of the processed image are in general a
function of the system parameters as specified in Equation (1.1), we can asso-
ciate a cost function with each gray-level configuration that measures its degree
of conformance to the corresponding model, with the local system parameters
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as arguments of the cost function. We can then search for those system pa-
rameter values that minimize the cost function for each feature type, that is,
an optimization process. Naturally, we should adopt different image models in
order to obtain different system parameters for each type of feature.

In view of these requirements, we can summarize the requirements for a
successful design of an adaptive image-processing system as follows:

1.4.1 Segmentation

Segmentation requires a proper understanding of the difference between
the corresponding structural and statistical properties of the various feature
types, including those of edges, textures, and smooth regions, to allow parti-
tion of an image into these basic feature types.

1.4.2 Characterization

Characterization requires an understanding of the most desirable gray-level
value configurations in terms of the characteristics of the human vision system
(HVS) for each of the basic feature types, and the subsequent formulation of
these criteria into cost functions in terms of the image model parameters, such
that the minimization of these cost functions will result in an approximation
to the desired gray-level configurations for each feature type.

1.4.3 Optimization

In anticipation of the fact that the above criteria will not necessarily lead to
well-behaved cost functions, and that some of the functions will be nonlinear
or even nondifferentiable, we should adopt powerful optimization techniques
for the searching of the optimal parameter vector.

These three main requirements are summarized in Figure 1.3.
In this book, our main emphasis is on two specific adaptive image-

processing systems and their associated algorithms: the adaptive
image-restoration algorithm and the adaptive edge-characterization

OptimizationSegmentation Characterization

Adaptive image processing

FIGURE 1.3
Three main requirements in adaptive image processing.
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algorithm. For the former system, segmentation is first applied to partition
the image into separate regions according to a local variance measure. Each
region then undergoes characterization to establish whether it corresponds to
a smooth, edge, or textured area. Optimization is then applied as a final step
to determine the optimal regularization parameters for each of these regions.
For the second system, a preliminary segmentation stage is applied to sepa-
rate the edge pixels from nonedge pixels. These edge pixels then undergo the
characterization process whereby the more salient ones among them (accord-
ing to the users’ preference) are identified. Optimization is finally applied to
search for the optimal parameter values for a parametric model of this salient
edge set.

1.5 Computational Intelligence Techniques

Considering the above stringent requirements for the satisfactory perfor-
mance of an adaptive image-processing system, it will be natural to consider
the class of algorithms commonly known as computational intelligence tech-
niques. The term “computational intelligence” [30,31] has sometimes been
used to refer to the general attempt to simulate human intelligence on comput-
ers, the so-called “artificial intelligence” (AI) approach [32]. However, in this
book, we will adopt a more specific definition of computational intelligence
techniques that are neural network techniques, fuzzy logic, and evolutionary
computation (Figure 1.4). These are also referred to as the “numerical” AI
approaches (or sometimes “soft computing” approach [33]) in contrast to the
“symbolic” AI approaches as typified by the expression of human knowledge
in terms of linguistic variables in expert systems [32].

A distinguishing characteristic of this class of algorithms is that they are
usually biologically inspired: the design of neural networks [34,35], as the

Neural

networks

Computational intelligence

techniques

Evolutionary

computation

Fuzzy

logic

FIGURE 1.4
Three main classes of computational intelligence algorithms.
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name implies, draws inspiration mainly from the structure of the human
brain. Instead of adopting the serial processing architecture of the Von Neu-
mann computer, a neural network consists of a large number of computational
units or neurons (the use of this term again confirming the biological source of
inspiration) that are massively interconnected with each other just as the real
neurons in the human brain are interconnected with axons and dendrites.
Each such connection between the artificial neurons is characterized by an
adjustable weight that can be modified through a training process such that
the overall behavior of the network is changed according to the nature of spe-
cific training examples provided, again reminding one of the human learning
process.

On the other hand, fuzzy logic [36–38] is usually regarded as a formal
way to describe how human beings perceive everyday concepts: whereas
there is no exact height or speed corresponding to concepts like “tall” and
“fast,” respectively, there is usually a general consensus by humans as to
approximately what levels of height and speed the terms are referring to. To
mimic this aspect of human cognition on a machine, fuzzy logic avoids the
arbitrary assignment of a particular numerical value to a single class. Instead,
it defines each such class as a fuzzy set as opposed to a crisp set, and assigns
a fuzzy set membership value within the interval [0,1] for each class that
expresses the degree of membership of the particular numerical value in the
class, thus generalizing the previous concept of crisp set membership values
within the discrete set {0,1}.

For the third member of the class of computational intelligence algorithms,
no concept is closer to biology than the concept of evolution, which is the in-
cremental adaptation process by which living organisms increase their fitness
to survive in a hostile environment through the processes of mutation and
competition. Central to the process of evolution is the concept of a population
in which the better adapted individuals gradually displace the not so well-
adapted ones. Described within the context of an optimization algorithm, an
evolutionary computational algorithm [39,40] mimics this aspect of evolution by
generating a population of potential solutions to the optimization problem,
instead of a sequence of single potential solutions, as in the case of gradient
descent optimization or simulated annealing [16]. The potential solutions are
allowed to compete against each other by comparing their respective cost
function values associated with the optimization problem with each other.
Solutions with high cost function values are displaced from the population
while those with low cost values survive into the next generation. The dis-
placed individuals in the population are replaced by generating new indi-
viduals from the survived solutions through the processes of mutation and
recombination. In this way, many regions in the search space can be explored
simultaneously, and the search process is not affected by local minima as no
gradient evaluation is required for this algorithm.

We will now have a look at how the specific capabilities of these computa-
tional intelligence techniques can address the various problems encountered
in the design and parameterization of an adaptive image-processing system.
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1.5.1 Neural Networks

Artificial neural networks represent one of the first attempts to incorporate
learning capabilities into computing machines. Corresponding to the bio-
logical neurons in human brain, we define artificial neurons that perform
simple mathematical operations. These artificial neurons are connected with
each other through network weights that specify the strength of the connection.
Analogous to its biological counterpart, these network weights are adjustable
through a learning process that enables the network to perform a variety of
computational tasks. The neurons are usually arranged in layers, with the
input layer accepting signals from the external environment, and the out-
put layer emitting the result of the computations. Between these two layers
are usually a number of hidden layers that perform the intermediate steps of
computations. The architecture of a typical artificial neural network with one
hidden layer is shown in Figure 1.5. In specific types of network, the hidden
layers may be missing and only the input and output layers are present.

The adaptive capability of neural networks through the adjustment of the
network weights will prove useful in addressing the requirements of seg-
mentation, characterization, and optimization in adaptive image-processing
system design. For segmentation, we can, for example, ask human users to
specify which part of an image corresponds to edges, textures, and smooth
regions, etc. We can then extract image features from the specified regions
as training examples for a properly designed neural network such that the
trained network will be capable of segmenting a previously unseen image into
the primitive feature types. Previous works where a neural network is applied
to the problem of image segmentation are detailed in References [41–43].

A neural network is also capable of performing characterization to a certain
extent, especially in the process of unsupervised competitive learning [34,44],
where both segmentation and characterization of training data are carried

. . . . . .

. . . . . . . . . . .

. . . . . .

Network input

Network output

Output layer

Hidden layer

Input layer

FIGURE 1.5
Architecture of a neural network with one hidden layer.
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out: during the competitive learning process, individual neurons in the net-
work, which represent distinct subclasses of training data, gradually build
up templates of their associated subclasses in the form of weight vectors. These
templates serve to characterize the individual subclasses.

In anticipation of the possible presence of nonlinearity in the cost functions
for parameter estimation during the optimization process, a neural network
is again an ideal candidate for accommodating such difficulties: the operation
of a neural network is inherently nonlinear due to the presence of the sigmoid
neuronal transfer function. We can also tailor the nonlinear neuronal transfer
function specifically to a particular application. More generally, we can map
a cost function onto a neural network by adopting an architecture such that
the image model parameters will appear as adjustable weights in the net-
work [45,46]. We can then search for the optimal image model parameters by
minimizing the embedded cost function through the dynamic action of the
neural network.

In addition, while the distributed nature of information storage in neural
networks and the resulting fault-tolerance is usually regarded as an over-
riding factor in its adoption, we will, in this book, concentrate rather on the
possibility of task localization in a neural network: we will subdivide the neu-
rons into neuron clusters, with each cluster specialized for the performance of
a certain task [47,48]. It is well known that similar localization of processing
occurs in the human brain, as in the classification of the cerebral cortex into
visual area, auditory area, speech area, and motor area, etc. [49,50]. In the
context of adaptive image processing, we can, for example, subdivide the set
of neurons in such a way that each cluster will process the three primitive
feature types, namely, textures, edges, and smooth regions. The values of the
connection weights in each subnetwork can be different, and we can even
adopt different architectures and learning strategies for each subnetwork for
optimal processing of its assigned feature type.

1.5.2 Fuzzy Logic

From the previous description of fuzzy techniques, it is obvious that its main
application in adaptive image processing will be to address the requirement of
characterization, that is, the specification of human visual preferences in terms
of gray-level value configurations. Many concepts associated with image pro-
cessing are inherently fuzzy, such as the description of a region as “dark” or
“bright,” and the incorporation of fuzzy set theory is usually required for
satisfactory processing results [51–55]. The very use of the words “textures,”
“edges,” and “smooth regions” to characterize the basic image feature types
implies fuzziness: the difference between smooth regions and weak textures
can be subtle, and the boundary between textures and edges is sometimes
blurred if the textural patterns are strongly correlated in a certain direction so
that we can regard the pattern as multiple edges. Since the image-processing
system only recognizes gray-level configurations, it will be natural to define
fuzzy sets with qualifying terms like “texture,” “edge,” and “smooth regions”
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over the set of corresponding gray-level configurations according to human
preferences. However, one of the problems with this approach is that there
is usually an extremely large number of possible gray-level configurations
corresponding to each feature type, and human beings cannot usually relate
what they perceive as a certain feature type to a particular configuration. In
Chapter 5, a scalar measure has been established that characterizes the degree
of resemblance of a gray-level configuration to either textures or edges. In
addition, we can establish the exact interval of values of this measure where
the configuration will more resemble textures than edges and vice versa. As
a result, we can readily define fuzzy sets over this one-dimensional universe
of discourse [37].

In addition, fuzzy set theory also plays an important role in the derivation
of improved segmentation algorithms. A notable example is the fuzzy c-means
algorithm [56–59], which is a generalization of the k-means algorithm [60] for
data clustering. In the k-means algorithm, each data vector, which may con-
tain feature values or gray-level values as individual components in image
processing applications, is assumed to belong to one and only one class. This
may result in inadequate characterization of certain data vectors that possess
properties common to more than one class, but then get arbitrarily assigned to
one of those classes. This is prevented in the fuzzy c-means algorithm, where
each data vector is assumed to belong to every class to a different degree
that is expressed by a numerical membership value in the interval [0,1]. This
paradigm can now accommodate those data vectors that possess attributes
common to more than one class, in the form of large membership values in
several of these classes.

1.5.3 Evolutionary Computation

The often stated advantages of evolutionary computation include its implicit
parallelism that allows simultaneous exploration of different regions of the
search space [61], and its ability to avoid local minima [39,40]. However, in
this book, we will emphasize its capability to search for the optimizer of a
nondifferentiable cost function efficiently, that is, to satisfy the requirement
of optimization. An example of a nondifferentiable cost function in image
processing would be the metric that compares the probability density func-
tion (pdf) of a certain local attribute of the image (gray-level values, gradient
magnitudes, etc.) with a desired pdf. We would, in general, like to adjust the
parameters of the adaptive image-processing system in such a way that the
distance between the pdf of the processed image is as close as possible to
the desired pdf. In other words, we would like to minimize the distance as a
function of the system parameters. In practice, we have to approximate the
pdfs using histograms of the corresponding attributes, which involves the
counting of discrete quantities. As a result, although the pdf of the processed
image is a function of the system parameters, it is not differentiable with
respect to these parameters. Although stochastic algorithms like simulated
annealing can also be applied to minimize nondifferentiable cost functions,
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FIGURE 1.6
Relationships between the computational intelligence algorithms and the main requirements in
adaptive image processing.

evolutionary computational algorithms represent a more efficient optimiza-
tion approach due to the implicit parallelism of its population-based search
strategy.

The relationship between the main classes of algorithms in computational
intelligence and the major requirements in adaptive image processing is sum-
marized in Figure 1.6.

1.6 Scope of the Book

In this book, as specific examples of adaptive image-processing systems, we
consider the adaptive regularization problem in image restoration [27–29], the
edge, characterization problem, the self-organization problem in image anal-
ysis, and the feature representation and fuzzy perception problem in image re-
trieval. We adopt computational intelligence techniques including neural net-
works, fuzzy methods, and evolutionary algorithms as the main approaches
to address these problems due to their capabilities to satisfy all three require-
ments in adaptive image processing, as illustrated in Figure 1.6.

1.6.1 Image Restoration

The act of attempting to obtain the original image given the degraded image
and some knowledge of the degrading factors is known as image restoration.
The problem of restoring an original image, when given the degraded image,
with or without knowledge of the degrading point spread function (PSF) or de-
gree and type of noise present is an ill-posed problem [21,24,62,63] and can be
approached in a number of ways such as those given in References [21,64,66].
For all useful cases a set of simultaneous equations is produced that is too
large to be solved analytically. Common approaches to this problem can be
divided into two categories: inverse filtering or transform-related techniques,
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and algebraic techniques. An excellent review of classical image-restoration
techniques is given by Andrews and Hunt [21]. The following references
also contain surveys of restoration techniques: Katsaggelos [23], Sondhi [67],
Andrews [68], Hunt [69], and Frieden [70].

Image Degradations

There exist a large number of possible degradations that an image can suffer.
Common degradations are blurring, motion, and noise. Blurring can be caused
when an object in the image is outside the camera’s depth of field some time
during the exposure. Noise is generally a distortion due to the imaging system
rather than the scene recorded. Noise results in random variations to pixel
values in the image. This could be caused by the imaging system itself, or
the recording or transmission medium. In this book, we consider only image
degradations that may be described by a linear model. For these distortions,
a suitable mathematical model is given in Chapter 2.

Adaptive Regularization

In regularized image restoration, the associated cost function consists of two
terms: a data conformance term that is a function of the degraded image pixel
values and the degradation mechanism, and the model conformance term
that is usually specified as a continuity constraint on neighboring gray-level
values to alleviate the problem of ill-conditioning characteristic of this kind
of inverse problems. The regularization parameter [23,25] controls the relative
contributions of the two terms toward the overall cost function. In general, if
the regularization parameter is increased, the model conformance term is em-
phasized at the expense of the data conformance term, and the restored image
becomes smoother while the edges and textured regions become blurred. On
the contrary, if we decrease the parameter, the fidelity of the restored image
is increased at the expense of decreased noise smoothing.

Perception-Based Error Measure for Image Restoration

The most common method to compare the similarity of two images is to com-
pute their mean square error (MSE). However, the MSE relates to the power
of the error signal and has little relationship to human visual perception. An
important drawback to the MSE and any cost function that attempts to use
the MSE to restore a degraded image is that the MSE treats the image as
a stationary process. All pixels are given equal priority regardless of their
relevance to human perception. This suggests that information is ignored. In
view of the problems with classical error measures such as the MSE, Perry and
Guan [71] and Perry [72] presented a different error measure, local standard
deviation mean square error (LSMSE), which is based on the comparison of local
standard deviations in the neighborhood of each pixel instead of their gray-
level values. The LSMSE is calculated in the following way: Each pixel in the
two images to be compared has its local standard deviation calculated over
a small neighborhood centered on the pixel. The error between each pixel’s
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local standard deviation in the first image and the corresponding pixel’s lo-
cal standard deviation in the second image is computed. The LSMSE is the
mean squared error of these differences over all pixels in the image. The mean
square error between the two standard deviations gives an indication of the
degree of similarity between the two images. This error measure requires
matching between the high- and low-variance regions of the image, which
is more intuitive in terms of human visual perception. Generally throughout
this book the size of the local neighborhoods used in the LSMSE calculation
will be a 9-by-9 square centered on the pixel of interest. This alternative error
measure will be heavily relied upon in Chapters 3 and 4. A mathematical
description is given in Chapter 3.

Blind Deconvolution

In comparison with the determination of the regularization parameter for
image restoration, the problem of blind deconvolution is considerably more
difficult, since in this case the degradation mechanism, or equivalently the
form of the point spread function, is unknown to the user. As a result, in ad-
dition to estimating the local regularization parameters, we have to estimate
the coefficients of the point spread function itself. In Chapter 7, we describe an
approach for blind deconvolution that is based on computational intelligence
techniques. Specifically, the blind deconvolution problem is first formulated
within the framework of evolutionary strategy where a pool of candidate PSFs
is generated to form the population in evolutionary strategy (ES). A new cost
function that incorporates the specific requirement of blind deconvolution in
the form of a point spread function domain regularization term, which en-
sures the emergence of a valid PSF, in addition to the previous data fidelity
measure and image regularization term is adopted as the fitness function in
the evolutionary algorithm. This new blind deconvolution approach will be
described in Chapter 7.

1.6.2 Edge Characterization and Detection

The characterization of important features in an image requires the detailed
specification of those pixel configurations that human beings would regard as
significant. In this work, we consider the problem of representing human pref-
erences, especially with regard to image interpretation, again in the form of a
model-based neural network with hierarchical architecture [48,73,74]. Since
it is difficult to represent all aspects of human preferences in interpreting
images using traditional mathematical models, we encode these preferences
through a direct learning process, using image pixel configurations that hu-
mans usually regard as visually significant as training examples. As a first
step, we consider the problem of edge characterization in such a network.
This representation problem is important since its successful solution would
allow computer vision systems to simulate to a certain extent the decision
process of human beings when interpreting images.
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Although the network can be considered as a particular implementation
of the stages of segmentation and characterization in the overall adaptive
image-processing scheme, it can also be regarded as a self-contained adap-
tive image-processing system on its own: the network is designed such that
it automatically partitions the edges in an image into different classes de-
pending on the gray-level values of the surrounding pixels of the edge, and
applies different detection thresholds to each of the classes. This is in contrast
to the usual approach where a single detection threshold is adopted across the
whole image independent of the local context. More importantly, instead of
providing quantitative values for the threshold as in the usual case, the users
are asked to provide qualitative opinions on what they regard as edges by
manually tracing their desired edges on an image. The gray-level configura-
tions around the trace are then used as training examples for the model-based
neural network to acquire an internal model of the edges, which is another
example of the design of an adaptive image-processing system through the
training process.

As seen above, we have proposed the use of a hierarchical model-based
neural network for the solution of both these problems as a first attempt. It
was observed later that, whereas the edge characterization problem can be
satisfactorily represented by this framework, resulting in adequate charac-
terization of those image edges that humans regard as significant, there are
some inadequacies in using this framework exclusively for the solution of the
adaptive regularization problem, especially in those cases where the images
are more severely degraded. These inadequacies motivate our later adoption
of fuzzy set theory and evolutionary computation techniques, in addition to
the previous neural network techniques, for this problem.

1.6.3 Self-Organizing Tree Map for Knowledge Discovery

Computational technologies based on artificial neural networks have been
the focus for much research into the problem of unsupervised learning and
data clustering, where the goal is to formulate or discover significant pat-
terns or features from within a given set of data without the guidance of a
teacher. Input patterns are usually stored as a set of prototypes or clusters:
representations or natural groupings of similar data. In forming a descrip-
tion of an unknown set of data, such techniques find application across a
range of industrial tasks that warrant significant need for data mining, that
is, bioinformatics research, high-dimensional image analysis and visualiza-
tion, information retrieval, and computer vision. Inherently unsupervised in
nature, neural-network architectures based on principles of self-organization
appear to be a natural fit.

Such architectures are characterized by their adherence to four key proper-
ties [34]: synaptic self-amplification for mining correlated stimuli, competition
over limited resources, cooperative encoding of information, and the implicit
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ability to encode pattern redundancy as knowledge. Such principles are, in
many ways, a reflection of Turing’s observations in 1952 [75]: “Global order
can arise from Local interactions.” Such mechanisms exhibit a basis in the
process of associative memory, and, receiving much neurobiological support,
are believed to be fundamental to the organization that takes place in the
human brain.

Static architectures such as Kohonen’s self-organizing feature map (SOFM)
[76] represent one of the most fundamental realizations of such principles,
and have been the foundation for much neural network-based research into
knowledge discovery. Their popularity arises out of their ability to infer an
ordered or topologically preserved mapping of the underlying data space.
Thus, relationships between discovered prototypes are captured in an output
layer that is connected by some predefined topology. Mappings onto this layer
are such that order is maintained: thus patterns near to one another in the
input space map to nearby locations in an output layer. Such mechanisms are
useful for qualitative visualization [77,78] of high dimensional, multivariate
data, where users are left to perceive possible clustered regions in a dimension
that is more familiar to them (2D or 3D).

The hierarchical feature map (HFM) [79] extends such ideas to a pyrami-
dal hierarchy of SOFMs, each progressively trained in a top-down manner, to
achieve some semblance of hierarchical partitioning on the input space. At the
other end of the self-organizing spectrum is neural gas (NG) [80], which com-
pletely abandons any imposed topology: instead relying on the consideration
of k nearest neighbors for the refinement of prototypes.

One of the most challenging tasks in any unsupervised learning problem
arises by virtue of the fact that an attempt is being made to quantitatively
discover a set of dominant patterns (clusters or classes) in which to categorize
underlying data without any knowledge of what an appropriate number of
classes might be. There are essentially two approaches taken as a result: either
attempt to perform a series of separate runs of a static clustering algorithm
over a range of different class numbers and assess which yields a better result
according to some independent index of quality, or maintain a purely dynamic
architecture that attempts to progressively realize an appropriate number of
classes throughout the course of parsing a data set. The latter of the two
approaches is advantageous from a resource and time of execution point of
view.

Many dynamic neural network-based architectures have been proposed,
as they seem particularly suited to developing a model of an input space, one
item of data at a time: they evolve internally, through progressive stimulation
by individual samples. Such dynamic architectures are generally hierarchi-
cal or nonstationary in nature, and extend upon HFM/SOFM such as in the
growing hierarchical SOM (GHSOM) [81,82], or extend upon NG as in the
growing neural gas (GNG) algorithm [83] and its associated variants: grow-
ing grid (GG) [84] and growing cell structures (GCS) [85].
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1.6.4 Content-Based Image Categorization and Retrieval

Content-based image categorization is the process of classifying a given im-
age into one of the predefined categories based on content analysis. Content
analysis of images refers to the extraction of features such as color, texture,
shape, or spatial relationship from the images as the signatures, and from
which the indexes of the images are built. Content analysis can be catego-
rized into spatial domain analysis and compressed domain analysis. Spatial
domain analysis performs feature extraction in the original image domain.
On the other hand, compressed domain analysis extracts features in the com-
pressed domain directly in order to reduce the computational time involved
in the decompression of the images.

Content-based image retrieval (CBIR) has been developed as an alternative
search technique that complements text-based image retrieval. It utilizes con-
tent analysis to retrieve images that are similar to the query from the database.
Users can submit their query to the systems in the form of an example image,
which is often known as query-by-example (QBE). The systems then perform
image content analysis by extracting visual features from the query and com-
pare them with the features of the images in the database. After similarity
comparison, the systems display the retrieval results to the users.

Content Analysis

Previous approaches for content-based image classification mainly focus on
spatial domain analysis. This, however, is often expensive in terms of com-
putational and storage requirements as most digital images nowadays are
stored in the compressed formats. Feature extraction performed in the spatial
domain requires the decompression of the compressed images first, resulting
in significant computational cost. To alleviate the computational load, some
works have focused on performing content analysis in the compressed do-
main. Most of the approaches that adopt compressed domain features give
more emphasis on computational efficiency than their effectiveness in content
representation. It is worth noting that often the compressed domain features
may not fully represent the actual image contents. To address this issue, evolu-
tionary computation techniques have been applied to obtain proper transfor-
mation of the compressed domain features. In doing so, image classification
accuracy can be improved using transformed features while retaining the ef-
ficiency of the compressed domain techniques. The detailed algorithms will
be explained in Chapter 10.

Relevance Feedback in CBIR

Many CBIR systems have been developed over the years that include both
commercial and research prototypes. However, a challenging issue that re-
stricts the performance of the CBIR systems is the semantic gap between the
low-level visual features and the high-level human perception. To bridge the
semantic gap, relevance feedback has been introduced into the CBIR systems.
The main idea is to incorporate human in the loop to enhance the retrieval
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accuracy. Users are allowed to provide their relevance judgement on the re-
trieved images. The feedbacks are then learned by the systems to discover
user information needs. There have been a lot of studies on relevance feed-
back in CBIR in recent years with various algorithms developed. Although
the incorporation of relevance feedback has been shown to boost the retrieval
performance, there are still two important issues that need to be considered
when developing an efficient and effective CBIR system: (1) imprecision of
user perception on the relevance of the feedback images and (2) the small
sample problem:

• Typically, in most interactive CBIR systems, a user is expected to
provide a binary decision of either “fully relevant” or “totally irrel-
evant” on the feedback images. At times, this may not agree with
the uncertainty embedded in user perception. For example, in a sce-
nario application, a user intends to find pets, especially, dogs. If the
retrieved results contain cats, the user would face a dilemma as to
whether to classify the cats as either fully relevant or totally irrele-
vant. This is because these cat images only satisfy user information
need up to a certain extent. Therefore, we need to take the potential
imprecision of user perception into consideration when developing
relevance feedback algorithm.

• In an interactive CBIR system with relevance feedback, it is tedious
for users to label many images. This gives rise to the small sample
problem where learning from a small number of training samples
restricts the retrieval performance.

To address these two challenges, computational intelligence techniques,
namely, neural networks, clustering, fuzzy reasoning, and SVM will be em-
ployed due to their effectiveness. We will describe the proposed approaches
in more details in Chapter 11.

1.7 Contributions of the Current Work

With regard to the problems posed by the requirements of segmentation, char-
acterization, and optimization in the design of an adaptive image-processing
system, we have devised a system of interrelated solutions comprising the
use of the main algorithm classes of computational intelligence techniques.
The contributions of the work described in this book can be summarized as
follows.

1.7.1 Application of Neural Networks for Image Restoration

Different neural network models, which will be described in Chapters 2, 3, 4,
and 5, are adopted for the problem of image restoration. In particular, a
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model-based neural network with hierarchical architecture [48,73,74] is de-
rived for the problem of adaptive regularization. The image is segmented
into smooth regions and combined edge/textured regions, and we assign a
single subnetwork to each of these regions for the estimation of the regional
parameters. An important new concept arising from this work is our alter-
native viewpoint of the regularization parameters as model-based neuronal
weights, which are then trainable through the supply of proper training ex-
amples. We derive the training examples through the application of adaptive
nonlinear filtering [86] to individual pixel neighborhoods in the image for an
independent estimate of the current pixel value.

1.7.2 Application of Neural Networks to Edge Characterization

A model-based neural network with hierarchical architecture is proposed for
the problem of edge characterization and detection. Unlike previous edge-
detection algorithms where various threshold parameters have to be speci-
fied [2,4], this parameterization task can be performed implicitly in a neural
network by supplying training examples. The most important concept in this
part of the work is to allow human users to communicate their preferences
to the adaptive image-processing system through the provision of qualita-
tive training examples in the form of edge tracings on an image, which is a
more natural way of specifying preferences for humans, than the selection of
quantitative values for a set of parameters. With the adoption of this network
architecture and the associated training algorithm, it will be shown that the
network can generalize from sparse examples of edges provided by human
users to detect all significant edges in images not in the training set. More im-
portantly, no retraining and alteration of architecture is required for applying
the same network to noisy images, unlike conventional edge detectors that
usually require threshold readjustment.

1.7.3 Application of Fuzzy Set Theory to Adaptive Regularization

For the adaptive regularization problem in image restoration, apart from the
requirement of adopting different regularization parameters for smooth re-
gions and regions with high gray-level variances, it is also desirable to further
separate the latter regions into edge and textured regions. This is due to the
different noise masking capabilities of these two feature types, which in turn
requires different regularization parameter values. In our previous discussion
of fuzzy set theory, we have described a possible solution to this problem, in
the form of characterizing the gray-level configurations corresponding to the
above two feature types, and then define fuzzy sets with qualifying terms
like “texture” and “edge” over the respective sets of configurations. How-
ever, one of the problems with this approach is that there is usually an ex-
tremely large number of possible gray-level configurations corresponding to
each feature type, and human beings cannot usually relate what they perceive
as a certain feature type to a particular configuration. In Chapter 5, a scalar
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measure has been established that characterizes the degree of resemblance
of a gray-level configuration to either textures or edges. In addition, we can
establish the exact interval of values of this measure where the configuration
will more resemble textures than edges and vice versa. As a result, we can
readily define fuzzy sets over this one-dimensional universe of discourse [37].

1.7.4 Application of Evolutionary Programming to Adaptive
Regularization and Blind Deconvolution

Apart from the neural network-based techniques, we have developed an alter-
native solution to the problem of adaptive regularization using evolutionary
programming, which is a member of the class of evolutionary computational
algorithms [39,40]. Returning again to the ETC measure, we have observed
that the distribution of the values of this quantity assumes a typical form for
a large class of images. In other words, the shape of the probability density
function (pdf) of this measure is similar across a broad class of images and can
be modeled using piecewise continuous functions. On the other hand, this
pdf will be different for blurred images or incorrectly regularized images.
As a result, the model pdf of the ETC measure serves as a kind of signature
for correctly regularized images, and we should minimize the difference be-
tween the corresponding pdf of the image being restored and the model pdf
using some kind of distance measure. The requirement to approximate this
pdf using a histogram, which involves the counting of discrete quantities, and
the resulting nondifferentiability of the distance measure with respect to the
various regularization parameters, necessitates the use of evolutionary com-
putational algorithms for optimization. We have adopted evolutionary pro-
gramming that, unlike the genetic algorithm which is another widely applied
member of this class of algorithms, operates directly on real-valued vectors
instead of binary-coded strings and is therefore more suited to the adapta-
tion of the regularization parameters. In this algorithm, we have derived a
parametric representation that expresses the regularization parameter value
as a function of the local image variance. Generating a population of these
regularization strategies that are vectors of the above hyperparameters, we ap-
ply the processes of mutation, competition, and selection to the members of
the population to obtain the optimal regularization strategy. This approach
is then further extended to solve the problem of blind deconvolution by in-
cluding the point spread function coefficients in the set of hyperparameters
associated with each individual in the population.

1.7.5 Application of Self-Organization to Image Analysis and Retrieval

A recent approach known as the self-organizing tree map (SOTM) [87] inher-
ently incorporates hierarchical properties by virtue of its growth, in a manner
that is far more flexible in terms of revealing the underlying data space without
being constrained by an imposed topological framework. As such, the SOTM
exhibits many desirable properties over traditional SOFM-based strategies.
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Chapter 9 of the book will provide an in-depth coverage of this architecture.
Due to the adaptive nature, this family of unsupervised methods exhibits a
number of desirable properties over the SOFM and its early derivatives such
as (1) better topological preservation to ensure the ability to adapt to different
datasets; (2) consistent topological descriptions of the underlying datasets;
(3) robust and succinct allocation of cluster prototypes; (4) built-in awareness
of topological information, local density, and variance indicators for optimal
selection of cluster prototypes at runtime; and (5) a true automatic mode to
deduce simultaneously, optimal number of clusters, their prototypes, and an
appropriate topological mapping associating them.

Chapter 9 will then cover a series of pertinent real-world applications with
regards to the processing of image and video data—from its role in more
generic image-processing techniques such as the automated modeling and
removal of impulse noise in digital images, to problems in digital asset man-
agement including the modeling of image and video content, indexing, and
intelligent retrieval.

1.7.6 Application of Evolutionary Computation to Image Categorization

To address the issue of accuracy in content representation that is crucial for
compressed domain image classification, we propose to perform transforma-
tion on the compressed-domain features. These feature values are modeled
as realizations of random variables. The transformation on the random vari-
able is then carried out by the merging and removal of histogram bin counts.
To search for the optimal transformation on the random variable, genetic
algorithm (GA) has been employed to perform the task. The approach has
been further extended by adopting individually optimized transformations
for different image classes, where a set of separate classification modules is
associated with each of these transformations.

1.7.7 Application of Computational Intelligence to Content-Based
Image Retrieval

In order to address the imprecision of user perception in relevance feedback
of CBIR systems, a fuzzy labeling scheme that integrates the user’s uncertain
perception of image similarity is proposed. In addition to the “relevant” and
“irrelevant” choices, the proposed scheme provides a third “fuzzy” option to
the user. The user can provide a feedback as “fuzzy” if the image only satisfies
his or her partial information needs. Under this scheme, the soft relevance of
the fuzzy images has to be estimated. An a posteriori probability estimator is
developed to achieve this. With the combined relevant, irrelevant, and fuzzy
images, a recursive fuzzy radial basis function network (RFRBFN) has been
developed to learn the user information needs. To address the small sample
problem in relevance feedback, a predictive-label fuzzy support vector ma-
chine (PLFSVM) framework has been developed. Under this framework, a
clustering algorithm together with consideration of the correlation between


